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Simple, laminar wake flows require many Fourier modes to represent their dynamics, even
though they are perfectly periodic with a single period. The spatial form of the Fourier modes
alternate between having a maximum value in the center of the wake for odd harmonics and
having a zero crossing in the center of the wake for even harmonics of the primary frequency.
We demonstrate that the harmonic organization and the alternating shapes of the vorticity
Fourier modes for simple wakes are direct results of the skewness of the wake’s vorticity field.
Through analysis of simple mathematical models and investigation of laminar wake data, we
show that having a non-zero skewness guarantees that more than one Fourier mode is required
to represent the dynamics, even for a perfectly periodic signal. We also define the mathematical
relationship between the skewness of data and the phase of the Fourier modes that can represent
that data, and connect those phase relationships to the spatial structure of the Fourier modes.

I. Nomenclature

¢ = Skewness

s = Example signal

0 = Vector of parameters

t = Time

w = Vorticity

X = Streamwise coordinate

y = Vertical coordinate

Jol Density

U = Free stream velocity

L = Chord length

U = Viscosity

f* = Normalized frequency

wo Fundamental angular frequency
a, = Amplitude of r-th harmonic

v = Phase of r-th harmonic

Ay = Amplitude modulation coefficient
Re = Reynolds number

I1. Introduction

HE Fourier transform is a key tool in fluid flow analysis, providing insights into the critical frequencies present in the

flow field and into the spatial structure of the flow at those frequencies. Sirovich and Knight [1] and Foias et al. [2]
applied the Fourier transform to identify the spectral properties of turbulent flows, shedding light on the asymptotic
behavior of eigenfunctions in higher dimensions. Often, harmonic Fourier modes are observed in Fourier transforms of
fluid dynamic signals. Harmonics are multiples of a core fundamental frequency. Having energetic harmonics in a
signal does not not necessarily reflect that a problem has multiple dynamic time scales in the sense of a multi-scale
turbulent flows. Laminar problems with no multi-scale dynamics frequently exhibit harmonic Fourier modes.
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The harmonics that appear in Fourier transforms of a data set are mathematically related to the skewness of that
data [3]. Skewness is a measure of asymmetry in probability distributions. A symmetric Gaussian distribution has
zero skewness, but a signal that has extreme, strong events larger (smaller) than its mean and frequent but weak events
smaller (larger) than its mean will have positive (negative) skewness. Many flows in fluid dynamics have non-zero
skewness. The skewness, ¢, of a given signal, s(¢), is expressed mathematically as the third central moment divided by
the cube of the standard deviation of the signal,

E{s*(6,1)}

E(20.01)°7 M

D(s(0,0)) =
Here, 6 indicates other parameters that a signal s may depend on besides time, and E is the expectation operator. The
importance of skewness in turbulent wall-bounded flows has been previously explored in the context of amplitude
modulation and triadic interactions between dynamically distinct flow features. The amplitude modulation coefficient, R,
is directly mathematically related to the skewness, ¢, of a signal [4, 5]. The amplitude modulation coefficient quantifies
whether small scales are more or less amplified during positive versus negative large-scale fluctuations. If small-scale
fluctuations are stronger when large scales are positive (negative), then the positive (negative) extrema in the signal are
stronger than the negative (positive) extrema, giving positive (negative) skewness. Duvvuri and McKeon [6] extend the
understanding by investigating all triadic scale interactions in turbulent boundary layers and relating those interactions
to skewness.

Much of the research which explores the relationship between skewness and Fourier modes in turbulent flows
has focused on wall-bounded turbulent flows, which exhibit negligible large-scale skewness, as seen in the works of
Schlatter and Orlii [4], Marusic et al. [5], and Duvvuri and McKeon [6]. For those flows, the interaction between
dynamically distinct modes is the largest contributor to the skewness for the majority of the spatial field. The motivation
of this paper is to understand the relationship between skewness and Fourier modes in flows characterized by high
large-scale skewness, such as wake flows like flat plate vortex shedding. The implications of this relationship include a
deeper understanding of the physical meaning of Fourier modes, an improved ability to predict the shape of Fourier
modes apriori, and an improved ability to distinguish Fourier modes that reflect features of large-scale structures versus
genuinely distinct small-scale dynamics. We focus on a laminar flow that has no multi-scale dynamics but does exhibit
harmonic Fourier modes to better highlight the relationship between skewness and harmonic Fourier modes.

