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We derive new terms in the post-Newtonian (PN) expansion of the generalized redshift invariant hutiτ for
a small body in eccentric, equatorial orbit about a massive Kerr black hole. The series is computed
analytically using the Teukolsky formalism for first-order black hole perturbation theory, along with the
Chrzanowski, Cohen, Kegeles method for metric reconstruction using the Hertz potential in ingoing
radiation gauge. Modal contributions with small values of l are derived via the semianalytic solution of
Mano-Suzuki-Takasugi, while the remaining values of l to infinity are determined via direct expansion of
the Teukolsky equation. Each PN order is calculated as a series in eccentricity e but kept exact in the
primary black hole’s spin parameter a. In total, the PN terms are expanded to e16 through 6PN relative
order, and separately to e10 through 8PN relative order. Upon grouping eccentricity coefficients by spin
dependence, we find that many resulting component terms can be simplified to closed-form functions of
eccentricity, in close analogy to corresponding terms derived previously in the Schwarzschild limit. We use
numerical calculations to compare convergence of the full series to its Schwarzschild counterpart and
discuss implications for gravitational wave analysis.
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I. INTRODUCTION

The radiative dynamics of binary black hole inspirals
with an extreme mass ratio (that is, extreme-mass-ratio
inspirals, or EMRIs) continues to be an active area of
research. Theoretical models must be able to predict the
entire trajectories of these inspirals to within a fraction of a
radian over their lifetimes to produce accurate waveform
templates for the coming space-based gravitational wave
detector, LISA [1].
Over the past several years, we have sought to advance

knowledge of EMRI motion and radiation through high-
order post-Newtonian (PN) approximations to first-order
black hole perturbation theory (BHPT) [2]. Analysis of
first-order BHPT in the PN regime has a long and rich
history, with a 1PN expression for the radiation first derived
for nearly circular inspirals in 1980 [3]. This was later
extended by a series of results in the 1990s [4–8], which
also typically focused on circular or nearly circular orbits.
A full review of the early history of these efforts can be
found in [9]. Eventually, an analytic PN expansion of the
energy flux for circular EMRIs on a Schwarzschild back-
ground was derived all the way to 22PN order [10]. The
author of that paper discovered that the expansion’s fidelity
to numerical data near the strong-field regime continued to

improve to the highest order, supporting the utility of very
deep PN series.
Inspired by these results, we first studied the case of

eccentric-orbit inspirals on a Schwarzschild background,
which had previously seen much less development, using
the Mano-Suzuki-Takasugi (MST) solutions to the Regge-
Wheeler-Zerilli (RWZ) equations [11–14]. With an imple-
mentation of this formalism in Mathematica, we derived
several notable features of the orbital evolution. We first
determined the (energy and angular momentum) fluxes at
infinity to 19PN, with each term expanded in eccentricity to
e10, as well as to 10PN and e20 [15–18]. This effort was
then extended to the horizon fluxes, which were computed
to 18PN (relative order)/e10 and 10PN/e20 [2,19].
It later proved possible to use this code to derive PN

series for local gauge-invariant corrections to the conser-
vative motion, including the redshift invariant (expanded to
10PN/e20 [20]) and the spin-precession invariant (expanded
to 9PN/e16 [21]). These series are also valuable to high
orders, as conservative-sector expansions can be used to
inform the effective-one-body (EOB) formalism, which
accurately describes binary dynamics across vast regions
of parameter space [22–32]. In general, the conservative
motion contributes to the inspiral’s evolution at first
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postadiabatic order, a level necessary for parameter esti-
mation with LISA [1].

As most astrophysical black holes have nonzero spin, it
is necessary to understand the corresponding dynamics for
EMRIs with a central Kerr black hole. Early efforts to
analyze the spinning case in the PN regime began in the
1990s [33–36], typically restricting to the nearly circular,
nearly equatorial case. Over time these approaches were
refined, and the energy flux for circular equatorial inspirals
was more recently derived to 11PN for arbitrary spin [37].
As before, we seek to derive comparable results for
eccentric-orbit binaries, which have historically been
underdeveloped in comparison. As an intermediate step
to fully generic inspirals, we first restrict our efforts to the
case of equatorial eccentric orbits. Fortunately, many of the
theoretical and computational techniques used to expand
the MST-RWZ formalism mentioned above can be trans-
lated to the related (but more complicated) MST-Teukolsky
formalism for perturbations about a Kerr background
[14,38,39]. We recently used this approach to derive series
for the fluxes at infinity to 8PN and e20 [40]. Along the way
we discovered that many of the eccentricity series could be
manipulated into exact (closed-form) functions. The energy
and angular momentum absorbed by the central black hole
has been found to a similar level, and those results will be
published in a future paper [41].
As in the Schwarzschild case, we are now equipped to

analyze the conservative sector of the first-order motion.
The most well-known quantity characterizing the conser-
vative sector is the redshift invariant ut, which was first
defined for circular Schwarzschild orbits and derived using
the full PN theory to 3PN order by Detweiler [42] (see [43]
for a review of PN theory). As the significance of the
redshift invariant in encoding the conservative dynamics
became more widely appreciated, researchers began to
derive deeper PN expansions in the small-mass-ratio limit
using BHPT [44,45], and this process was eventually
carried out to 21.5PN [46].
The extension to eccentric Schwarzschild orbits was first

described by Barack and Sago [47], who defined the so-
called generalized redshift invariant hutiτ as the proper-
time average of ut over one radial libration. The generalized
redshift invariant was later derived to 3PN order in [48]
using the full PN theory and then subsequently higher order
for EMRIs using BHPT [25,27,31,32]. The most recent
development was an expansion to 10PN and e20, with many
PN terms found to yield closed-form functions of eccen-
tricity [20]. That work also presented a set of curious
connections between the (conservative-sector) redshift
expansion and the (dissipative-sector) energy flux expan-
sion, in that the two series share identical leading logarithm
terms (see [15,17,20] for additional details).
Because of its added difficulty, the redshift invariant for

EMRIs with a Kerr primary has seen less progress, being
first computed for circular equatorial EMRIs in 2012 [49].

A BHPT-PN expansion was derived several years later to
8.5PN order [50], with each PN term expanded in spin
to a4. An 8.5PN series remaining exact in spin was then
found in the work [51]. The eccentric, equatorial case
was calculated numerically as part of a larger metric
reconstruction effort in [52]. Then, the corresponding
BHPT-PN expansion was derived in the small-e, small-a
limit to 8.5PN/Oðe2Þ=Oða2Þ in [53] and then to 8.5PN/
Oðe4Þ=Oða2Þ in [54]. The work [54] also produced a low-
order derivation of the redshift within the full PN theory for
spinning bodies, using that result to confirm the first few
terms in their BHPT-PN calculation.
The present effort now seeks to extend this calculation

beyond the nearly circular, nearly Schwarzschild regime by
deriving results that are exact in a and high order in e.
Specifically, we show series to 6PN and e16 and to 8PN and
e10, both remaining exact in a. To the author’s knowledge,
this is the first expansion of the redshift for eccentric orbits
on a Kerr background with terms exact in a. We assess the
convergence of this series by comparing to numerical
calculations for combinations from the sets p∈ f10; 20g;
e∈ f1=10; 1=5g; a∈ f1=4; 1=2; 9=10g for semilatus rec-
tum p. We find that convergence weakens with increasing
a and e, but that the full expansion is accurate to better than
one part in 104 for most of these orbits. This calculation
will serve as a final intermediate step on the path to generic
(eccentric/inclined) inspirals on a Kerr background, which
has not yet been computed analytically or numerically
(though the numerical infrastructure for generic orbits does
now exist [55]).
Calculation of the redshift invariant requires the local

regularized metric perturbation, which can be found via the
Chrzanowski, Cohen, Kegeles (CCK) metric reconstruction
procedure [56–59]. We use the MST-Teukolsky solutions to
form the Hertz potential and then apply a sequence of linear
operations to produce components of the perturbed metric
at the location of the smaller body in ingoing radiation
gauge. We find that, as in the Schwarzschild case, the
leading PN order of each l mode is constant in l,
necessitating PN series for all l. This difficulty is resolved
using a PN ansatz solution for large l that is general in l
[44,46,51]. Thus, we use the MST solutions for small l ≥ 2
and the ansatz for large l, along with a separate metric
completion procedure for l ¼ 0 and l ¼ 1. This general-l
ansatz solution can also be expanded about l ¼ ∞ to
determine the divergent behavior of the summation and
then regularize each l mode of the full solution. In total
the process is relatively similar to that for eccentric
Schwarzschild EMRIs, though the introduction of the spin
parameter a and loss of spherical symmetry add several
technical hurdles and greatly increase the computational
complexity.
The structure of this paper is as follows. In Sec. II we

briefly outline the problem setup for first-order BHPT on a
Kerr background and the Teukolsky-MST formalism in the
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PN limit. We then discuss how to apply the (PN-expanded)
MST solutions to the CCK procedure for metric recon-
struction using the Hertz potential, as the local metric
perturbation is the primary constituent of the redshift
invariant. Section III details the derivation of metric
perturbation expansions for general l, with emphasis on
the unique theoretical and computational challenges con-
tained therein. In Sec. IV we briefly review the metric
completion piece and our chosen regularization scheme for
the redshift invariant. Section V then details the explicit
expansion results to 6PN/e16 and 8PN/e10, which are also
posted in multiple online repositories [60,61]. Multiple new
closed-form expressions are found, and the structure of the
expansion’s spin dependence is discussed, as well as its
convergence against numerical data. Section VI concludes
with a summary and an outlook.
Throughout this paper we apply the metric signature

ð−þþþÞ and primarily choose units such that c ¼ G ¼ 1,
though we frequently retain powers of η ¼ 1=c to track PN
order. Our notation for the Teukolsky and MST formalisms
follows that found in [39,51].

II. REVIEW OF THE TEUKOLSKY AND MST
FORMALISMS

We briefly review the background and setup for first-
order perturbations about a Kerr background caused by a
small mass in equatorial orbit. At each step we seek
expressions that are suitable for expansion in the PN limit,
whether through the direct parameter η ¼ 1=c or through a
measure of orbital separation such as 1=p for semilatus
rectum p. These methods are more extensively detailed
in [18,40], based on earlier Kerr work in [50,51,53,54] and
Schwarzschild work in [27,44–46,62].

A. Bound equatorial orbits on a Kerr background

At lowest order, the secondary is treated as a point mass
μ in bound geodesic orbit about a Kerr black hole of
mass M with ε ¼ μ=M ≪ 1. The line element in Boyer-
Lindquist coordinates xμ ¼ ft; r; θ;φg is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mar sin2 θ
Σ

dtdφþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdφ2;

ð2:1Þ

where Σ ¼ r2 þ a2 cos2 θ, Δ ¼ r2 − 2Mrþ a2, and a is
the spin of the primary.

