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We derive new terms in the post-Newtonian (PN) expansion of the generalized redshift invariant (u"), for
a small body in eccentric, equatorial orbit about a massive Kerr black hole. The series is computed
analytically using the Teukolsky formalism for first-order black hole perturbation theory, along with the
Chrzanowski, Cohen, Kegeles method for metric reconstruction using the Hertz potential in ingoing
radiation gauge. Modal contributions with small values of [ are derived via the semianalytic solution of
Mano-Suzuki-Takasugi, while the remaining values of / to infinity are determined via direct expansion of
the Teukolsky equation. Each PN order is calculated as a series in eccentricity e but kept exact in the
primary black hole’s spin parameter a. In total, the PN terms are expanded to e¢'® through 6PN relative
order, and separately to ¢'® through 8PN relative order. Upon grouping eccentricity coefficients by spin
dependence, we find that many resulting component terms can be simplified to closed-form functions of
eccentricity, in close analogy to corresponding terms derived previously in the Schwarzschild limit. We use
numerical calculations to compare convergence of the full series to its Schwarzschild counterpart and
discuss implications for gravitational wave analysis.
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I. INTRODUCTION

The radiative dynamics of binary black hole inspirals
with an extreme mass ratio (that is, extreme-mass-ratio
inspirals, or EMRIs) continues to be an active area of
research. Theoretical models must be able to predict the
entire trajectories of these inspirals to within a fraction of a
radian over their lifetimes to produce accurate waveform
templates for the coming space-based gravitational wave
detector, LISA [1].

Over the past several years, we have sought to advance
knowledge of EMRI motion and radiation through high-
order post-Newtonian (PN) approximations to first-order
black hole perturbation theory (BHPT) [2]. Analysis of
first-order BHPT in the PN regime has a long and rich
history, with a 1PN expression for the radiation first derived
for nearly circular inspirals in 1980 [3]. This was later
extended by a series of results in the 1990s [4-8], which
also typically focused on circular or nearly circular orbits.
A full review of the early history of these efforts can be
found in [9]. Eventually, an analytic PN expansion of the
energy flux for circular EMRIs on a Schwarzschild back-
ground was derived all the way to 22PN order [10]. The
author of that paper discovered that the expansion’s fidelity
to numerical data near the strong-field regime continued to
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improve to the highest order, supporting the utility of very
deep PN series.

Inspired by these results, we first studied the case of
eccentric-orbit inspirals on a Schwarzschild background,
which had previously seen much less development, using
the Mano-Suzuki-Takasugi (MST) solutions to the Regge-
Wheeler-Zerilli (RWZ) equations [11-14]. With an imple-
mentation of this formalism in Mathematica, we derived
several notable features of the orbital evolution. We first
determined the (energy and angular momentum) fluxes at
infinity to 19PN, with each term expanded in eccentricity to
e'% as well as to 10PN and ¢%° [15-18]. This effort was
then extended to the horizon fluxes, which were computed
to 18PN (relative order)/e'” and 10PN/e?° [2,19].

It later proved possible to use this code to derive PN
series for local gauge-invariant corrections to the conser-
vative motion, including the redshift invariant (expanded to
10PN/e?° [20]) and the spin-precession invariant (expanded
to 9PN/e'® [21]). These series are also valuable to high
orders, as conservative-sector expansions can be used to
inform the effective-one-body (EOB) formalism, which
accurately describes binary dynamics across vast regions
of parameter space [22-32]. In general, the conservative
motion contributes to the inspiral’s evolution at first
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postadiabatic order, a level necessary for parameter esti-
mation with LISA [1].

As most astrophysical black holes have nonzero spin, it
is necessary to understand the corresponding dynamics for
EMRIs with a central Kerr black hole. Early efforts to
analyze the spinning case in the PN regime began in the
1990s [33-36], typically restricting to the nearly circular,
nearly equatorial case. Over time these approaches were
refined, and the energy flux for circular equatorial inspirals
was more recently derived to 11PN for arbitrary spin [37].
As before, we seek to derive comparable results for
eccentric-orbit binaries, which have historically been
underdeveloped in comparison. As an intermediate step
to fully generic inspirals, we first restrict our efforts to the
case of equatorial eccentric orbits. Fortunately, many of the
theoretical and computational techniques used to expand
the MST-RWZ formalism mentioned above can be trans-
lated to the related (but more complicated) MST-Teukolsky
formalism for perturbations about a Kerr background
[14,38,39]. We recently used this approach to derive series
for the fluxes at infinity to 8PN and ¢° [40]. Along the way
we discovered that many of the eccentricity series could be
manipulated into exact (closed-form) functions. The energy
and angular momentum absorbed by the central black hole
has been found to a similar level, and those results will be
published in a future paper [41].

As in the Schwarzschild case, we are now equipped to
analyze the conservative sector of the first-order motion.
The most well-known quantity characterizing the conser-
vative sector is the redshift invariant u’, which was first
defined for circular Schwarzschild orbits and derived using
the full PN theory to 3PN order by Detweiler [42] (see [43]
for a review of PN theory). As the significance of the
redshift invariant in encoding the conservative dynamics
became more widely appreciated, researchers began to
derive deeper PN expansions in the small-mass-ratio limit
using BHPT [44,45], and this process was eventually
carried out to 21.5PN [46].

The extension to eccentric Schwarzschild orbits was first
described by Barack and Sago [47], who defined the so-
called generalized redshift invariant (u), as the proper-
time average of u' over one radial libration. The generalized
redshift invariant was later derived to 3PN order in [48]
using the full PN theory and then subsequently higher order
for EMRIs using BHPT [25,27,31,32]. The most recent
development was an expansion to 10PN and ¢?°, with many
PN terms found to yield closed-form functions of eccen-
tricity [20]. That work also presented a set of curious
connections between the (conservative-sector) redshift
expansion and the (dissipative-sector) energy flux expan-
sion, in that the two series share identical leading logarithm
terms (see [15,17,20] for additional details).

Because of its added difficulty, the redshift invariant for
EMRIs with a Kerr primary has seen less progress, being
first computed for circular equatorial EMRIs in 2012 [49].

A BHPT-PN expansion was derived several years later to
8.5PN order [50], with each PN term expanded in spin
to a*. An 8.5PN series remaining exact in spin was then
found in the work [51]. The eccentric, equatorial case
was calculated numerically as part of a larger metric
reconstruction effort in [52]. Then, the corresponding
BHPT-PN expansion was derived in the small-e, small-a
limit to 8.5PN/O(e?)/O(a?) in [53] and then to 8.5PN/
O(e*)/O(a?) in [54]. The work [54] also produced a low-
order derivation of the redshift within the full PN theory for
spinning bodies, using that result to confirm the first few
terms in their BHPT-PN calculation.

The present effort now seeks to extend this calculation
beyond the nearly circular, nearly Schwarzschild regime by
deriving results that are exact in a and high order in e.
Specifically, we show series to 6PN and ¢'® and to 8PN and
e'%, both remaining exact in a. To the author’s knowledge,
this is the first expansion of the redshift for eccentric orbits
on a Kerr background with terms exact in a. We assess the
convergence of this series by comparing to numerical
calculations for combinations from the sets p € {10,20},
e€{1/10,1/5},a€{1/4,1/2,9/10} for semilatus rec-
tum p. We find that convergence weakens with increasing
a and e, but that the full expansion is accurate to better than
one part in 10* for most of these orbits. This calculation
will serve as a final intermediate step on the path to generic
(eccentric/inclined) inspirals on a Kerr background, which
has not yet been computed analytically or numerically
(though the numerical infrastructure for generic orbits does
now exist [55]).

Calculation of the redshift invariant requires the local
regularized metric perturbation, which can be found via the
Chrzanowski, Cohen, Kegeles (CCK) metric reconstruction
procedure [56-59]. We use the MST-Teukolsky solutions to
form the Hertz potential and then apply a sequence of linear
operations to produce components of the perturbed metric
at the location of the smaller body in ingoing radiation
gauge. We find that, as in the Schwarzschild case, the
leading PN order of each / mode is constant in /,
necessitating PN series for all /. This difficulty is resolved
using a PN ansatz solution for large / that is general in /
[44,46,51]. Thus, we use the MST solutions for small [ > 2
and the ansatz for large /, along with a separate metric
completion procedure for / = 0 and / = 1. This general-/
ansatz solution can also be expanded about [/ = oo to
determine the divergent behavior of the summation and
then regularize each / mode of the full solution. In total
the process is relatively similar to that for eccentric
Schwarzschild EMRIs, though the introduction of the spin
parameter a and loss of spherical symmetry add several
technical hurdles and greatly increase the computational
complexity.

The structure of this paper is as follows. In Sec. Il we
briefly outline the problem setup for first-order BHPT on a
Kerr background and the Teukolsky-MST formalism in the
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PN limit. We then discuss how to apply the (PN-expanded)
MST solutions to the CCK procedure for metric recon-
struction using the Hertz potential, as the local metric
perturbation is the primary constituent of the redshift
invariant. Section III details the derivation of metric
perturbation expansions for general /, with emphasis on
the unique theoretical and computational challenges con-
tained therein. In Sec. IV we briefly review the metric
completion piece and our chosen regularization scheme for
the redshift invariant. Section V then details the explicit
expansion results to 6PN/e'® and 8PN/e!, which are also
posted in multiple online repositories [60,61]. Multiple new
closed-form expressions are found, and the structure of the
expansion’s spin dependence is discussed, as well as its
convergence against numerical data. Section VI concludes
with a summary and an outlook.

Throughout this paper we apply the metric signature
(— + ++) and primarily choose units such thatc = G = 1,
though we frequently retain powers of 7 = 1/c to track PN
order. Our notation for the Teukolsky and MST formalisms
follows that found in [39,51].

II. REVIEW OF THE TEUKOLSKY AND MST
FORMALISMS

We briefly review the background and setup for first-
order perturbations about a Kerr background caused by a
small mass in equatorial orbit. At each step we seek
expressions that are suitable for expansion in the PN limit,
whether through the direct parameter 7 = 1/¢ or through a
measure of orbital separation such as 1/p for semilatus
rectum p. These methods are more extensively detailed
in [18,40], based on earlier Kerr work in [50,51,53,54] and
Schwarzschild work in [27,44-46,62].

A. Bound equatorial orbits on a Kerr background

At lowest order, the secondary is treated as a point mass
u in bound geodesic orbit about a Kerr black hole of
mass M with ¢ = y/M < 1. The line element in Boyer-
Lindquist coordinates x* = {t,r, 60, ¢} is

2Mr 4Mar sin® @ >
ds? =—(1- dr* — dtd. Zdr?
N < 5 ) 5 (p—l—A r

+ Xd6* + <r2 +a*+ sin® @dg?,

2Ma?r sin? 9)
(2.1)

where £ = r2 4+ a%cos20, A = r2 —=2Mr+ a%, and a is
the spin of the primary.