ITI. Simple wake flow

In this work, we choose to focus on the relationship between harmonics and skewness in a flow that has significant
large-scale skewness and that has no small-scale dynamics that could yield amplitude modulation or triadic interactions
outside of harmonic relationships. This choice allows us to understand the impact on skewness on the Fourier transform’s
representation of the large-scale dynamics, and will be used as a first step towards ultimately understanding more
complex, multi-scale, skewed flows. We use low Reynolds number flat plate vortex shedding data based on the
immersed-boundary method, as outlined by Goza and Colonius (2017) [7]. The flat plate was positioned at a 35° angle
of attack, with a Reynolds number Re of 100. The spatial grid and time-step dimensions were maintained at Ax = 0.04
and Ar = 0.001 respectively. The simulation was executed for a sufficient duration to ensure the attainment of limit-cycle
dynamics. The flat plate, operating at a stall angle of attack, induced periodic shedding of vortices at the leading and
trailing edges, as visually depicted in the instantaneous snapshots presented in Figure 1.

Figure 1 displays four instantaneous snapshots capturing the vorticity field, offering a visual portrayal of the vortex
shedding phenomenon occurring distinctly at the leading and trailing edges of the flat plate. This is a perfectly periodic
flow field and has only one dynamic scale. To analyze the flow dynamics around the flat plate, we employed the Fast
Fourier Transform (FFT) methodology on the vorticity data.

Figure 2 illustrates the spectral density plot obtained from the FFT analysis. This plot reveals the energy distribution
across various frequencies, with sharp peaks indicating the dominant frequencies that characterize the flow’s dynamic
behavior. The largest peak, at 0.7 frequency represents the frequency of vortex shedding. The three next largest peaks
are at 1.4, 2.1, 2.8 frequencies. These are exactly twice, three times, and four times the vortex shedding frequency.
These peaks indicate the presence of harmonics in the Fourier modes. The frequencies are normalized by the chord
length L and freestream velocity U, expressed as f* = ﬁ.

The four Fourier modes of the vorticity field with the largest amplitude in the power spectrum are shown in figure 3.
From left to right, they correspond to the temporal frequencies of 0.7, 1.4, 2.1, 2.8, such that the first represents the
fundamental vortex shedding frequency, the second its second harmonic, the third a frequency of three times the vortex
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Fig. 1 Vorticity contours of flow past a flat plate at an angle of attack of 35 degrees at four different time
instances.
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Fig. 2 Power spectrum of the flat plate vortex shedding, demonstrating the dominant Fourier modes

shedding, and the fourth a frequency of four times the vortex shedding. The odd modes (the first and third mode shown)
are observed to be fairly top-down symmetric, with a maximum value near the center of the wake and a fairly vertical
orientation of the modes. The even modes (the second and fourth modes shown) are observed to be fairly top-down
antisymmetric, with a zero crossing near the center of the wake and oppositely signed structures above and below. There
is only one dynamic time scale in the original data: the flow is laminar with a perfectly periodic limit cycle. Upon
examining the Fourier modes, three key questions arise: Why do we need a cascade of Fourier modes to represent such
a simple flow? Why do even Fourier modes have up-down anti-symmetry but not odd modes? Are the higher modes
approximately harmonics along the x direction as well as time, and if so, why do they have that structure?
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Fig.3 The dominant Fourier modes of the flate plate vortex shedding



