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A B S T R A C T

We develop a model for solid objects surrounded by a fluid that accounts for the possibility
of acoustic pressures giving rise to damage on the surface of the solid. The propagation of
an acoustic pressure in the fluid domain is modeled by the acoustic wave equation. On the
other hand, the response of the solid is described by linear elastodynamics coupled with a
gradient damage model, one that is based on a cohesive-type phase-field description of fracture.
The interaction between the acoustic pressure and the deformation and damage of the solid
are represented by transmission conditions at the fluid-solid interface. The resulting governing
equations are discretized using a finite-element/finite-difference method that pays particular
attention to the spatial and temporal scales that need to be resolved. Results from model-based
simulations are provided for a benchmark problem as well as for recent experiments in nano-
pulse lithotripsy. A parametric study is performed to illustrate how damage develops in response
to the driving force (magnitude and location of the acoustic source) as a function of the fracture
resistance of the solid. The results are shown to be qualitatively consistent with experimental
observations for the location and size of the damage fields on the solid surface. A study of
limiting cases also suggests that both the threshold for damage and the critical fracture energy
are important to consider in order to capture the transition from damage initiation to complete
localization. A low-cycle fatigue model is proposed that degrades the fracture resistance of the
solid as a function of accumulated tensile strain energy, and it is shown to be capable of capturing
damage localization in simulations of multi-pulse nano-pulse lithotripsy.

1. Introduction

The interaction of acoustic waves with damaged structures is of long-standing interest to the engineering and
materials science communities. It is useful to understand how acoustic waves both interact with damaged structures
but can also induce damage when they are sufficiently strong. Applications range from ultrasonic damage detection
[8, 15, 28] to device protection [10, 5, 27, 37]. In this work, our focus concerns shock wave lithotripsy, a highly effective
treatment for the removal of kidney stones [29, 42, 46, 44, 43, 45]. Although the interaction of a surface acoustic wave
with nominally elastic solids has been studied both experimentally and theoretically [44, 43, 45], the manner in which
damage develops on the surface of the structure has yet to be understood. In this work, we take advantage of recent
developments in gradient-damage models to develop a fully coupled formulation for acoustics, linear elastodynamics,
and damage. We then use model-based simulations to examine the extent to which this formulation can explain recent
experimental observations.

Among the applications of acoustic-induced damage, shock wave lithotripsy is a medical procedure used to treat
kidney (as well as gallbladder and pancreatic) stones in patients. Roughly speaking, lithotripsy – which literally means
“crushing” (tripsy) “stones” (lithos) – refers to the process of breaking up kidney stones that are too large for patients to
pass on their own. This can be effected in a number of ways, with perhaps the most common approach at present being
the so-called extracorporeal shock wave lithotripsy (ESWL) [23]. As its name suggests, this is a non-invasive procedure
that consists in the administration of shock waves aimed at the stones. Here the phrase “shock waves" describes the
high-energy acoustical waves that are generated during lithotripsy, not to be confused with shocks that form during
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supersonic flow, for example. While there is no doubt that ESWL has been a success since its introduction in the 1980s,
it is an expensive procedure and can sometimes result in collateral tissue damage.

Nano-pulse lithotripsy (NPL) is a relatively new intracorporeal approach wherein short electrical pulses discharged
near the surface of a stone serve to fragment it efficiently. In NPL, a probe is placed within millimeters of the stone
surface and generates a spark discharge that gives rise to a shock wave that propagates through the surrounding fluid
and impacts the stone. The shock waves break up the stones through a dynamic process involving the contribution of
various stress-waves propagating inside the stone and cavitation produced in the surrounding liquid medium.

However, several aspects of the treatment of kidney stones using shock waves are not completely understood,
as discussed by Tanguay and Colonius [39]. Recently, Zhang et al. [45] conducted a series of experiments and
accompanying model-based simulations for NPL on glass samples that provided some key observations. The work
of Zhang et al. [45] focused on the interaction between the shock wave propagating through the surrounding fluid and
the impedance mismatch with the solid sample, giving rise to a surface acoustic wave in the latter. The response of the
system was examined as a function of the “standoff distance” between the probe tip and the glass surface. Importantly,
the experiments indicated that the radii of the “ring-like” fractures increased with the standoff distance, while the width
of the damaged region decreased.

Although some model-based simulations of shock-wave lithotripsy have been developed [40, 42], relatively little
work has focused on simulations of NPL. The simulations by Zhang et al. [45] employed a model for coupled
acoustics and linear elastodynamics, but without any explicit representation for the damage in the solid. There are
some challenges to developing a robust computational framework to simulate acoustic-induced damage evolution in
NPL. First of all, the shock wave treatment is a coupled acoustic-elastodynamics-damage problem, and the interactions
between the propagation of the acoustic waves and the deformation of the stone need to be properly represented.
Moreover, cracks form and propagate in response to the repeated shock waves. This shockwave-crack interaction has
to be incorporated into the model and accompanying computational framework if model-based simulations have any
chance at reproducing experimental observations.

In this work, we extend the model of Zhang et al. [45] by coupling the fluid acoustics and solid elastodynamics
to a cohesive-type phase-field model of fracture. Phase-field models for fracture originated some twenty years ago [6]
as regularizations of the variational description of fracture introduced by Francfort and Marigo [16], which is nothing
more than the mathematical statement of Griffith’s fracture postulate in its general form of energy cost-benefit analysis
[18]. In these models, a phase field or order parameter is introduced to describe in a regularized manner the presence of
sharp crack discontinuities within a continuum formulation. The particular version used in this work is a cohesive-type
variation [32, 17] of the original phase-field model [6], which employs an energetic threshold to describe damage
initiation in uniaxial tension and that has the merit of being insensitive to the regularization length.

The studies of Zhang et al. [45] indicated that macroscale cracks did not form in some cases until a sufficient number
of shocks were applied. For models relying on damage fields to represent sharp crack surfaces, this could manifest as
a damage field that slowly accumulates with increasing shocks until reaching a critical level at which localization
ensues. It is also plausible, however, that the shocks degrade the fracture resistance of the material in a manner that is
more typical of low-cycle fatigue. Fatigue-based concepts have been introduced into gradient damage and variational
fracture models following various approaches [35, 12, 2, 33, 1]. In this work, concepts from the recent fatigue model
of Carrara et al. [9] and Grossman-Ponemon et al. [19] are adapted to degrade both the threshold for damage and the
fracture toughness in order to simulate damage localization under multi-pulse NPL.

The paper is organized as follows. We begin in Section 2 by formulating the coupled acoustics, elastodynamics, and
damage problem. This includes the governing equations in the fluid and the solid domains, as well as a description of
the cohesive-type phase field model for fracture in the solid. In Section 3, we present the FE/FD (finite-element/finite-
difference) discretization of the proposed coupled problem. Then, in Sections 4 and 5, we present a series of
representative results from model-based simulations of a benchmark problem and of recent experimental studies of
NPL. Finally, in Section 6, we provide a summary of the main findings of this work and record a number of concluding
remarks.

2. Problem formulation

2.1. Initial configuration and kinematics
Consider a solid that in its initial configuration, at time 𝑡 = 0, occupies the open domain Ω𝑠, with boundary 𝜕Ω𝑠 and

outward unit normal 𝒏. As schematically depicted in Figure 1, the solid is surrounded by a fluid occupying the domain
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Figure 1: Schematic of a coupled acoustics-elastodynamics-damage problem: a solid body Ω𝑠 with a sharp crack
discontinuity Γ(𝑡) is immersed in a ŕuid environment Ω𝑓 , and interacts with the surrounding ŕuid through the ŕuid-solid
interface Γ𝑓𝑠.

Ω𝑓 . We denote by Γ𝑓 the outer boundary of the fluid domain and by Γ𝑓𝑠 the fluid-solid interface, so that 𝜕Ω𝑠 = Γ𝑓𝑠
and 𝜕Ω𝑓 = Γ𝑓𝑠 ∪ Γ𝑓 .

Identify material points in both the solid and the fluid by their initial position vector 𝒙 ∈ Ω𝑠 ∪ Ω𝑓 . In response to
an acoustic source that is immersed in the fluid domain (to be described below), the position vector 𝒙 of a material
point may move to a new position specified by the mapping

𝒚 = 𝒙 + 𝒖(𝒙, 𝑡),

where 𝒖 is the displacement field. Making use of standard notation, we write the displacement gradient and Lagrangian
velocity fields at 𝒙 and 𝑡 as

∇𝒖 =
𝜕𝒖

𝜕𝒙
(𝒙, 𝑡) and 𝒖̇ =

𝜕𝒖

𝜕𝑡
(𝒙, 𝑡).

Since the focus of this work is on nearly incompressible Newtonian fluids (e.g., water), on hard brittle solids (e.g.,
glass), and on externally applied acoustic point sources, we shall restrict attention to small-displacement kinematics
throughout, both in the fluid as well as in the solid.

