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ARTICLE INFO ABSTRACT

Keywords: With the fundamental objective of establishing the universality of the Griffith energy com-
Fracture petition to describe the growth of large cracks in solids not just under monotonic but under
Fatigue

general loading conditions, this paper puts forth a generalization of the classical Griffith energy
competition in nominally elastic brittle materials to arbitrary non-monotonic quasistatic loading
conditions, which include monotonic and cyclic loadings as special cases. Centered around
experimental observations, the idea consists in: (i) viewing the critical energy release rate G,
not as a material constant but rather as a material function of both space X and time 7, (ii)
one that decreases in value as the loading progresses, this solely within a small region Q,()
around crack fronts, with the characteristic size # of such a region being material specific,
and (iii) with the decrease in value of G. being dependent on the history of the elastic fields
in Q,(¢). By construction, the proposed Griffith formulation is able to describe any Paris-law
behavior of the growth of large cracks in nominally elastic brittle materials for the limiting case
when the loading is cyclic. For the opposite limiting case when the loading is monotonic, the
formulation reduces to the classical Griffith formulation. Additional properties of the proposed
formulation are illustrated via a parametric analysis and direct comparisons with representative
fatigue fracture experiments on a ceramic, mortar, and PMMA.

Paris law
Energy methods
Brittle materials

1. Introduction

A fundamental problem in mechanics that has remained open for decades is the description of the growth of large cracks in
solids that are subjected to arbitrary non-monotonic loading conditions, which include monotonic and cyclic loading conditions as
the two limiting cases that, by far, have received the most attention. In this paper, we propose to address this fundamental problem
by formulating a generalization of the classical Griffith energy competition (Griffith, 1921) to describe the growth of large cracks in
nominally elastic brittle materials under general quasistatic loading conditions. The proposed formulation aims thus at establishing
the hegemony of the Griffith energy competition as the principle that describes the growth of large cracks in solids, irrespective of
how loads are applied. More broadly, the formulation aims at taking a further step in the quest of a universal macroscopic theory
of fracture.

In a nutshell, as schematically depicted in Fig. 1, the idea behind the proposed formulation — which, as elaborated below, is
centered around a vast body of experimental observations that have been gathered since the 1950s for a variety of nominally elastic
brittle materials ranging from rubbers, to ceramics, to rocks — is threefold:
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Fig. 1. Schematic of the growth of a large crack I'(+) in a nominally elastic brittle material under non-monotonic loading conditions according to the proposed
Griffith formulation. The Griffith criticality condition (1) governs when the large crack grows. In that condition, the critical energy release rate G, is not a
constant but rather a material function of the loading history, as characterized by an internal memory variable g(¢) of the form (2). Specifically, the value of G,
decreases as the loading progresses. It does so only within a small degradation region €,(t), of material-specific characteristic size #, around the evolving crack
front, while it maintains its initial value elsewhere in the body.

Much like for monotonic loading, the Griffith criticality condition

- =g @
or Q{(t)

is taken to govern when large cracks grow, with the caveat that the critical energy release rate G, is not a material constant
— as assumed under monotonic loading — but rather a material function of both space X and time ¢,

in particular, G, is a non-negative material function that decreases in value as the loading progresses, this solely within a small
degradation region

Q1)

around crack fronts, with the characteristic size # of such a region being material specific,
and with the decrease in value of . being dependent on the loading history, as described by a suitably defined internal
memory variable, of the generic form

g = / M(E@X, 1)), 7)dXdr, (2)
o Ja,m

that keeps track of the history of the strain field E(u) around the evolving crack fronts, from the start at time ¢ = 0 until the
current time 7 € [0,T].

Making use of standard notation, the left-hand side in (1) stands for the change in potential energy W in the body with respect to
an added surface area I" from an existing crack, while u = u(X, ) in (2) stands for the displacement field.

By now, since the pioneering cyclic loading experiments and analyses of Thomas (1958) on rubbers, Paris (1962) on metals,
and Evans and Fuller (1974) on ceramics, there is plenty of experimental evidence that shows that a criticality condition of Griffith
type — that is, a criticality condition based on the energy release rate —0W/dI' reaching some critical value — can be used to
describe the growth of large cracks in nominally elastic brittle materials subjected to non-monotonic loading conditions; see, e.g., the
reviews (Mars and Fatemi, 2002; Gehling et al., 2023) for rubbers and (Ritchie and Dauskardt, 1991; Munz and Fett, 1999) for
ceramics. The proposed Griffith criticality condition (1) is consistent with this evidence and makes it precise that it is the value of a
loading-history dependent material function' G, — and not just a material constant — that determines the growth of large cracks.