We now restrict the orbit to the equatorial plane, which
leads to the following equations of motion:

�
r2

dt
dτ

�
¼ ðaL − a2EÞ þ r2 þ a2

Δ
ðEðr2 þ a2Þ − aLÞ;�

r2
dr
dτ

�
2

¼ ½Eðr2 þ a2Þ − aL�2 − Δ½ðaE − LÞ2 þ r2�;�
r2
dφ
dτ

�
¼ L − aE þ a

Δ
ðEðr2 þ a2Þ − aLÞ: ð2:2Þ

Here E is the (conserved) specific energy and L the specific
angular momentum. As noted in [40], these equations of
motion are only dependent on the radial coordinate rðτÞ.
This implies that we do not have to invoke the use of Mino
time dλ ¼ dτ=Σ and can instead move immediately to the
Darwin parametrization. As is typical for Schwarzschild
geodesics, we describe the motion in terms of the set
fχ; p; eg for relativistic anomaly χ, semilatus rectum p, and
eccentricity e [63–65], with

rpðχÞ ¼
pM

1þ e cos χ
: ð2:3Þ

One radial libration occurs with each 2π advance in χ.
Then, defining ã ¼ a=M and L̂ ¼ L=M − ãE, we find the
following relations [66]:

E2 ¼ ð1 − e2Þ2
p3

L̂2 þ 1 −
1 − e2

p
;

E ¼ −
p − 3 − e2

2ãp
L̂ −

ã2 − p

2ã L̂
: ð2:4Þ

These equations can be solved exactly for Eðp; ã; eÞ and
L̂ðp; ã; eÞ, though the results are lengthy (they are given
in [40]). However, we note that 1=p is a standard PN
parameter, in which E and L̂ can be easily expanded.
To simplify the process somewhat, we define v ¼ 1=

ffiffiffiffi
p

p
and compute series about v ¼ 0. Then, just as in the
Schwarzschild case, we expand each PN order in e to
prepare for the eventual source integration. On the other
hand, we make no approximations with respect to a,
leaving each step in the expansion process exact in that
parameter.
Applying these definitions and relations into the equa-

tions (2.2) leads to the following ordinary differential
equations (ODEs) for the coordinates:
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dτ
dχ

¼ M

v3ð1þ e cosðχÞÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L̂2v4ðe2 − 2e cos χ − 3Þ

q
dt
dχ

¼
�
dτ
dχ

�
E þ Eã2v4ð1þ e cos χÞ2 − 2ãv6L̂ð1þ e cos χÞ3

1 − 2v2ð1þ e cos χÞ þ ã2v4ð1þ e cos χÞ2
dφ
dχ

¼ v½L − 2v2L̂ð1þ e cos χÞ�
½1 − 2v2ð1þ e cos χÞ þ ã2v4ð1þ e cos χÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L̂2v4ðe2 − 2e cos χ − 3Þ

q : ð2:5Þ

These equations are then readily PN expanded in v and e,
and the result is trivially integrated to yield expansions for
tðχÞ and φðχÞ. They can also be solved exactly using
elliptic integrals [67]. Then, the radial period is given by
Tr ¼ tð2πÞ, the radial frequency by Ωr ¼ 2π=Tr, and the
azimuthal frequency by φð2πÞ=Tr.

B. The Teukolsky master equations

Bound motion acts as a periodic source for the first-order
gravitational perturbations. On a Kerr background these
can be encoded by a set of Teukolsky master functions
sRlmω in radiation gauge [38,39] and associated spin-
weighted spheroidal harmonics sSlmω. We will focus on
the functions with spin-weight s ¼ −2, which are governed
by the equations,

Δ2
d
dr

�
1

Δ
d−2Rlmω

dr

�
þ
�
K2 þ 4iðr −MÞK

Δ

− 8iωr − sλlmω

�
−2Rlmω ¼ Tlmω; ð2:6Þ

�
1

sin θ
d
dθ

�
sin θ

d
dθ

�
− a2ω2sin2θ −

ðm − 2 cos θÞ2
sin2θ

þ 4aω cos θ − 2þ 2maωþ−2 λlmω

�
−2Slmω ¼ 0: ð2:7Þ

Here K ¼ ðr2 þ a2Þω −ma, −2λlmω is the spin-weighted
spheroidal eigenvalue, and Tlmω is the decomposition of the
(Newman-Penrose projection of the) stress-energy tensor.
The spheroidal harmonic also has the normalization con-
dition

Z
π

0

j−2Slmωj2 sin θdθ ¼ 1: ð2:8Þ

Ultimately, these functions encode the first-order per-
turbation through composition of the quantity ψ4, a certain
Newman-Penrose projection of the Weyl tensor given by

ϱ−4ψ4 ¼
X
lm

Z
e−iωtþimφ

−2SlmωðθÞRlmωðrÞdω; ð2:9Þ

where ϱ−1 ¼ −ðr − ia cos θÞ. For more detail on the
motivation and derivation behind these equations, see
[38,39]. A deeper discussion is also given in [40].

Because the source motion is biperiodic, the Fourier
integral collapses into a Fourier sum over the frequencies
ω ¼ ωmn ¼ mΩφ þ nΩr. Then, the homogeneous form of
the equation yields two independent solutions: −2R

−
lmn ¼

−2R
in
lmn, with causal (ingoing wave) behavior at the horizon,

and −2R
þ
lmn ¼ −2R

up
lmn with causal (outgoing wave) behavior

at infinity. Both can be derived as infinite sums of hyper-
geometric functions using the MST formalism [14,39],
which we briefly review below.
The spin-weighted spheroidal harmonics can be

expanded in the spheroidicity aω (a 1.5PN quantity) by
inserting a PN ansatz, applying standard boundary and
normalization conditions, then solving a system of equa-
tions [51]. However, we expand them (along with their
first and second θ derivatives) simply by using the
spheroidal harmonic package of the black hole perturbation
toolkit [60]. The coefficient on each power of ðaωÞ is given
by a finite sum of spin-weighted spherical harmonics,
which then takes an analytic value for specific choices of s,
l, m, and θ. See [40] for additional details.

C. The MST homogeneous solutions and the source
integration

TheMST solution for −2R
þ
lmn can be expressed [39,51] as

−2R
þ
lmn ¼ eiz

zνþiðϵþτÞ=2

ðz − ϵκÞ−2þiðϵþτÞ=2
X∞
j¼−∞

aνjð2izÞj

×
Γðjþ ν − 1 − iϵÞΓðνþ 3þ iϵÞ
Γðjþ νþ 3þ iϵÞΓðν − 1 − iϵÞ

×Uðjþ ν − 1 − iϵ; 2jþ 2νþ 2;−2izÞ; ð2:10Þ

where U is the irregular confluent hypergeometric function,
ϵ ¼ 2Mωη3, z ¼ ðr − r−Þωη, r� ¼ GMð1� κÞη2, κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, and η ¼ 1=c. The parameter ν is the renormalized

angular momentum, an eigenvalue chosen to make the series
coefficients aj (not to be confused with the spin parameter)
converge as j → �∞. Both ν and aj are determined through
continued fraction expansion [14,39], which leads to series
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in ϵ for both. The rest of the formula can then be expanded in
both ϵ and z, leading to a composite PN series in η (which by
definition is a 0.5PN expansion parameter) [40,51].
Similarly, the solution for −2R

−
lmn can be written as

−2R
−
lmn ¼ e−izþiκϵ

�
ϵκ

z

�
iτþs

�
1 −

ϵκ

z

�
−s−iðϵþτÞ=2 X∞

j¼−∞
aνj2F1

×

�
jþ νþ 1 − iτ;−j − ν − iτ; 3 − iϵ

− iτ; 1 −
z
ϵκ

�
: ð2:11Þ

Here, 2F1 is the ordinary hypergeometric function, and the
parameters ν and aj are the same as in Eq. (2.10).
The process of expanding these homogeneous solutions

by collecting on powers of η is fully described in [40],
based on the methods initially presented in [50,51,53], as
well as [18]. From a computational perspective, the most
important consideration is the fact that the homogeneous
solutions as written in (2.10) and (2.11) contain many
cumbersome z-independent factors that greatly complicate
the expansion [18,40,51]. These factors will eventually
cancel through division by the Wronskian and can thus be
omitted from the start. One useful choice of normalization
is given in [40], and the process is operationally similar to
the Schwarzschild case, described in [18]. When comput-
ing the fluxes, the solutions must eventually be rescaled to
produce the proper asymptotic behavior; however, in the
metric reconstruction procedure this problem is avoided
entirely, as all choices of normalization lead to the same
result.
Once appropriately simplified, the homogeneous solu-

tions can be used to complete the source integration [39,40]:

−2Z
�
lmn ¼

1

WlmnTr

Z
Tr

0

�
ðAnn0 þ Am̄n0 þ Am̄ m̄ 0ÞR∓

lmn

− ðAm̄n1 þ Am̄ m̄ 1Þ
dR∓

lmn

dr
þ Am̄ m̄ 2

d2R∓
lmn

dr2

�
× eiωt−imφðtÞdt: ð2:12Þ

The Wronskian Wlmn is given by

Wlmn ¼
1

Δ

�
d−2R

þ
lmn

dr −2R
−
lmn −

d−2R−
lmn

dr −2R
þ
lmn

�
; ð2:13Þ

and source A functions (deriving from Tlmω) are defined in
Sasaki and Tagoshi [39] for generic orbits. The equatorial
limits can be found in [40].

D. The Hertz potential in ingoing radiation gauge

The first-order generalized redshift invariant is a quantity
that depends upon the behavior of the regularized metric

perturbation along the particle’s worldline. The global
metric perturbation in radiation gauge can be derived using
the CCK procedure [56–59]. In short, an intermediate
Hertz potential Ψ is first constructed from products of
the normalization coefficients −2Z

�
lmn, the homogeneous

solutions −2R
�
lmn, and spin-weighted spheroidal harmonics

−2Slmn. The Hertz potential is then transformed through
a sequence of linear operations to yield the metric
perturbation.
The s ¼ −2 solutions are most easily adapted to the

use of ingoing radiation gauge, whose Hertz potential in
vacuum is a solution of the homogeneous s ¼ −2
Teukolsky equation [68,69]. Thus, it can be written in
the generic form

Ψ� ¼ 1ffiffiffiffiffiffi
2π

p
X
lmn

Ψ�
lmn−2R

�
lmnðrÞ−2S�lmne

imφ−iωt; ð2:14Þ

for some undetermined coefficients Ψ�
lmn. In general, it is

also governed by the following fourth-order inhomo-
geneous partial differential equations [68,69]:

1

2
ðDÞ4Ψ̄ ¼ ψ0;

1

8
½L̃4Ψ̄ − 12M∂tΨ� ¼ ϱ−4ψ4; ð2:15Þ

where

D ¼ r2 þ a2

Δ
∂t þ ∂r þ

a
Δ
∂φ ¼ lμ∂μ; ð2:16Þ

L̃4 ¼ L̃1L̃0L̃−1L̃−2 ð2:17Þ

L̃q ¼ −∂θ − q cot θ þ i csc θ∂φ þ ia sin θ∂t; ð2:18Þ

and the overbar denotes complex conjugation.
The angular equation can be used to identify the

coefficients Ψ�
lmn. First, we must note that the complex

conjugate can be expressed as

Ψ̄� ¼ 1ffiffiffiffiffiffi
2π

p
X
lmn

Ψ̄�
lmn−2R̄

�
lmnðrÞ−2S̄�lmne

−imφþiωt

¼ 1ffiffiffiffiffiffi
2π

p
X
lmn

Ψ̄�
lmn−2R

�
l−m−nðrÞð−1Þm2S

�
l−m−ne

−imφþiωt

¼ 1ffiffiffiffiffiffi
2π

p
X
lmn

Ψ̄�
l−m−n−2R

�
lmnðrÞð−1Þm2S

�
lmne

imφ−iωt;

ð2:19Þ

where we used the identity sS̄lmn ¼ ð−1Þmþs
−sSl−m−n and

took ðm; nÞ → ð−m;−nÞ in the sum. Then, the L̃4 operator
is simplified using the Teukolsky-Starobinsky identity from
Chandrasekhar [70], or
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L̃4
2Slmn ¼ Fð−2SlmnÞ ð2:20Þ

for

F2 ¼ ð−2λlmnÞ2ð−2λlmn þ 2Þ2 þ 8aωðm − aωÞð−2λlmnÞ
× ½5−2λlmn þ 6� þ 48a2ω2½2ð−2λlmnÞ þ 3ðm − aωÞ2�:

ð2:21Þ

With these steps the amplitudes are found to satisfy the
relation

1

8
½Fð−1ÞmΨ̄l−m−n þ 12MðiωÞΨlmn� ¼ −2Z

�
lmn: ð2:22Þ

This can be inverted to isolate Ψlmn by taking a linear
combination of Zlmn and Zl−m−n. We get

Ψlmn ¼ 8
ð−1ÞmFZl−m−n − 12MiωZlmn

F2 þ 144M2ω2

¼ 8

�ð−1ÞlþmF − 12Miω
F2 þ 144M2ω2

�
Zlmn; ð2:23Þ

where the last step applied the identity Zl−m−n ¼
ð−1ÞlZlmn. Thus, the coefficients are relatively easy to
retrieve from the s ¼ −2 homogeneous solutions and
normalization constants.