2.2. Acoustics in the fluid
Balance of linear and angular momenta. Making use of mass conservation and Cauchy’s fundamental postulate,
the balance of linear and angular momenta in the fluid read

div𝑻 + 𝒃𝑓 = 𝜌𝑓 𝒖̈, (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ] (1)

and

𝑻 𝑇 = 𝑻 , (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ], (2)

respectively, where 𝜌𝑓 stands for the initial mass density of the fluid, 𝒃𝑓 is a body force per unit initial volume,
𝑻 is the Cauchy stress tensor, and div stands for the standard divergence operator, that is, in indicial notation,
(div𝑻 )𝑖 = 𝜕𝑇𝑖𝑗∕𝜕𝑥𝑗 .

Constitutive behavior of the fluid. The mechanical behavior of the fluid is modeled as a linear elastic fluid [41].
Accordingly, the Cauchy stress tensor at any material point 𝒙 ∈ Ω𝑓 and time 𝑡 ∈ [0, 𝑇 ] is given by the constitutive
relation

𝑻 (𝒙, 𝑡) = −𝑝𝑰 with 𝑝 = −𝐾𝑓 div 𝒖, (3)

where the material constant 𝐾𝑓 denotes the bulk modulus of the fluid.
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Note that the constitutive relation (3) satisfies automatically the balance of angular momentum (2). Substitution of
the constitutive relation (3) in the balance of linear momentum (1) leads to

−∇𝑝 + 𝒃𝑓 = 𝜌𝑓 𝒖̈, (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ]. (4)

Taking the divergence of this last equation leads in turn to

−Δ𝑝 + 𝑎 = 𝜌𝑓div 𝒖̈, (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ], (5)

where we have made use of the notation 𝑎 = div 𝒃𝑓 . Finally, recognizing from (3) that

𝑝̈ = −𝐾𝑓div 𝒖̈

allows equation (5) to be rewritten in the form

Δ𝑝 −
1

𝑐2
𝑓

𝑝̈ = 𝑎, (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ], (6)

where the material constant 𝑐𝑓 ∶=
√
𝐾𝑓∕𝜌𝑓 is the speed of propagation of acoustic waves in the fluid. Equation (6) is

nothing more than the acoustic wave equation; see, e.g., [24].
In the sequel, we shall consider that the fluid is subjected to an acoustic point source

𝑎(𝒙, 𝑡) = 𝑆0(𝑡)𝛿(𝒙 − 𝒙𝑠),

where 𝑆0(𝑡) is the strength of the source and 𝛿(𝒙−𝒙𝑠) is the Dirac delta function centered at position 𝒙𝑠. We shall also
consider that the fluid domain is initially at rest and stress free, while its outer boundary is traction free:

𝑝(𝒙, 0) = 0, 𝑝̇(𝒙, 0) = 0, 𝒙 ∈ Ω𝑓 , and ∇𝑝 ⋅ 𝒏 = 0, (𝒙, 𝑡) ∈ Γ𝑓 × [0, 𝑇 ]. (7)

2.3. Elastodynamics and damage in the solid
Balance of linear and angular momenta. Making use again of mass conservation and Cauchy’s fundamental
postulate, much like in the fluid domain, the balance of linear and angular momenta in the solid read

div𝝈 + 𝒃𝑠 = 𝜌𝑠𝒖̈, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ] (8)

and

𝝈𝑇 = 𝝈, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ], (9)

where 𝜌𝑠 stands for the initial mass density of the solid, 𝒃𝑠 is a body force per unit initial volume, and, in keeping with
classical notation, we have used 𝝈 (instead of 𝑻 ) to denote the Cauchy stress tensor.

Constitutive behavior of the solid. In response to mechanical forces, the solid can either deform elastically and/or
fracture. We model the elastic behavior as linear and isotropic. The fracture behavior, we model in a regularized manner
in terms of a phase field

𝑑 = 𝑑(𝒙, 𝑡), (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ],

taking values in the range [0, 1]. The value 𝑑 = 0 identifies the intact regions of the solid and 𝑑 = 1 those that have
been fractured, while the transition from 𝑑 = 0 to 𝑑 = 1 is set to occur smoothly over regions of small thickness of
regularization length scale 𝓁; see Fig. 2 for a schematic.

In this setting, we take the Cauchy stress tensor 𝝈 at any material point 𝒙 ∈ Ω𝑠 and time 𝑡 ∈ [0, 𝑇 ] to be given by
the constitutive relation

𝝈(𝒙, 𝑡) = 𝑔(𝑑)
𝜕𝜓+

𝜕𝜺
(𝜺(𝒖)) +

𝜕𝜓−

𝜕𝜺
(𝜺(𝒖)) with

⎧
⎪⎨⎪⎩

𝜓+(𝜺) = 𝜇
(
𝜺+ ⋅ 𝜺+

)
+
𝜆

2
⟨tr 𝜺⟩2

+

𝜓−(𝜺) = 𝜇 (𝜺− ⋅ 𝜺−) +
𝜆

2
⟨tr 𝜺⟩2

−

. (10)
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(a) (b)

Figure 2: (a) Sketch of a body, Ω, with an internal discontinuity Γ. (b) A regularization of the internal discontinuity, as
represented by a scalar damage őeld 𝑑.

In these expressions, 𝜇 and 𝜆 stand for the Lamé constants,

𝜀(𝒖) =
1

2

(
∇𝒖 + ∇𝒖𝑇

)
=

3∑
𝑎=1

𝜀𝑎𝒏𝑎 ⊗ 𝒏𝑎

is the (infinitesimal) strain tensor, with 𝜀𝑎 and 𝒏𝑎 ⊗ 𝒏𝑎 denoting its eigenvalues and corresponding eigentensors,

𝜺+ =

3∑
𝑎=1

⟨𝜀𝑎⟩+ 𝒏𝑎 ⊗ 𝒏𝑎 and 𝜺− =

3∑
𝑎=1

⟨𝜀𝑎⟩− 𝒏𝑎 ⊗ 𝒏𝑎, with ⟨𝑥⟩± ∶=
|𝑥| ± 𝑥

2
,

are the “tensile” and “compressive” parts of the strain tensor [34], and 𝑔(𝑑) is the so-called degradation function.
In this work, we make use of the rational function proposed in [32, 31] for the degradation function 𝑔(𝑑), namely,

𝑔(𝑑) =
(1 − 𝑑)2

(1 − 𝑑)2 +
3𝑐
8𝓁𝜓𝑐

(1 + 𝑑)𝑑

, (11)

where the material constant𝑐 denotes the critical energy release rate of the solid, while the parameter𝜓𝑐 is a nucleation
energy that describes a threshold for damage evolution. Given a uniaxial tensile strength 𝝈𝑡𝑠 for the solid of interest,
a simple means to estimate the nucleation energy 𝜓𝑐 in (11) is to consider the strain energy for a sample in uniaxial
tension. The nucleation energy can then be approximated as

𝜓𝑐 ≈
𝝈2
𝑡𝑠

2𝐸
.

where 𝐸 = ((2𝜇 + 3𝜆)𝜇)∕(𝜇 + 𝜆) is the Young’s modulus of the solid.

Remark. Importantly, the use of the degradation function (11) ensures that the threshold for damage is insensitive to
the choice of regularization length 𝓁. The regularization length does, however, have an upper bound that depends on
the values of 𝑐 and 𝜓𝑐 as given by [32, 17]

𝓁 ≤ 𝑐
8𝜓𝑐

.

It bears emphasis that this regularization length turns out to be slightly smaller than a physical length scale for the
material, namely the characteristic length of the fracture process zone size in Mode I, given by

𝓁𝑐ℎ =
𝐸′𝑐
𝝈2
𝑡𝑠

,
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where 𝐸′ = 𝐸 in three dimensions and plane stress, and 𝐸′ = 𝐸∕(1 − 𝜈) in plane strain; see, e.g., [38, 21].

Evolution equation for the phase field 𝑑. The next step in the formulation of the elastodynamics and damage in
the solid is to describe how the phase field 𝑑 evolves in time as the solid is subjected to mechanical forces.

Consistent with the evolution that results from the phase-field regularization of the variational approach to fracture
[16, 7] for the so-called AT-1 approximation [3, 4], we consider

⎧
⎪⎨⎪⎩

div
[
𝓁𝑐∇𝑑] = 4

3
𝑔′(𝑑)𝜓+(𝜺(𝒖)) +

𝑐
2𝓁
, if 𝑑̇(𝒙, 𝑡) > 0, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ]

div
[
𝓁𝑐∇𝑑] ≤ 4

3
𝑔′(𝑑)𝜓+(𝜺(𝒖)) +

𝑐
2𝓁
, if 𝑑̇(𝒙, 𝑡) = 0, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ]

, (12)

where 𝑔′ = d𝑔∕d𝑑 and where we remark that the inequalities in these expressions embody the classical assumption
that fracture is a purely dissipative and irreversible process.

Remark. The evolution equation (12) has the merit of describing the nucleation of fracture from large pre-existing
cracks as well as the propagation of cracks in a manner that is consistent with the Griffith energy competition.