We suggest that skewness is important to answering these questions, and so turn now to the skewness distribution of
this simple flow. To analyze the skewness of the flow, we compute the skewness of the vorticity field data at a particular
(x,y) location in the flow field. In Figure 4a, we highlight a range of locations where skewness is evaluated: three
different x locations are chosen, and the value of skewness throughout the wake is calculated. For reference, in the
background of Figure 4a, an instantaneous snapshot of the wake is provided, but note that skewness is a statistical
quantity calculated across all available time snapshots in the limit cycle of this system. In Figure 4b, the skewness
values computed from the locations marked in Figure 4a are shown. Each streamwise position has a distinct color, and
the skewness values are plotted against the y-coordinate. We see in Figure 4b that at a given streamwise position, the
skewness varies from approximately 1 to approximately -1 as one moves from below the center of the wake to above the
center of the wake. This skewness distribution is observed to be essentially constant in the streamwise direction, as
can be seen by the collapse of the skewness distribution across the multiple colored markers. The vorticity field has
this skewness because negative vortices are consistently shed from the leading edge on the top half of the wake, while
positive vortices are consistently shed from the trailing edge on the bottom half of the wake. As these vortices convect
downstream, there is a persistent and coherent up-down asymmetry in the flow dynamics. This leads to consistently
larger negative excursions than positive excursions in the upper half of the wake, leading to negative skewness for the
top half of the wake and the opposite for the bottom half of the wake. The skewness is not exactly symmetric up-down
due to the angle of attack of the plate that generates a different strength of leading edge versus trailing edge vortices; for
flow past a circular cylinder, for example, we would expect a perfectly symmetric skewness variation with y.
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Fig. 4 (a) Three streamwise locations, x, and multiple vertical locations, y, are highlighted in black, green, and
magenta lines, indicating where skewness was calculated for (b). In (a), vorticity at a single time instance is
plotted in the background for reference, but skewness is calculated across all time instances in the limit cycle. In
(b), the skewness of the vorticity field is plotted against the variation in y for each of the streamwise locations,
which are denoted with the same colors used in (a).

In the ensuing analysis, we seek to demonstrate that the existence of a cascade of Fourier modes, their up-down
(a)symmetry and the streamwise harmonics observed in Figure 3 for the wake flow are a direct function of the skewness
of the wake shown in Figure 4. To clarify these relationships, we turn now to a model problem, and will then finally
relate our findings back to the flat plate vortex shedding problem.

IV. Mathematical relationship between skewness and Fourier modes
We employ a model problem depicting a continuous-time deterministic signal characterized by a harmonic series,
augmented by a noise term,

N M
s (1) = Zar cos (rcuot+7r)+zl<p cos (wpt) . 2)
r=1 p=1



Here a, is the amplitude of each harmonic Fourier mode, with N total harmonics considered. The fundamental
frequency is provided as wq and the phase of each harmonic is given as y,.. The noise is assumed to be dynamically
distinct from the fundamental frequency, wy, such that w, # bwy, where b is any real number and no two ws are
harmonics of each other. We define the coefficient vector 6 as

T
0 =la,a2..an, Y1, Y2, - YN K1, K2, K35 ooy K] 3

such that the signal can now be considered a function of both time and the coefficient vector: s = (6, ).
The skewness, ¢, of the signal s(0, 7) is expressed mathematically as the third central moment divided by the cube
of the standard deviation of the signal,
E{s%(6,1)}
(E{s2(6,0)})3*
For the sake of clarity, we focus first on the numerator and define the numerator of the skewness as N' = E{s3(6,1)}.

In seeking an expression for the skewness, ¢, of the deterministic and periodic signal s(6, 1), we first determine the
expectation, which for a deterministic periodic signal is equivalent to the time average,

D(s(0,1)) = @

(1)0 271/&)()

N=— s°(0,1)dt. (5)
271' 0

Upon substituting the specific form of s(6,t) into the expression for N, the numerator can be decomposed into
several parts, each reflecting different interactions of the sinusoidal components N' = N1 + N, + N3 + Ny, where
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These four parts of the numerator can be categorized into three classes [3]. The mathematical expressions describe
specific conditions under which the integral terms in the equations evaluate to non-zero values due to frequency matching
or mismatching. N] represents a class of integrals with purely cubed sinusoids. By definition, we can say that

Ni =0. (©)

Parts N, and N3 represent parts that contain a squared sinusoid multiplied with another sinusoid of different frequency.
These integrals are only nonzero for specific values of r and i. In cases where i = 2r, parts of N, are nonzero [3].
Consequently, NV, can be expressed as
Ny = L 2r=1 Zizr &aiF (yr vi), ifi=2r D
0, otherwise ,



with

4

Note that N3 is always zero, as are the terms that involve the noise terms in N, because they cannot satisfy a duplicative
relationship between frequencies highlighted in equation 7.