We now restrict the orbit to the equatorial plane, which
leads to the following equations of motion:

r* +a®

<r2 %) = (al — a*&) + (E(r* +d?) —al),

( 2 dr>2 = [E(7 + a®) — aL)? — Al(a€ - £)? + ]

"

<r2 d_"’> = £ —af + 5 (E(P +a*) - aL). (22)

dr

Here £ is the (conserved) specific energy and L the specific
angular momentum. As noted in [40], these equations of
motion are only dependent on the radial coordinate r(z).
This implies that we do not have to invoke the use of Mino
time dA = dzr/Z and can instead move immediately to the
Darwin parametrization. As is typical for Schwarzschild
geodesics, we describe the motion in terms of the set
{x, p, e} for relativistic anomaly y, semilatus rectum p, and
eccentricity e [63—65], with

pM

W0 =T eory (2.3)

One radial libration occurs with each 2z advance in y.
Then, defining @ = a/M and L = £/M — a€, we find the
following relations [66]:

1-= 2)2 1= 2
52:(736)5%1— <
P P
g P=3-¢, @-p (2.4)
2ap 2aL

These equations can be solved exactly for £(p, a, e) and

A

L(p,a,e), though the results are lengthy (they are given
in [40]). However, we note that 1/p is a standard PN

parameter, in which £ and L can be easily expanded.
To simplify the process somewhat, we define v = 1/,/p
and compute series about v = 0. Then, just as in the
Schwarzschild case, we expand each PN order in e to
prepare for the eventual source integration. On the other
hand, we make no approximations with respect to a,
leaving each step in the expansion process exact in that
parameter.

Applying these definitions and relations into the equa-
tions (2.2) leads to the following ordinary differential
equations (ODEs) for the coordinates:
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d’l‘_ M

U (14 ecos(r)?y/1+ Lo (e?

*(1+ ecosy)?

—2ecosy —3)
—2a1°L(1 + ecosy)?

dr _ (d E+ Eatv
dy d)( 1 —22%(1 + ecosy) + a*v*
dgp o[£ — 202 L(1 + ecosy)]

(1+ecosy)?

x [1=202(1 4 ecosy) + a*v*(1 + ecos;g)z]\/l + L*0*(e* = 2ecosy —3)

These equations are then readily PN expanded in » and e,
and the result is trivially integrated to yield expansions for
t(y) and ¢(y). They can also be solved exactly using
elliptic integrals [67]. Then, the radial period is given by
T, = t(2x), the radial frequency by Q, = 2z/T,, and the
azimuthal frequency by ¢(27)/T,.

B. The Teukolsky master equations

Bound motion acts as a periodic source for the first-order
gravitational perturbations. On a Kerr background these
can be encoded by a set of Teukolsky master functions
sRine 1In radiation gauge [38,39] and associated spin-
weighted spheroidal harmonics ;S;,,,. We will focus on
the functions with spin-weight s = —2, which are governed
by the equations,

Azi ld—2lew + K2+4L(T—M)K
dr\A dr A

= Tlm(w

=2 mw

— 8iwr — lelmw] R

1 d s 9.0, (m—2cos6)>
Lm&d@ < medﬁ) @ orsin’d sin%0

+4awcosd —2 +2maw +_, ﬂlmw} Sime =0. (2.7)

Here K = (r* + a*)w — ma, _,4,,, is the spin-weighted
spheroidal eigenvalue, and 7, is the decomposition of the
(Newman-Penrose projection of the) stress-energy tensor.
The spheroidal harmonic also has the normalization con-
dition

/ "8y 2 sin0do = 1. (2.8)
0

Ultimately, these functions encode the first-order per-
turbation through composition of the quantity v, a certain
Newman-Penrose projection of the Weyl tensor given by

Q_4llj4 / 1mt+1mq) Slmw (H)lem( )dw’ (29)

Im

[

where ¢~! = —(r —iacos®). For more detail on the
motivation and derivation behind these equations, see
[38,39]. A deeper discussion is also given in [40].

Because the source motion is biperiodic, the Fourier
integral collapses into a Fourier sum over the frequencies
® = w,,, = m&, + n 2. Then, the homogeneous form of
the equation yields two independent solutions: _,R;, = =

R with causal (ingoing wave) behavior at the horizon,
and ,R;, = ,R,> with causal (outgoing wave) behavior
at infinity. Both can be derived as infinite sums of hyper-
geometric functions using the MST formalism [14,39],
which we briefly review below.

The spin-weighted spheroidal harmonics can be
expanded in the spheroidicity aw (a 1.5PN quantity) by
inserting a PN ansatz, applying standard boundary and
normalization conditions, then solving a system of equa-
tions [51]. However, we expand them (along with their
first and second € derivatives) simply by using the
spheroidal harmonic package of the black hole perturbation
toolkit [60]. The coefficient on each power of (aw) is given
by a finite sum of spin-weighted spherical harmonics,
which then takes an analytic value for specific choices of s,
[, m, and 0. See [40] for additional details.

C. The MST homogeneous solutions and the source
integration

The MST solution for —2R1+mn can be expressed [39,51] as

v+i(e+7)/2

—2+i(e+1)/2 Z 2lZ

Jj=—00

z
(z — ex)

o (J+v—-1-ie)'(v+ 3+ ie)
T(j+v+3+ie)[(v—1—ie)
xU(j+v—1—ie2j+2v+2,-2iz),

(2.10)

where U is the irregular confluent hypergeometric function,
e=2Mawn?, z=(r—r_)on, rp=GM(1+x)? k=
V1 —a?, and n = 1/c. The parameter v is the renormalized
angular momentum, an eigenvalue chosen to make the series
coefficients a; (not to be confused with the spin parameter)
converge as j — +oo. Both v and a; are determined through
continued fraction expansion [14,39], which leads to series
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in € for both. The rest of the formula can then be expanded in

both € and z, leading to a composite PN series in 77 (which by

definition is a 0.5PN expansion parameter) [40,51].
Similarly, the solution for _,R;, = can be written as

i €K iTts —s—i(e+1)/2 X
- J— —1ZTIK€E —_—
R, =€ - 1 Z a4y F,

Jj=—c0

X <j+u+l—if,—j—u—ir,3—

—ir, 1—i) (2.11)

€K

Here, , F; is the ordinary hypergeometric function, and the
parameters v and a; are the same as in Eq. (2.10).

The process of expanding these homogeneous solutions
by collecting on powers of # is fully described in [40],
based on the methods initially presented in [50,51,53], as
well as [18]. From a computational perspective, the most
important consideration is the fact that the homogeneous
solutions as written in (2.10) and (2.11) contain many
cumbersome z-independent factors that greatly complicate
the expansion [18,40,51]. These factors will eventually
cancel through division by the Wronskian and can thus be
omitted from the start. One useful choice of normalization
is given in [40], and the process is operationally similar to
the Schwarzschild case, described in [18]. When comput-
ing the fluxes, the solutions must eventually be rescaled to
produce the proper asymptotic behavior; however, in the
metric reconstruction procedure this problem is avoided
entirely, as all choices of normalization lead to the same
result.

Once appropriately simplified, the homogeneous solu-
tions can be used to complete the source integration [39,40]:

1 TT
L = VVI—T‘/O |:(Arm0 + Ao + An o) RE,,
mn+r
del,E d*R ¥,
_( mnl +Amml) dlrnn_FAmthﬁ}

x ef@t=ime(t) . (2.12)
The Wronskian W,,,, is given by

1 [dLRE doR-
Wi = K %—2R1mn - drlmn 2Rlnm:| ’ <213)

and source A functions (deriving from 7, ) are defined in
Sasaki and Tagoshi [39] for generic orbits. The equatorial
limits can be found in [40].

D. The Hertz potential in ingoing radiation gauge

The first-order generalized redshift invariant is a quantity
that depends upon the behavior of the regularized metric

perturbation along the particle’s worldline. The global
metric perturbation in radiation gauge can be derived using
the CCK procedure [56-59]. In short, an intermediate
Hertz potential ¥ is first constructed from products of
the normalization coefficients _ZZ?EM, the homogeneous
solutions _,R7; . and spin-weighted spheroidal harmonics
—2S;n- The Hertz potential is then transformed through
a sequence of linear operations to yield the metric
perturbation.

The s = —2 solutions are most easily adapted to the
use of ingoing radiation gauge, whose Hertz potential in
vacuum is a solution of the homogeneous s = -2
Teukolsky equation [68,69]. Thus, it can be written in
the generic form

1 .
= \/ﬂzq]lmn 2Rin (1) 2 Sine™ ™ (2.14)

Imn

for some undetermined coefficients Wi, . In general, it is
also governed by the following fourth-order inhomo-

geneous partial differential equations [68,69]:

S (D) =y,
%[Z‘“if — 12M0,¥] = o w4, (2.15)
where
D:rzzaa+a+ 3, =10,  (2.16)
LY=L\ Lol L, (2.17)
L,=—0y—qcotd+icsc9, + iasinfd,,  (2.18)

and the overbar denotes complex conjugation.

The angular equation can be used to identify the
coefficients ‘Pﬁm First, we must note that the complex
conjugate can be expressed as

1 _ _ _ . .
+ + + + —img+iot
v = /_ZJTE :llen—Zlen<r)—ZSlmne ¢
Imn

TS Wi RE () )SE e
V2r

Imn

\/EZZ\PI m—n— 2len )(_l)mzsﬁmeimw—iwt’
mn

(2.19)

where we used the identity S, = (—1)"**_.S,_,,_, and
took (m, n) = (—m, —n) in the sum. Then, the £* operator
is simplified using the Teukolsky-Starobinsky identity from
Chandrasekhar [70], or
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Z42Slmn = F(—2S1mn) (220)

for

F2 = (—ZZlmn)z(—Zﬂ“lmn + 2)2 + 8(10)("’1 - aa)) (—2)“lmn)
X [5—2/11mn + 6] + 4802&)2 [2(—2/11mn) + 3(1’)’1 - aa))z}'
(2.21)

With these steps the amplitudes are found to satisfy the
relation

1

3 [F(=1)"¥,_,,_, + 12M(i0)¥,,,] = ,Z7

Imn*

(2.22)

This can be inverted to isolate ¥, by taking a linear
combination of Z,,,, and Z,_,,_,. We get

(_l)szl—m—n - 12Mia)Zlmn
F? + 144M°?

lI’Imn =8

where the last step applied the identity Z,_,,_, =
(=1)!Z,,,,. Thus, the coefficients are relatively easy to
retrieve from the s = —2 homogeneous solutions and
normalization constants.