Remark. Under states of uniform stress of the “tensile” diagonal form 𝜎 = diag(𝜎1 ≥ 0, 𝜎2 ≥ 0, 𝜎3 ≥ 0), the evolution
equation (12) predicts nucleation of fracture whenever the algebraic equation

 (𝝈) =
𝐽2

𝜇
+
𝐼2
1

9𝜅
−
𝜎2
𝑡𝑠

𝐸
= 0 (13)

is satisfied, where 𝜅 = 𝜆+2𝜇∕3 is the bulk modulus of the solid, 𝐼1 = tr𝝈 = 𝜎1+𝜎2+𝜎3, and 𝐽2 = tr[𝝈−(tr𝝈)∕3 𝑰]∕2 =

(𝜎2
1
+𝜎2

2
+𝜎2

3
−𝜎1𝜎2−𝜎1𝜎3−𝜎2𝜎3)∕3. In other words, the surface (13) in stress space is the strength surface predicted by

the evolution equation (12). It happens to be identical to the strength surface predicted by the original AT-1 phase-field
model (cf. Eq. (8) in [25]). As a result, it shares the same limitations as the original model (see Section 3 in [25]), save
for one, its predicted strength surface (13) is independent of the choice of regularization length 𝓁. In spite of these
limitations, based on recent results [26] for “indentation” problems akin to the one of interest in this work, we expect
the choice of evolution equation (12) to provide useful insight. We will revisit the problem with a complete description
of the strength of the solid in future work.

Remark. Under more general states of stress, the strength surface is more complicated due to the eigen decomposition
of the strain in (10). A detailed description of how to construct the strength surface predicted by the original AT-1
model with such a spectral decomposition of the strain can be found in Appendix A of [14]. Figure 3 illustrates the
complete strength surface predicted by (12) in the general three-dimensional case and in plane stress (𝜎3 = 0) using a
tensile strength (𝜎𝑡𝑠) of 20 MPa, for illustration. In plane stress conditions, the uniaxial tensile strength and the uniaxial

compressive strength indicated by the strength surface are 𝜎𝑡𝑠 and 𝜎𝑐𝑠 =
√
(1 + 2𝜈)(1 − 𝜈)∕2𝜈2𝜎𝑡𝑠, respectively.

Note that the constitutive relation (10) satisfies automatically the balance of angular momentum (9). Substitution
of the constitutive relation (10) in the balance of linear momentum (8) leads to

div

[
𝑔(𝑑)

𝜕𝜓+

𝜕𝜺
(𝜺(𝒖)) +

𝜕𝜓−

𝜕𝜺
(𝜺(𝒖))

]
+ 𝒃𝑠 = 𝜌𝑠𝒖̈, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ],

which together with the evolution equation (12) and appropriate initial and boundary conditions (to be spelled out
next) for the displacement field 𝒖(𝒙, 𝑡) and phase field 𝑑(𝒙, 𝑡) constitute the governing equations of elastodynamics and
damage in the solid.

In the sequel, we shall consider that the solid is initially undeformed, at rest, stress free, that there is no initial
damage, and that the body force is negligible:

𝒖(𝒙, 0) = 0, 𝒖̇(𝒙, 0) = 0, 𝑑(𝒙, 0) = 0, 𝒙 ∈ Ω𝑠, and 𝒃𝑠(𝒙, 𝑡) = 0, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ].
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Figure 3: Strength surface predicted by (12) for a material with a tensile strength of 𝜎𝑡𝑠 = 20 MPa in (a) the principal
stress space (𝜎1, 𝜎2, 𝜎3), and (b) plane stress states where 𝜎3 = 0.

2.4. Fluid-solid interaction
The final step in the formulation of the problem is to describe the conditions at the fluid-solid interface Γ𝑓𝑠. We

assume a no-slip condition. Also, since the interest here is on hard brittle solids, we assume that surface tension effects
are negligible. Precisely, we consider

𝒖|𝑠 = 𝒖|𝑓 , (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ], (14)

and

𝝈𝒏𝑠 = −𝑝𝒏𝑠, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ],

where 𝒏𝑠 denotes the unit normal pointing outwards from the solid towards the fluid.
Noting that the acoustics problem in the fluid is fully described in terms of the pressure field 𝑝. By making use of

relation (4), we can recast the jump condition (14) in terms of 𝑝 as follows:

−∇𝑝 ⋅ 𝒏𝑠 = 𝜌𝑓 𝒖̈|𝑠 ⋅ 𝒏𝑠, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ].

We also assume that the initiation of damage is solely induced by the mechanical forces that result from the acoustic
source. Accordingly, we consider a zero Neumann condition for the damage:

∇𝑑 ⋅ 𝒏𝑠 = 0, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ].

2.5. Governing equations
At this stage, we are in a position to combine the equations developed above into a mathematically closed system

of governing equations for the pressure field 𝑝(𝒙, 𝑡) in the fluid and the displacement field 𝑢(𝒙, 𝑡) and phase field 𝑑(𝒙, 𝑡)
in the solid. They read
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The strong form of the governing equations

Acoustics: Δ𝑝 −
1

𝑐2
𝑓

𝑝̈ = 𝑎, (𝒙, 𝑡) ∈ Ω𝑓 × [0, 𝑇 ]

∇𝑝 ⋅ 𝒏 = 0, (𝒙, 𝑡) ∈ Γ𝑓 × [0, 𝑇 ]

− ∇𝑝 ⋅ 𝒏𝑠 = 𝜌𝑓 𝒖̈ ⋅ 𝒏𝑠, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ]

𝑝(𝒙, 0) = 0, 𝒙 ∈ Ω𝑓

𝑝̇(𝒙, 0) = 0, 𝒙 ∈ Ω𝑓

Elastodynamics: div

[
𝑔(𝑑)

𝜕𝜓+

𝜕𝜺
(𝜺(𝒖)) +

𝜕𝜓−

𝜕𝜺
(𝜺(𝒖))

]
= 𝜌𝑠𝒖̈, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ]

[
𝑔(𝑑)

𝜕𝜓+

𝜕𝜺
(𝜺(𝒖)) +

𝜕𝜓−

𝜕𝜺
(𝜺(𝒖))

]
𝒏𝑠 = −𝑝𝒏𝑠, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ]

𝒖(𝒙, 0) = 0, 𝒙 ∈ Ω𝑠

𝒖̇(𝒙, 0) = 0, 𝒙 ∈ Ω𝑠

Damage: div
[
𝓁𝑐∇𝑑] = 4

3
𝑔′(𝑑)𝜓+(𝜺(𝒖)) +

𝑐
2𝓁
, if 𝑑̇(𝒙, 𝑡) > 0, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ]

div
[
𝓁𝑐∇𝑑] ≤ 4

3
𝑔′(𝑑)𝜓+(𝜺(𝒖)) +

𝑐
2𝓁
, if 𝑑̇(𝒙, 𝑡) = 0, (𝒙, 𝑡) ∈ Ω𝑠 × [0, 𝑇 ]

∇𝑑 ⋅ 𝒏𝑠 = 0, (𝒙, 𝑡) ∈ Γ𝑓𝑠 × [0, 𝑇 ]

𝑑(𝒙, 0) = 0, 𝒙 ∈ Ω𝑠

3. Numerical implementation

In this section, we present a FE/FD scheme to approximate solutions for the governing equations of the coupled
acoustics-eleastodynamics-damage problem derived above. We begin in Subsection 3.1 by recasting the strong form
of the governing equations into a weak form. In Subsection 3.2, we then work out a Galerkin FE space discretization
of the weak form. In Subsection 3.3, we further discretize in time the obtained set of space-discretized equations by
means of FD. Finally, the scheme utilized to resolve the set of nonlinear algebraic equations resulting from the space
and time discretizations is described in Subsection 3.4.

3.1. Weak form of the governing equations
For any fixed time 𝑡 ∈ [0, 𝑇 ], define the trial space 𝑡 for the pressure field, 𝑡 for the displacement field, and 𝑡

for the damage field as

𝑡 = {𝑝(𝒙, 𝑡) | 𝑝(𝒙, 𝑡) ∈ 1(Ω𝑓 ;ℝ)},

𝑡 = {𝒖(𝒙, 𝑡) | 𝒖(𝒙, 𝑡) ∈ 1(Ω𝑠;ℝ
𝑁 )},

𝑡 = {𝑑(𝒙, 𝑡) | 𝑑(𝒙, 𝑡) ∈ 1(Ω𝑠;ℝ), 0 ≤ 𝑑 ≤ 1},

and the corresponding test spaces 𝑡, 𝑡, and 𝑡 as

𝑡 = {𝑞(𝒙, 𝑡) | 𝑞(𝒙, 𝑡) ∈ 1(Ω𝑓 ;ℝ)},

𝑡 = {𝒗(𝒙, 𝑡) | 𝒗(𝒙, 𝑡) ∈ 1(Ω𝑠;ℝ
𝑁 )},

𝑡 = {𝑤(𝒙, 𝑡) | 𝑤(𝒙, 𝑡) ∈ 1(Ω𝑠;ℝ)}.