At present, there is also plenty of experimental evidence that shows that the region around the fronts of large cracks in a nominally
elastic brittle material that is mechanically loaded can experience damage before the cracks grow. While this damage can be of
different natures depending on the material, it involves invariably the breaking of molecular bonds; see, e.g., (Ducrot et al., 2014;

1 The creation of new surface by fracture is typically accompanied by the dissipation of energy by deformation (e.g., viscous and/or plastic deformation)
around the crack front, as well as possibly elsewhere in the domain occupied by the body of interest, because of the large deformation rates and the large
deformations taking place around the crack front. For nominally elastic brittle materials, these additional sources of energy dissipation are negligible relative
to that associated with the creation of new surface itself. In the event that they are not negligible, they would need to be taken into account. Still, in that
scenario, the definition of G, would remain the same as that given here, as G, describes the intrinsic energy dissipated by the creation of new surface, irrespective
of additional dissipation phenomena that may take place around the crack front; see, e.g, the recent analysis of Griffith fracture in viscoelastic elastomers
by Shrimali and Lopez-Pamies (2023).
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Slootman et al., 2020) for rubber, (Ritchie, 1999; Ritchie and Launey, 2013) for ceramics, and also (Celestine et al., 2014) for more
complex materials. This implies that the surface energy density associated with the growth of the cracks — that is, the value of G,
around crack fronts — will be smaller under a non-monotonic loading path, if damage does indeed occur, than under a monotonic
one, since the eventual creation of new surface then would involve breaking a smaller number of bonds. The proposed Griffith
criticality condition (1), where G, decreases over a region Q,(¢) of size £ around crack fronts as the loading progresses, is consistent
with this evidence.

In the sequel, for clarity of exposition, we restrict attention to the basic setting of small-strain kinematics and linear elastic brittle
materials; the more general case of finite deformations and nonlinear elastic brittle materials will be considered elsewhere.

We begin in Sections 2 and 3 by presenting the main ideas behind the proposed formulation for the elementary problem of a
plate containing a crack in its center that is subjected to a cyclic tensile load. This is a setting that allows for a fully explicit analysis
and hence proves particularly instructive. The formulation is then put forth in its general form — that is, as it applies to large cracks
in bodies of arbitrary geometry, made of a linear elastic brittle material, that are subjected to arbitrary non-monotonic quasistatic
loading conditions — in Section 4. In Section 5, we provide a first set of validation results by comparing the predictions generated
by the proposed formulation with representative fatigue fracture experiments on a silicon nitride ceramic (Gilbert et al., 1995),
mortar (Wang, 1991), and PMMA (Clark et al., 1990). We close by recording a number of final comments in Section 6.

1.1. A comment on previous related approaches

Before proceeding with the presentation of the proposed Griffith formulation per se, it is instructive to provide a summary of
related approaches in the literature. There are essentially two types: (i) bottom-up and (ii) top-down approaches. Notably, these two
approaches have been pursued independent of one another. What is more, both of them have been pursued with limited guidance
from experimental observations.

Bottom-up approaches. The first theoretical attempt to describe the growth of large cracks in solids subjected to non-monotonic
loading conditions by means of a de facto evolving critical energy release rate G, over a small region around crack fronts appears
to be that of Weertman (1966); see also Weertman (1973). The focus of this author was in metals and so he proposed to link the
decrease of G, to the distribution of dislocations around crack fronts during cyclic loading by making use of a theory that had been
previously shown to agree with the classical Griffith criticality condition for the growth of a large crack in a plate under monotonic
tension (Bilby et al., 1963). Precisely, for the elementary problem of a plate containing a crack of size 2a in its center that is subjected
to a cyclic tensile stress of constant maximum and minimum values ¢,,,, > 0 and 6,,, = 0, Weertman (1966) obtained the Paris law

Aa=C <amax \/;>4

for the increment in the half size of the crack per loading cycle, where C is a known constant (not spelled out here). This result
happened to be in agreement with a wide range of data available at the time for metals (Paris and Erdogan, 1963). In spite of this
agreement, the approach has not been extended to general crack geometries and boundary conditions, presumably because of the
technical difficulties involved.