E. The metric perturbation in ingoing radiation gauge

With the Hertz potential computed, the metric perturba-
tions in ingoing radiation gauge follow as [71]

P = —{fﬂfy(ﬁ—l—éH- 3—1)(0+4p8+ 37)
+ m,m,(D — 0)(D + 30) - f(ﬂmy)[(é —2a
+28—-7)(D+30)+D+2-0)

X (6 +4p + 37)] }lP +c.c. (2.24)

The various operators, tetrad components, and spin coef-
ficients are defined in the Newman-Penrose formalism
[72]. Explicitly, we have

0y + !

(1) F — 12Miw
g , 2.23
{ P2+ 144M2e? | 229
|
oL,
f _A(r +a 7A70’a)’
m“—-%(z‘asinﬁ,oﬂ,ﬁ)
iasin@
6:m,ua = +
" V2(r+iacos)
-1 —iasin@
= T=——"=
e Cidcos6’ V2s
iasin@ cot6
a:

V2(r + iacos 6) v

p=

Note that the metric perturbation in ingoing radiation gauge
satisfies the conditions ##p,, = 0 and g, p,, = 0, where
Jer 18 the (inverse) background metric.

Once these tetrad terms, along with the modal form of
the Hertz potential, are inserted into (2.24), the result is an
unwieldy combination of ,R,, .0, ,R,, .. 0> ,R,, and
S 1mns 0928 1uns 0525, multiplying factors involving r,
w, m, and 0. The full expression simplifies in the equatorial
plane, but the result remains too large to display here.
Nevertheless, once the metric perturbation is derived in
analytic form, the process of completing its PN expansion
is straightforward, if cumbersome.

III. GENERAL-! EXPANSIONS

The MST formalism described in the previous section
provides mode functions for specific /. In the dissipative

V2(r — iacos 6)? N 20/2(r +iacos )

a s
V2(r +iacos@)sing ”
cotd
2V2(r +iacos®)’

(2.25)

|

sector [18,40], PN expansions of the relevant observables
(e.g., the fluxes) possess leading behavior that increases
with /. Thus, an expansion to any particular desired PN
order requires calculation of only finite values of /.
Unfortunately, this phenomenon does not recur in the
conservative dynamics, as the leading PN order of the
local metric perturbations pj,(y) is constant in /. As a
result, we must compute expansions for all values of [ to
determine the full metric perturbation p,,(y), which is
prohibitively difficult using the MST approach. In the
Schwarzschild case, it proved possible to use a PN ansatz
solution in the RWZ equation to obtain expansions that
remained general in /, which could then be iterated through
the rest of the process and summed over all values of / when
necessary [20,44-46]. It turns out that a similar approach
can be completed in the Kerr problem [51], though with
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several added difficulties over the Schwarzschild back-
ground. We detail the full procedure below.

A. The homogeneous solutions and normalization
constants

As in the Schwarzschild case [44,46], we start by
introducing a PN ansatz for the homogeneous solutions
of the Teukolsky equation. Following [51], we choose

€ —v+ts
sRipn = (%’72> (1+Am+ A + -+ Ay
+ORY),
R, = (@n)™ (1 + By + B> + -+ - + By
+O(rP), (3.1)

where the A; and B; are functions of (Z,€,1,m, a), 7 = rw,
and € = 2GMw. Once v is found using the continued
|

24 + 131+ 2812 + 308 + 1514

(108 + 181 + 1717 + 31 + 141* + 158 + 51°)

fraction method for general /, these expressions are plugged

into the (s = —2) homogeneous Teukolsky equation,
d (1dR,
Ll K% +4i(r— M)K
dr<A dr >H T dilr=M)

(81601"+ /Ilmn) ]len = 07 (32)

and solved order by order. Note that we multiplied the
original Teukolsky equation by A to simplify appearances
of n. Unfortunately, the ansatz does not fully apply the
boundary conditions, which is why it breaks down after
some /-dependent PN order [44-46,51]. If a target PN order
P is set, the ansatz will be useless for [ < P. Thus, those
values of / must be determined separately with the MST
formalism.

Proceeding in this way, we obtain a general-/ PN
expansion for v, which begins

= 30t 3.3
61+ 1017 = 200 — 400 — 165 P+ 17(6+ 1= 29F — 65 +20f £ 8p) M€ +OE) (33
and obtain the general-/ expansions for the mode functions, which likewise begin
_ 2iz @21 =1)(P =1+ 2iam) + (1> =71 - 8)Z* i(l-3)7
R+ ser R S 2 3
i = @) R, = 1= =0+ A0+ (2 - 1)z (-Di2i-1)"
L 1 [e2(21 = (a* = 4)P —9a’m? + P (8iam — 2) + [(12iam — 4 — a*(m* — 1))) (32 - 171+ P)z°
87? (1+D(3+2) 1(21 = 3)(1 =31+ 2)
26(1414 + I + 16iam + 161(1 — iam) + 1*(=7 + 2iam) + *(—4 + 12iam))z*] , O
B(=1+1+2P) 1 )
_ g ,\ 12 2i7 1. 2iam 9+ 1)z i(4+0z
RS = (—p? R, =1 —— el 241 2 _ 3
~2 % mn (z”) 2 = LT 2z[€< T >+3+51+212" Q+1)B+si+28)"
(50 4 1(19 + 1))z°

N Fz(l(l + D2+ 1)(a® +21=2) + 4ia(1 + 1)(21 = 1)m + a*(I — 8)m?)

120=1)

n 2e(I(1 +1)(—48 4+ 1(-43 4+ (=10 + )I)) + 2ia(—

A+ D)2+ D3 +20)(5+20)

(L + 1733 +21)

Here, we defined R}, as the normalized PN series that
begin at O(1), which are more convenient to manipulate at
each step of the calculation than the original series with
[-dependent PN orders. Eventually, all /-dependent powers
of n will cancel in the metric perturbation due to their
corresponding presence in the Wronskian.

Once expanded, the general-/ homogeneous solutions
can be evaluated along the geodesic orbit to compute the
Wronskian and prepare for the source integration (at which
point the series will be defined in terms of v and e, as in the
specific-/ case). However, the source terms themselves
carry one additional complication: expansions of the

21 4+ 1(=17 4 (-3 + l)l))m)23]

n* +On). (3.4)

|
spin-weighted spheroidal harmonics become large and
unwieldy for general / and m, which significantly slows
the procedure. We avoid this problem by leaving _,S,, .
and its derivatives as unevaluated parameters until the final
step of metric reconstruction. Once the metric perturbation
is expanded, we handle products of the spheroidal har-
monics together in the sum over m.

B. Sums of spin-weighted spheroidal harmonics over m

The general-/ expansions are carried through the source
integration and then used to construct the metric perturba-
tion (2.24) just as in the specific-/ case. Computationally,
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the source integration is completed in one step, and then the
expansions for Z; R} .S, and the Fourier kernel
emv=iot are directly included in the formula for the metric
perturbation. Each n is calculated individually, as only
finite n modes are required to reach any particular order in
e, and then the set is summed at the end. We also split up
the calculation over the nine spheroidal harmonic products
[Simns 00Simns 000S1mn Within the normalization constant
Z, .. multiplied against the same three terms within the
rest of the metric perturbation (2.24)] that are left uneval-
uated until the end. Even with this extensive segregation of
terms, the PN expansion for each individual component
serves as the computational bottleneck for this procedure.
In particular, the (n = 1, S}, X S;,.,) part of each metric
perturbation requires about eight days and 10 GB of
memory to reach either 6PN/e'® or 8PN/e' on the
University of North Carolina (UNC) supercomputing
cluster Longleaf. (Fortunately, it is trivial to parallelize
over the various combinations of n and S,,,.)

Once all the components are calculated, we are left with
the task of summing the mode expressions over m to obtain
p/Itv' This process is nontrivial, as each m mode contains
products of spin-weighted spheroidal harmonics (still
unexpanded), and the sum must be taken from —/ to [/
for general /. In the Schwarzschild-RWZ problem, we faced
a similar obstacle, having to complete sums of the form
|

! /
T = Z m"_58,,(7/2)?, T =

m=-1

T81 = Z mN—ZSlm(ﬂ/z)(aQ—ZSlm(ﬂ/z))’
m=-1

l l

Slm(”/z))z’

1 20/1 70/1
and so on for sums Tgé T(l)é , /

Z (_1)l+n1mN

TO]

_ Z(_l)l+mmN

m=-—I

l
> mVoyY,,(7/2.0)%, (3.5)

m=-I

where Y, is the standard scalar spherical harmonic,

(2z+ )(l— m)!

“P"(cos0)e™?,  (3.6)

and N is any positive integer. In that case the first sum can
be derived using a special case of the spherical harmonic
addition theorem [20]:

[

D

ey, (1/2,0) = (2’ i )P,(cos 0. (7)
= 47
with the result for each value of N corresponding to a term
in the Taylor expansion of this formula about ¢ = 0. The
second summation could then be derived from derivatives
of the spherical harmonic addition theorem, or from a
hypergeometric generating function [73].

In the Kerr-Teukolsky formalism, we now encounter
sums like

—2S1m(”/2)2’

N—2SIm (7/2)(09_5S,,(7/2)),

Z( ll+m

m=—1

n(7/2))%, (3.8)

(9955,

. Note that we have suppressed the n index for convenience and that the factors of

(=1)"*™ can be traced back to the Hertz potential coefficients in (2.23). Unfortunately, the spin-weighted spheroidal
harmonics do not have a known addition theorem, and it is unlikely that any comparable formula like it can be derived. In
fact, _,S,,,(7/2) does not even have a known analytic form for specific values of / and m.

Nevertheless, progress can be made by PN expanding S,,, and its derivatives, now for general-/m, yielding series

like [51,60]

sSim (9) = sYIm(e) +

s <\/lz—m2\/lz—s2
V1421 2\20-1

Y (1—1ym(0) =

VIF1D)?=m?> /(1 +1)? =52
(1+D2/3+20

sY<1+1)m(9)>a(U

VIR —mV1 =204 B —m?(1 - 25*)V I - s2/1

—20+ -5

Ll
2

2ms\/

V(12 = s2) (1 -

(1 =20)2(=1 + )P/=-3+21/1+ 2]

sY(I—Z)m (9) + SY(I—I)m (9)

14\/412 1(2=1)

), ((ﬂ —m) (=)

(e 1 = Al 1) Sz])mm(e)

(1 - 412) (14 )*(3 + 81+ 41%)
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C2mV1 4204 P —mPs(1 420+ I —

28V + 20+ P -2

11+ 042+ VT +2/3+21

sY(l+1)m (0>

N VII+1)? = m?][(1 +2)

—m?/[(1+ 1) = ?)[(1 +2)°

—s?](1+1+2s%)

(14+D*2+ V1 +20(3421)*V/5+21

Derivatives of S,,,(0) are applied directly to the terms in
the series. Thus, when products of these series are taken,
we will be left with sums over spin-weighted spherical
harmonics, instead of spheroidal harmonics.
Spin-weighted spherical harmonics are also unlikely
to yield straightforward summation formulas, and the
reference [51] handled these sums using Mathematica’s
FINDSEQUENCEFUNCTION. However, it turns out that exact,
if cumbersome, formulas can be derived analytically by
using the spin-weighted spherical harmonic definition to
transform back to scalar spherical harmonics. Explicitly,

(sin@)~* 0 i 0 _
= —— — ) Yi,)-
s—1%Im (Z+S)(Z—S+1> ae Slnea(p ((Sln )S lm)
(3.10)
Thus, s = —2 can be expressed in terms of s = 0 as
v, - (1-2)! 2 +2m—cos¢9 y
—2%Im — (l+2) 0+ Im sin® 0L Im
m? —2mcos @
W lm:| (3.11)

Substitution of this relation and (3.9) into the summation
formulas (3.8) would then yield products of scalar spherical
harmonics alone, which are closely connected to the
spherical harmonic addition theorem. However, the expres-
sion (3.9) contains multiple values of the first harmonic
number (I, £ 1,1+ 2, etc.), while the addition theorem
(3.7) only explicitly covers products of terms with identical
harmonic numbers. This last problem can be resolved by
using the well-known scalar spherical harmonic identity,

[21+1)(21+3
Y(141)m = cos 6 ((;#Ylm

B (21 +3) (P — m?)
1-1D)[(1+1)* = m?]