Define further (⋅, ⋅) as the inner product over the volume and ⟨⋅, ⋅⟩ as the inner product over Neumann boundaries.
A standard calculation shows that the weak form of the governing equations reads
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The weak form of the governing equations

For 𝑡 ∈ [0, 𝑇 ], given 𝑝(𝒙, 0) = 0, 𝑝̇(𝒙, 0) = 0, 𝒖(𝒙, 0) = 0, 𝒖̇(𝒙, 0) = 0, and 𝑑(𝒙, 0) = 0, find 𝑝(𝒙, 𝑡) ∈ 𝑡, 𝒖(𝒙, 𝑡) ∈𝑡, and 𝑑(𝒙, 𝑡) ∈ 𝑡, such that ∀𝑞 ∈ 𝑡,∀𝑣 ∈  , and ∀𝑤 ∈ 𝑡,

1

𝑐2
𝑓

(𝑝̈, 𝑞)Ω𝑓 + (∇𝑝,∇𝑞)Ω𝑓 + (𝑎, 𝑞)Ω𝑓 −
⟨
𝜌𝑓 𝑞𝒖̈,𝒏𝑠

⟩
Γ𝑓𝑠

= 0, (15a)

𝜌𝑠(𝒖̈, 𝒗)Ω𝑠 + (𝝈,∇𝒗)Ω𝑠 + ⟨𝑝𝒏𝑠, 𝒗⟩Γ𝑓𝑠 = 0, (15b)

(𝓁𝑐∇𝑑,∇𝑤)Ω𝑠 +
(
4

3
𝑔′(𝑑)𝜓+

𝑒
(𝜀(𝒖)) +

𝑐
2𝓁
, 𝑤

)

Ω𝑠

≥ 0. (15c)

3.2. Space discretization
Consider now a conforming partition of the domain Ω = Ω𝑓 ∪ Ω𝑠 occupied by the fluid and the solid in their

initial configuration into non-overlapping simplicial finite elements {Ω𝑒}
𝑛𝑒𝑙
𝑒=1

; a typical partition is illustrated in Fig.
10, where a mesh of linear triangular elements is used in both the solid and fluid domains. Given this partition, in
the finite-element space consisting of continuous piecewise linear polynomial functions, we look for approximations
𝑝ℎ(𝒙, 𝑡) of the pressure field 𝑝(𝒙, 𝑡) in the fluid domain, and 𝒖ℎ(𝒙, 𝑡) and 𝑑ℎ(𝒙, 𝑡) of the displacement field 𝒖(𝒙, 𝑡) and
the phase field 𝑑(𝒙, 𝑡) in the solid domain. We denote these spaces by ℎ

𝑡
⊂  , ℎ

𝑡
⊂ 𝑡, and ℎ

𝑡
⊂ 𝑡. We make

use of a standard Galerkin approximation and denote the corresponding test subspaces by ℎ
𝑡
⊂ 𝑡,ℎ𝑡 ⊂ 𝑡, and

ℎ
𝑡
⊂𝑡. In this setting, it is trivial to deduce that the spatial discretization of the weak form (15) is given by:

The Galerkin FE form of the governing equations

For 𝑡 ∈ [0, 𝑇 ], given 𝑝ℎ(𝒙, 0) = 0, 𝑝̇ℎ(𝒙, 0) = 0, 𝒖ℎ(𝒙, 0) = 0, 𝒖̇ℎ(𝒙, 0) = 0, 𝑑ℎ(𝒙, 0) = 0, find 𝑝ℎ(𝒙, 𝑡) ∈

ℎ
𝑡
, 𝒖ℎ(𝒙, 𝑡) ∈  ℎ

𝑡
, and 𝑑ℎ(𝒙, 𝑡) ∈ ℎ

𝑡
, such that ∀𝑞ℎ ∈ ℎ

𝑡
,∀𝑣ℎ ∈ ℎ

𝑡
, and ∀𝑤ℎ ∈ ℎ

𝑡
,

1

𝑐2
𝑓

(
𝑝̈ℎ, 𝑞ℎ

)
Ω𝑓

+
(
∇𝑝ℎ,∇𝑞ℎ

)
Ω𝑓

+
(
𝑎, 𝑞ℎ

)
Ω𝑓

−
⟨
𝜌𝑓 𝑞ℎ𝒖̈ℎ,𝒏𝑠

⟩
Γ𝑓𝑠

= 0, (16a)

𝜌𝑠(𝒖̈ℎ, 𝒗ℎ)Ω𝑠 +
(
𝝈ℎ,∇𝒗ℎ

)
Ω𝑠

+ ⟨𝑝ℎ𝒏𝑠, 𝒗ℎ⟩Γ𝑓𝑠 = 0, (16b)

(𝓁𝑐∇𝑑ℎ,∇𝑤ℎ)Ω𝑠 +
(
4

3
𝑔′(𝑑ℎ)𝜓

+
𝑒
(𝜀(𝒖ℎ)) +

𝑐
2𝓁
, 𝑤ℎ

)

Ω𝑠

≥ 0, (16c)

where we remark that the space-discretized inequality (16c) for the damage evolution associated with the irreversibility
constraint 𝑑̇ℎ ≥ 0 is treated with a Primal-Dual Active Set (PDAS) strategy [20].

It follows that equations (16) reduce to a system of ordinary differential equations and nonlinear algebraic
(in)equalities for the resulting global degrees of freedom, say, in vector form, p(𝑡), u(𝑡), and d(𝑡), of the matrix form

⎧⎪⎨⎪⎩

𝑴𝑓 p̈(𝑡) +𝑲𝑓p(𝑡) = 𝑭 𝑓 (𝑡, ü(𝑡)), 𝑡 ∈ [0, 𝑇 ]

p(0) = 0,

ṗ(0) = 0,

(17)

for the pressure field 𝑝ℎ in the fluid,

⎧⎪⎨⎪⎩

𝑴𝑠ü(𝑡) +𝑮𝑠(u(𝑡),d(𝑡)) = 𝑭 𝑠(p(𝑡)), 𝑡 ∈ [0, 𝑇 ]

u(0) = 0,

u̇(0) = 0,

(18)

for the displacement field 𝒖ℎ in the solid, and

⎧
⎪⎨⎪⎩

𝑹𝑠(u(𝑡),d(𝑡)) ≥ 0, 𝑡 ∈ [0, 𝑇 ]

ḋ(𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇 ]

d(0) = 0,

(19)
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for the phase field 𝑑ℎ in the solid.
In equations (17), 𝑴𝑓 ,𝑲𝑓 , and 𝑭 𝑓 denote, respectively, the constant mass matrix, the constant stiffness matrix,

and the forcing vector in the fluid domain. As indicated by its arguments, note that the forcing vector 𝑭 𝑓 is not a
constant but a function of time, via its dependence on the acoustic point source, and of the acceleration of the solid at
the fluid-solid interface.

In equations (18), 𝑴𝑠 denotes the constant mass matrix in the solid domain, while the vectors 𝑮𝑠 and 𝑭 𝑠 are
functions of the degrees of freedom of the displacement field and the phase field and of the pressure field, as indicated
by their arguments.

Finally, in the (in)equalities (19), the vector𝑹𝑠 is a nonlinear function of the degrees of freedom of the displacement
field and the phase field in the solid domain and the short notation ḋ(𝑡) ≥ 0 is employed to denote that each of the
components of the vector ḋ(𝑡) is constrained to be nonnegative.

3.3. Time discretization
Consider next a partition of the time interval under consideration [0, 𝑇 ] in the space-discretized equations (17)-(19)

into discrete times 0 = 𝑡0, 𝑡1, ...𝑡𝑚, 𝑡𝑚+1, ..., 𝑡𝑀 = 𝑇 . Making use of the notation p𝑚 = p(𝑡𝑚), u𝑚 = u(𝑡𝑚), d𝑚 = d(𝑡𝑚)

for 𝑚 = 0, 1, ...,𝑀 − 1,𝑀 , Δ𝑡𝑚 = 𝑡𝑚+1 − 𝑡𝑚, and the second-order central difference approximation for the time
derivatives

p̈(𝑡𝑚) =
p𝑚+1 − 2p𝑚 + p𝑚−1

(Δ𝑡𝑚)
2

and ü(𝑡𝑚) =
u𝑚+1 − 2u𝑚 + u𝑚−1

(Δ𝑡𝑚)
2

, (20)

it follows that the solution p𝑚+1, u𝑚+1, d𝑚+1 of the equations (17)-(19) at the discrete time 𝑡𝑚+1 is given in terms of
the solution at the previous times by the system of coupled nonlinear algebraic equations

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑴𝑓

p𝑚+1 − 2p𝑚 + p𝑚−1

(Δ𝑡𝑚)
2

+𝑲𝑓p𝑚 = 𝑭 𝑓

(
𝑡𝑚,

u𝑚+1 − 2u𝑚 + u𝑚−1

(Δ𝑡𝑚)
2

)

𝑴𝑠

u𝑚+1 − 2u𝑚 + u𝑚−1

(Δ𝑡𝑚)
2

+𝑮𝑠(u𝑚,d𝑚) = 𝑭 𝑠(p𝑚)