About four decades later, based on a one-dimensional analysis presented by Jaubert and Marigo (2006), which in turn was
motivated by earlier numerical studies (Yang et al., 2001; Nguyen et al., 2001; Maiti and Geubelle, 2005), Abdelmoula et al. (2010)
proposed to consider a de facto evolving critical energy release rate G. over a small region around a crack front by making use of
a cohesive fracture description of the growth of the crack. In space dimension two, for an isotropic linear elastic material with a
cohesive fracture behavior of Dugdale type (Dugdale, 1960), under several additional assumptions (including certain irreversibility
and certain scaling of the length over which cohesive forces are active around the crack front), these authors showed that their
framework described the growth of a large crack under monotonic loading according to the classical Griffith criticality condition,
at the same time that, under cyclic loading, it described the growth of the crack according to a formula of the form

da 4
— = CAKj7,
dN I

where a is the length of the crack, N is the number of loading cycles, C is a constant, and AK; is the range of stress intensity
factors in Mode I resulting from the applied cyclic loading. That is, much like Weertman (1966), Abdelmoula et al. (2010) obtained
a Paris law behavior with exponent 4. At present, the reasons for this particular exponent are still unclear. By the same token, it
is also not known whether other exponents could be obtained by changing the type of assumed cohesive forces. Addressing these
open problems proves crucial to be able to model the growth of cracks in nominally elastic brittle materials at large, since many
such materials (e.g., rubber, ceramics, rocks) typically exhibit Paris laws with exponents that differ significantly from 4; see, e.g., the
monograph by Suresh (2004).

In short, while limited in scope and different in their description of the microscopic damage that takes place around crack fronts
due to mechanical loading, the works of Weertman (1966) and of Abdelmoula et al. (2010) provide insightful examples of bottom-
up approaches that illustrate: (i) that an evolving critical energy release rate G, can, in principle, be linked directly to microscopic
damage mechanisms localized around crack fronts and (ii) that such an evolving critical energy release rate G, can describe crack
growth both under monotonic and cyclic loading conditions.
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Top-down approaches. More recently, within the regularized setting of phase-field models of fracture, top-down approaches have
also been proposed in which the critical energy release rate G, is not kept constant but rather is allowed to evolve in a manner that
is not derived from microscopic damage mechanisms but instead is prescribed from the outset and fitted to macroscopic data from
cyclic loading tests.

A review of such a type of models — as well as other types of fatigue phase-field models (Lo et al., 2019; Schreiber et al.,
2020) — has been recently presented by Kalina et al. (2023); they include, for instance, the models of Mesgarnejad et al. (2019),
Carrara et al. (2020), Hasan and Baxevanis (2021), Grossman-Ponemon et al. (2022). Invariably, all these models propose the use
of a critical energy release rate G, that decreases pointwise in space as the loading progresses depending on the history of the stored
elastic energy density in the entirety of the domain occupied by the body. This dependence, however, appears to be at odds with the
very definition of G, — which physically stands for the energy dissipated per unit area of the crack surface that is created — and with
the experimental observations mentioned above, which, again, indicate that the decrease of G, is restricted to a material-specific
small region around crack fronts.

Most recently, motivated by the aforementioned works on phase-field models, within the setting of sharp fracture in isotropic
linear elastic materials in space dimension two, Alessi and Ulloa (2023) have also proposed the prescription of a critical energy
release rate G, that decreases pointwise as the loading progresses depending on the history of the stored elastic energy density.
Beyond the pointwise decrease of G,, another key aspect of their proposed functional dependence is the removal of the singularity
of the stored elastic energy density at crack fronts. Having to know what the singular fields are at the crack fronts would appear to
make the approach impractical beyond isotropic linear elastic materials in space dimension two.

2. The elementary problem of a large crack in a plate under cyclic tension

2.1. The problem

*

B P(t)
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Fig. 2. Schematic of a large thin rectangular plate, containing a large pre-existing crack of initial size 24 in its center, that is subjected to a linear cyclic tension,

with constant maximum stress ¢,,,, > 0, constant minimum stress o,,, = 0, and cycle duration T,.