Finally, N is nonzero only when r =i + j, or equivalently when the three frequencies are triadically consistent [3].
Ny can be expressed as:

F(fr yicar) = (—E os(yi) + 3 cos’(,) cos(i) + 5 cos(y,) sin,) sin(y) . ®)

N4 = Zr]'\il Zi]\il,#r 2;\]:1,]#,]'#4 araiajg(yr,yi,yj)s lf-] =r il (9)
0, otherwise ,
with
3. . 3. .
G(Yrsvisvi) = ) sin(y,) sin(y;) cos(y;) + 3 sin(y,) cos(y;) sin(y;) (10
3 . . 3
+ 3 cos(,) sin(yp) sin(y;) + 5 c0s(y,) cos(y:) cos(y,). (1)

The function G(y,,7:,7v;) describes the phase relationships between the three interacting waves, influencing the
magnitude and sign of the interaction based on how the phases align. Note that again, all terms associated with the noise
terms yield results of zero in Nj.

The total skewness of the signal s can therefore be written as

ivzl zl'\:]l,i;tr afai‘/"'(yr, vi), ifi=2r
0, otherwise
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We can learn a lot from this re-written form of skewness. First, note that, for the special case of

So(@, l) = @ COS (w()l‘ + )/0) s (13)

in which the signal can be represented by a single sinusoid, then the skewness of this special type of signal can be
written using only the part of the numerator N, as there is only one frequency. We can therefore immediately say
that the skewness of such a signal is zero from equation 6. We can therefore see that, if a signal s(, ¢) has non-zero
skewness, then it must be represented by more than one mode. Regardless of the level of periodicity of a signal, if it has
non-zero skewness, multiple Fourier modes will be needed to represent that signal.

In order to represent a skewed signal, we specifically need modes that have relationships between their frequencies:
either w; = 2w, or w; = w, * w;. To represent a skewed signal, the Fourier transform of that signal must include
harmonic or triadically consistent modes. The inspection of this model provides clarity on why harmonics appear in
the Fourier transforms of simple fluid dynamics problems. For fluid dynamics systems that have non-zero skewness,
including the laminar vortex shedding problem discussed in section III, the Fourier transform must include multiple
harmonic or triadically consistent modes to reconstruct the flow field.

Next, we ask why the Fourier modes of the vorticity field that we observe in figure 3 have particular types of
symmetry. We note that the first and third modes are approximately symmetric top-down about the center of the wake
(along y = 0), while the second and fourth mode are approximately antisymmetric top-down about the center of the
wake (along y ~ 0). We will argue that the change in sign of skewness as one passes through the wake vertically requires



that the even modes exhibit a phase change of 7 as one moves vertically through the wake, which is consistent with the
antisymmetric shape of the even modes observed.

Returning to the 1D model system, the sign of the skewness is controlled by the functions # and G in equation 12,
as the amplitudes «, are defined to be positive. The phase of the Fourier modes will be different at different points
in space, and it is that phase variation that must represent the positive and negative sign of the skewness at particular
locations. We take three approaches here to give the reader intuition for how ¥ is related to the observed structure of
the first and second Fourier modes. First, we plot the variation of ¥ with the phases of two modes, v, and y;, in Figure
5. Second, we consider two model signals that have a simple phase difference in their relationship and inspect their
differing skewnesses. Finally, we evaluate the phases of the fourier modes of the flow problem of flow past the flat plate.
In each case, we identify that a specific phase change between the first and second fourier mode is consistent with a
change in the sign of skewness.

The function F from equation § dictates the sign variation of the N, part of the skewness signal, and ¥ is a function
of the phases of the Fourier modes. To better understand the variation of ¥, we consider the first two Fourier modes,
which satisfy the relation i = 2r. Figure 5 illustrates the variation of # by varying the phases of two modes with the
relation i = 2r, y, and ;. Both y, and y; are ranged between -2 and 2x. When v, is kept constant, a 7 change in y; is
required to change the sign of . Conversely, when y; is fixed, a 7 change in y, is needed for ¥ to change its sign.
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Fig. 5 Variation of ¥ with v, and y; for i = 2r.