{
𝑹𝑠(u𝑚+1,d𝑚+1) ≥ 0

d𝑚+1 − d𝑚 ≥ 0

𝑚 = 0, 1, ...,𝑀 − 1,𝑀. (21)

Initial conditions. To implement the initial conditions in (21)1,2, we make use of a ghost grid point at 𝑡𝑚=−1 together
with the first-order approximations

p−1 = p1 − 2Δ𝑡0ṗ(0) = p1 and u−1 = u1 − 2Δ𝑡0u̇(0) = u1

in terms of the initial conditions for ṗ(𝑡) and u̇(𝑡) at 𝑡 = 0.
In all the simulations presented in Section 5 below, we make use of a uniform time increment Δ𝑡𝑚 = Δ𝑡 that is

selected so as to satisfy the CFL (Courant–Friedrichs–Levy) condition in both the fluid and the solid domains [13].
Precisely, we set

Δ𝑡 ≤ min

{
ℎ𝑓

𝑐𝑓
,
ℎ𝑠

𝑐𝑠

}
,

where ℎ𝑓 and ℎ𝑠 stand for the sizes of the smallest elements in the fluid and the solid, 𝑐𝑓 =
√
𝐾𝑓∕𝜌𝑓 , and

𝑐𝑠 =
√
(2𝜇 + 𝜆)∕𝜌𝑠.

3.4. Solver
The choice of second-order central difference approximations (20) for the second time derivatives of the pressure

and the displacement fields leads to a system of discretized equations (21) that is one-way coupled and hence, as
outlined next, can be solved sequentially at every discrete time without any iteration between the solves of (21)1, (21)2,
and (21)3.

Consider that the solutions p𝑛, u𝑛, d𝑛 (𝑛 = 0, 1, ..., 𝑚 − 1, 𝑚) of the equations (17)-(19) up to the discrete time 𝑡𝑚
have been determined. Then
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1. Equation (21)1 can be solved for p𝑚+1.

2. Having determined p𝑚+1, equation (21)2 can then be solved for u𝑚+1.

3. Having determined p𝑚+1 and u𝑚+1, equation (21)3 can in turn be solved for d𝑚+1.

Having computed p𝑚+1, u𝑚+1, d𝑚+1 in this manner, one can move on to compute the solution at the next discrete time
𝑡𝑚+2.

The above-outlined scheme to generate numerical solutions for the acoustics-elastodynamics-damage problem
formulated in the preceding section was implemented in RACCOON, a massively parallel FE code built upon the
MOOSE framework [36] maintained by Idaho National laboratory. All the simulations presented next were generated
with that implementation.

4. A benchmark problem

In the sequel, we deploy the numerical scheme presented above to simulate various acoustics-elastodynamics-
damage problems. We begin with a simple benchmark problem that serves to verify the implementation of the scheme.

Consider the problem in 𝑁 = 2 space dimensions schematically depicted in Fig. 4, wherein the source term 𝑎 = 0

but a pressure is applied at the left boundary (𝑥1 = 0, 𝑥2) of a fluid domain of dimensions 𝐿 ×𝐻 , so that an acoustic
wave propagates through the fluid and eventually reaches a solid domain also of dimensions𝐿×𝐻 . The right boundary
(𝑥1 = 2𝐿, 𝑥2) of the solid domain is traction free.

The fluid and the solid are assumed to be characterized by the material properties listed in Table 1, save for the
Poisson’s ratio, which is set to 𝜈 = 0 here.

Specifically, the applied pressure is given by

𝑝(0, 𝑥2, 𝑡) =

{
𝐴 sin(4𝜋𝑡) if 𝑡 ≤ 𝑡𝑝

0 else 𝑡 > 𝑡𝑝
,

where the amplitude of the pulse is chosen to match roughly half of the uniaxial tensile strength of the material,
2𝐴∕𝝈𝑡𝑠 = 1.1, while the time period 𝑡𝑝 is set to correspond to the time required for the pulse to propagate over roughly
20% of the length of the fluid domain, that is, 𝑡𝑝∕𝑇 = 0.1875, where 𝑇 = 𝐿∕𝑐𝑓 .

To carry out the simulations, we discretized the domain with a uniform FE mesh of element size ℎ = 𝐿∕200 and
made use of the time step Δ𝑡 = 0.2ℎ∕𝑐𝑠.

Although the problem is simulated in 𝑁 = 2 space dimensions, due to the material properties and initial and
boundary conditions, none of the fields vary in the thickness (𝑥2) direction. As such, the problem is essentially one-
dimensional. We therefore write 𝑥1 = 𝑥.

Figure 5 shows the acoustic wave in the fluid domain at several snapshots in time. The wave can be seen to begin
at the left boundary, propagate to the right, and then reflect back at the fluid-solid interface. As the solid domain is
far stiffer than the fluid domain, the reflected wave in the fluid domain has only a slightly smaller amplitude than the
incoming wave.

The component of the normalized stress 𝜎11∕𝜎𝑡𝑠 in the solid domain is plotted in Fig. 6 for two different time
periods. Figure 6(a) shows snapshots of the compressive stress that develops in the solid at times 1.125 ≤ 𝑡∕𝑇 < 1.388.
As the wave impacts the right boundary of the solid domain, it reflects off the free surface and becomes tensile. The
normalized tensile stress that develops for times 1.5 ≤ 𝑡∕𝑇 < 1.575 is shown in Fig. 6(b). The peak of the tensile wave
is sufficiently large such that the “tensile” strain energy 𝜓+ exceeds the nucleation energy 𝜓𝑐 and damage develops.

𝑝 𝑥

𝐿 𝐿

𝐻Ω𝑓 Γ𝑓𝑠 Ω𝑠

Figure 4: Schematic of the acoustics-elastodynamics-damage benchmark problem. A pressure is applied at the left boundary
of a ŕuid domain, which is connected to a solid domain of the same dimensions, 𝐿 ×𝐻 .
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Figure 5: Temporal variation of the normalized pressure 𝑝∕𝜎𝑡𝑠 in the ŕuid domain.
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Figure 6: Temporal variation of the normalized stress 𝜎11∕𝜎𝑡𝑠 in the solid domain (a) before the compressive wave reaches
the right boundary, and (b) after the wave reŕects off the right boundary and becomes tensile.

Plots of the normalized “tensile” strain energy and the damage at time 𝑡∕𝑇 = 1.575 are shown in Fig. 7. The
damage that develops is relatively small in magnitude, but this is consistent with the peak strain energy being only
slightly larger than the threshold for damage to develop.

Although an analytical solution is not available for this problem, qualitatively, the results are consistent with
expectations. From the results shown in Figs. 5 and 6, one can also evaluate the discrete wave speeds in both the fluid and
solid domains. Compared to the wave speeds 𝑐𝑓 and 𝑐𝑠 listed in Table 1, the simulated fluid and solid wave speeds were
found to have errors smaller than 4%. Finally, to demonstrate spatial convergence in the damage field, the calculation is
repeated over a sequence of increasingly refined meshes with uniform mesh spacing ℎ ∈ [𝐿∕50, 𝐿∕100, 𝐿∕200] (with
the time step scaled as Δ𝑡 = 0.2ℎ∕𝑐𝑠). The results in the solid domain at time 𝑡∕𝑇 = 1.575 are shown in Figure 8. The
results for the two finest discretizations are practically indistinguishable.

5. NPL simulations

We now turn to the simulations of primary interest in this work, to wit, model-based simulations of NPL
experiments. We begin by describing the setup used to examine these experiments and the results of representative
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Figure 7: Variation of (a) the normalized łtensilež strain energy 𝜓+∕𝜓𝑐 and (b) the damage 𝑑 in solid the domain at
𝑡∕𝑇 = 1.575.

1.0 1.2 1.4 1.6 1.8 2.0

x/L

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

d

h = L/50

h = L/100

h = L/200

Figure 8: Comparison of the damage proőle in the solid domain at 𝑡∕𝑇 = 1.575 over a sequence of reőned meshes with
mesh spacing ℎ ∈ [𝐿∕50, 𝐿∕100, 𝐿∕200] and time steps Δ𝑡 = 0.2ℎ∕𝑐𝑠.

simulations. We then perform a parameter study that examines how damage develops as a function of the strength and
the proximity of the acoustic source to the solid surface as well as of the fracture resistance of the solid. Finally, we
explore possible reasons that may explain some of the differences between the simulation results and the experimental
observations.

5.1. The geometry of the problem and its FE discretization
Figure 9 depicts schematically the NPL experiment of interest here. The problem consists of a solid, occupying

the cylindrical domain Ω𝑠 = {𝒙 ∶
√
𝑥2
1
+ 𝑥2

2
< 𝑅, 0 < 𝑥3 < 𝐻}, that is immersed near the bottom of a fluid domain,

occupying the larger cylindrical domain Ω𝑓 = Ω ⧵ Ω𝑠 with Ω = {𝒙 ∶
√
𝑥2
1
+ 𝑥2

2
< 1.1𝑅, −𝐻∕3 < 𝑥3 < 3𝐻},

wherein there is an acoustic point source located at a standoff distance 𝑆𝑑 with respect to the surface of the solid along
its axis of symmetry. The values of the radius 𝑅 and the height 𝐻 of the solid domain and of the range of standoff
distances 𝑆𝑑 used in the simulations are listed in Table 2.
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Figure 9: Schematic of the NPL experiment (a) from a three-dimensional perspective and (b) from the corresponding
axisymmetric perspective.