Yoo (3.12)

We also find it convenient to eliminate all derivative terms
using identities of the following form:

"Y<1+2)m(9):| (aw)* + -

d
sin@—Y,;,, =lcos0Y,, —

(21 +1)(12 — m?)
40 Y(l—l)m’

21-1)

—(l+1)cos8Y,,

QI+ D[(1+1)* —m?]
'+¢ 21+ 3)

d
ind—Y,, =
S 40 Im

Y(l+1)m' (313)

In total we make a sequence of identity transformations
until all terms are of the form Y, and Y(_;,. Then,
the remaining products will involve only m"Y? and
mNY %1 > which are trivial to execute using the addition
theorem. In particular, we find that no square root terms
appear in the final product and that the cross terms vanish,
as Yy, (z/2) is 0 whenever (I 4+ m) is odd, meaning one of
Yy (7/2) and Y (;_y),,(7/2) is always 0. Parity consider-
ations also clarify how to account for factors of (—1)"—
these terms simplify to become overall factors of (—1)! or
(=1)"=!, as appropriate. Then, the full term (—1)"*" simply
contributes (—1)* =1 or (=1)?~! = —1 to each compo-
nent of the sum.

Thus, to summarize, we expand the spin-weighted
spheroidal harmonics into series of spin-weighted spherical
harmonics; then, we use the definition of each _,Y, to
reexpress it in terms of Y;,,. Next, 8 derivatives and distant
values of the first harmonic number are eliminated using
identities, at which point the standard spherical harmonic
addition theorem can be used to complete the summation.
Once the metric perturbation is summed over m, the
general-/ expansion for p,’w will be ready for use in the

construction of the redshift.

IV. METRIC COMPLETION AND
REGULARIZATION

With the procedure established for the specific-/ (MST)
and the general-/ (ansatz) parts of the metric perturbation,
we are left with two remaining considerations: the com-
pletion of the metric (monopole and dipole terms) and
regularization procedure. We briefly cover those issues
here.
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A. Nonradiative modes

The Teukolsky formalism is only valid for the modes / > s. Notably, it omits the corrections to the mass monopole and
dipole of the primary (informally referred to as the [/ = 0 and / = 1 modes), which must be derived separately. The full
completion part p,, = was first derived in [71]. It is given by

2
p™t = il [(r* + 3a? cos? 0)SM — 2a cos? 05J],

22

2
Pt — _rz {[M(r?* + 3a® cos?® 0) + a*rsin® )M — a|rsin® @ + 2M cos® 6]5J },

MA

2
Pt = —Macos2 O(asM - 8J),

2
Pt — 29 G2 01alE? + Mrsin? 0(r% — a? cos? 0)]6M — (2 + 2M 13 sin? 6)6J ),

[ M22

2
pcomp+ _ ——rSiIl2 9[2613 cosZ O5M + (r2 — a2 cos? 9)51],

tp 22

where p™" = pu" O[r — r,(1)]. After a lengthy calcu-

lation, [71] confirmed the expected result that 6M = u&
and 6J = uL.

Because we are only interested in the local perturbation,
we can restrict these expressions to the equatorial plane,
which simplifies the result to

premer = 28
r
comp+ __ 27‘2
P = A

comp+ __
00 - O’

[(Mr + a*)6M — adJ],

com Za
Py Pt — —m[a(r—k M)SM — (r +2M)é8J],

2
o = =81, (4.2)

Actually, there is another nonradiative contribution
termed p5,"® that was discussed at length in [74]. How-
ever, this term is O for all r > rp and therefore does not
affect the value of the redshift, which is calculated here in
the limit r — r, from above. The authors of [74] also note
that the redshift combination p,’fyu/‘ u¥ must be continuous
across r = r,, so that the gauge portion is not needed.
On the other hand, the spin-precession invariant [75,76]
is typically regularized through an upper-lower-limit aver-
aging procedure, so it is likely that p5"**" will have to be
included in that calculation.

B. Mode-sum regularization

Thus far, the expressions given for the metric perturba-
tion in ingoing radiation gauge have referred to the full
retarded field. This field formally diverges at the location of
the particle, a property that becomes apparent when the /
modes are summed from /=0 to [ = co. Local gauge

(4.1)

invariant quantities derived from these modes then exhibit
the same behavior. Instead, from the full retarded field we
must extract the so-called regular field, which defines the
effective metric experienced by the smaller body.

The regular part of the metric is derived through
regularization, which can be achieved in a number of
ways. One popular approach was given by Detweiler and
Whiting [77], which chooses a particular split of regular
and singular fields,

P (x) = P (x) + Pl (x). (4.3)
With this choice the singular field p3, (x) satisfies the same
inhomogeneous field equation as p,, (x) but with different
boundary conditions, while p,’fv then solves the homo-
geneous field equations. The orbiting particle then travels
on the Kerr metric plus the perturbation pf,.

Determination of the singular field is a difficult
process [78]. In first-order BHPT a common approach is
the mode-sum regularization procedure [79,80], which
exploits the fact that the individual / modes of the retarded
metric perturbation are finite. The part of the / dependence
that diverges in the infinite sum is subtracted off each /
mode, so that the full sum remains finite.

The [ dependence of the singular field can be expressed
as an expansion about / = oo. The metric perturbation itself
will have a leading coefficient independent of /, which will
obviously diverge in the sum over /. Each derivative of the
singular field with respect to any of the coordinates will
increase the divergence by a power of /. In Lorenz gauge, it
is known that the large-/ expansion can be manipulated into
a form such that only the divergent terms are needed to
obtain the regular field—the rest will vanish in a sum over
all /. Interestingly, in a numerical calculation of finite /, the
higher-order terms (regularization parameters) can improve
convergence [78]. However, our analytic calculation will
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complete the infinite sum over all /, so only the divergent
terms are needed.

The redshift invariant is directly proportional to the
metric perturbation, so what remains is to determine the
[-independent coefficient (the leading regularization
parameter) in its expansion about / = co. In fact, this
can be done using our general-/ PN series. This series is
expanded in /, and the leading coefficient produces the
singular field. There is a subtlety involving our use of
radiation gauge, instead of the more established Lorenz
gauge, as the former is related to the latter by an irregular
gauge transformation [81]. However, it was noted by
Detweiler [42] that the regularization scheme becomes
gauge invariant when working with certain gauge invariant
quantities, the redshift among them. This [-expansion
approach to regularization has already been used success-
fully to construct the PN series for redshift invariant of
eccentric, equatorial (Kerr) EMRIs in [53,54].

V. THE GENERALIZED REDSHIFT INVARIANT

A. Background and implementation

The generalized redshift invariant has the same definition
and interpretation for eccentric, equatorial inspirals on a
Kerr background as it does for eccentric inspirals on a
Schwarzschild background. Thus, the corresponding dis-
cussion in our previous Schwarzschild work [20], based on
prior derivations in [27,47,48], is sufficient to understand
the meaning and significance of the PN expansion pre-
sented here. Nevertheless, we will recapitulate the develop-
ment of the generalized redshift invariant here for the sake
of completeness.

The redshift invariant u’ was originally constructed for
quasicircular inspirals [42,82]. Note that this quantity is
precisely the inverse of the redshift itself, z = 1/u’. For
eccentric orbits, Barack and Sago discovered that the
proper-time average over a radial libration (u'), provided
the more appropriate gauge invariant measure of the
conservative dynamics. This average is equal to the
coordinate-time period, T,, divided by the proper-time
period, 7 ,. To subleading order in the mass ratio, this
quotient is given by [47,48]

T, T,

() =r—""=7 s
T T,+AT, T,

-AT, 5=

()2 + (). (5.1)

Note that the coordinate-time period 7, is not corrected
because the frequencies are held fixed from zeroth to first
order (which is necessary for the gauge invariance of the
redshift invariant [47]). The leading term (u')? is merely the
value of the redshift invariant for geodesic orbits, which
is trivial to calculate using the Darwin parametrization
described in Sec. II A. The second term, which incorporates
the effects of the first-order conservative self-force, can be
shown to take the form [47,48]

1
AT, =-T, <§ p,’f,,u"u”> ) (5.2)

T

This formula is the same for eccentric, equatorial orbits
on both Schwarzschild and Kerr backgrounds. Thus, the
correction to the generalized redshift invariant follows
directly from the regularized metric perturbation, which
we have detailed extensively in previous sections for the
purpose of PN expansion.

As mentioned before, this particular gauge-invariant
quantity encodes important details of the conservative
motion of the system. The first-order conservative dynam-
ics contribute at O(¢°) in the cumulative EMRI phase, a
level needed for the creation of accurate waveform tem-
plates in the LISA mission, making the redshift invariant
especially valuable [1]. In addition, there is an exact
correspondence between the PN expansion of (u’)! and
several important quantities in EOB theory. For instance,
the eccentric part of (u’)! can be used to derive the
expansion of the Q(1/r,p,;v) EOB potential, which
governs the deviation from geodesic behavior in the
EOB Hamiltonian [26,27,53,62,83]. The transformation
between these quantities is outlined in [26]. The circular
spin-dependent part, meanwhile, is critical to the radial
equatorial potential A(r, m;,m,, S, S,) and the main spin-
orbit coupling potential Gg(r,m;,m,,S;,S,) [53]. The
eccentric spin-dependent part is expected to be more
fruitful still, though the precise transcription scheme has
not yet been elucidated [54].