‘max

Initial configuration and kinematics. Consider a specimen in the form of a large thin rectangular plate of width L and height H in
the e, and e, directions and constant thickness B in the e; direction; see Fig. 2. The specimen contains a large pre-existing central
crack of initial length 24 — and hence of initial area 2AB — in the e, direction, such that L, H > 2A and 24 > B; that is, the
crack is much smaller than the in-plane dimensions of the plate, but much larger than its thickness. Here, {e,,e,,e;} stands for the
laboratory frame of reference. We place its origin at the geometric center of the specimen so that, in its initial configuration at time
t = 0, the specimen occupies the domain

Q={X:XeP\I,}
where

L
P={X: X, | <=
X< 3

H B B
XIS T X <) and Tp={X:IX|<AX=01X<3 ).

At a later time t € (0,T], due to the applied boundary conditions described below, the position vector X of a material point in the
specimen will move to a new position specified by

x=X+uX,1),
where u(X, ¢) is the displacement field. We write the associated strain at X and 7 as

E(u) = % (Vu+ VuT) .
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Constitutive behavior. The specimen is taken to be made of a homogeneous, isotropic, linear elastic brittle material. Its mechanical
behavior is thus characterized by three intrinsic properties: (i) its elasticity, (ii) its strength, and (iii) its critical energy release rate.

For the problem at hand, the strength does not play a role and hence there is no need to prescribe it here (Lopez-Pamies, 2023).
The notion of critical energy release rate G, is addressed in Section 3 below. As for the elasticity, granted homogeneity and isotropy,
the elastic behavior of the material is characterized by the stored-energy function

E Ev

W (E(u) = trE2 + trE)?,
E = " o2 P
where E and v are the Young’s modulus and the Poisson’s ratio, or, by the same token, by the stress—strain relation
E Ev

_w _
oX.n =g ®wW =k i)

Applied loading conditions. The specimen is subjected to a cyclic tensile force, of cycle duration 7, and constant amplitude P,,, > 0,
applied at the top 0Q7 = {X : |X,| < L/2, X, = H/2, |X3| < B/2} and bottom dQ” = {X : |X,| < L/2, X, = —H/2, | X;| < B/2)}
boundaries in the e, direction, of the linear form

(trE)L

T
2[L—<N—1>] Prge (N=DT, <t <(N = DT, + =

PO=1 ¢ , ,
2[—TL+N] P (N =T, + £ <1< NT,

c

where N € Z* is the number of loading cycles. This results in the global cyclic tensile stress

1 Tc
P(t) 2 I:FC - (N - 1)] O maxs (N - l)TC <t< (N - I)TL. + 7
o(t) = — =
BL

T,
2[-L + N| oy (N-DT, + = <t <NT,
T, / 2

where ¢,,,. = P,,./(BL); see Fig. 2.
The cycle duration T, in (3) is assumed to be long enough that inertia can be neglected. The value of the maximum stress ¢,,,, > 0
is also assumed to be large enough that body forces can be neglected.

2.2. The growth of the crack according to experimental observations

According to numerous experimental observations in a variety of nominally elastic brittle materials, provided that the applied
maximum stress o,,,, is large enough to lead to crack growth, but not too large to lead to brutal crack growth, the crack in the
specimen will grow symmetrically in the +e; directions according to a Paris law of the form

m
;—}‘\’/ = CAKY = C (0 /7a) %)
where a(f) stands for the half size of the crack at the current time 7, C and m are positive constants, and where we recall that AK;
denotes the range of stress intensity factors in Mode I resulting from the applied cyclic loading (3). In the elementary case at hand,
granted that the crack remains far away from the boundaries of the plate, AK; = ¢,,,.1/74a; see, e.g., (Tada et al., 1973).
Now, assuming that the growth of the crack is differentiable in time + = NT, (more on this below), the ordinary differential

Eq. (4) implies that the half size of the crack grows according to

m
< q )l/P N p= )
AP + =t wit] if m#2
m
a(t) = T" q=(1_5>c(0-max\/;)m . (5)
CoZgx
Ae T ! it m=2

Remark 1. In practice, the half size a(¢) of the crack would be measured every certain number of cycles from which an average
da/dN would then be computed. Thus, the direct measurement would be that of the evolution (5) of the crack size and not that of
its rate (4).