𝑧

𝑟 (a) (b)

Figure 10: A representative axisymmetric FE mesh used for the NPL simulations. (b) An enlarged view of the boundary
between the solid and ŕuid domains.

Because of the symmetry of the geometry of the fluid and solid bodies, their isotropic material properties (spelled
out below), and the symmetry of the applied loading, the problem features axisymmetric symmetry and therefore can
be treated mathematically as a two-dimensional problem. Figure 9(b) shows the two-dimensional domain considered
from this axisymmetric perspective.

Figure 10 shows a representative FE mesh used to carry out the axisymmetric simulations of the NPL experiment.
As shown by Fig. 10(b), the mesh is conforming and fitted to both domains so as to facilitate the enforcement of the
transmission conditions at the fluid-solid interface Γ𝑓𝑠.
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Property Symbol Unit Value

Mass density of the ŕuid 𝜌𝑓 g/mm3 1 × 10−3

Mass density of the solid 𝜌𝑠 g/mm3 1.995 × 10−3

Wave speed in the ŕuid 𝑐𝑓 mm/𝜇s 1.5
P wave speed in the solid 𝑐𝑠 mm/𝜇s 4.159
Leaky Rayleigh wave speed 𝑐𝐿𝑅𝑊 mm/𝜇s 2.141
Young’s modulus 𝐸 MPa 2.735 × 104

Poisson’s ratio 𝜈 / 0.2

Critical energy release rate 𝑐 N/mm 2.188 × 10−2

Uniaxial tensile strength 𝜎𝑡𝑠 MPa 20

Nucleation energy 𝜓𝑐 MPa 7 × 10−3

Table 1

Baseline material properties for the ŕuid and the solid used in the NPL simulations.

Parameter Symbol Unit Value

Radius of the solid domain 𝑅 mm 3.25
Height of solid domain 𝐻 mm 2
Standoff distance 𝑆𝑑 mm [0.25, 1.5]

Table 2

Parameters for the geometry of the solid domain and the range of locations of the acoustic point source used in the NPL
simulations.

Parameter 𝑐1 𝑐2 𝑑1 𝑡1 𝑡𝑅 𝑡𝐿 𝑓𝐿 𝑝0 𝐶𝑣 𝑟0

Unit / / mm 𝜇s 𝜇s 𝜇s 𝜇s−1 MPa mm−1 mm
Value 12.2189 0.9404 9 0.07 0.01 0.8 0.0833 2.1 × 10−2 1000 0.1

Table 3

Parameters in the strength (23) and regularization (24) of the acoustic point source used in the NPL simulations.
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Figure 11: (a) Variation of the effective acoustic strength 𝑆0 = 𝐶𝑣𝑆0∕𝜎𝑡𝑠 in time. (b) The resulting normalized pressure
𝑝∕𝜎𝑡𝑠 as a function of distance from the point source during 𝑡 ∈ [0.01, 0.09].
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5.2. Loading, material, and computational parameters
The values of the parameters describing the acoustic point source and the baseline material properties used for the

simulations are listed in Table 3 and Table 1, respectively.
The acoustic point source, is prescribed according to

𝑎(𝒙, 𝑡) =
4𝜋

𝜌𝑓
𝑆0(𝑡)𝛿(𝒙 − 𝒙𝑠), (22)

where

𝑆0(𝑡) =
𝑐1

𝑐2
𝑝0𝑑1

⟨(
1 + tanh

𝑡 − 𝑡1

𝑡𝑅

)
exp−

𝑡 − 𝑡1

𝑡𝐿
cos

(
2𝜋𝑓𝐿(𝑡 − 𝑡1) +

𝜋

3

)⟩

+

. (23)

The magnitude and temporal signal for this source correspond to a typical lithotripsy pulse, albeit one that is modified
with a hyperbolic tangent function to provide a smooth sharp wavefront [11]. In this work, a volume source with radius
𝑟0 (𝑟0 ≪ 𝑅) is adopted to approximate the Dirac delta in (22), so that,

∫
Ω

𝛿(𝒙 − 𝒙𝑠)𝑆0(𝑡) d𝒙 ≈ ∫
𝐵𝑟0

𝐶𝑣𝑆0(𝑡) d𝒙, (24)

where 𝐵𝑟0 denotes a small ball centered at 𝒙𝑠, with radius 𝑟 = 𝑟0.
The point source gives rise to a pressure pulse in the axisymmetric acoustic domain that is shown as a function of

time in Fig. 11. The results are shown in terms of the normalized time 𝑡 = 𝑡∕𝑇 , where 𝑇 = 2 𝜇s is the characteristic
time. Roughly speaking, the characteristic time corresponds to approximately twice the duration of the acoustic source.
The magnitude of the pressure source and its temporal signal were chosen to match the experimental measurements
provided in [43].

The material properties listed in Table 1 for the solid were chosen to be consistent with those of ‘BegoStone’ [30],
a synthetic material often used as a “phantom” for kidney stones in laboratory experiments. The material properties
listed in Table 1 for the fluid are consistent with those of water.

Finally, we note that all the simulations were carried out with a value of 𝓁 = 0.1 mm for the regularization length
and a uniform time step Δ𝑡 = 7.5 × 10−4 𝜇s.

5.3. Spherical wave interaction at the fluid-solid boundary
In a simulation of a single pulse from a NPL device, a spherical acoustic wave is initiated from the point source and

propagates in the fluid. The acoustic wave eventually interacts with the solid through transmission at the fluid-solid
interface. This type of acoustic-solid interaction has been studied in detail by de Hoop et al. [22] and more recently by
Zhang et al. [44].

To illustrate the response in both the fluid and solid domains, we begin by considering the case where the standoff
distance is 𝑆𝑑∕𝑅 = 0.23. Figure 12 provides contour plots of the normalized pressure 𝑝∕𝜎𝑡𝑠 in the fluid domain and
the normalized “tensile” strain energy 𝜓+∕𝜓𝑐 in the solid domain at various points in time. The results are shown in
terms of the normalized time 𝑡 = 𝑡∕𝑇 , where, again, 𝑇 = 2 𝜇s is the characteristic time.

At early times, the spherical pressure wave propagates in the fluid domain while the solid domain remains
undisturbed. Then the pressure wave reaches the solid interface and reflects off the surface. The fluid-solid interaction
gives rise to a surface acoustic wave — commonly referred to as a leaky Rayleigh wave — in the solid that propagates
at a speed of 𝑐𝐿𝑅𝑊 .

At later times, as shown by Fig. 12(c), the simulation results clearly indicate the separate longitudinal and transverse
branches of the leaky Rayleigh wave. The surface wave propagates from the center of the top surface towards the outer
edge of the domain, and the position of the peak value of the strain energy also moves from the surface center to the
right end of the solid domain.

In this study, we consider a single pulse simulation to consist of the time required for the acoustic source to fully
subside. Consistent with Figure 11, this corresponds to 𝑡 ∈ [0, 1.0]. We note that at 𝑡 = 1.0, the pressure wave in the
fluid domain will have just reached the right side of the fluid boundary. This final time is also sufficient for the “tensile”
strain energy on the surface of the solid domain to have reached a peak and for the leaky Rayleigh wave to have reached
the edge of the solid domain.
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We now examine the pressure, the stress, and the strain energy at the top surface of the solid domain. In Fig. 13,
we plot the normalized “tensile” strain energy, stress, and the transferred pressure on the top surface of the solid at
𝑡 = 0.675. Figure 13(b) shows that the transferred pressure matches the axial stress component 𝝈𝑧𝑧. Figure 14 shows
the temporal variation in the normalized radial stress and the “tensile” strain energy on the top surface over the time
interval 𝑡 ∈ [0, 1.0]. These plots illustrate how the tensile stress wave and “tensile” strain energy gradually increase
in time and reach a peak at some distance before 𝑟∕𝑅 = 1.0. This effect is critical in governing the evolution of the
damage on the surface.