The last remaining task is to implement the mode-sum
regularization scheme in order to ensure a proper, con-
vergent sum over the [ modes of (u’)l. We choose to
regularize the final averaged product, which is already in
gauge invariant form:

1 = /1
<2 P,’fyu”u”> => <2 (pfw - Pﬁ;l) u”u”>

=0
=S (Lt 53
- Ep;wu u _< [0]>1' ( : )
=0 T

The singular field contribution is thus distilled down to an
[-independent constant, equal to its leading behavior in a
large-/ expansion, in accordance with the observations of
the previous section.

Analytic derivations of the singular part of the redshift
invariant have been made [27,47,78], but these have
generally utilized a decomposition over spherical harmon-
ics, while our / modes derive from spin-weighted spheroi-
dal harmonics. For circular, equatorial orbits on a Kerr
background, Kavanagh, Ottewill, Wardell derived the spin-
weighted spheroidal form of Hg to 13PN order [51]. We
chose to use the general-/ ansatz expansion to extract the
large-/ behavior directly, as has been done in [53,54].
Our expanded Hg is confirmed to match the analytic result

T
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of [51] in the circular orbit limit. The PN series for the
orbital average of Hy begins

<H[0}>T =(1- 62)1]2 _ {(1 — 62)2 _%(1 _ 62)3/2] o

—2a[(1 - e?)> = (1 -e2)3?’

153 3, 267¢
=232 222 2
+[< ¢) <64+4“ + 128)

- (1 —ez)(3+&2+62)} % + O, (5.4)

This constant is then subtracted off at each value of / from
[ =0 to [ = oo. Note that this covers all three regimes of
calculation: the metric completion piece (/ =0 and / = 1),
the MST specific-/ solutions from / =2 to [ = 7, and the
general-/ ansatz solution from [ = 8 to [ = co. The form
of the summands will involve products and quotients of
polynomials in /, which are trivial to sum in Mathematica.
For the simpler Schwarzschild problem, the same basic
procedure was first implemented in [62], where the (first-
order BHPT) redshift invariant was expanded to 6.5PN
and e? in eccentricity and to 4PN and e*. This was quickly
extended by [27] to 4PN through !0, Later, the authors
of [32] improved the eccentric knowledge to 9.5PN and e®,
as that level was needed to complete a novel transcription of
the redshift invariant to the scattering angle for hyperbolic
orbits, which can be used to compute the full post-
Minkowskian dynamics to high order. Finally, our previous
work [20] brought the eccentric Schwarzschild expansion
|

to 10PN and ¢?°. Interestingly, by taking the expansions to
such high order in e, we were able to find many PN terms
which could be manipulated into either closed-form
expressions or infinite series with known coefficients,
following similar developments in the fluxes [15-17,84].
In fact, it was discovered that the entire leading logarithm
series of the energy flux at infinity [15,17] exactly
reappears in the redshift invariant.

This paper now extends many of those same advances to
the more difficult Kerr problem, which has historically seen
much less development. The first expansion for eccentric,
equatorial orbits was undertaken in [53], finding a result to
8.5PN/O(e?)/O(a?) in both a small-e and small-a limit.
This was later extended to 8.5PN/O(e*)/O(a?) in [54],
which also derived an expression to 3.5PN and O(a?) using
the full PN theory (i.e., for arbitrary mass ratio). We use the
techniques and simplifications discussed in earlier sections
of this paper to enhance these calculations greatly to the
level of 6PN/e'® and 8PN/e!?, all while remaining exact
in a. We then apply many of the techniques developed in
the Schwarzschild case to extract closed-form eccentricity
functions for the certain spin-dependent parts of the series.
Note that in the expressions presented below, we redefine a
to be dimensionless (i.e., a = a/M = a) for simplicity.

B. PN expansion of the redshift invariant

For eccentric, equatorial orbits, the first-order BHPT part
of the generalized redshift invariant is found to take the
following form, mirroring its circular-orbit limit [20,51]:

1 1 1
+ (Un/z + U1 log P) W + (Ue + UL logp) + <U13/2 + U135 log P) W

Us),

1
+ <U7 + U7 logp + U7L210g217) Y +

Note that we restore use of the parameter 1/p = »? in this
section, as it is more commonly used in the literature. This
expansion exhibits two key differences from its Schwarzs-
child counterpart. The first is that while in the Schwarzschild
limit each term U/; was a function of eccentricity alone, now
each U; = U,(a, e) is a function of both eccentricity e and
spin a. In many cases we will be able to extract their exact
dependence on both parameters, though often our results will
be Taylor expanded in e. The second is the presence of half-
integer terms starting at the 1.5PN level. These terms are
purely spin dependent, as the first half-integer PN term in the
nonspinning case appears at 5.5PN.

1 Uy 1
+ <U4 + Uy logp) Gt —onTt (Z/l5 +Us;, logp) —
P p p
»°
1
PIEE + (u8 +Us, log p +U8L210g217)pg+“']. (5.5)

I

In this work, we present only the spin-dependent
coefficients, as the a = 0 limit was discussed at length
in [20]. To support this effort, we define an additional layer
of specification at each order,

ui(av e) = ui(e)SCh + Zakui(av e)Sk7

k=0

(5.6)

such that the first term U;(e)5" corresponds to the
Schwarzschild limit, and the superscript k describes the
power of a attached to the remaining functions. All terms
through 6PN were found through e'° (if not exactly), while
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the orders 6.5PN-8PN were found to e'°. Some of the
functions at higher orders are too lengthy to display in their
entirety. These are truncated after a few eccentricity
coefficients; however, we add a Greek letter (e.g., a;¢)

electronic form on the black hole perturbation toolkit [60],
as well as the UNC gravity repository [61].

We begin with the functions through 3.5PN order, which
all yield closed-form expressions. The first two terms are

to the end of such functions to remind the reader of the
extent of the series. The full results are made available in
|

entirely spin independent, so we list the spin-dependent
enhancement functions from 1.5PN-3.5PN:

Z,{3/2 =-2(1-¢&?)>+5(1 — €2,

U = (1= ) =2(1 - ),

USl, = (1 - €2)2(=20 +8¢?) + (1 ¢2)¥2(38 + 5¢2),
UL = (1 - 2)2(13 = €2) — (1 — €2)2(27 + 29¢2),

87 93e? 261  1195¢> 581e*
RS IV L 4 _ 232 _
usj, = (1 e)( 5 5 +306)+(1 e?) (2 t— 2 ),

Uy, = (5.7)
Note that any functions not explicitly referenced (both here and throughout this section), such as 3" or 157 75> are identically 0.

At 4PN order, the spin-independent portion becomes more complicated [20]; however, the spin dependence remains
simple:

1 2
U = (1 —€?)2(52 + 63> — 35¢*) + (1 — €2)3/? (—155 - 09256 + 2164),

USH = =3(1 — e?)3/2¢2. (5.8)

The 4.5PN functions can also be put into exact form, though with the first appearance of a transcendental coefficient:

5042 241z? 4057°
Z/{Q/2 = (1 —¢e?)?(=128 — 156€% — 28¢* + 32¢°) + (1 — €?)*/? <9— 3 + (2699 3 >e2
1625 5697%\ , 1447¢°
+ - e’ — s
12 256 8
867¢> 309¢*
USH = (1 - €?)2(=55 + 3¢ + 12¢*) + (1 —e2)3/2<105+ ‘4 46 ) (5.9)
The 5PN functions likewise resemble their 4.5PN counterparts above, involving factors of 7
1099 879¢* 7067 59372 60485  3091x>
S2:1 —42 2 _1216 1_23/2_ _ 2
U = ( e)<2 Oe e)+( e)< 6+512+( 12+512)e
4697 n 44037%\ , 3689¢8
— e N
3 4096 8
319¢%  127€*
US* = (1 — ¢2)2(45 — 46¢% + ) + (1 — €2)/2 (—53 - 26 - 28 ) (5.10)

The 5.5PN term U] 112 marks the first appearance of additional transcendental numbers (y, log 2, etc.), as well as a log p

term with spin dependence. As might be expected from the Schwarzschild case, this is the first term for which we cannot
determine a closed or exact function in eccentricity and must rely on the Taylor expansion through ¢'®. However, we can
factor this term into a simpler form reminiscent of 5 [20], in order to capture some of the transcendental dependence.
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We present the infinite series portion of 13 ;0 e8, saving the full results for the online repositories [60,61]. The remaining
enhancement functions are closed in form:
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(5.11)

At 6PN order we find an analogous set of functions. Again, we truncate the more complicated series at e®, leaving the full
functions for the online repositories. The remaining functions are likewise found to yield closed forms:
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Ugf:(l—e2)3/2<?+ = T e

From 6.5PN through 8PN, our expansion is limited to order e'® in eccentricity, which greatly reduces our ability to
determine closed-form expressions from the series. From here, we primarily present just the first few coefficients in each
function. Again, the full results are posted at the repositories [60,61]. The 6.5PN term marks the first appearance of the
polygamma function. We set y (%) = (") (%) + l//(")(—”‘T“) for polygamma function y")(x) and find
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The 7PN functions are similar in structure to their 6PN counterparts, though we do note the first appearance of an odd
power of a at integer order. Additionally, we no longer have enough coefficients in the function S2 to identify any eccentric
structure, so we simply present a few of those coefficients unmodified. We find
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(5.14)

The 7.5PN functions S1 and S3 show interesting behavior, in that they present certain transcendental numbers attached to
(apparently) terminating series that do not bear any obvious relationship to the corresponding logarithmic functions:
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Finally, the 8PN functions introduce several elements of additional new structure. One is in the form of a spin-dependent
term U3° with no leading factor of a. The attached eccentricity series for both /5 and U§> appear to terminate at e®, so they
are presented in their entirety, while the (apparently infinite) series U3, U352, and U3 are truncated for brevity. Additionally,
we find the appearance of a second polygamma combination, commonly denoted (") = —i (y ) (k) — (= ika))  as
well of « in the denominators of certain coefficients. The full results begin
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C. Discussion

When PN expansions are made in the extreme-mass-ratio
limit using the Teukolsky-MST formalism described in this
paper, the result is a double Taylor series about 1/p =0
and e =0, taken to finite orders in both parameters.
Nevertheless, significant prior work at the intersection of
BHPT and PN theory in the Schwarzschild limit has
revealed that the derived terms should have significant
structure in their dependence on eccentricity. Direct
derivations from the full PN theory, for instance, have
found closed-form expressions (or fully understood infinite
series) for the first three orders in the energy flux and
the redshift invariant [48,85-87]. Likewise, work has
been done to characterize the behavior of eccentricity
enhancement functions as e approaches 1, again in the
Schwarzschild limit [16,84,88]. Our knowledge of the
underlying PN structure can then be used to refactor
the initial (Taylor series) results into the corresponding
exact functions of eccentricity that would produce those
series, greatly enhancing our access to the high-e regime.