As one moves through the wake of the flat plate vertically, skewness changes sign (Figure 4b) and we argue that
in the fourier modes this is represented with the first mode having an approximately constant phase (equivalent to
v, constant), while the second mode has the needed m phase change. To show this, the vorticity signal in time was
extracted from each point in the domain and an independent fourier transform was performed for each location. From
the phases of these fourier modes, ¥ for modes 1 and 2 and G for modes 1, 2, and 3 were computed at each spatial
location and plotted in Figure 6. After a complex structure near the flat plate, the functions settle in the wake with a
roughly antisymmetric up-down symmetry and slow variation with x, as is expected due to the form of skewness in
the wake. To generate a sign change in skewness and in ¥, Figure 5 suggests that y, can remain constant, while 7;
changes by . Three sets of points were chosen in the wake that have equal and opposite skewness and are vertically
aligned, highlighted in Figure 7(a). The phase of the first four fourier modes were identified at each of the points, and
the differences in their phases was compared within each pair. Figure 7b plots the phase difference within the pairs
of spatial points that had equal and opposite skewness. The phase differences among corresponding odd harmonic
modes were observed to be stay near 0, while the phase differences for corresponding even harmonics approached
180 degrees. This is consistent with expectations from Figure 5. This observation implies a synchronized behavior
among odd harmonics and an anti-phase relationship among even harmonics for points with opposite skewness. The
out-of-phase characteristic in even harmonics is consistent across all examined pairs of spatial points characterized by
opposing skewness values.

We can relate these observations about the sign change in the even temporal harmonics to the structure of the spatial
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Fig. 6 The contour plot of ¥ and G across the entire wake of the flat plate

fourier modes in Figure 3 by first understanding how we interpret the spatial variation of the mode in terms of the
mode’s phase. A mode with a consistent color in a region of space we interpret as having little to no phase change
between those points, while a mode with a change from red to blue in space indicates a phase change of 7 between those
points. As we move vertically down in the wake in Figure 3, the first mode shows little change in phase, while the
second mode shows a 7 change in phase. We can now understand from Figure 5 that this symmetric (no phase change)
odd mode and antisymmetric (7 phase change) even mode structure will succeed in representing the change in sign of
skewness across the wake vertically. Note that this analysis focuses on ¥, but similar analysis can be undertaken for G
and for the subsequent higher modes. Future work will attempt to explain the original phase organization of mode 1;
once the phase organization of the first mode is identified, all other modes’ vertical phase organizations then follow from
the requirement that the modes collectively represent the skewness field.
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Fig. 7 (a) Pairs of points with equal and opposite skewness at three different streamwise positions. Fourier
modes are computed from the time series at each point in (a). The phase difference between the pair of points
with the same marker in (a) for the 4 dominant Fourier modes are shown in (b).

To demonstrate the relationship between fourier mode phase and the overall skewness in a simple and direct manner,



we consider two simple signals,
51(7) = aq cos(wot) + @ cos(2wopt) + a3 cos(3wot) + a4 cos(dwpt) + as cos(Swot) (14)
and
52(1) = aq cos(wot) + ap cos(2wot + 1) + a3 cos(3wot) + ay cos(dwot + 1) + a5 cos(Swot). (15)

The two model signals are constructed using the same five frequencies with the same amplitudes for each harmonic.
The only difference between the two signals is that in s; (), all harmonics have the same phase, while for s,(¢), even
harmonics are shifted by a phase shift of .

Using the final form of skewness(¢) in (12), the skewness for both the signals becomes

3.2 3.2 3 3 3 3
7072 + 705,04 + 712203 + 51304 + 1405 + @235

(3201 (ed))

b5 = ; (16)
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And so ¢5, = —¢s,. The two signals have skewness equal in magnitude and opposite in sign with a phase shift of 7 in
the even harmonics’ phase.

Having connected the skewness of the flow to the need for temporal harmonics as well as the vertical symmetric and
antisymmetric structure of odd and even modes, we end by exploring whether we can connect our observations about
skewness to the observation of higher spatial wavenumbers in x for the higher modes. If so, one may be able to predict
much of the structure of the harmonic fourier modes only from the skewness field. We approach the question of the
spatial variation of the modes in x from a phase perspective, asking how quickly the phase of the modes must change in
x, which provides insight into the approximate spatial frequency of the mode.

For the wake problem, we identified in Figure 4b that the skewness of the flow does not change substantially in
x and in Figure 6 that ¥ and G change slowly with x. We plot the variation of F with x for modes 1 for two cases:
(r=1,i=2)and (r =2,i =4) in Figure 8a(b,c). The phases are evaluated at the points in Figure 8a(a), along a line of
constant y in the wake (we acknowledge that the wake is also expanding, so there likely is a different curve through space
that would better line up with a constant 7). We observe that # remains almost constant in the developed wake region.