Similar results and observations have been reported by Zhang et al. [45] for model-based simulations (using
COMSOL) of nanosecond acoustic wave induced surface acoustic waves. In particular, their simulation results of
an NPL-induced acoustic wave interaction at a water-glass boundary indicated that the first principal stress along the
top surface of the solid domain exhibited a similar profile to our results shown in Fig. 14(a).
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Figure 12: Contour plots of the normalized pressure 𝑝∕𝜎𝑡𝑠 in the ŕuid domain and normalized łtensilež strain energy 𝜓+∕𝜓𝑐
in the solid domain for 𝑆𝑑∕𝑅 = 0.23 at three time instances: (a) at 𝑡 = 0.19 before the incident wave reaches the solid
domain, (b) at 𝑡 = 0.45 after the incident wave hits the solid and is reŕected from its boundary, and (c) at 𝑡 = 0.75 when
the incident and reŕected waves further propagate in the ŕuid domain. LRW and LRW𝑇 illustrate the longitudinal and
transverse branches of the leaky Rayleigh wave.
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Figure 13: Variation of (a) the normalized łtensilež strain energy 𝜓+∕𝜓𝑐 and (b) the normalized radial stress 𝜎𝑟𝑟∕𝜎𝑡𝑠,
transferred pressure −𝑝𝑎∕𝜎𝑡𝑠 from the ŕuid to the solid domain, and the axial stress component 𝜎𝑧𝑧∕𝜎𝑡𝑠 on the top surface
of the solid. The results pertain to the case of 𝑆𝑑∕𝑅 = 0.23 at 𝑡 = 0.675, corresponding to the contours presented in
Figure 12.
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Figure 14: Temporal variation of (a) the normalized radial stress 𝜎𝑟𝑟∕𝜎𝑡𝑠 and (b) the normalized łtensilež strain energy
𝜓+∕𝜓𝑐 on the top surface of the solid domain. The results pertain to the case 𝑆𝑑∕𝑅 = 0.23.

5.4. Parametric study
We now provide a parametric study in which the sensitivity of the simulated damage profile to variations in select

model parameters is examined. In particular, we examine how variations in the driving forces (standoff distance,
pressure magnitude) and the material properties governing the fracture resistance of the solid impact the resulting
damage profile.

5.4.1. Influence of standoff distance 𝑆𝑑 and acoustic source strength

We begin by varying the standoff distance, while keeping all other parameters fixed. Recall that in the cohesive-
type phase-field model that we are employing here to describe damage, the nucleation energy 𝜓𝑐 is the parameter that
mostly controls the nucleation of damage. In particular, damage is expected to develop in regions within the solid
where 𝜓+ > 𝜓𝑐 .
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Figure 15 presents plots of the maximum value of the normalized “tensile” strain energy𝜓+ > 𝜓𝑐 and the associated
damage profiles along the surface of the solid for six different standoff distances. As the standoff distance increases,
the damaged region moves outward from the center of the domain, and decreases in magnitude. The latter behavior
corresponds to the strength of the pressure wave that impacts the solid being smaller as the point source is moved
further from the surface. The rightward shift of the damaged region corresponds to the nonlinear interaction between
the incoming (compressive) pressure wave and the reflected pressure wave being delayed in time as the standoff distance
increases. In essence, it takes a longer time for the surface acoustic wave on the solid surface to result in an “tensile”
strain energy that exceeds 𝜓𝑐 .
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Figure 15: Variation of (a) the maximum normalized łtensilež strain energy max{𝜓+∕𝜓𝑐} and (b) the damage 𝑑 for six
different standoff distances 𝑆𝑑∕𝑅 = 0.08, 0.15, 0.23, 0.31, 0.38, 0.46 on the top surface of the solid.
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Figure 16: Visualization of the damaged region on the surface of the solid. (a) Measures of the damaged region 𝑑 > 0. (b)
The stack plots for the range of the damage region and qualitative damage magnitude at six different standoff distances
𝑆𝑑∕𝑅 = 0.08, 0.15, 0.23, 0.31, 0.38, 0.46 on the top surface of the solid.

The damage field is illustrated in another manner in Fig. 16. In particular, Fig. 16(a) illustrates how the size of the
damaged region decreases as the standoff distance is increased. At some point, the standoff distance is so large that
almost no damage develops on the surface, as shown in Fig. 16(b). Importantly, both of these trends qualitatively match
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experimental observations of damage patterns on the surface of materials subjected to nano-pulse acoustic waves, as
reported by Yang [43] and Zhang et al. [45].

We now examine how variations in the strength of the acoustic source impact the simulated damage fields, for
several standoff distances. To report the results, we indicate the magnitude of the pressure relative to the base value 𝑝0
provided in Table 3 by 𝑝0. So a value of 𝑝0 = 2.0 represents an acoustic pressure source that is twice as large as the
base value. We examine the sensitivity of the damage in response to a range of acoustic sources of varying strengths
corresponding to 𝑝0 ∈ [0.6, 3.0].

Figure 17 shows the maximum damage 𝑑max and the radial position of the maximum damage 𝑟|𝑑=𝑑max
∕𝑅 as a

function of 𝑝0 for three different standoff distances. As the pressure is increased in magnitude, the maximum damage
increases, as expected. Moreover, as the magnitude of the acoustic source is increased, the location of the maximum
damage eventually moves closer to the center of the domain. This is a similar effect to decreasing the standoff distance
alone, as in both cases points on the solid surface closer to the center of the domain experience a larger effective
pressure.
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Figure 17: Sensitivity of the damage őeld on the surface of the solid domain in response to variations in the acoustic source
strength 𝑝0. (a) Maximum damage 𝑑max as a function of 𝑝0. (b) Radial position of the maximum damage 𝑟|𝑑=𝑑max

∕𝑅 as a
function of 𝑝0.

5.4.2. Influence of material properties

Next, we examine how the damage that develops in the solid domain is sensitive to changes in the material
properties, in particular, to the nucleation energy 𝜓𝑐 and the critical energy release rate 𝑐 .

In the results that follow, to help illustrate the influence of the material properties on the resulting damage, we
define the normalized maximum “tensile” strain energy as

𝜓+ ∶=
max{𝜓+} − 𝜓𝑐

𝜓𝑐
.

This quantity provides an indicator of how much greater the driving force for fracture is relative to the threshold value
𝜓𝑐 . For example, a negative value of 𝜓+ corresponds to max{𝜓+} < 𝜓𝑐 , which means that damage will not initiate.

We begin by studying the influence of the nucleation energy on the resulting damage profile after a single acoustic
pulse. Figure 18 shows the maximum damage 𝑑max as a function of 𝜓𝑐 and 𝜓+ for three different standoff distances. As
in the previous subsection, we use 𝜓𝑐 to denote the magnitude of the nucleation energy relative to the baseline value
provided in Table 1.

Some aspects of the results shown in Fig. 18 are intuitive while others are not. We draw attention first to Fig. 18(a)
and the portion of the curves where 𝜓𝑐 > 1. These results correspond to the use of nucleation energies that are larger
than the baseline in Table 1. Here, the results are as expected: as the nucleation energy is increased, the maximum
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damage decreases. Eventually, at some point the threshold is sufficiently large such that little to no damage develops,
regardless of the proximity of the point source to the surface.
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Figure 18: Sensitivity of the damage őeld on the surface of the solid domain in response to variations in the nucleation
energy 𝜓𝑐 . (a) Maximum damage 𝑑max as a function of 𝜓𝑐 , (b) Maximum damage 𝑑max as a function of 𝜓+

We now focus on the portion of the plots in Fig. 18(a) corresponding to values of the nucleation energy below that
in Table 1.

In the range where 0.5 ≤ 𝜓𝑐 < 1, the response is once again as expected. A lower threshold for damage leads to the
maximum damage increasing for all three standoff distances. However, this trend does not continue in the range where
0.0 ≤ 𝜓𝑐 < 0.5. One might expect all the curves to peak as 𝜓𝑐 → 0, but this is not the case. Instead the maximum
damage exhibits a local peak and then decreases as 𝜓𝑐 approaches zero. The results are a reflection of the fact that the
maxmimum damage on the surface is only one indicator of the damage response in the solid domain. In Fig. 19, we
examine the full damage fields for 𝜓𝑐 = 0.14 and 𝜓𝑐 = 0.43 at 𝑆𝑑∕𝑅 = 0.15. As can be seen by comparing the two
plots, the smaller threshold clearly gives rise to much more damage throughout the domain, even though the maximum
damage is below that obtained for the larger threshold.
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Figure 19: Contour plot of the damage őeld over the solid domain for different nucleation energies at the standoff distance
𝑆𝑑∕𝑅 = 0.15. (a) 𝜓𝑐 = 0.14, (b) 𝜓𝑐 = 0.43.

The above explanation also aids in the interpretation of the results shown in Fig. 18(b). Recall that 𝜓+ is a measure
of how much larger the “tensile” strain energy is relative to 𝜓𝑐 . Larger values of 𝜓+ correspond to smaller values of 𝜓𝑐 .