E. The metric perturbation in ingoing radiation gauge

With the Hertz potential computed, the metric perturba-
tions in ingoing radiation gauge follow as [71]

pμν ¼ −
�
lμlνðδþ ᾱþ 3β − τÞðδþ 4β þ 3τÞ

þmμmνðD − ϱÞðDþ 3ϱÞ − lðμmνÞ½ðδ − 2ᾱ

þ 2β − τÞðDþ 3ϱÞ þ ðDþ ϱ̄ − ϱÞ

× ðδþ 4β þ 3τÞ�
�
Ψþ c:c: ð2:24Þ

The various operators, tetrad components, and spin coef-
ficients are defined in the Newman-Penrose formalism
[72]. Explicitly, we have

lα ¼ 1

Δ
ðr2 þ a2;Δ; 0; aÞ;

mα ¼ −
ϱ̄ffiffiffi
2

p
�
ia sin θ; 0; 1;

i
sin θ

�
;

δ ¼ mμ
∂μ ¼

ia sin θffiffiffi
2

p ðrþ ia cos θÞ ∂t þ
1ffiffiffi

2
p ðrþ ia cos θÞ ∂θ þ

iffiffiffi
2

p ðrþ ia cos θÞ sin θ ∂φ;

ϱ ¼ −1
r − ia cos θ

; τ ¼ −ia sin θffiffiffi
2

p
Σ

; β ¼ cot θ

2
ffiffiffi
2

p ðrþ ia cos θÞ ;

α ¼ ia sin θffiffiffi
2

p ðr − ia cos θÞ2 −
cot θ

2
ffiffiffi
2

p ðrþ ia cos θÞ : ð2:25Þ

Note that the metric perturbation in ingoing radiation gauge
satisfies the conditions lμpμν ¼ 0 and gμνKerrpμν ¼ 0, where
gμνKerr is the (inverse) background metric.
Once these tetrad terms, along with the modal form of

the Hertz potential, are inserted into (2.24), the result is an
unwieldy combination of −2Rlmn; ∂r−2Rlmn; ∂

2
r−2Rlmn and

−2Slmn; ∂θ−2Slmn; ∂
2
θ−2Slmn multiplying factors involving r,

ω,m, and θ. The full expression simplifies in the equatorial
plane, but the result remains too large to display here.
Nevertheless, once the metric perturbation is derived in
analytic form, the process of completing its PN expansion
is straightforward, if cumbersome.

III. GENERAL-l EXPANSIONS

The MST formalism described in the previous section
provides mode functions for specific l. In the dissipative

sector [18,40], PN expansions of the relevant observables
(e.g., the fluxes) possess leading behavior that increases
with l. Thus, an expansion to any particular desired PN
order requires calculation of only finite values of l.
Unfortunately, this phenomenon does not recur in the
conservative dynamics, as the leading PN order of the
local metric perturbations pl

μνðχÞ is constant in l. As a
result, we must compute expansions for all values of l to
determine the full metric perturbation pμνðχÞ, which is
prohibitively difficult using the MST approach. In the
Schwarzschild case, it proved possible to use a PN ansatz
solution in the RWZ equation to obtain expansions that
remained general in l, which could then be iterated through
the rest of the process and summed over all values of lwhen
necessary [20,44–46]. It turns out that a similar approach
can be completed in the Kerr problem [51], though with
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several added difficulties over the Schwarzschild back-
ground. We detail the full procedure below.

A. The homogeneous solutions and normalization
constants

As in the Schwarzschild case [44,46], we start by
introducing a PN ansatz for the homogeneous solutions
of the Teukolsky equation. Following [51], we choose

sR−
lmn ¼

�
ϵ̄

z̄
η2
�

−νþs
ð1þ A1ηþ A2η

2 þ � � � þ A2lη
2l

þOðη2lþ1ÞÞ;
sR

þ
lmn ¼ ðz̄ηÞ−ν−1−sð1þ B1ηþ B2η

2 þ � � � þ B2lη
2l

þOðη2lþ1ÞÞ; ð3:1Þ

where the Ai and Bi are functions of ðz̄; ϵ̄; l; m; aÞ, z̄ ¼ rω,
and ϵ̄ ¼ 2GMω. Once ν is found using the continued

fraction method for general l, these expressions are plugged
into the (s ¼ −2) homogeneous Teukolsky equation,

Δ3
d
dr

�
1

Δ
dRlmn

dr

�
þ ½K2 þ 4iðr −MÞK

− ð8iωrþ −2λlmnÞΔ�Rlmn ¼ 0; ð3:2Þ

and solved order by order. Note that we multiplied the
original Teukolsky equation by Δ to simplify appearances
of η. Unfortunately, the ansatz does not fully apply the
boundary conditions, which is why it breaks down after
some l-dependent PN order [44–46,51]. If a target PN order
P is set, the ansatz will be useless for l≲ P. Thus, those
values of l must be determined separately with the MST
formalism.
Proceeding in this way, we obtain a general-l PN

expansion for ν, which begins

ν ¼ lþ 24þ 13lþ 28l2 þ 30l3 þ 15l4

6lþ 10l2 − 20l3 − 40l4 − 16l5
ϵ2 þ ð108þ 18lþ 17l2 þ 3l3 þ 14l4 þ 15l5 þ 5l6Þ

l2ð1þ lÞ2ð6þ l − 29l2 − 6l3 þ 20l4 þ 8l5Þ ma ϵ3 þOðϵ4Þ ð3:3Þ

and obtain the general-l expansions for the mode functions, which likewise begin

−2R
þ;ser
lmn ¼ ðz̄ηÞl−1−2Rþ

lmn ¼ 1 −
2iz̄
l
ηþ ϵ̄lð2l − 1Þðl2 − 1þ 2iamÞ þ ðl2 − 7l − 8Þz̄3

2lð1þ lÞð2l − 1Þz̄ η2 −
iðl − 3Þz̄3

ðl − 1Þlð2l − 1Þ η
3

þ 1

8z̄2

�
ϵ̄2ð2l4 − ða2 − 4Þl3 − 9a2m2 þ l2ð8iam − 2Þ þ lð12iam − 4 − a2ðm2 − 1ÞÞÞ

ð1þ lÞð3þ 2lÞ þ ð32 − 17lþ l2Þz̄6
lð2l − 3Þð1 − 3lþ 2l2Þ

þ 2ϵ̄ð14l4 þ l5 þ 16iamþ 16lð1 − iamÞ þ l3ð−7þ 2iamÞ þ l2ð−4þ 12iamÞÞz̄3
l3ð−1þ lþ 2l2Þ

�
η4 þOðη5Þ;

−2R
−;ser
lmn ¼

�
ϵ̄

z̄
η2
�

lþ2

−2R
−
lmn ¼ 1þ 2iz̄

1þ l
η −

1

2z̄

�
ϵ̄

�
2þ lþ 2iam

l

�
þ ð9þ lÞz̄3
3þ 5lþ 2l2

�
η2 −

ið4þ lÞz̄3
ð2þ lÞð3þ 5lþ 2l2Þ η

3

þ
�
ϵ̄2ðlð1þ lÞð2þ lÞða2 þ 2l − 2Þ þ 4iað1þ lÞð2l − 1Þmþ a2ðl − 8Þm2Þ

lð2l − 1Þ þ ð50þ lð19þ lÞÞz̄6
ð1þ lÞð2þ lÞð3þ 2lÞð5þ 2lÞ

þ 2ϵ̄ðlð1þ lÞð−48þ lð−43þ ð−10þ lÞlÞÞ þ 2iað−21þ lð−17þ ð−3þ lÞlÞÞmÞz̄3
lð1þ lÞ3ð3þ 2lÞ

�
η4 þOðη5Þ: ð3:4Þ

Here, we defined Rser
lmn as the normalized PN series that

begin at Oð1Þ, which are more convenient to manipulate at
each step of the calculation than the original series with
l-dependent PN orders. Eventually, all l-dependent powers
of η will cancel in the metric perturbation due to their
corresponding presence in the Wronskian.
Once expanded, the general-l homogeneous solutions

can be evaluated along the geodesic orbit to compute the
Wronskian and prepare for the source integration (at which
point the series will be defined in terms of v and e, as in the
specific-l case). However, the source terms themselves
carry one additional complication: expansions of the

spin-weighted spheroidal harmonics become large and
unwieldy for general l and m, which significantly slows
the procedure. We avoid this problem by leaving −2Slmn
and its derivatives as unevaluated parameters until the final
step of metric reconstruction. Once the metric perturbation
is expanded, we handle products of the spheroidal har-
monics together in the sum over m.

B. Sums of spin-weighted spheroidal harmonics over m

The general-l expansions are carried through the source
integration and then used to construct the metric perturba-
tion (2.24) just as in the specific-l case. Computationally,

HIGH-ORDER POST-NEWTONIAN EXPANSION OF THE … PHYS. REV. D 108, 084012 (2023)

084012-7



the source integration is completed in one step, and then the
expansions for Zþ

lmn; R
þ
lmn; Slmn, and the Fourier kernel

eimφ−iωt are directly included in the formula for the metric
perturbation. Each n is calculated individually, as only
finite n modes are required to reach any particular order in
e, and then the set is summed at the end. We also split up
the calculation over the nine spheroidal harmonic products
[Slmn; ∂θSlmn; ∂θθSlmn within the normalization constant
Zþ
lmn, multiplied against the same three terms within the

rest of the metric perturbation (2.24)] that are left uneval-
uated until the end. Even with this extensive segregation of
terms, the PN expansion for each individual component
serves as the computational bottleneck for this procedure.
In particular, the ðn ¼ 1; Slmn × SlmnÞ part of each metric
perturbation requires about eight days and 10 GB of
memory to reach either 6PN/e16 or 8PN/e10 on the
University of North Carolina (UNC) supercomputing
cluster Longleaf. (Fortunately, it is trivial to parallelize
over the various combinations of n and Slmn.)
Once all the components are calculated, we are left with

the task of summing the mode expressions overm to obtain
pl
μν. This process is nontrivial, as each m mode contains

products of spin-weighted spheroidal harmonics (still
unexpanded), and the sum must be taken from −l to l
for general l. In the Schwarzschild-RWZ problem, we faced
a similar obstacle, having to complete sums of the form

Xl

m¼−l
mNYlmðπ=2; 0Þ2;

Xl

m¼−l
mN

∂θYlmðπ=2; 0Þ2; ð3:5Þ

where Ylm is the standard scalar spherical harmonic,

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!