Remark 2. The Eq. (5) typically applies up to the instance in time, say T,, when the crack becomes unstable under monotonic
loading, in the present case, at most up to

7. [( c.eY .
“ (= A if m#2
T=T, = q ; O max™ o
¢ In - if m=2
Col m 62, A

In this last expression, as elaborated in the next section, G, denotes the initial critical energy release rate of the material.
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t (10*xs)

Fig. 3. Representative time-discontinuous evolution of the half size (5) of a crack, of initial half size A = 10 mm, by jumps of constant size # = 20 pm. The
result pertains to the case of 6,,, =25 MPa, T, =0.02 s, T =T, = 5.6615x 10* s, E =300 GPa, G, = 120 N/m, m = 18, and C = 1.01 x 107! MPa™!® m™8, which

c

are representative values for silicon nitride (Ritchie and Dauskardt, 1991).

2.2.1. Crack growth by jumps

An aspect that is fundamental in understanding how cracks grow under cyclic loadings, but that still remains unresolved — and
that, surprisingly, is seldom discussed in the literature — is whether, within the continuum view of matter, cracks grow via a continuous
or via a discontinuous process (i.e., by jumps) in time. If the former, then Eq. (5) would apply for all + € [0, T]. If the latter, then
Eq. (5) would apply only at time discrete values

t; €{0=10.1y, ...ty 15}, 6)

those at which the crack jumps.
In this work, we shall favor the view that under cyclic loading conditions cracks grow by jumps. More specifically, we consider
that under cyclic loading conditions the growth of cracks occurs by jumps of length scale #, a length scale that is material specific.?
By way of an example, Fig. 3 provides the plot of such a time-discontinuous growth process for a crack of initial half size
A = 10 mm for the case of 6,,, = 25 MPa, T, = 002s, T = T, = 5.6615% 10* s, E = 300 GPa, G, = 120 N/m, m = 18,
C =1.01x1072! MPa~'® m~8, and # = 20 pm, which are values representative of the ceramic silicon nitride (Ritchie and Dauskardt,
1991). For this example, since m # 2, note that the discrete times (6) at which the crack jumps are given by the recurrence formula

T,
fip1 = ;C [(atp+£)" = AP]  with  a(ty) = a(0) = A, @)
j=0,1,....J —1,J, where, again, a(), p, g are given by relations (5),.

Remark 3. Physically, # corresponds to the length over which the material is damaged around the crack fronts during the loading
process, which is expected to correlate with the largest heterogeneity length scale of the material. For typical rubbers, this length
scale is in the order of 1 pm (Slootman et al., 2020). For ceramics, on the other hand, it is typically in the order of 10 pm (Ritchie,
1999). For other materials, this length scale could be even larger. For instance, for mortar, it is in the order of 1 millimeter (Giaccio
and Zerbino, 1998).

3. A Griffith description of the growth of the crack in the elementary plate problem

Having established that for the elementary problem presented above the crack grows according to Eq. (5) in general, and having
posited that, in particular, the crack grows discontinuously in time by jumps of length scale #, we now turn to working out how
such a growth can be described by the type of Griffith formulation outlined in the Introduction.

2 Interestingly, growth of cracks by jumps has also been observed in some models for elasto-plastic materials under monotonic loading conditions; see, e.g., (Dal
Masso and Toader, 2022).
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3.1. The Griffith criticality condition

Guided by experimental observations, we begin by postulating that the crack can only grow whenever the energy release rate
—oW/or reaches a critical value:
“or =%

For the problem at hand, we recall that the energy release rate specializes (assuming, again, that the crack remains far away
from the boundaries of the plate) to the classical result

ow K (“(’)m>2

or E E ’ ®

3.2. The critical energy release rate G. as a material function that evolves around the crack fronts

Next, also guided by experimental observations, we consider that the critical energy release rate G, of the material is not a
material constant, but rather a material function of both space and time that evolves from its initial uniform value

¢.X,00=G, forall XeQ
at time 7 =0 to
CX,1) = (1-0,(X, t)) G, +0,X,nDX,nG,, X,1)eQx(0,TIl,

as the loading progresses. Here,

1 if XeQ(
0, X.1) = { 0 1else “ ©)

stands for the characteristic or indicator function of the (collective) region Q,(r) where the value of the critical energy release rate
evolves and, more specifically, decreases. We refer to Q,(r) as the degradation region. The evolution of the value of the critical
energy release rate in this region is described by a degradation function D(X,7). For now, this function is required to satisfy the
basic property

0<DX, <1, (10)