In the Schwarzschild case, this effort proved highly
effective, as BHPT-PN expansions were found to yield a

I

great many closed forms in the fluxes [15,17-19], redshift
invariant [20], and spin-precession invariant [21]. With the
success of those methods in hand, we were motivated to
push the eccentric expansion in the Kerr regime, to see if
similar structure would appear in the spin dependence of
the PN expansion. We first confirmed some of the same
structure in the fluxes at infinity [40], and with this work
we now see that many of the patterns repeat in the red-
shift invariant, though not without significant added com-
plexity and a few unexpected irregularities. We review the
results here.

The first eight PN functions, U3/2, Z/{z, u5/2, U3, Z/l7/2,
Uy, Uy, and Us, are all found to yield straightforward
closed forms. When separated by power of a, we find that
each takes the form of a pair of polynomials in e, each
attached to a factor of (1 — e?) to some positive power.
[Recall that when y = (MQ,)*? is used as the PN

expansion parameter instead of 1/ p, the factors of (1 — e?)
carry negative powers, commonly called eccentricity sin-
gular factors [15,84].] These functions are all vaguely
reminiscent of the 2PN energy flux [86], which was the
first derived PN term to display a similar combination of
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polynomials attached to differing eccentricity singular
factors.

Using the Schwarzschild limit as a model, it could
perhaps be predicted that these functions would be com-
pact, as the first term there with a nontrivial structure was
US™. Thus, we might expect that the first nontrivial term in
the spinning case would be four orders after the first, at
5.5PN order. Nevertheless, it is remarkable that the spin
dependence (at least in the equatorial limit) can be known
exactly up to that point. Additionally, the only term in the
Schwarzschild limit not fully understood to this level is
U3, as it has a dependence on the 1PN multipole moments
that has not yet been elucidated (see [20] for more details).
Once that piece is determined, the entire 5PN redshift
invariant will be understood for eccentric equatorial EMRIs
on a Kerr background.

The 5.5PN function U}] , carries the first major increase

in coefficient complexity, presenting a form that resembles
USM. Given the similarity, and based on prior work in the
Schwarzschild limit [17,20], we would expect the log
coefficients in this term to stem from a y(e)-like enhance-
ment function (see [86,87,89]), meaning they cannot be
condensed into closed form. Nevertheless, if this is the
case, such a function would likely yield to a derivation in
terms of multipole moments, which could be expanded to
arbitrary order in eccentricity. Indeed, this was precisely
found to be the case for Z/{EC“ [20]. Despite a structure
identical to that of U}],, knowledge of the multipolar

composition of U5 allows us to expand the function to
arbitrary order in eccentricity.

Further bolstering support for this prospect is the fact
that the 5.5PN log term U}] ,, is exactly proportional to the

leading spin dependence of the energy flux L£3), [40].

Curious connections between the energy flux series and
redshift invariant series also appeared in the Schwarzschild
limit [20]. In fact, we found that the entire leading
logarithm series of the energy flux (that is, the first
appearance of each new power of log p, including power
0—see [15]) recurred in the redshift invariant, but shifted
four PN orders up. Indeed, the Peters-Mathews energy flux
term was found to be proportional to 55", In this case we
could not find an infinite sequence of PN terms with
proportionality between the two, but the three terms U] », ,
U, and U2 1, showed correspondence with Eg}z, £52, and
D;?z, respectively. Whether there is a deeper pattern there
remains an open question and will be left to future
investigation.

The next major increase in complexity occurs at 6.5PN
order, with the functions U4;} 1 and Uy /- We have used the
limited number of coefficients to extract what seems to be
the complete dependence of the polygamma, log x, and yg
terms on the logarithmic functions U3} ,, and U3, . The
fact that both different logarithmic eccentricity functions

are present in the nonlogarithmic terms U/}} /o 1s curious,

and we conjecture that it represents the effect of a x? term
on a combination of coefficients at an earlier stage of the

derivation. The term U3, also exposes an additional

irregularity, as it is the third PN order with an a’

dependence, meaning we would naively (following the
pattern in the Schwarzschild, §1, and S2 functions) expect a
series with no transcendentals other than z”>. However, we
instead find further appearances of polygamma, log k, and
YE, again possibly resulting from x? terms in the MST
solutions.

At 7PN we see the first occurrence of an S1 function at
an integer order. This function is attached to a factor of 7z,
which is reminiscent of low-order tail terms in the energy
flux. This makes sense, as the half-integer tail for the
redshift invariant starts at 5.5PN in the Schwarzschild limit,
and L{?‘fl/‘z takes a very similar form to ¢5'. It is unlikely that

this series terminates at finite order, but if its multipolar
content resembles that of tail contributions to other observ-
ables like the fluxes, there may a route to an arbitrary-order
expansion. The higher spin terms follow the same general
structure as their counterparts at 6PN, though the lower
range of the eccentricity expansion does not provide us
with enough information to determine closed or exact
functions. It is perhaps noteworthy that the 7PN functions
are markedly simpler than their 6.5PN counterparts, show-
ing no incidence of polygamma or log k. Additionally, the
logarithmic term only contains one a function in U357, while
U,3/51, produced both S1 and S3.

There are a few interesting functions at 7.5PN order as
well. In particular, in the functions S1 and S3, we find the
transcendental terms log «, %), and (%), all attached to
eccentricity series that appear to terminate at ¢®. Moreover,
the polynomials are linearly independent and bear no
apparent relationship to the logarithmic functions L{fsl L
and U2 /o1~ As mentioned above, it is also noteworthy that
the function U473 ,, the first appearance of an even power of
a at half-integer order, shows the last connection to the
energy flux expansion. Indeed the infinite eccentricity
series is exactly proportional to the 3.5PN energy flux
term Lﬁ%z, though the more fundamental reason behind this
particular connection remains unknown.

The final term at 8PN introduces another combinatorial
increase in complexity. 8PN is the first order with a
dependence in the term SO. In fact, this function appears
to have terms that are independent of a and therefore
belong in the Schwarzschild limit. However, it turns out
that when the limit is taken a — 0, these terms exactly
cancel with polygamma terms that remain nonzero in U3' .
Additionally, the term U3° appears to truncate at e®. The
functions S1 through S4 display similar behavior (though
with varying degrees of complexity), while the remaining
functions through Ug°, USS, US:, and U5; are rational
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series. Broadly speaking, it appears the maximum power of
a present in a given PN term tends to follow separate
patterns for half-integer and integer orders. The half-integer
orders follow the trend {1, 1,3,3,5,5...}, while the integer
orders follow the trend {2,2,4,4,6,6, ...}. At each order,
the higher powers of a tend to be rational, providing
ample opportunity for the derivation of closed-form
expressions.
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D. Comparison to numerical data

We can assess the accuracy of these expansions by
comparing them to the numerical calculations of the red-
shift invariant for specific values of p, ¢, and a. We evaluate
orbits with p = {10,20}, e ={1/10,1/5}, and a =
{1/4,1/2,9/10} in an attempt to survey a range of
parameters. The spin-independent portion of the expansion
was more completely determined in [20], so we supplement
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Accuracy of the redshift invariant PN expansion and its resummations for several individual orbits. The numerical values of

our redshift expansion are plotted against numerical calculations for several orbits with p = 10. Within each plot comparisons are made
for a composite (“Comp”) expansion against the full numerical redshift, as well as for the spin-dependent portion of the expansion
against the redshift’s spin-dependent residual, both with and without the use of the logarithmic summation. Numerical data was supplied
by Zachary Nasipak. Lines in the plots level off when the expansion is accurate to within numerical error bounds.
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FIG. 2. Accuracy of the redshift invariant PN expansion and its resummations for p = 20. Numerical data was supplied by Zachary
Nasipak. Lines in the plots level off when the expansion is accurate to within numerical error bounds (in particular, data points for
p =20, e = 1/5 were computed to lower accuracy, leading to earlier level off).

the current equatorial Kerr series with additional coeffi-
cients from [20] as needed. In order to better understand the
behavior of the series, we make comparisons in two ways:
(1) We construct a composite series, in which the spin-
independent portion is supplied by the results in [20] to
10PN, and the spin-dependent portion from the present
calculation is added through 8PN. (2) We use only the spin-
dependent portion of the PN series, and we compare this to
the residual numerical calculation found by subtracting the
Schwarzschild redshift off the full Kerr value. Note that in

this case, the fractional error is still computed with respect
to the full (Kerr) redshift value, not the difference. Finally,
we try the logarithmic resummation of each method to
check its effects on convergence [90,91]. These results are
presented for p = 10 in Fig. 1 and for p = 20 in Fig. 2.

From the plots, we can see that the convergence follows a
few trends across values of p, e, a, and PN order. The PN
regime corresponds to larger p by definition, so the
reduction in error from p = 10 to p = 20 matches expect-
ations. The plots for the orbits with p = 20, e = 1/5 reach
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the numerical error threshold around 6PN order, but
we can still observe a steeper trend in these graphs than
in their p = 10 counterparts. Similarly, experience in the
Schwarzschild limit [18,20] has revealed that the PN
convergence tends to worsen with increasing e, which is
generally reflected from the left to the right columns of the
plots (though this fact is somewhat obscured by occasional
irregular jumps).

What is perhaps most interesting is the apparent loss of
convergence with increasing a. Higher values of a permit
stable orbits with smaller values of p, so we might well
expect higher a to improve convergence against the same
value of p. Indeed, Ref. [92] noted a slight increase in series
validity with a for low-order expansions of the energy flux
in the circular-orbit limit. On the other hand, the expansion
of the same quantity to 11PN in [37] revealed some erratic
behavior at higher a, as the high-order terms began to
reduce fidelity to numerical data in the strong field. The
orbits presented here are farther from the innermost stable
orbit than the relevant results in [37], so it is difficult to
extrapolate from this the expected behavior of the redshift
expansion. The worse performance observed at higher a
(at least in these sample orbits) could be the result of an
interaction with the eccentricity dependence (which is
already known to reduce convergence [18,20]), or it could
be a peculiar feature of the redshift or of the chosen orbits.
It is also possible that the PN expansion is more broadly
less convergent in the high spin regime. A clearer answer to
this question requires deeper study, which will be left to
future work.

Beyond these trends, we can note that each orbit with
sufficient numerical accuracy shows monotonic improve-
ment until around the 8PN level, at which point the spin
dependence is lost. This fact implies that the Schwarzschild
portion of the expansion, which remains from 8PN-10PN,
is a poor substitute for the composite expansion. On the
other hand, the steady improvement prior to that point
implies that accuracy could continue to improve through
the use of higher-order expansions. The present work to
8PN and e!° reached the limit of our supercomputing
resources, with the bottleneck step requiring many paral-
lelized jobs each lasting 8-10 days on the UNC super-
computing cluster Longleaf. Nevertheless, it would
certainly be possible to extend the PN order at the expense
of eccentricity, permitting an expansion to, say, 10PN
and e*. As usual, we should recall that the contributions
to the orbital phase evolution by conservative terms are
suppressed by the mass ratio relative to the flux [1],
implying that even a slow-to-converge PN expansion of
the conservative part of the self-force may be useful in close
orbits.