4πðlþmÞ!

s
Pm
l ðcos θÞeimφ; ð3:6Þ

and N is any positive integer. In that case the first sum can
be derived using a special case of the spherical harmonic
addition theorem [20]:

Xl

m¼−l
eimφYlmðπ=2; 0Þ2 ¼

�
2lþ 1

4π

�
PlðcosφÞ; ð3:7Þ

with the result for each value of N corresponding to a term
in the Taylor expansion of this formula about φ ¼ 0. The
second summation could then be derived from derivatives
of the spherical harmonic addition theorem, or from a
hypergeometric generating function [73].
In the Kerr-Teukolsky formalism, we now encounter

sums like

T0
00 ¼

Xl

m¼−l
mN

−2Slmðπ=2Þ2; T1
00 ¼

Xl

m¼−l
ð−1ÞlþmmN

−2Slmðπ=2Þ2;

T0
01 ¼

Xl

m¼−l
mN

−2Slmðπ=2Þð∂θ−2Slmðπ=2ÞÞ; T1
01 ¼

Xl

m¼−l
ð−1ÞlþmmN

−2Slmðπ=2Þð∂θ−2Slmðπ=2ÞÞ;

T0
11 ¼

Xl

m¼−l
mNð∂θ−2Slmðπ=2ÞÞ2; T1

11 ¼
Xl

m¼−l
ð−1ÞlþmmNð∂θ−2Slmðπ=2ÞÞ2; ð3:8Þ

and so on for sums T0=1
02 ; T0=1

12 ; T0=1
22 . Note that we have suppressed the n index for convenience and that the factors of

ð−1Þlþm can be traced back to the Hertz potential coefficients in (2.23). Unfortunately, the spin-weighted spheroidal
harmonics do not have a known addition theorem, and it is unlikely that any comparable formula like it can be derived. In
fact, −2Slmðπ=2Þ does not even have a known analytic form for specific values of l and m.
Nevertheless, progress can be made by PN expanding Slm and its derivatives, now for general-lm, yielding series

like [51,60]

sSlmðθÞ ¼ sYlmðθÞ þ
sffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2l
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − s2

p

l2
ffiffiffiffiffiffiffiffiffiffiffiffi
2l − 1

p sYðl−1ÞmðθÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 − s2

p
ð1þ lÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2l
p sYðlþ1ÞmðθÞ

�
aω

þ 1

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2lþ l2 −m2

p
ðl − 2s2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2lþ l2 − s2

p

ð1 − 2lÞ2ð−1þ lÞl2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l

p sYðl−2ÞmðθÞ þ sYðl−1ÞmðθÞ

×
2ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 −m2Þðl2 − s2Þ

p
ðl2 − 2s2Þ

l4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 − 1

p
ðl2 − 1Þ

þ s2
�ðl2 −m2Þðl2 − s2Þ

l4ð1 − 4l2Þ −
½ðlþ 1Þ2 −m2�½ðlþ 1Þ2 − s2�

ð1þ lÞ4ð3þ 8lþ 4l2Þ
�

sYlmðθÞ
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−
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2lþ l2 −m2

p
sð1þ 2lþ l2 − 2s2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2lþ l2 − s2

p

lð1þ lÞ4ð2þ lÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2l

p sYðlþ1ÞmðθÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðlþ 1Þ2 −m2�½ðlþ 2Þ2 −m2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðlþ 1Þ2 − s2�½ðlþ 2Þ2 − s2�

p
ð1þ lþ 2s2Þ

ð1þ lÞ2ð2þ lÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l

p ð3þ 2lÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2l

p sYðlþ2ÞmðθÞ
�
ðaωÞ2 þ � � � :

ð3:9Þ

Derivatives of sSlmðθÞ are applied directly to the terms in
the series. Thus, when products of these series are taken,
we will be left with sums over spin-weighted spherical
harmonics, instead of spheroidal harmonics.
Spin-weighted spherical harmonics are also unlikely

to yield straightforward summation formulas, and the
reference [51] handled these sums using Mathematica’s
FINDSEQUENCEFUNCTION. However, it turns out that exact,
if cumbersome, formulas can be derived analytically by
using the spin-weighted spherical harmonic definition to
transform back to scalar spherical harmonics. Explicitly,

s−1Ylm ¼ ðsinθÞ−sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ sÞðl− sþ 1Þp �
∂

∂θ
−

i
sinθ

∂

∂φ

�
ððsinθÞssYlmÞ:

ð3:10Þ

Thus, s ¼ −2 can be expressed in terms of s ¼ 0 as

−2Ylm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ!
ðlþ 2Þ!

s �
∂
2
θYlm þ 2m − cos θ

sin θ
∂θYlm

þm2 − 2m cos θ
ðsin θÞ2 Ylm

�
: ð3:11Þ

Substitution of this relation and (3.9) into the summation
formulas (3.8) would then yield products of scalar spherical
harmonics alone, which are closely connected to the
spherical harmonic addition theorem. However, the expres-
sion (3.9) contains multiple values of the first harmonic
number (l; l� 1; l� 2, etc.), while the addition theorem
(3.7) only explicitly covers products of terms with identical
harmonic numbers. This last problem can be resolved by
using the well-known scalar spherical harmonic identity,

Yðlþ1Þm ¼ cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2lþ 3Þ
ðlþ 1Þ2 −m2

s
Ylm

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 3Þðl2 −m2Þ

ð2l − 1Þ½ðlþ 1Þ2 −m2�

s
Yðl−1Þm: ð3:12Þ

We also find it convenient to eliminate all derivative terms
using identities of the following form:

sinθ
d
dθ

Ylm ¼ l cosθYlm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl2 −m2Þ

ð2l− 1Þ

s
Yðl−1Þm;

sinθ
d
dθ

Ylm ¼ −ðlþ 1Þ cosθYlm

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ½ðlþ 1Þ2 −m2�

ð2lþ 3Þ

s
Yðlþ1Þm: ð3:13Þ

In total we make a sequence of identity transformations
until all terms are of the form Ylm and Yðl−1Þm. Then,
the remaining products will involve only mNY2

lm and
mNY2

ðl−1Þm, which are trivial to execute using the addition

theorem. In particular, we find that no square root terms
appear in the final product and that the cross terms vanish,
as Ylmðπ=2Þ is 0 whenever (lþm) is odd, meaning one of
Ylmðπ=2Þ and Yðl−1Þmðπ=2Þ is always 0. Parity consider-
ations also clarify how to account for factors of ð−1Þm—
these terms simplify to become overall factors of ð−1Þl or
ð−1Þl−1, as appropriate. Then, the full term ð−1Þlþm simply
contributes ð−1Þ2l ¼ 1 or ð−1Þ2l−1 ¼ −1 to each compo-
nent of the sum.
Thus, to summarize, we expand the spin-weighted

spheroidal harmonics into series of spin-weighted spherical
harmonics; then, we use the definition of each −2Ylm to
reexpress it in terms of Ylm. Next, θ derivatives and distant
values of the first harmonic number are eliminated using
identities, at which point the standard spherical harmonic
addition theorem can be used to complete the summation.
Once the metric perturbation is summed over m, the
general-l expansion for pl

μν will be ready for use in the
construction of the redshift.

IV. METRIC COMPLETION AND
REGULARIZATION

With the procedure established for the specific-l (MST)
and the general-l (ansatz) parts of the metric perturbation,
we are left with two remaining considerations: the com-
pletion of the metric (monopole and dipole terms) and
regularization procedure. We briefly cover those issues
here.

HIGH-ORDER POST-NEWTONIAN EXPANSION OF THE … PHYS. REV. D 108, 084012 (2023)

084012-9



A. Nonradiative modes

The Teukolsky formalism is only valid for the modes l ≥ s. Notably, it omits the corrections to the mass monopole and
dipole of the primary (informally referred to as the l ¼ 0 and l ¼ 1 modes), which must be derived separately. The full
completion part pcomp

μν was first derived in [71]. It is given by

pcompþ
tt ¼ 2r

Σ2
½ðr2 þ 3a2 cos2 θÞδM − 2a cos2 θδJ�;

pcompþ
rr ¼ 2r

MΔ2
f½Mðr2 þ 3a2 cos2 θÞ þ a2r sin2 θ�δM − a½r sin2 θ þ 2M cos2 θ�δJg;

pcompþ
θθ ¼ −

2a
M

cos2 θðaδM − δJÞ;

pcompþ
ϕϕ ¼ −

2a
MΣ2

sin2 θfa½Σ2 þMr sin2 θðr2 − a2 cos2 θÞ�δM − ðΣ2 þ 2Mr3 sin2 θÞδJg;

pcompþ
tϕ ¼ −

2r
Σ2

sin2 θ½2a3 cos2 θδM þ ðr2 − a2 cos2 θÞδJ�; ð4:1Þ

where pcomp
μν ¼ pcompþ

μν Θ½r − rpðtÞ�. After a lengthy calcu-
lation, [71] confirmed the expected result that δM ¼ μE
and δJ ¼ μL.

Because we are only interested in the local perturbation,
we can restrict these expressions to the equatorial plane,
which simplifies the result to

pcompþ
tt ¼ 2δM

r
;

pcompþ
rr ¼ 2r2

MΔ2
½ðMrþ a2ÞδM − aδJ�;

pcompþ
θθ ¼ 0;

pcompþ
ϕϕ ¼ −

2a
Mr

½aðrþMÞδM − ðrþ 2MÞδJ�;

pcompþ
tϕ ¼ −

2

r
δJ: ð4:2Þ

Actually, there is another nonradiative contribution
termed pgauge

μν that was discussed at length in [74]. How-
ever, this term is 0 for all r > rp and therefore does not
affect the value of the redshift, which is calculated here in
the limit r → rp from above. The authors of [74] also note
that the redshift combination pR

μνuμuν must be continuous
across r ¼ rp, so that the gauge portion is not needed.
On the other hand, the spin-precession invariant [75,76]
is typically regularized through an upper-lower-limit aver-
aging procedure, so it is likely that pgaugeþ

μν will have to be
included in that calculation.

B. Mode-sum regularization

Thus far, the expressions given for the metric perturba-
tion in ingoing radiation gauge have referred to the full
retarded field. This field formally diverges at the location of
the particle, a property that becomes apparent when the l
modes are summed from l ¼ 0 to l ¼ ∞. Local gauge

invariant quantities derived from these modes then exhibit
the same behavior. Instead, from the full retarded field we
must extract the so-called regular field, which defines the
effective metric experienced by the smaller body.
The regular part of the metric is derived through

regularization, which can be achieved in a number of
ways. One popular approach was given by Detweiler and
Whiting [77], which chooses a particular split of regular
and singular fields,

pμνðxÞ ¼ pS
μνðxÞ þ pR

μνðxÞ: ð4:3Þ

With this choice the singular field pS
μνðxÞ satisfies the same

inhomogeneous field equation as pμνðxÞ but with different
boundary conditions, while pR

μν then solves the homo-
geneous field equations. The orbiting particle then travels
on the Kerr metric plus the perturbation pR

μν.
Determination of the singular field is a difficult

process [78]. In first-order BHPT a common approach is
the mode-sum regularization procedure [79,80], which
exploits the fact that the individual l modes of the retarded
metric perturbation are finite. The part of the l dependence
that diverges in the infinite sum is subtracted off each l
mode, so that the full sum remains finite.
The l dependence of the singular field can be expressed

as an expansion about l ¼ ∞. The metric perturbation itself
will have a leading coefficient independent of l, which will
obviously diverge in the sum over l. Each derivative of the
singular field with respect to any of the coordinates will
increase the divergence by a power of l. In Lorenz gauge, it
is known that the large-l expansion can be manipulated into
a form such that only the divergent terms are needed to
obtain the regular field—the rest will vanish in a sum over
all l. Interestingly, in a numerical calculation of finite l, the
higher-order terms (regularization parameters) can improve
convergence [78]. However, our analytic calculation will
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complete the infinite sum over all l, so only the divergent
terms are needed.
The redshift invariant is directly proportional to the

metric perturbation, so what remains is to determine the
l-independent coefficient (the leading regularization
parameter) in its expansion about l ¼ ∞. In fact, this
can be done using our general-l PN series. This series is
expanded in l, and the leading coefficient produces the
singular field. There is a subtlety involving our use of
radiation gauge, instead of the more established Lorenz
gauge, as the former is related to the latter by an irregular
gauge transformation [81]. However, it was noted by
Detweiler [42] that the regularization scheme becomes
gauge invariant when working with certain gauge invariant
quantities, the redshift among them. This l-expansion
approach to regularization has already been used success-
fully to construct the PN series for redshift invariant of
eccentric, equatorial (Kerr) EMRIs in [53,54].