3.2.1. The degradation region Q,(t)

At this stage, to make further progress, we must specify the degradation region Q,(r) in (9). Initially, at time ¢ = 0, the location
and the length scale of this region are clear. Indeed, the initial degradation region Q,(0) is comprised of two domains around the
two crack fronts, both of which are of the length scale ¢ introduced above over which the material is initially damaged. As for the
shape of these domains, at present, there is little experimental guidance. Our preliminary results indicate, however, that domains of
different shapes lead essentially to the same results, so long as they have the same characteristic size # and are equiaxed. Accordingly,
we consider that the initial degradation region Q,(0) is comprised of two through-plate-thickness cylinders of diameter # centered
at +(A + Z/2) in the e, axis, namely,

2 2
¢ ¢ B
QAO):{X: (X1i<A+E>> +x§<<5> ,|x3|<5}. a1

As the crack fronts advance during the loading process, so does the degradation region Q,(7). In view of the inherent smallness
of the material length scale #, we do not consider past domains where the degradation has taken place to be part of the degradation
region Q,(7) at the current time 7 € (0, T']. Instead, we consider that the degradation region Q,(¢) is exclusively comprised of domains
of length scale # around the current crack fronts. Precisely, much like for the initial degradation region (11), we consider that the
degradation region Q,(7) at the current time 7 € (0, 7] is comprised of two through-plate-thickness cylinders of diameter # centered
at (a(r) + ¢/2) in the e, axis. That is,

2 2
¢ ¢ B
Q,;(r):{x: <X11<a(t)+5>> +X§<<5> ,|X3|<5}. (12)

Remark 4. For the plate problem at hand, wherein the crack grows by jumps at time discrete values 1; € {0 = 1o, 1), ....1;_,1;},
the degradation region (12) is such that

QN =Qut),  t;<t<tyy,  with Q) ()| Q(t;) =0

forall j=0,1,....,J —1,J.
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Fig. 4. The example (17) of a piecewise linear degradation function D(r) that leads to a Griffith criticality condition (16) that describes exactly the crack growth
presented in Fig. 3 for a silicon nitride. (a) Plot of D(7) over the entire loading interval [0,5.6615 x 10*] s. (b) Close-up over the interval [2.00 x 10%,2.50 x 10*] s.

3.2.2. The degradation function D(X, 1)

Having specified the degradation region (12), we can now proceed to specify additional properties for the degradation function
D(X,1). Leveraging once more the inherent smallness of the material length scale #, it is natural to consider that the value of the
critical energy release rate G.(X, 1) is uniform in space for X € Q,(r). In other words, it is natural to consider degradation functions
D(X, 1) that are independent of X. With a slight abuse of notation, we write

DX, 1) = D). (13)

In view of Remark 4 above, it is also natural to consider that there is no degradation in Q,(r) at ¢t = ¢ s right after the crack has
jumped, and that the ensuing degradation in each Q,(z;) should be monotonic. In short, when put together with the property (10),
we have

0<DN <1, D@)=1, D)) 2D(ry forallr, <7y <z, <tj, (14)

for all time discrete values t; € {0 =t,,...,1;,_,7;} at which the crack jumps.

The constitutive choices (13)-(14) — together with the postulate that the crack grows only whenever the energy release rate
(8) reaches a critical value — are entirely consistent with the premise that the crack grows via a discontinuous process in time by
jumps of length scale #. Indeed, the constitutive choices (13)-(14) imply that from one instance in time ¢ ; to the next ¢ i+ the crack
will grow by jumping in an increment of size #, from a(t) to a(t;,,) = at;) + ¢, provided that

2
(G(t)\/ira(t)> (o(t;11) /7))’
E E :

lim DG, = li = 15
z/lr,n-ll )G, Mltlrgl (15)
That is, according to the Griffith criticality condition
2
oW (6(t)\/7td(t)>
- = = ((1-6,X,) G. +0,(X,) D()G,) =G.(X,1) , (16)
ar E Q1) Q1)

any choice of degradation function D(r) that satisfies the properties (14) and (15) describes exactly any given crack growth (5) in
the plate.

Remark 5. Note that the condition (15) only requires the degradation function D(¢) to approach the value of (5(¢;,,)+/7a(t j))z /(G.E)
in the limit as t /' #;,,. It does not place any restrictions on D(f) otherwise.