Finally, we note that the comparison of the spin
dependence alone against the residual difference between
the Kerr redshift and the Schwarzschild redshift did not
improve the convergence compared to the simple

composite expansion. However, the residual expansion is
very simple in form, so there may be a computational
advantage to approaching the problem in this manner.

VI. CONCLUSIONS

This work has analytically derived the PN expansion of
the generalized redshift invariant for eccentric, equatorial
EMRIs with a Kerr primary to high order. The series is
computed to 8PN and e' in eccentricity, with the PN terms
through 6PN found to e'®. Most importantly, each term
in the expansion retained exact dependence on the spin
parameter a, greatly advancing past work in the small-a
limit [54]. The depth of the eccentricity expansion allows
us to resum several eccentricity terms into closed-form
expressions. Explicitly, exact expressions were found for
the eccentricity dependence (and spin dependence) of the
full terms U3/2, Z/{Q, Z/{S/Za Z/{3, Z/{7/2, Z/[4, UQ/Q, Z/{S, U11/2L,
Usr, Uiz Many additional eccentricity functions
attached to individual powers of a were also found in
closed form. Lastly, we restate the curious connection
between the redshift terms Uy /o, Usp., U33 , and counter-

part terms in the energy flux [40]. The proportionality
likely points to a common source of multipolar depend-
ence, but the deeper significance of this connection will be
left to future work. The full expansions can be found in the
online repositories [60,61].

It is likely that with a deeper expansion in eccentricity,
more terms with rational coefficients throughout the red-
shift series could be manipulated into closed form.
However, for the purposes of transcribing these expansions
into usable EOB models or waveform templates, the more
important task lies in determining the multipolar depend-
ence of UM and then US! jp» as these are the last

components with unknown contributions through 5.5PN
order. Once such an understanding is developed, the full
eccentricity and spin dependence of the redshift invariant
series for Kerr equatorial EMRIs will be known through
5.5PN order. Note that the Schwarzschild limit of the
redshift invariant was needed to 9.5PN and ¢® to complete a
useful derivation of the scattering angle to 6PN within a
framework that combines PN theory, PM theory, and
EOB theory, implying that these expansions continue to
provide utility to high order [32]. Nevertheless, the extent
of the relationship between BHPT-PN expansions in the
Kerr case and the EOB Hamiltonian is still an active area of
study [54].

By combining our results with the extended
Schwarzschild expansions of [20], we were able to make
comparisons to numerical results in Figs. 1 and 2, finding
agreement to better than 10™* in most cases. We also
discovered interesting trends in the asymptotic behavior of
the series across values of p, e¢, and a. While the first two
mostly followed expectations, the last showed a decreasing
convergence with a that could point to a reduced efficacy of
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the expansion in the high-spin regime. Further research into
this question will be left to future work.

The techniques developed here can be utilized to expand
the spin-precession invariant y for Kerr equatorial EMRIs
[21,75,76]. This conservative quantity requires the expan-
sion of the self-force, which involves first derivatives of the
metric perturbations, along with the gauge portion of the
metric completion piece [74,93]. In the Schwarzschild case,
the spin-precession invariant incurred a factor of 5-10
greater computational expense, and the expansion process
loses one order in 1/p and three orders in e [21]. Thus, the
expectation is that the PN series there will be less extensive
than what we are able to get from the redshift. Nevertheless,
we should be able to extract some closed-form expressions,
particularly at low orders, which will be fruitful as input for
EOB models with spin.

Finally, with the PN behavior of the equatorial problem
well understood, we will then be able to study the effects of
inclination. EMRI behavior is greatly complicated by the 6
motion, particularly in the source integration. The authors
of [94] were recently able to calculate the fluxes for generic
EMRIs to 5PN/e'. It is expected that several of the
computational simplifications applied here in the equatorial
case will be applicable to generic orbits. In particular, the
MST homogeneous solutions take identical forms in both

cases. Thus, we may have the opportunity to extend those
results. The conservative sector will be more difficult still,
as the metric perturbation expressions are significantly
more cumbersome, and the m summation formulas derived
for spheroidal harmonics in Sec. III relied on simplifica-
tions in the equatorial plane. Nevertheless, the potential
remains to derive yet undiscovered closed-form PN terms at
low orders. These possibilities will all be explored in
future work.

ACKNOWLEDGMENTS

The author thanks Charles R. Evans, Jezreel Castillo,
Scott Hughes, Zachary Nasipak, David Brown, Adrian
Ottewill, Niels Warburton, Barry Wardell, and Chris
Kavanagh for many helpful discussions in the preparation
of this manuscript, and again thanks Zachary Nasipak for
supplying the numerical redshift data. This work was
supported by NSF Grants No. PHY-1806447 and
No. PHY-2110335 to the University of North Carolina—
Chapel Hill. This work was also supported by NASA ATP
Grant No. SONSSC18K1091 to the Massachusetts Institute
of Technology. This work makes use of the black hole
perturbation toolkit.

[1] T. Hinderer and E. E. Flanagan, Phys. Rev. D 78, 064028
(2008).

[2] C. Munna, Eccentric-orbit binary black hole inspirals:
Informing the post-Newtonian expansion through black
hole perturbation theory and multipole moment analysis,
Ph.D. thesis, University of North Carolina at Chapel Hill,
2020.

[3] D. V. Gal’tsov, A. A. Matyukhin, and V. I. Petukhov, Phys.
Lett. 77A, 387 (1980).

[4] E. Poisson, Phys. Rev. D 47, 1497 (1993).

[5] C. Cutler, L. S. Finn, E. Poisson, and G.J. Sussman, Phys.
Rev. D 47, 1511 (1993).

[6] H. Tagoshi and T. Nakamura, Phys. Rev. D 49, 4016 (1994).

[7]1 M. Sasaki, Prog. Theor. Phys. 92, 17 (1994).

[8] T. Tanaka, H. Tagoshi, and M. Sasaki, Prog. Theor. Phys.
96, 1087 (1996).

[9] Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi, and T. Tanaka,
Prog. Theor. Phys. Suppl. 128, 1 (1997).

[10] R. Fujita, Prog. Theor. Phys. 128, 971 (2012).

[11] T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).

[12] F. Zerilli, Phys. Rev. D 2, 2141 (1970).

[13] S. Mano, H. Suzuki, and E. Takasugi, Prog. Theor. Phys. 96,
549 (1996).

[14] S. Mano, H. Suzuki, and E. Takasugi, Prog. Theor. Phys. 95,
1079 (1996).

[15] C. Munna and C.R. Evans, Phys. Rev. D 100, 104060
(2019).

[16] C. Munna, C.R. Evans, S. Hopper, and E. Forseth, Phys.
Rev. D 102, 024047 (2020).

[17] C. Munna and C.R. Evans, Phys. Rev. D 102, 104006
(2020).

[18] C. Munna, Phys. Rev. D 102, 124001 (2020).

[19] C. Munna, C.R. Evans, and E. Forseth, Phys. Rev. D 108,
044039 (2023).

[20] C. Munna and C.R. Evans, Phys. Rev. D 106, 044004
(2022).

[21] C. Munna and C.R. Evans, Phys. Rev. D 106, 044058
(2022).

[22] L. Barack, T. Damour, and N. Sago, Phys. Rev. D 82,
084036 (2010).

[23] A. Le Tiec, L. Blanchet, and B. Whiting, Phys. Rev. D 85,
064039 (2012).

[24] D. Bini and T. Damour, Phys. Rev. D 90, 124037 (2014).

[25] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 93,
064023 (2016).

[26] A. Le Tiec, Phys. Rev. D 92, 084021 (2015).

[27] S. Hopper, C. Kavanagh, and A. C. Ottewill, Phys. Rev. D
93, 044010 (2016).

[28] C. Kavanagh, D. Bini, T. Damour, S. Hopper, A. Ottewil,
and B. Wardell, Phys. Rev. D 96, 064012 (2017).

[29] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 97,
104046 (2018).

[30] D. Bini, T. Damour, and A. Geralico, Phys. Rev. Lett. 123,
231104 (2019).

084012-22


https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.1103/PhysRevD.78.064028
https://doi.org/10.1016/0375-9601(80)90728-8
https://doi.org/10.1016/0375-9601(80)90728-8
https://doi.org/10.1103/PhysRevD.47.1497
https://doi.org/10.1103/PhysRevD.47.1511
https://doi.org/10.1103/PhysRevD.47.1511
https://doi.org/10.1103/PhysRevD.49.4016
https://doi.org/10.1143/ptp/92.1.17
https://doi.org/10.1143/PTP.96.1087
https://doi.org/10.1143/PTP.96.1087
https://doi.org/10.1143/PTPS.128.1
https://doi.org/10.1143/PTP.128.971
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1143/PTP.96.549
https://doi.org/10.1143/PTP.96.549
https://doi.org/10.1143/PTP.95.1079
https://doi.org/10.1143/PTP.95.1079
https://doi.org/10.1103/PhysRevD.100.104060
https://doi.org/10.1103/PhysRevD.100.104060
https://doi.org/10.1103/PhysRevD.102.024047
https://doi.org/10.1103/PhysRevD.102.024047
https://doi.org/10.1103/PhysRevD.102.104006
https://doi.org/10.1103/PhysRevD.102.104006
https://doi.org/10.1103/PhysRevD.102.124001
https://doi.org/10.1103/PhysRevD.108.044039
https://doi.org/10.1103/PhysRevD.108.044039
https://doi.org/10.1103/PhysRevD.106.044004
https://doi.org/10.1103/PhysRevD.106.044004
https://doi.org/10.1103/PhysRevD.106.044058
https://doi.org/10.1103/PhysRevD.106.044058
https://doi.org/10.1103/PhysRevD.82.084036
https://doi.org/10.1103/PhysRevD.82.084036
https://doi.org/10.1103/PhysRevD.85.064039
https://doi.org/10.1103/PhysRevD.85.064039
https://doi.org/10.1103/PhysRevD.90.124037
https://doi.org/10.1103/PhysRevD.93.064023
https://doi.org/10.1103/PhysRevD.93.064023
https://doi.org/10.1103/PhysRevD.92.084021
https://doi.org/10.1103/PhysRevD.93.044010
https://doi.org/10.1103/PhysRevD.93.044010
https://doi.org/10.1103/PhysRevD.96.064012
https://doi.org/10.1103/PhysRevD.97.104046
https://doi.org/10.1103/PhysRevD.97.104046
https://doi.org/10.1103/PhysRevLett.123.231104
https://doi.org/10.1103/PhysRevLett.123.231104

HIGH-ORDER POST-NEWTONIAN EXPANSION OF THE ...

PHYS. REV. D 108, 084012 (2023)

[31] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 102,
024062 (2020).