V. THE GENERALIZED REDSHIFT INVARIANT

A. Background and implementation

The generalized redshift invariant has the same definition
and interpretation for eccentric, equatorial inspirals on a
Kerr background as it does for eccentric inspirals on a
Schwarzschild background. Thus, the corresponding dis-
cussion in our previous Schwarzschild work [20], based on
prior derivations in [27,47,48], is sufficient to understand
the meaning and significance of the PN expansion pre-
sented here. Nevertheless, we will recapitulate the develop-
ment of the generalized redshift invariant here for the sake
of completeness.
The redshift invariant ut was originally constructed for

quasicircular inspirals [42,82]. Note that this quantity is
precisely the inverse of the redshift itself, z ¼ 1=ut. For
eccentric orbits, Barack and Sago discovered that the
proper-time average over a radial libration hutiτ provided
the more appropriate gauge invariant measure of the
conservative dynamics. This average is equal to the
coordinate-time period, Tr, divided by the proper-time
period, T r. To subleading order in the mass ratio, this
quotient is given by [47,48]

hutiτ ¼
Tr

T r þΔT r
¼ Tr

T r
−ΔT r

Tr

T 2
r
¼ huti0τ þ huti1τ : ð5:1Þ

Note that the coordinate-time period Tr is not corrected
because the frequencies are held fixed from zeroth to first
order (which is necessary for the gauge invariance of the
redshift invariant [47]). The leading term huti0τ is merely the
value of the redshift invariant for geodesic orbits, which
is trivial to calculate using the Darwin parametrization
described in Sec. II A. The second term, which incorporates
the effects of the first-order conservative self-force, can be
shown to take the form [47,48]

ΔT r ¼ −T r

	
1

2
pR
μνuμuν



τ

: ð5:2Þ

This formula is the same for eccentric, equatorial orbits
on both Schwarzschild and Kerr backgrounds. Thus, the
correction to the generalized redshift invariant follows
directly from the regularized metric perturbation, which
we have detailed extensively in previous sections for the
purpose of PN expansion.
As mentioned before, this particular gauge-invariant

quantity encodes important details of the conservative
motion of the system. The first-order conservative dynam-
ics contribute at Oðε0Þ in the cumulative EMRI phase, a
level needed for the creation of accurate waveform tem-
plates in the LISA mission, making the redshift invariant
especially valuable [1]. In addition, there is an exact
correspondence between the PN expansion of huti1τ and
several important quantities in EOB theory. For instance,
the eccentric part of huti1τ can be used to derive the
expansion of the Qð1=r; pr; νÞ EOB potential, which
governs the deviation from geodesic behavior in the
EOB Hamiltonian [26,27,53,62,83]. The transformation
between these quantities is outlined in [26]. The circular
spin-dependent part, meanwhile, is critical to the radial
equatorial potential Aðr;m1; m2; S1; S2Þ and the main spin-
orbit coupling potential GSðr;m1; m2; S1; S2Þ [53]. The
eccentric spin-dependent part is expected to be more
fruitful still, though the precise transcription scheme has
not yet been elucidated [54].
The last remaining task is to implement the mode-sum

regularization scheme in order to ensure a proper, con-
vergent sum over the l modes of huti1τ . We choose to
regularize the final averaged product, which is already in
gauge invariant form:

	
1

2
pR
μνuμuν



τ

¼
X∞
l¼0

	
1

2

�
pl
μν − pS;l

μν

�
uμuν



τ

¼
X∞
l¼0

	
1

2
pl
μνuμuν



τ

− hH½0�iτ: ð5:3Þ

The singular field contribution is thus distilled down to an
l-independent constant, equal to its leading behavior in a
large-l expansion, in accordance with the observations of
the previous section.
Analytic derivations of the singular part of the redshift

invariant have been made [27,47,78], but these have
generally utilized a decomposition over spherical harmon-
ics, while our l modes derive from spin-weighted spheroi-
dal harmonics. For circular, equatorial orbits on a Kerr
background, Kavanagh, Ottewill, Wardell derived the spin-
weighted spheroidal form of H½0� to 13PN order [51]. We
chose to use the general-l ansatz expansion to extract the
large-l behavior directly, as has been done in [53,54].
Our expandedH½0� is confirmed to match the analytic result
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of [51] in the circular orbit limit. The PN series for the
orbital average of H½0� begins

hH½0�iτ ¼ ð1 − e2Þv2 −
�
ð1 − e2Þ2 − 3

4
ð1 − e2Þ3=2

�
v4

− 2ã½ð1 − e2Þ2 − ð1 − e2Þ3=2�v5

þ
�
ð1 − e2Þ3=2

�
153

64
þ 3

4
ã2 þ 267e2

128

�

− ð1 − e2Þð3þ ã2 þ e2Þ
�
v6 þOðv7Þ: ð5:4Þ

This constant is then subtracted off at each value of l from
l ¼ 0 to l ¼ ∞. Note that this covers all three regimes of
calculation: the metric completion piece (l ¼ 0 and l ¼ 1),
the MST specific-l solutions from l ¼ 2 to l ¼ 7, and the
general-l ansatz solution from l ¼ 8 to l ¼ ∞. The form
of the summands will involve products and quotients of
polynomials in l, which are trivial to sum in Mathematica.
For the simpler Schwarzschild problem, the same basic

procedure was first implemented in [62], where the (first-
order BHPT) redshift invariant was expanded to 6.5PN
and e2 in eccentricity and to 4PN and e4. This was quickly
extended by [27] to 4PN through e10. Later, the authors
of [32] improved the eccentric knowledge to 9.5PN and e8,
as that level was needed to complete a novel transcription of
the redshift invariant to the scattering angle for hyperbolic
orbits, which can be used to compute the full post-
Minkowskian dynamics to high order. Finally, our previous
work [20] brought the eccentric Schwarzschild expansion

to 10PN and e20. Interestingly, by taking the expansions to
such high order in e, we were able to find many PN terms
which could be manipulated into either closed-form
expressions or infinite series with known coefficients,
following similar developments in the fluxes [15–17,84].
In fact, it was discovered that the entire leading logarithm
series of the energy flux at infinity [15,17] exactly
reappears in the redshift invariant.
This paper now extends many of those same advances to

the more difficult Kerr problem, which has historically seen
much less development. The first expansion for eccentric,
equatorial orbits was undertaken in [53], finding a result to
8.5PN/Oðe2Þ=Oða2Þ in both a small-e and small-a limit.
This was later extended to 8.5PN/Oðe4Þ=Oða2Þ in [54],
which also derived an expression to 3.5PN andOða2Þ using
the full PN theory (i.e., for arbitrary mass ratio). We use the
techniques and simplifications discussed in earlier sections
of this paper to enhance these calculations greatly to the
level of 6PN/e16 and 8PN/e10, all while remaining exact
in a. We then apply many of the techniques developed in
the Schwarzschild case to extract closed-form eccentricity
functions for the certain spin-dependent parts of the series.
Note that in the expressions presented below, we redefine a
to be dimensionless (i.e., a → a=M ¼ ã) for simplicity.

B. PN expansion of the redshift invariant

For eccentric, equatorial orbits, the first-order BHPT part
of the generalized redshift invariant is found to take the
following form, mirroring its circular-orbit limit [20,51]:

huti1τ ¼
�
μ

M

�
1

p

�
U0 þ

U1

p
þ U3=2

p3=2 þ
U2

p2
þ U5=2

p5=2 þ
U3

p3
þ U7=2

p7=2 þ
�
U4 þ U4L logp

� 1

p4
þ U9=2

p9=2 þ
�
U5 þ U5L logp

� 1

p5

þ
�
U11=2 þ U11=2L logp

� 1

p11=2 þ
�
U6 þ U6L logp

� 1

p6
þ
�
U13=2 þ U13=2L logp

� 1

p13=2

þ
�
U7 þ U7L logpþ U7L2log2p

� 1

p7
þ U15=2

p15=2 þ
�
U8 þ U8L logpþ U8L2log2p

� 1

p8
þ � � �

�
: ð5:5Þ

Note that we restore use of the parameter 1=p ¼ v2 in this
section, as it is more commonly used in the literature. This
expansion exhibits two key differences from its Schwarzs-
child counterpart. The first is that while in the Schwarzschild
limit each term U i was a function of eccentricity alone, now
each U i ¼ U iða; eÞ is a function of both eccentricity e and
spin a. In many cases we will be able to extract their exact
dependence on both parameters, though often our results will
be Taylor expanded in e. The second is the presence of half-
integer terms starting at the 1.5PN level. These terms are
purely spin dependent, as the first half-integer PN term in the
nonspinning case appears at 5.5PN.

In this work, we present only the spin-dependent
coefficients, as the a ¼ 0 limit was discussed at length
in [20]. To support this effort, we define an additional layer
of specification at each order,

U iða; eÞ ¼ U iðeÞSch þ
X
k¼0

akU iða; eÞSk; ð5:6Þ

such that the first term U iðeÞSch corresponds to the
Schwarzschild limit, and the superscript k describes the
power of a attached to the remaining functions. All terms
through 6PN were found through e16 (if not exactly), while
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the orders 6.5PN–8PN were found to e10. Some of the
functions at higher orders are too lengthy to display in their
entirety. These are truncated after a few eccentricity
coefficients; however, we add a Greek letter (e.g., α16)
to the end of such functions to remind the reader of the
extent of the series. The full results are made available in

electronic form on the black hole perturbation toolkit [60],
as well as the UNC gravity repository [61].
We begin with the functions through 3.5PN order, which

all yield closed-form expressions. The first two terms are
entirely spin independent, so we list the spin-dependent
enhancement functions from 1.5PN–3.5PN:

US1
3=2 ¼ −2ð1 − e2Þ2 þ 5ð1 − e2Þ3=2;
US2
2 ¼ ð1 − e2Þ2 − 2ð1 − e2Þ3=2;

US1
5=2 ¼ ð1 − e2Þ2ð−20þ 8e2Þ þ ð1 − e2Þ3=2ð38þ 5e2Þ;
US2
3 ¼ ð1 − e2Þ2ð13 − e2Þ − ð1 − e2Þ2ð27þ 29e2Þ;

US1
7=2 ¼ ð1 − e2Þ2

�
−
87

2
−
93e2

2
þ 30e4

�
þ ð1 − e2Þ3=2

�
261

2
þ 1195e2

4
−
581e4

8

�
;

US3
7=2 ¼ −2ð1 − e2Þ2ð1þ e2Þ þ ð1 − e2Þ3=2

�
5þ 37e2

2

�
: ð5:7Þ

Note that any functions not explicitly referenced (both here and throughout this section), such as US1
3 or US2