By way of an example, Fig. 4 provides the plot of a specific choice of degradation function D(r) satisfying (14)-(15) that describes
the crack growth presented in Fig. 3 for a silicon nitride. In this case, D(r) is chosen to be the piecewise linear function

1, 1=t
D(t) = 1 (o0t V/7a))’ : an

1- 1- (t—t;), t.<t<t,
i’ J J+l
1 G.E
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where we recall that the applied stress (), the half size a(r) of the crack, and the discrete times ¢ ; at which the crack jumps are
given by the expressions (3), (5), and (7), respectively.

From Fig. 4 it is of note that the limiting values lim, 1, D(z) are ordered such that lim, », D(f) < lim, o D(1). This is consistent
with the expectation that, as the crack size increases, so does the energy release rate at the discrete times ¢; at which the crack
jumps, and hence a smaller degradation of the critical energy release rate is sufficient for the crack to grow.

3.3. A constitutive prescription for D(t) = D(g(t)) in terms of an internal memory variable g(t)

As alluded to in Remark 5 above, the properties (14)—(15) are satisfied by a large class of functions. Given that the degradation
function D(r) describes the physical process by which the critical energy release rate G.(X,r) decreases around the crack fronts as
a result of the large strains and large stresses that localize there, we posit that it can be described constitutively in terms of some
measure of the history of the elastic fields around the crack fronts. Precisely, we posit that there is a material degradation function
D(g) such that

D =D(g®), 18)

where g(7) stands for an appropriate measure of the history of the elastic fields, or internal memory variable, in the degradation
region Q,(7). In this subsection, we introduce a particular form for this internal memory variable and the associated constitutive
prescription (18).

3.3.1. The internal memory variable g(t)
We begin by considering internal memory variables within the large class

0, 1=t
n= ! s . (19)
o / Hf@)H @) H(E@)g(n)dr, 1, <1<t
t/
where, again, t; € {0 =1,1,,...,1;_y,t,} stand for the time discrete values at which the crack jumps, and where #(-) denotes the

Heaviside function, the “dot” notation stands for the material time derivative (i.e., with X fixed), and f(¢) and g(¢) are suitably
selected functions of the elastic fields in the degradation region Q,(1).

By definition, internal memory variables of the form (19) are non-negative functions of time, monotonically increasing in each
time interval ¢ € (¢;,1;,,), that account for the loading history in a cumulative way. This accumulation — which resets to 0 at each
1, €{0=1,1,....1;_;,1,}, right after the crack has jumped and a new degradation region Q,(t;) has formed — occurs only when
g(#) is both positive and increasing in time and, in addition, a condition of the type f(¢) > 0 is also satisfied.

The choice of functions f(t) and g(t) describing the elastic fields that lead to damage around the crack fronts. Based on experimental
observations, the choice of functions f(r) and g(r) in (19) should be such that they:

« are bounded, and
« correlate with the local strains E(u) — or, equivalently, the local stresses o(X, ) — in the degradation region Q, ().

The first of these requirements ensures that f(¢) and g(s) can be viewed as signed measures. The second one ensures that these
measures increase when the local strains — or, equivalently, the local stresses — increase, consistent with experimental observations.

In view of the above two requirements, arguably the simplest and, at the same time, the most natural choices for f(¢) and g(r)
are the average of the trace of the strain tr E(u) over the degradation region Q,(r) and the average of the stored-energy function
W (E(u)) over the degradation region Q, (), normalized by the new area of the crack that would be created in that region, say A,
namely,

@) = / tr E(u) dX (20)
Q1)
and

a=— [ wEm)ax. @1)
-Af Q1)

Remark 6. The choice (20) for the function f(r) in the internal memory variable (19) allows to distinguish between loadings for
which the volume around crack fronts increases (f(f) > 0) from those for which the volume decreases (f(f) < 0). Damage around
crack fronts is known to occur mostly, if not exclusively, when the volume of these regions increases.

Remark 7. The choice (21) for the function g(¢) in the internal memory variable (19) provides a measure of the strains that localize
around crack fronts. Damage around crack fronts is known to increase when the strains — and hence the elastic energy — in these
regions increase.

Remark 8. The normalization by the added crack area A, in (21) yields a quantity of units force/length, exactly as those of the
critical energy release rate G .(X, ).
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Remark 9. The internal memory variable (19) with (20)-(21) is fundamentally different from the types of internal memory variables
that have been recently used in the phase-field models of fatigue mentioned in the Introduction in that it is not a pointwise variable
taking different values at different material points X, instead, it is a volume average over the degradation region Q,(7).