The results for 0 ≤ 𝜓+ < 40 indicate that the maximum damage nearly scales linearly with 𝜓+ for all three standoff

Yangyuanchen Liu et al.: Preprint submitted to Elsevier Page 21 of 26



Coupled Acoustics, Elastodynamics, and Damage

distances. But the maximum damage once again does not increase monotonically as the threshold 𝜓𝑐 continues to be

lowered and the relative magnitude 𝜓+ of the “tensile” strain energy increases.
Finally, we examine how variations in the critical energy release rate 𝑐 of the solid impact the maximum damage

magnitude, for several standoff distances. We examine the sensitivity of the damage in response to a range of the critical
energy release rate corresponding to 𝑐 ∈ [0.5, 3.0]. Figure 20 shows the maximum damage 𝑑max as a function of 𝑐
and 𝜓+∕𝑐 for three different standoff distances. As the critical energy release rate is increased, the maximum damage

decreases, as expected. Moreover, Fig. 20(b) shows that the maximum damage almost increases linearly with 𝜓+∕𝑐
for all three standoff distances considered.
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Figure 20: Sensitivity of the damage őeld on the surface of the solid domain in response to variations in the critical energy
release rate 𝑐 . (a) Maximum damage 𝑑max over varying 𝑐 , (b) Maximum damage 𝑑max over varying 𝜓+∕𝑐

5.4.3. Multi-pulse response and limiting cases

The NPL experiments on BegoStone reported in Yang [43] indicate that in most cases, very little damage is observed
on the surface of the solid after a single pulse. At small standoff distances, however, macroscale cracks were observed
to form after a sufficient number of pulses. In a damage-based model such as the one used in this work, macroscopic
cracks correspond to damage zones that are localized and have reached their peak value of 𝑑 = 1. In the results reported
in the previous sections, the maximum damage value after a single pulse was generally observed to be well below 1.0.
Indeed, among all of the parameter studies conducted, the maximum damage predicted by the model after a single
pulse was approximately 𝑑max = 0.33.

Figure 21 shows the damage profiles along the surface of the solid after multiple pulses (number of pulses∈ [1, 20]),
using the baseline material properties provided in Table 1. The damage magnitude keeps increasing after the first 10
pulses, and then saturates at 𝑑 ≈ 0.01. These results indicate that in order to capture the formation of macroscopic
cracks, the model needs to be modified in some manner.

One approach would be to include a fatigue-type mechanism in the model that would degrade the fracture resistance
as a function of loading history. Models aimed at describing this effect have been proposed for gradient damage based
methods, such as in [35, 12, 33]. Most of these models have looked to degrade the critical energy release rate 𝑐 with
load history, as opposed to the threshold for damage. In what follows, we examine some limiting cases with the current
model to shed insight into model development for this class of problems.

In particular, we now examine several limiting cases in which either the critical energy release rate 𝑐 or the
nucleation energy 𝜓𝑐 (or both) are reduced to 10% of their baseline value, while keeping all other parameters fixed.

In Fig. 22, we plot the simulated damage profiles along the top surface of the solid for four limiting cases: (a) base
case 𝜓𝑐 = 1,𝑐 = 1, (b) 𝑐 , 𝜓𝑐 = 1,𝑐 = 0.1, (c) 𝜓𝑐 , 𝜓𝑐 = 0.1,𝑐 = 1, and (d) 𝜓𝑐 = 0.1,𝑐 = 0.1.

When only the critical energy release rate 𝑐 is decreased (compare blue and green curves in Figure 22), the damage
magnitude is observed to increase significantly, but the damaged area remains approximately the same. When only 𝜓𝑐
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Figure 21: Variation of the damage proőles for a 20-pulse simulation for 𝑆𝑑∕𝑅 = 0.23 on the top surface of the solid.

is decreased (compare blue and orange curves in Figure 22), both the damage magnitude and the size of the damaged
region increase. However, in both of the above cases, the maximum damage does not exceed 5%, which is far from full
localization. By comparison, the damage magnitude reaches a much larger value when both 𝜓𝑐 and 𝑐 are degraded,
as case (d), the red line in Fig. 22(a) illustrates.
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Figure 22: (a) Variation of the maximum damage for limiting cases that 𝜓𝑐 and 𝑐 are degraded, for 𝑆𝑑∕𝑅 = 0.31 on the
top surface of the solid. (b) Zoom plot of (a).

5.5. A first step to develop a low-cycle fatigue damage model
In the following, aspects of the phase-field for fracture with fatigue models proposed by Carrara et al. [9] and

Grossman-Ponemon et al. [19] are adapted to the current setting to illustrate a possible means to capture damage
localization in response to multiple pulses in NPL.

We begin by defining the history state variable

𝛼(𝒙, 𝑡) =

𝑡

∫
0

 (𝛼̇(𝒙, 𝜏)) 𝛼(𝒙, 𝜏) d𝜏 with 𝛼(𝒙, 𝑡) =
⟨
𝜓+ (𝜺(𝒖)) − 𝜓0

𝑐

⟩
+
, (25)
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where  stands for the Heaviside function and𝜓0
𝑐

stands for a reference nucleation energy. The definition (25) specifies
that the state variable 𝛼 only increases when the “tensile” strain energy 𝜓+ is both increasing in time and greater than
the reference threshold 𝜓0

𝑐
.

In contrast to the analogous history state variables in Carrara et al. [9], the use of the reference threshold 𝜓0
𝑐

implies
that there are some loadings that, while tensile, are too small to result in any increase in 𝛼. Another difference is that
in the current work, the state variable 𝛼 is a measure of accumulated power as opposed to accumulated energy.

As elaborated in Section 5.4.3, model-based simulations indicate that damage localization (𝑑 = 1) will not occur
under repeated pulses unless both the fracture threshold 𝜓𝑐 and the critical energy release rate 𝑐 are degraded.
Therefore, we propose to view 𝜓𝑐 and 𝑐 not as constants but as functions of the loading history of the form

𝜓𝑐 = 𝑓 (𝛼)𝜓0
𝑐

and 𝑐 = 𝑓 (𝛼)𝑐0,
where 𝑓 (𝛼) is a monotonically decreasing function of its argument and where 𝑐0 stands for the initial critical energy
release rate of the solid. For illustration purposes, similar to [2], we consider the degradation function

𝑓 (𝛼) =

⎧
⎪⎨⎪⎩

1 if 𝛼 ≤ 𝛼𝑇

(1 − 𝑘)

(
2𝛼𝑇

𝑝𝛼 + (2 − 𝑝)𝛼𝑇

)2

+ 𝑘 if 𝛼 ≥ 𝛼𝑇
,

where 𝛼𝑇 represents a fatigue threshold, 𝑝 controls the degradation speed, and 𝑘 denotes the residual ratio.

0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.0

0.2

0.4

0.6

0.8

1.0

d

1 25

Pulses

(a)

0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.0

0.2

0.4

0.6

0.8

1.0
d

1 20

Pulses

(b)

Figure 23: Variation of the damage proőles for multi-pulse simulation with fatigue for 𝑆𝑑∕𝑅 = 0.23 on the top surface of
the solid domain. (a) 𝑝 = 0.4, 𝑘 = 0.02, (b) 𝑝 = 1, 𝑘 = 0.02.

In what follows, we set 𝑘 = 0.02, such that at most 98% of the fracture toughness and damage threshold are
decreased as a function of repeated loadings.

Figure 23 shows the damage profiles along the solid surface after multiple pulses using the proposed low-cycle
fatigue damage model with two choices of fatigue degradation functions. In Fig. 23(a), we set 𝑝 = 0.4, 𝑘 = 0.02, and
𝛼𝑇 = 0.02 so that 𝑓 (𝛼) ≈ 0.1 at 𝛼∕𝛼𝑇 = 10 (after 10 pulses). It can be observed that the peak damage increases
relatively slowly in the first 10 pulses, and finally asymptotes to 1 after 25 pulses.

Figure 23(b) illustrates that by increasing the parameter 𝑝 to 𝑝 = 1, the damage magnitude increases faster and
reaches 1 after 20 pulses. In principle, it seems clear that the incorporation of fatigue effects leads to a model that
could be calibrated against experimental observations of fracture in NPL experiments, such as those reported in Yang
et al. [43].

6. Summary and final comments

In this work, a model-based simulation framework for coupled acoustics, linear elastodynamics, and damage is
developed for a solid body immersed in a fluid domain, in which a cohesive-type phase field model is employed to
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characterize the initiation and propagation of fracture in the solid. The interactions between the acoustic waves in the
fluid and the solid are enforced by interfacial conditions.

The developed model-based simulation framework is seen to yield reasonable results of wave propagation in the
fluid domain, as well as of elastodynamics and damage evolution in the solid domain, when compared to experiments
and other simulation results reported in the literature. The simulations illustrate that the wave interaction at the fluid-
solid boundary generates the surface acoustic waves (the so-called leaky Rayleigh waves) that finally initiate the fracture
along the top surface of the solid. The parametric study on the driving forces ( the strength of the acoustic point source
and the standoff distance from the solid ) and the material properties ( the nucleation energy and the critical energy
release rate ) reveal the fundamental fracture mechanisms of the solid and help elucidate differences between the
simulation results and the experimental observations.

Although the low-cycle fatigue model proposed in this work allows for qualitatively good comparisons to
experimental observations, it is largely a proof-of-concept. Future work will focus on developing a fatigue model
that is general and hence capable of describing the full spectrum of experimental observations. In terms of the coupled
model, future work will focus on three-dimensional simulations of NPL problems involving samples with initial flaws
on the surface, such as those described in Zhang et al. [44].
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