7=2, are identically 0.
At 4PN order, the spin-independent portion becomes more complicated [20]; however, the spin dependence remains

simple:

US2
4 ¼ ð1 − e2Þ2ð52þ 63e2 − 35e4Þ þ ð1 − e2Þ3=2

�
−155 −

1095e2

2
þ 21e4

�
;

US4
4 ¼ −3ð1 − e2Þ3=2e2: ð5:8Þ

The 4.5PN functions can also be put into exact form, though with the first appearance of a transcendental coefficient:

US1
9=2 ¼ ð1 − e2Þ2ð−128 − 156e2 − 28e4 þ 32e6Þ þ ð1 − e2Þ3=2

�
5042

9
−
241π2

96
þ
�
2699 −

405π2

32

�
e2

þ
�
1625

12
−
569π2

256

�
e4 −

1447e6

8

�
;

US3
9=2 ¼ ð1 − e2Þ2ð−55þ 3e2 þ 12e4Þ þ ð1 − e2Þ3=2

�
105þ 867e2

2
þ 309e4

4

�
: ð5:9Þ

The 5PN functions likewise resemble their 4.5PN counterparts above, involving factors of π2:

US2
5 ¼ ð1 − e2Þ2

�
1099

2
− 420e2 þ 879e4

2
− 121e6

�
þ ð1 − e2Þ3=2

�
−
7067

6
þ 593π2

512
þ
�
−
60485

12
þ 3091π2

512

�
e2

þ
�
−
4697

3
þ 4403π2

4096

�
e4 þ 3689e6

8

�
;

US4
5 ¼ ð1 − e2Þ2ð45 − 46e2 þ e4Þ þ ð1 − e2Þ3=2

�
−53 −

319e2

2
−
127e4

2

�
: ð5:10Þ

The 5.5PN term US1
11=2 marks the first appearance of additional transcendental numbers (γE; log 2, etc.), as well as a logp

term with spin dependence. As might be expected from the Schwarzschild case, this is the first term for which we cannot
determine a closed or exact function in eccentricity and must rely on the Taylor expansion through e16. However, we can
factor this term into a simpler form reminiscent of USch

4 [20], in order to capture some of the transcendental dependence.
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We present the infinite series portion of US1
11=2 to e

8, saving the full results for the online repositories [60,61]. The remaining
enhancement functions are closed in form:

US1
11=2 ¼ π2ð1 − e2Þ3=2

�
−
79573

768
−
50411e2

128
−
166217e4

2048
þ 4681e6

6144

�
− 2

�
γE þ log

�
8

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

US1
11=2L

þ ð1 − e2Þ3=2
��

1163681

450
−
32 logð2Þ

15

�
þ
�
6101333

300
−
45296 logð2Þ

15
þ 2916 logð3Þ

�
e2

þ
�
124628

75
þ 729956 logð2Þ

15
−
285039 logð3Þ

10

�
e4

þ
�
−
25544941

7200
−
17042578 logð2Þ

45
þ 1805733 logð3Þ

16
þ 12578125 logð5Þ

144

�
e6

þ
�
−
61976903

46080
þ 45460366 logð2Þ

27
þ 181311291 logð3Þ

2560
−
10682734375 logð5Þ

13824

�
e8 þ � � � þ α16e16 þOðe18Þ

�
;

US3
11=2 ¼ ð1 − e2Þ2

�
−
2399

2
þ 5001e2

4
−
1843e4

4
þ 130e6

�
þ ð1 − e2Þ3=2

�
3289

2
þ 11323e2

2
þ 42641e4

16
−
4749e6

16

�
;

US5
11=2 ¼ ð1 − e2Þ2

�
−
39

2
þ 47e2

2

�
þ ð1 − e2Þ3=2

�
39

2
þ 131e2

4
þ 27e4

2

�
;

US1
11=2L ¼ −ð1 − e2Þ3=2

�
1168

15
þ 6584e2

15
þ 1898e4

5
þ 491e6

15

�
: ð5:11Þ

At 6PN order we find an analogous set of functions. Again, we truncate the more complicated series at e8, leaving the full
functions for the online repositories. The remaining functions are likewise found to yield closed forms:

US2
6 ¼ π2ð1 − e2Þ3=2

�
67439

3072
þ 350857e2

2048
þ 1564717e4

8192
þ 975293e6

49152
þ
�
−
287

32
−
287e2

64

�
ð1 − e2Þ3=2

�

− 2

�
γE þ log

�
8

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

US2
6L þ ð1 − e2Þ3=2

��
−
741686

225
þ 8 logð2Þ

5

�

þ
�
−
4131994

75
þ 4508 logð2Þ

5
−
4374 logð3Þ

5

�
e2 þ

�
−
1275121

75
−
193109 logð2Þ

15
þ 296703 logð3Þ

40

�
e4

þ
�
599647

200
þ 7664441 logð2Þ

90
−
3812427 logð3Þ

160
−
6015625 logð5Þ

288

�
e6

þ
�
2004023

2560
−
1426452 logð2Þ

5
−
310330197 logð3Þ

10240
þ 880390625 logð5Þ

6144

�
e8 þ � � � þ β16e16 þOðe18Þ

�
;

US4
6 ¼ ð1 − e2Þ2ð1444 − 1347e2 − 47e4 − 50e6Þ þ ð1 − e2Þ3=2

�
−1600 − 4386e2 − 1908e4 −

339e6

4

�
;

US6
6 ¼ 3ð1 − e2Þ3 þ ð1 − e2Þ3=2

�
−3 −

9e2

2

�
;

US2
6L ¼ ð1 − e2Þ3=2

�
132

5
þ 718e2

5
þ 293e4

2
þ 883e6

60

�
: ð5:12Þ

From 6.5PN through 8PN, our expansion is limited to order e10 in eccentricity, which greatly reduces our ability to
determine closed-form expressions from the series. From here, we primarily present just the first few coefficients in each
function. Again, the full results are posted at the repositories [60,61]. The 6.5PN term marks the first appearance of the
polygamma function. We set ψ ðn;kÞ ¼ ψ ðnÞðikaκ Þ þ ψ ðnÞð− ika

κ Þ for polygamma function ψ ðnÞðxÞ and find
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US1
13=2 ¼ −

1

3
ð1 − e2Þ3=2

�
log κ − γE þ 1

2
ψ ð0;2Þ

�
US3
13=2L − 2

�
γE þ log

�
8

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
��

US1
13=2L

þ ð1 − e2Þ3=2
��

137967017

4410
−
2648651π2

1024
−
1528 logð2Þ

5
þ 1944 logð3Þ

7

�
þ
�
3227202952

11025
−
27517957π2

1536

þ 88816 logð2Þ
15

þ 5346 logð3Þ
7

�
e2 þ

�
4589364091

29400
−
146807929π2

12288
−
6151762 logð2Þ

35
−
5423031 logð3Þ

140

þ 5859375 logð5Þ
56

�
e4 þ � � � þ γ10e10 þOðe12Þ

�
;

US3
13=2 ¼ −ð1 − e2Þ3=2

�
log 2κ þ γE þ 1

2
ψ ð0;2Þ

�
US3
13=2L þ ð1 − e2Þ3=2

��
696161

225
−
115π2

96

�
þ
�
1731571

18
−
38825π2

768

�
e2

þ
�
776917

24
−
17911π2

512

�
e4 þ

�
−
119507

48
−
3483π2

2048

�
e6 þ

�
−
162431

256
þ 861π2

2048

�
e8

þ
�
−
47309

1600
þ 369π2

2048

�
e10 þOðe12Þ

�
;

US5
13=2 ¼ ð1 − e2Þ3=2

�
102

5
þ 3694e2 þ 2503e4

4
−
333e6

8
−
6157e8

128
−
345e10

16
þOðe12Þ

�
;

US1
13=2L ¼ −ð1 − e2Þ3=2

�
18268

105
þ 31008e2

35
þ 72857e4

105
þ 2118e6

7
þ 62603e8

1120

�
;

US3
13=2L ¼ −ð1 − e2Þ3=2

�
96

5
þ 144e2 þ 108e4 þ 6e6

�
: ð5:13Þ

The 7PN functions are similar in structure to their 6PN counterparts, though we do note the first appearance of an odd
power of a at integer order. Additionally, we no longer have enough coefficients in the function S2 to identify any eccentric
structure, so we simply present a few of those coefficients unmodified. We find

US1
7 ¼ πð1 − e2Þ3=2

�
343088

1575
þ 394122e2

175
þ 5969582e4

1575
þ 661759039e6

453600
þ 152835577e8

2419200
þ 246822697e10

290304000
þOðe12Þ

�

US2
7 ¼ ð1 − e2Þ3=2

��
15442453

3150
−
74024γE
105

−
193510709π2

98304
−
27016 logð2Þ

21
−
729 logð3Þ

7

�
þ
�
−
633681119

2100
−
685264γE

105

−
736121519π2

49152
þ 322384 logð2Þ

35
−
785376 logð3Þ

35

�
e2 þ

�
−
140377429

1680
−
1019254γE

105
−
4127285485π2

393216

−
46263526 logð2Þ

105
þ 327468987 logð3Þ

1120
−
21484375 logð5Þ

672

�
e4 þ � � � þ δ10e10 þOðe12Þ

�

US4
7 ¼ ð1 − e2Þ3=2

��
−
4900

3
−
69π2

256

�
þ
�
−115532þ 585π2

64

�
e2 þ

�
−
313281

8
þ 10521π2

2048

�
e4

þ
�
129643

48
−
267π2

2048

�
e6 þ

�
119151

128
−
861π2

8192

�
e8 þ

�
108689

256
−
369π2

8192

�
e10 þOðe12Þ

�
;

US6
7 ¼ ð1 − e2Þ3=2

�
−1374e2 −

2145e4

16
þ 1671e6

32
þ 5055e8

256
þ 4401e10

512
þOðe12Þ

�
;

US2
7L ¼ ð1 − e2Þ3=2

�
37012

105
þ 342632e2

105
þ 509627e4

105
þ 206029e6

105
þ 27501e8

224
−
2303e10

240
þOðe12Þ

�
: ð5:14Þ

The 7.5PN functions S1 and S3 show interesting behavior, in that they present certain transcendental numbers attached to
(apparently) terminating series that do not bear any obvious relationship to the corresponding logarithmic functions:
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US1
15=2 ¼ ð1 − e2Þ3=2

��
224

5
þ 2448e2

5
þ 708e4 þ 182e6 þ 9e8

2

�
log κ þ

�
16

5
þ 224e2

5
þ 84e4 þ 28e6 þ 7e8

8

�
ψ ð0;1Þ

þ
�
96

5
þ 200e2 þ 270e4 þ 63e6 þ 11e8

8

�
ψ ð0;2Þ þ

�
8776579

32768
þ 653303597e2

262144
þ 2529471329e4

1048576
þ 174272943e6

2097152

−
317401461e8

16777216

�
π4
�
þ ð1 − e2Þ3=2

��
630173174963

3572100
−
2026048γE

2835
−
15709506835π2

884736
−
259648 logð2Þ

2835

−
5832 logð3Þ

7

�
þ
�
6701813671607

2381400
−
889124γE

81
−
97156196179π2

442368
−
429451756 logð2Þ

2835
þ 5378319 logð3Þ

140

þ 9765625 logð5Þ
324

�
e2 þ � � � þ ϵ10e10 þOðe12Þ

�
;