Knowing that ¥ is relatively constant with x, we turn to Figure 5 to understand the relationship between ¥ and the
phases of the fourier modes along x. In Figure 5, we observe that lines of constant ¥ have a slope of two. To stay on
lines of constant ¥, y; must change twice as quickly as vy,. This rate of phase change can be expressed in terms of
frequency. If mode 1 changes by 7/2 over some distance, mode 2 must change by 7, indicating that mode 2 has a spatial
frequency twice that of mode 1. This explains the spatial harmonics observed as we move in the streamwise direction;
the doubling of the spatial frequency alongside the doubling of the temporal frequency is necessary to represent a flow
along directions of the flow with no skewness variation.

bs, = a7

V. Discussion

From these analyses, we argue that many features of fourier modes can be deduced apriori from inspection of the
skewness distribution of this flow. Because there is non-zero skewness, we immediately can predict that we will need to
use multiple harmonics to reproduce this flow with a fourier series, based on equation 6. From the spatial distribution of
skewness, which features a change of sign as one moves vertically through the wake, we can predict a phase variation in
the even Fourier harmonics, yielding a symmetric spatial structure about the center of the wake in the odd harmonics
and an antisymmetric spatial structure about the center of the wake in the even harmonics. From the constancy of the
skewness of in the streamwise direction, we can say that the fourier modes with harmonic relationships in time will
have an equivalent spatial harmonic structure. The piece that we cannot determine apriori from this analysis is the
fundamental frequency of the first mode and its spatial wavenumber; the frequency and wavenumber are known to be
related to the speed of the flow and the size of the obstacle through the Strouhal number [8]. With that physical insight
in hand, alongside this analysis, we suggest that the fourier modes could be predicted without their calculation.

We also highlight that the higher harmonics are not truly separate scales of dynamic relevance, but instead are
‘corrections’ to the first mode that build the appropriate skewness and asymmetry into the final reconstruction. In future
work, we will explore whether there are alternative basis functions that can more succinctly represent skewed flows by
including skewed behavior in the basis vectors.
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Fig. 8 (a) Locations in the wake at constant y for which the variation of 7 with x was calculated for two cases.
(a) For Mode 1 and Mode 2, where r =1 and i = 2. (b) For Mode 2 and Mode 4, wherer =2 and i = 4

VI. Conclusions

Our manuscript began with performing a Fast Fourier Transform (FFT) on the vorticity data of the flat plate vortex
shedding. This analysis revealed four distinct peaks, with each subsequent peak representing consecutive harmonics of
the fundamental frequency. Additionally, the spatial Fourier modes associated with these specific frequencies were
presented. The skewness of the wake of a flat plate at an angle of attack was studied as a function of space, and the
skewness at different spatial locations in the wake exhibited consistency in the streamwise direction and a meaningful
distribution in the vertical direction, corresponding to the sign of shed vorticity. An analysis of the mathematical form
of skewness for a general signal revealed its relationships to the harmonics of the signal. It was observed that only
modes with specific relationships can represent the overall skewness of the signal. From analysis of this relationship,
we identified that a single Fourier mode is not able to represent a skewed signal, and that harmonics and triadically
consistent modes are required to represent a skewed signal. The implications of the skewness / Fourier mode relationship
on the spatial structure of Fourier modes was also considered. By examining the variation of ¥ with the phases of
the first and second Fourier modes, analyzing model signals with simple phase differences, and evaluating the phases
in the flow past a flat plate, we identified a consistent phase change linked to skewness sign changes. Spatial points
with opposite skewness values exhibited in-phase behavior for odd harmonic Fourier modes and out-of-phase behavior
for even harmonic modes. The two-dimensional Fourier modes demonstrated up-down symmetry in odd harmonic
modes and up-down anti-symmetry in even harmonic modes, highlighting the physical interpretation of Fourier modes
in skewed flows. Modes that were harmonics in time were found to also be harmonics in their spatial wavenumber along
curves of constant skewness, which in this flow was approximately horizontal lines.Cumulatively, these findings shed
light on the intimate connection between the harmonics in Fourier modes and the underlying skewness of the signal and
provide insight into why such a simple flow requires a cascade of harmonics to be appropriately represented with a
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Fourier transform. Future work is suggested to generalize some of the analysis shown here to higher modes and to
explain the structure of the first mode. We also suggest that the skewness field and simple physical scaling laws may be
sufficient to predict the Fourier modes without their computation, and the demonstration of such predictive capability is
left for future work.
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