[32] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 102,
024061 (2020).

[33] E. Poisson, Phys. Rev. D 48, 1860 (1993).

[34] M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys.
Rev. D 51, 1646 (1995).

[35] H. Tagoshi, Prog. Theor. Phys. 93, 307 (1995).

[36] H. Tagoshi, M. Shibata, T. Tanaka, and M. Sasaki, Phys.
Rev. D 54, 1439 (1996).

[37] R. Fujita, Prog. Theor. Exp. Phys. 2015, 033E01 (2015).

[38] S. Teukolsky, Astrophys. J. 185, 635 (1973).

[39] M. Sasaki and H. Tagoshi, Living Rev. Relativity 6, 6
(2003).

[40] C. Munna, J. Castillo, C.R. Evans, Z. Nasipak, and D.
Brown (to be published).

[41] C. Munna, J. Castillo, C.R. Evans, Z. Nasipak, and D.
Brown (to be published).

[42] S. Detweiler, Phys. Rev. D 77, 124026 (2008).

[43] L. Blanchet, Living Rev. Relativity 17, 2 (2014).

[44] D. Bini and T. Damour, Phys. Rev. D 87, 121501 (2013).

[45] D. Bini and T. Damour, Phys. Rev. D 89, 064063 (2014).

[46] C. Kavanagh, A. C. Ottewill, and B. Wardell, Phys. Rev. D
92, 084025 (2015).

[47] L. Barack and N. Sago, Phys. Rev. D 83, 084023 (2011).

[48] S. Akcay, A. Le Tiec, L. Barack, N. Sago, and N.
Warburton, Phys. Rev. D 91, 124014 (2015).

[49] A.G. Shah,J. L. Friedman, and T. S. Keidl, Phys. Rev. D 86,
084059 (2012).

[50] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 92,
124058 (2015).

[51] C. Kavanagh, A. C. Ottewill, and B. Wardell, Phys. Rev. D
93, 124038 (2016).

[52] M. van de Meent and A. G. Shah, Phys. Rev. D 92, 064025
(2015).

[53] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 93,
124058 (2016).

[54] D. Bini and A. Geralico, Phys. Rev. D 100, 104002 (2019).

[55] M. van de Meent, Classical Quantum Gravity 34, 124003
(2017).

[56] P.L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).

[57] J.M. Cohen and L. S. Kegeles, Phys. Rev. D 10, 1070 (1974).

[58] L.S. Kegeles and J. M. Cohen, Phys. Rev. D 19, 1641
(1979).

[59] R. M. Wald, Phys. Rev. Lett. 41, 203 (1978).

[60] Black Hole Perturbation Toolkit, https://bhptoolkit.org/.

[61] UNC Gravitational Physics Group, https://github.com/
UNC-Gravitational-Physics.

[62] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 93,
064023 (2016).

[63] C. Darwin, Proc. R. Soc. A 249, 180 (1959).

[64] C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50,
3816 (1994).

[65] L. Barack and N. Sago, Phys. Rev. D 81, 084021 (2010).

[66] D. Bini, A. Geralico, and R. T. Jantzen, Phys. Rev. D 94,
064066 (2016).

[67] R. Fujita and W. Hikida, Classical Quantum Gravity 26,
135002 (2009).

[68] C.O. Lousto and B. F. Whiting, Phys. Rev. D 66, 024026
(2002).

[69] T.S. Keidl, A.G. Shah, J.L. Friedman, D.-H. Kim, and
L.R. Price, Phys. Rev. D 82, 124012 (2010).

[70] S. Chandrasekhar, The Mathematical Theory of Black
Holes, The International Series of Monographs on Physics
Vol. 69 (Clarendon, Oxford, 1983).

[71] C. Merlin, A. Ori, L. Barack, A. Pound, and M. van de
Meent, Phys. Rev. D 94, 104066 (2016).

[72] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[73] H. Nakano, N. Sago, and M. Sasaki, Phys. Rev. D 68,
124003 (2003).

[74] D. Bini and A. Geralico, arXiv:1908.03191.

[75] S.R. Dolan, N. Warburton, A.I. Harte, A. Le Tiec, B.
Wardell, and L. Barack, Phys. Rev. D 89, 064011 (2014).

[76] S. Akcay, D. Dempsey, and S. Dolan, Classical Quantum
Gravity 34, 084001 (2017).

[771 S.L. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025
(2003).

[78] A. Heffernan, A. Ottewill, and B. Wardell, Phys. Rev. D 86,
104023 (2012).

[79] L. Barack, Phys. Rev. D 64, 084021 (2001).

[80] L. Barack and A. Ori, Phys. Rev. D 67, 024029 (2003).

[81] A. Pound, C. Merlin, and L. Barack, Phys. Rev. D 89,
024009 (2014).

[82] S.L. Detweiler, Classical Quantum Gravity 22, S681
(2005).

[83] T. Damour, P. Jaranowski, and G. Schifer, Phys. Rev. D 91,
084024 (2015).

[84] E. Forseth, C.R. Evans, and S. Hopper, Phys. Rev. D 93,
064058 (2016).

[85] P.C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).

[86] K.G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Phys. Rev. D 77, 064034 (2008).

[87] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Phys. Rev. D 77, 064035 (2008).

[88] N. Loutrel and N. Yunes, Classical Quantum Gravity 34,
044003 (2017).

[89] K. G. Arun, L. Blanchet, B. R. Iyer, and S. Sinha, Phys. Rev.
D 80, 124018 (2009).

[90] S. Isoyama, R. Fujita, H. Nakano, N. Sago, and T. Tanaka,
Prog. Theor. Exp. Phys. 2013, 063E01 (2013).

[91] N. K. Johnson-McDaniel, Phys. Rev. D 90, 024043 (2014).

[92] Z. Zhang, N. Yunes, and E. Berti, Phys. Rev. D 84, 024029
(2011).

[93] D. Bini, T. Damour, A. Geralico, C. Kavanagh, and M. van
de Meent, Phys. Rev. D 98, 104062 (2018).

[94] S. Isoyama, R. Fujita, A. J. K. Chua, H. Nakano, A. Pound,
and N. Sago, Phys. Rev. Lett. 128, 231101 (2022).

084012-23


https://doi.org/10.1103/PhysRevD.102.024062
https://doi.org/10.1103/PhysRevD.102.024062
https://doi.org/10.1103/PhysRevD.102.024061
https://doi.org/10.1103/PhysRevD.102.024061
https://doi.org/10.1103/PhysRevD.48.1860
https://doi.org/10.1103/PhysRevD.51.1646
https://doi.org/10.1103/PhysRevD.51.1646
https://doi.org/10.1143/PTP.93.307
https://doi.org/10.1103/PhysRevD.54.1439
https://doi.org/10.1103/PhysRevD.54.1439
https://doi.org/10.1093/ptep/ptv012
https://doi.org/10.1086/152444
https://doi.org/10.12942/lrr-2003-6
https://doi.org/10.12942/lrr-2003-6
https://doi.org/10.1103/PhysRevD.77.124026
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevD.87.121501
https://doi.org/10.1103/PhysRevD.89.064063
https://doi.org/10.1103/PhysRevD.92.084025
https://doi.org/10.1103/PhysRevD.92.084025
https://doi.org/10.1103/PhysRevD.83.084023
https://doi.org/10.1103/PhysRevD.91.124014
https://doi.org/10.1103/PhysRevD.86.084059
https://doi.org/10.1103/PhysRevD.86.084059
https://doi.org/10.1103/PhysRevD.92.124058
https://doi.org/10.1103/PhysRevD.92.124058
https://doi.org/10.1103/PhysRevD.93.124038
https://doi.org/10.1103/PhysRevD.93.124038
https://doi.org/10.1103/PhysRevD.92.064025
https://doi.org/10.1103/PhysRevD.92.064025
https://doi.org/10.1103/PhysRevD.93.124058
https://doi.org/10.1103/PhysRevD.93.124058
https://doi.org/10.1103/PhysRevD.100.104002
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1088/1361-6382/aa71c3
https://doi.org/10.1103/PhysRevD.11.2042
https://doi.org/10.1103/PhysRevD.10.1070
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevD.19.1641
https://doi.org/10.1103/PhysRevLett.41.203
https://bhptoolkit.org/
https://bhptoolkit.org/
https://github.com/UNC-Gravitational-Physics
https://github.com/UNC-Gravitational-Physics
https://github.com/UNC-Gravitational-Physics
https://doi.org/10.1103/PhysRevD.93.064023
https://doi.org/10.1103/PhysRevD.93.064023
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1103/PhysRevD.50.3816
https://doi.org/10.1103/PhysRevD.50.3816
https://doi.org/10.1103/PhysRevD.81.084021
https://doi.org/10.1103/PhysRevD.94.064066
https://doi.org/10.1103/PhysRevD.94.064066
https://doi.org/10.1088/0264-9381/26/13/135002
https://doi.org/10.1088/0264-9381/26/13/135002
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.66.024026
https://doi.org/10.1103/PhysRevD.82.124012
https://doi.org/10.1103/PhysRevD.94.104066
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1103/PhysRevD.68.124003
https://doi.org/10.1103/PhysRevD.68.124003
https://arXiv.org/abs/1908.03191
https://doi.org/10.1103/PhysRevD.89.064011
https://doi.org/10.1088/1361-6382/aa61d6
https://doi.org/10.1088/1361-6382/aa61d6
https://doi.org/10.1103/PhysRevD.67.024025
https://doi.org/10.1103/PhysRevD.67.024025
https://doi.org/10.1103/PhysRevD.86.104023
https://doi.org/10.1103/PhysRevD.86.104023
https://doi.org/10.1103/PhysRevD.64.084021
https://doi.org/10.1103/PhysRevD.67.024029
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1088/0264-9381/22/15/006
https://doi.org/10.1088/0264-9381/22/15/006
https://doi.org/10.1103/PhysRevD.91.084024
https://doi.org/10.1103/PhysRevD.91.084024
https://doi.org/10.1103/PhysRevD.93.064058
https://doi.org/10.1103/PhysRevD.93.064058
https://doi.org/10.1103/PhysRev.131.435
https://doi.org/10.1103/PhysRevD.77.064034
https://doi.org/10.1103/PhysRevD.77.064035
https://doi.org/10.1088/1361-6382/aa59c3
https://doi.org/10.1088/1361-6382/aa59c3
https://doi.org/10.1103/PhysRevD.80.124018
https://doi.org/10.1103/PhysRevD.80.124018
https://doi.org/10.1093/ptep/ptt034
https://doi.org/10.1103/PhysRevD.90.024043
https://doi.org/10.1103/PhysRevD.84.024029
https://doi.org/10.1103/PhysRevD.84.024029
https://doi.org/10.1103/PhysRevD.98.104062
https://doi.org/10.1103/PhysRevLett.128.231101