US2
15=2 ¼ πð1 − e2Þ3=2

�
−
5564

105
−
81213e2

175
−
1577929e4

1800
−
5597705e6

12096
−
9631177e8

387072
−
1386265357e10

2903040000
þOðe12Þ

�
;

US3
15=2 ¼ ð1 − e2Þ3=2

��
552

5
þ 5664e2

5
þ 1494e4 þ 336e6 þ 111e8

16

�
log κ −

�
12

5
þ 168e2

5
þ 63e4 þ 21e6 þ 21e8

32

�
ψ ð0;1Þ

þ
�
288

5
þ 600e2 þ 810e4 þ 189e6 þ 33e8

8

�
ψ ð0;2Þ

�
þ ð1 − e2Þ3=2

��
5268133

225
þ 6488γE

15
−
3298493π2

6144

þ 11096 logð2Þ
15

�
þ
�
246222767

225
þ 68968γE

15
−
4438835π2

768
− 6120 logð2Þ þ 64152 logð3Þ

5

�
e2

þ � � � þ ξ10e10 þOðe12Þ
�
;

US5
15=2 ¼ ð1 − e2Þ3=2

�
2251

5
þ 490316e2

5
þ 64077e4

2
−
53317e6

16
−
605545e8

512
−
325199e10

512
þOðe12Þ

�
;

US7
15=2 ¼ ð1 − e2Þ3=2

�
294e2 þ 7e4

2
−
241e6

16
−
849e8

256
−
11e10

8
þOðe12Þ

�
;

US1
15=2L ¼ ð1 − e2Þ3=2

�
189904

567
þ 2123666e2

405
þ 50236532e4

2835
þ 27140887e6

1890
þ 329151e8

280
−
5671807e10

20160
þOðe12Þ

�
;

US3
15=2L ¼ −ð1 − e2Þ3=2

�
4072

15
þ 8596e2

3
þ 21511e4

5
þ 16149e6

10
þ 1213e8

15
−
329e10

40
þOðe12Þ

�
: ð5:15Þ

Finally, the 8PN functions introduce several elements of additional new structure. One is in the form of a spin-dependent
term US0

8 with no leading factor of a. The attached eccentricity series for both US0
8 and US3

8 appear to terminate at e8, so they
are presented in their entirety, while the (apparently infinite) series US1

8 ;US2
8 , and US4

8 are truncated for brevity. Additionally,
we find the appearance of a second polygamma combination, commonly denoted ψ̄ ðn;kÞ ¼ −iðψ ðnÞðikaκ Þ − ψ ðnÞð− ika

κ ÞÞ, as
well of κ in the denominators of certain coefficients. The full results begin

US0
8 ¼ ð1 − e2Þ3=2

��
1712

525
−
64γE
5

þ 1712κ

525
−
32ψ ð0;2Þ

5
−
64 logðκÞ

5

�
þ
�
26536

525
−
968γE
5

þ 25252κ

525
−
484ψ ð0;2Þ

5

−
992 logðκÞ

5

�
e2 þ

�
3638

35
− 390γE þ 3317κ

35
− 195ψ ð0;2Þ − 408 logðκÞ

�
e4 þ

�
3959

105
− 139γE þ 1391κ

42
−
139ψ ð0;2Þ

2

− 148 logðκÞ
�
e6 þ

�
107

84
−
37γE
8

þ 1819κ

1680
−
37ψ ð0;2Þ

16
− 5 logðκÞ

�
e8
�
;

US1
8 ¼ ð1 − e2Þ3=2

��
2389021π

9450
−
3424ψ̄ ð0;2Þ

525
−
192κψ̄ ð1;2Þ

5
þ 256ψ̄ ð1;2Þ

5κ

�

þ
�
−
108802823π

132300
−
51788ψ̄ ð0;2Þ

525
−
2904κψ̄ ð1;2Þ

5
þ 3872ψ̄ ð1;2Þ

5κ

�
e2 þ � � � þ χ10e10 þOðe12Þ

�
;
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US2
8 ¼ ð1 − e2Þ3=2

��
75054389639

198450
−
1753576γE

567
þ 1712κ

175
−
314206240595π2

7077888
−
417436343π4

16777216
−
64ψ ð0;1Þ

15

−
432ψ ð0;2Þ

5
−
14672264 logð2Þ

2835
− 972 logð3Þ − 544 logðκÞ

3

�
þ
�
29407415438

14175
−
3574292γE

81
þ 26322κ

175

−
8172744049193π2

14155776
−
1047412729π4

4194304
−
896ψ ð0;1Þ

15
− 1276ψ ð0;2Þ þ 134696372 logð2Þ

2835
−
36823977 logð3Þ

280

−
48828125 logð5Þ

4536
−
39928 logðκÞ

15

�
e2 þ � � � þ h10e10 þOðe12Þ

�
;

US3
8 ¼ ð1 − e2Þ3=2

�
−
3424ψ̄ ð0;2Þ

175
−
51788ψ̄ ð0;2Þe2

175
−
4173ψ̄ ð0;2Þe4

7
−
14873ψ̄ ð0;2Þe6

70
−
3959ψ̄ ð0;2Þe8

560

�
;

US4
8 ¼ ð1 − e2Þ3=2

��
−
2910653

225
−
584γE
5

þ 269059π2

98304
þ 16ψ ð0;1Þ

5
− 48ψ ð0;2Þ −

712 logð2Þ
5

−
448 logðκÞ

5

�

þ
�
−
81173087

50
− 1624γE −

214κ

175
þ 9737469π2

16384
þ 224ψ ð0;1Þ

5
−
3168ψ ð0;2Þ

5
−
464 logð2Þ

5
−
8748 logð3Þ

5

−
5912 logðκÞ

5

�
e2 þ � � � þ q10e10 þOðe12Þ

�
;

US6
8 ¼ ð1 − e2Þ3=2

�
−
249

5
−
293474e2

5
− 17592e4 þ 12229e6

4
þ 268889e8

256
þ 121663e10

256
þOðe12Þ

�
;

US8
8 ¼ ð1 − e2Þ3=2

�
−27e2 þ 27e4

8
þ 17e6

16
þ 9e8

32
þ 33e10

256
þOðe12Þ

�
;

US2
8L ¼ ð1 − e2Þ3=2

�
928196

567
þ 9472814e2

405
þ 192633277e4

5670
þ 86757829e6

11340
þ 22396051e8

10080
þ 3088957e10

10080
þOðe12Þ

�
;

US4
8L ¼ ð1 − e2Þ3=2

�
516

5
þ 7028e2

5
þ 40949e4

15
þ 16568e6

15
þ 21739e8

480
−
329e10

160
þOðe12Þ

�
: ð5:16Þ

C. Discussion

When PN expansions are made in the extreme-mass-ratio
limit using the Teukolsky-MST formalism described in this
paper, the result is a double Taylor series about 1=p ¼ 0
and e ¼ 0, taken to finite orders in both parameters.
Nevertheless, significant prior work at the intersection of
BHPT and PN theory in the Schwarzschild limit has
revealed that the derived terms should have significant
structure in their dependence on eccentricity. Direct
derivations from the full PN theory, for instance, have
found closed-form expressions (or fully understood infinite
series) for the first three orders in the energy flux and
the redshift invariant [48,85–87]. Likewise, work has
been done to characterize the behavior of eccentricity
enhancement functions as e approaches 1, again in the
Schwarzschild limit [16,84,88]. Our knowledge of the
underlying PN structure can then be used to refactor
the initial (Taylor series) results into the corresponding
exact functions of eccentricity that would produce those
series, greatly enhancing our access to the high-e regime.
In the Schwarzschild case, this effort proved highly

effective, as BHPT-PN expansions were found to yield a

great many closed forms in the fluxes [15,17–19], redshift
invariant [20], and spin-precession invariant [21]. With the
success of those methods in hand, we were motivated to
push the eccentric expansion in the Kerr regime, to see if
similar structure would appear in the spin dependence of
the PN expansion. We first confirmed some of the same
structure in the fluxes at infinity [40], and with this work
we now see that many of the patterns repeat in the red-
shift invariant, though not without significant added com-
plexity and a few unexpected irregularities. We review the
results here.
The first eight PN functions, U3=2, U2, U5=2, U3, U7=2,

U4, U9=2, and U5, are all found to yield straightforward
closed forms. When separated by power of a, we find that
each takes the form of a pair of polynomials in e, each
attached to a factor of ð1 − e2Þ to some positive power.
[Recall that when y ¼ ðMΩφÞ2=3 is used as the PN
expansion parameter instead of 1=p, the factors of ð1 − e2Þ
carry negative powers, commonly called eccentricity sin-
gular factors [15,84].] These functions are all vaguely
reminiscent of the 2PN energy flux [86], which was the
first derived PN term to display a similar combination of
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polynomials attached to differing eccentricity singular
factors.
Using the Schwarzschild limit as a model, it could

perhaps be predicted that these functions would be com-
pact, as the first term there with a nontrivial structure was
USch
4 . Thus, we might expect that the first nontrivial term in

the spinning case would be four orders after the first, at
5.5PN order. Nevertheless, it is remarkable that the spin
dependence (at least in the equatorial limit) can be known
exactly up to that point. Additionally, the only term in the
Schwarzschild limit not fully understood to this level is
USch
5 , as it has a dependence on the 1PNmultipole moments

that has not yet been elucidated (see [20] for more details).
Once that piece is determined, the entire 5PN redshift
invariant will be understood for eccentric equatorial EMRIs
on a Kerr background.
The 5.5PN function US1

11=2 carries the first major increase
in coefficient complexity, presenting a form that resembles
USch
4 . Given the similarity, and based on prior work in the

Schwarzschild limit [17,20], we would expect the log
coefficients in this term to stem from a χðeÞ-like enhance-
ment function (see [86,87,89]), meaning they cannot be
condensed into closed form. Nevertheless, if this is the
case, such a function would likely yield to a derivation in
terms of multipole moments, which could be expanded to
arbitrary order in eccentricity. Indeed, this was precisely
found to be the case for USch

4 [20]. Despite a structure
identical to that of US1

11=2, knowledge of the multipolar

composition of USch
4 allows us to expand the function to

arbitrary order in eccentricity.
Further bolstering support for this prospect is the fact

that the 5.5PN log term US1
11=2L is exactly proportional to the

leading spin dependence of the energy flux LS1
3=2 [40].

Curious connections between the energy flux series and
redshift invariant series also appeared in the Schwarzschild
limit [20]. In fact, we found that the entire leading
logarithm series of the energy flux (that is, the first
appearance of each new power of logp, including power
0—see [15]) recurred in the redshift invariant, but shifted
four PN orders up. Indeed, the Peters-Mathews energy flux
term was found to be proportional to USch

4L . In this case we
could not find an infinite sequence of PN terms with
proportionality between the two, but the three terms US1

11=2L,

US2
6L, and U

S2
15=2 showed correspondence with L

S1
3=2, L

S2
2 , and

LS2
7=2, respectively. Whether there is a deeper pattern there

remains an open question and will be left to future
investigation.
The next major increase in complexity occurs at 6.5PN

order, with the functions US1
13=2 and U

S3
13=2. We have used the

limited number of coefficients to extract what seems to be
the complete dependence of the polygamma, log κ, and γE
terms on the logarithmic functions US1

13=2L and US3
13=2L. The

fact that both different logarithmic eccentricity functions

are present in the nonlogarithmic terms US1
13=2 is curious,

and we conjecture that it represents the effect of a κ2 term
on a combination of coefficients at an earlier stage of the
derivation. The term US3

13=2 also exposes an additional

irregularity, as it is the third PN order with an a3

dependence, meaning we would naively (following the
pattern in the Schwarzschild, S1, and S2 functions) expect a
series with no transcendentals other than π2. However, we
instead find further appearances of polygamma, log κ, and
γE, again possibly resulting from κ2 terms in the MST
solutions.
At 7PN we see the first occurrence of an S1 function at

an integer order. This function is attached to a factor of π,
which is reminiscent of low-order tail terms in the energy
flux. This makes sense, as the half-integer tail for the
redshift invariant starts at 5.5PN in the Schwarzschild limit,
and USch

11=2 takes a very similar form to US1
7 . It is unlikely that

this series terminates at finite order, but if its multipolar
content resembles that of tail contributions to other observ-
ables like the fluxes, there may a route to an arbitrary-order
expansion. The higher spin terms follow the same general
structure as their counterparts at 6PN, though the lower
range of the eccentricity expansion does not provide us
with enough information to determine closed or exact
functions. It is perhaps noteworthy that the 7PN functions
are markedly simpler than their 6.5PN counterparts, show-
ing no incidence of polygamma or log κ. Additionally, the
logarithmic term only contains one a function in US2

7L, while
U13=2L produced both S1 and S3.
There are a few interesting functions at 7.5PN order as

well. In particular, in the functions S1 and S3, we find the
transcendental terms log κ, ψ ð0;1Þ, and ψ ð0;2Þ, all attached to
eccentricity series that appear to terminate at e8. Moreover,
the polynomials are linearly independent and bear no
apparent relationship to the logarithmic functions US1

15=2L

and US3
15=2L. As mentioned above, it is also noteworthy that

the function US2
15=2, the first appearance of an even power of

a at half-integer order, shows the last connection to the
energy flux expansion. Indeed the infinite eccentricity
series is exactly proportional to the 3.5PN energy flux
term LS2

7=2, though the more fundamental reason behind this
particular connection remains unknown.
The final term at 8PN introduces another combinatorial

increase in complexity. 8PN is the first order with a
dependence in the term S0. In fact, this function appears
to have terms that are independent of a and therefore
belong in the Schwarzschild limit. However, it turns out
that when the limit is taken a → 0, these terms exactly
cancel with polygamma terms that remain nonzero in US1

8 .
Additionally, the term US0

8 appears to truncate at e8. The
functions S1 through S4 display similar behavior (though
with varying degrees of complexity), while the remaining
functions through US6

8 , US8
8 , US2

8L, and US4
8L are rational
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series. Broadly speaking, it appears the maximum power of
a present in a given PN term tends to follow separate
patterns for half-integer and integer orders. The half-integer
orders follow the trend f1; 1; 3; 3; 5; 5…g, while the integer
orders follow the trend f2; 2; 4; 4; 6; 6;…g. At each order,
the higher powers of a tend to be rational, providing
ample opportunity for the derivation of closed-form
expressions.

D. Comparison to numerical data

We can assess the accuracy of these expansions by
comparing them to the numerical calculations of the red-
shift invariant for specific values of p, e, and a. We evaluate
orbits with p ¼ f10; 20g, e ¼ f1=10; 1=5g, and a ¼
f1=4; 1=2; 9=10g in an attempt to survey a range of
parameters. The spin-independent portion of the expansion
was more completely determined in [20], so we supplement

FIG. 1. Accuracy of the redshift invariant PN expansion and its resummations for several individual orbits. The numerical values of
our redshift expansion are plotted against numerical calculations for several orbits with p ¼ 10. Within each plot comparisons are made
for a composite (“Comp”) expansion against the full numerical redshift, as well as for the spin-dependent portion of the expansion
against the redshift’s spin-dependent residual, both with and without the use of the logarithmic summation. Numerical data was supplied
by Zachary Nasipak. Lines in the plots level off when the expansion is accurate to within numerical error bounds.
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the current equatorial Kerr series with additional coeffi-
cients from [20] as needed. In order to better understand the
behavior of the series, we make comparisons in two ways:
(1) We construct a composite series, in which the spin-
independent portion is supplied by the results in [20] to
10PN, and the spin-dependent portion from the present
calculation is added through 8PN. (2) We use only the spin-
dependent portion of the PN series, and we compare this to
the residual numerical calculation found by subtracting the
Schwarzschild redshift off the full Kerr value. Note that in

this case, the fractional error is still computed with respect
to the full (Kerr) redshift value, not the difference. Finally,
we try the logarithmic resummation of each method to
check its effects on convergence [90,91]. These results are
presented for p ¼ 10 in Fig. 1 and for p ¼ 20 in Fig. 2.

From the plots, we can see that the convergence follows a
few trends across values of p, e, a, and PN order. The PN
regime corresponds to larger p by definition, so the
reduction in error from p ¼ 10 to p ¼ 20 matches expect-
ations. The plots for the orbits with p ¼ 20, e ¼ 1=5 reach

FIG. 2. Accuracy of the redshift invariant PN expansion and its resummations for p ¼ 20. Numerical data was supplied by Zachary
Nasipak. Lines in the plots level off when the expansion is accurate to within numerical error bounds (in particular, data points for
p ¼ 20, e ¼ 1=5 were computed to lower accuracy, leading to earlier level off).
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the numerical error threshold around 6PN order, but
we can still observe a steeper trend in these graphs than
in their p ¼ 10 counterparts. Similarly, experience in the
Schwarzschild limit [18,20] has revealed that the PN
convergence tends to worsen with increasing e, which is
generally reflected from the left to the right columns of the
plots (though this fact is somewhat obscured by occasional
irregular jumps).
What is perhaps most interesting is the apparent loss of

convergence with increasing a. Higher values of a permit
stable orbits with smaller values of p, so we might well
expect higher a to improve convergence against the same
value of p. Indeed, Ref. [92] noted a slight increase in series
validity with a for low-order expansions of the energy flux
in the circular-orbit limit. On the other hand, the expansion
of the same quantity to 11PN in [37] revealed some erratic
behavior at higher a, as the high-order terms began to
reduce fidelity to numerical data in the strong field. The
orbits presented here are farther from the innermost stable
orbit than the relevant results in [37], so it is difficult to
extrapolate from this the expected behavior of the redshift
expansion. The worse performance observed at higher a
(at least in these sample orbits) could be the result of an
interaction with the eccentricity dependence (which is
already known to reduce convergence [18,20]), or it could
be a peculiar feature of the redshift or of the chosen orbits.
It is also possible that the PN expansion is more broadly
less convergent in the high spin regime. A clearer answer to
this question requires deeper study, which will be left to
future work.
Beyond these trends, we can note that each orbit with

sufficient numerical accuracy shows monotonic improve-
ment until around the 8PN level, at which point the spin
dependence is lost. This fact implies that the Schwarzschild
portion of the expansion, which remains from 8PN–10PN,
is a poor substitute for the composite expansion. On the
other hand, the steady improvement prior to that point
implies that accuracy could continue to improve through
the use of higher-order expansions. The present work to
8PN and e10 reached the limit of our supercomputing
resources, with the bottleneck step requiring many paral-
lelized jobs each lasting 8–10 days on the UNC super-
computing cluster Longleaf. Nevertheless, it would
certainly be possible to extend the PN order at the expense
of eccentricity, permitting an expansion to, say, 10PN
and e4. As usual, we should recall that the contributions
to the orbital phase evolution by conservative terms are
suppressed by the mass ratio relative to the flux [1],
implying that even a slow-to-converge PN expansion of
the conservative part of the self-force may be useful in close
orbits.
Finally, we note that the comparison of the spin

dependence alone against the residual difference between
the Kerr redshift and the Schwarzschild redshift did not
improve the convergence compared to the simple

composite expansion. However, the residual expansion is
very simple in form, so there may be a computational
advantage to approaching the problem in this manner.

VI. CONCLUSIONS

This work has analytically derived the PN expansion of
the generalized redshift invariant for eccentric, equatorial
EMRIs with a Kerr primary to high order. The series is
computed to 8PN and e10 in eccentricity, with the PN terms
through 6PN found to e16. Most importantly, each term
in the expansion retained exact dependence on the spin
parameter a, greatly advancing past work in the small-a
limit [54]. The depth of the eccentricity expansion allows
us to resum several eccentricity terms into closed-form
expressions. Explicitly, exact expressions were found for
the eccentricity dependence (and spin dependence) of the
full terms U3=2, U2, U5=2, U3, U7=2, U4, U9=2, U5, U11=2L,
U6L, U13=2L. Many additional eccentricity functions
attached to individual powers of a were also found in
closed form. Lastly, we restate the curious connection
between the redshift terms U11=2L;U6L;US2

15=2 and counter-
part terms in the energy flux [40]. The proportionality
likely points to a common source of multipolar depend-
ence, but the deeper significance of this connection will be
left to future work. The full expansions can be found in the
online repositories [60,61].
It is likely that with a deeper expansion in eccentricity,

more terms with rational coefficients throughout the red-
shift series could be manipulated into closed form.
However, for the purposes of transcribing these expansions
into usable EOB models or waveform templates, the more
important task lies in determining the multipolar depend-
ence of USch

5 and then US1
11=2, as these are the last

components with unknown contributions through 5.5PN
order. Once such an understanding is developed, the full
eccentricity and spin dependence of the redshift invariant
series for Kerr equatorial EMRIs will be known through
5.5PN order. Note that the Schwarzschild limit of the
redshift invariant was needed to 9.5PN and e8 to complete a
useful derivation of the scattering angle to 6PN within a
framework that combines PN theory, PM theory, and
EOB theory, implying that these expansions continue to
provide utility to high order [32]. Nevertheless, the extent
of the relationship between BHPT-PN expansions in the
Kerr case and the EOB Hamiltonian is still an active area of
study [54].
By combining our results with the extended

Schwarzschild expansions of [20], we were able to make
comparisons to numerical results in Figs. 1 and 2, finding
agreement to better than 10−4 in most cases. We also
discovered interesting trends in the asymptotic behavior of
the series across values of p, e, and a. While the first two
mostly followed expectations, the last showed a decreasing
convergence with a that could point to a reduced efficacy of
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the expansion in the high-spin regime. Further research into
this question will be left to future work.
The techniques developed here can be utilized to expand

the spin-precession invariant ψ for Kerr equatorial EMRIs
[21,75,76]. This conservative quantity requires the expan-
sion of the self-force, which involves first derivatives of the
metric perturbations, along with the gauge portion of the
metric completion piece [74,93]. In the Schwarzschild case,
the spin-precession invariant incurred a factor of 5–10
greater computational expense, and the expansion process
loses one order in 1=p and three orders in e [21]. Thus, the
expectation is that the PN series there will be less extensive
than what we are able to get from the redshift. Nevertheless,
we should be able to extract some closed-form expressions,
particularly at low orders, which will be fruitful as input for
EOB models with spin.
Finally, with the PN behavior of the equatorial problem

well understood, we will then be able to study the effects of
inclination. EMRI behavior is greatly complicated by the θ
motion, particularly in the source integration. The authors
of [94] were recently able to calculate the fluxes for generic
EMRIs to 5PN/e10. It is expected that several of the
computational simplifications applied here in the equatorial
case will be applicable to generic orbits. In particular, the
MST homogeneous solutions take identical forms in both

cases. Thus, we may have the opportunity to extend those
results. The conservative sector will be more difficult still,
as the metric perturbation expressions are significantly
more cumbersome, and the m summation formulas derived
for spheroidal harmonics in Sec. III relied on simplifica-
tions in the equatorial plane. Nevertheless, the potential
remains to derive yet undiscovered closed-form PN terms at
low orders. These possibilities will all be explored in
future work.
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