The specialization of the internal memory variable (19) with (20)—(21) to the plate problem at hand. For the elementary plate problem
of interest here, given that the displacement field u(X,7) — and hence the strain field E(u) and the stress field o(X,t) — is known
explicitly from the classical work of Westergaard (1939), and given that the degradation region Q,() is described by (12), which
implies that A, = #B, we can readily determine the associated trace of the strain

U=29f2 pel —Z |- 1ot

E a(t) 2
a0

and the stored-energy function

tr E(u) =

2 _
W (E(u)) =”2—g) 2(012(1)V)Re Z Re Z__ _an|-

z2 22 _
20 20

21 +v) 72 -3/
—a(t) Im [(az(t) - l) X+

2 2
2(1 +v) Im ( 72 _1>_3/2 +Re ( z? _1>_3/2 X2
aX(1) aX(1) a(1) 4

where Z = X, +iX,, and, in turn, we can readily carry out the integrals in (20) and (21). The results read

- 3/2 44/¢
(1-2v)zt <8_ Ve, 3¢

= 2 22
16Ea3/2(t) m a([)> Ba“(t)o (1) (22)

S =

and

(a(t)\/na(l))z _ X s PN
8(t) = k() ~————— with k(t):6—”+<m+§>(1—v)+0 <%> A (23)

Remark 10. The result (22) implies that H(f(r)) = H(o(?)), independent of Q,(z).

Remark 11. The result (23) happens to be nothing more than a multiple of the energy release rate (8). This connection will become
more apparent in the next section.

800 T T T T T T T T T
.
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'z, 400 el
= =
=
200 [
0
0 1
t(s)
(b)

Fig. 5. Evolution of the internal memory variable (24) for the crack growth in a silicon nitride presented in Fig. 3. (a) Plot of g(r) over the entire loading
interval [0,5.6615 x 10*] s. (b) Close-up over the interval [0,0.5] s.

10



S. Saha et al. Journal of the Mechanics and Physics of Solids 191 (2024) 105754

Upon substituting the expressions (22) and (23) in (19) and carrying out the resulting integral, we obtain the explicit expression

0, 1=t
0= f : (24)
! ([TLJ - [T—’J ) Emax()+ e ()= (1)), 1; <1<ty

c c

where |-] stands for the floor function,

2

(lz]-7) s |z]reses|z]re3

@)= T.1 T ! T, . T, 2 ,
t c t
e |7z =es (|]+)
and
(O-max \/”a(tj))z . 1 5 1 ¢ 1/2

Smax(1j) = k(’j)T with  k(t;) = o + (E + g) 1-v+0 (m>

for the internal memory variable.

By way of an example, Fig. 5 provides a plot of the internal memory variable (24) for the crack growth presented in Fig. 3.
That is, the result pertains to the case of a crack of initial half size A = 10 mm, loading parameters, o,,,, = 25 MPa, T, = 0.02 s,
T =T, =5.6615x 10* s, and material parameters E = 300 GPa, v = 0.25, G, = 120 N/m, # = 20 pm.

As dictated by the definition (19), one key characteristic that is immediate from Fig. 5 is that the internal memory variable g(r)
is indeed a non-negative function of time that increases monotonically in each time interval ¢ € (¢;,7;,). Another immediate key
characteristic is that g(¢) is markedly nonlinear, as a result of its growth only taking place when g(r) > 0 and g(¢) > 0.

3.3.2. The material degradation function D (g)

Having defined the internal memory variable (19) with (20)—(21), and having worked out its specialization (24) to the plate
problem of interest here, we are now in a position to define the material degradation function D (g) in (18).

Indeed, note that from the properties (14); , and (15) of D(f), we have the requirements

2
0<D@<I, DO=1, lim D= V) 25)
1/t G.E

on D (g). The third of these requirements is one that directly provides the values of the material degradation function D (g) at distinct
values of its argument g.

By way of an example, Fig. 6 plots the values (circles) of the material degradation function D (g) generated by Egs. (25), and
(25)5 for the case of the crack growth presented in Fig. 3 above. Two key observations from this figure are that the function D (g)
is monotonically decreasing with respect to its argument g and that there is a threshold value, say g, below which D (g) = 1. The

00 1 1 1 1 1 1 1 08 1 1 1 1
0 100 200 300 400 500 600 700 800 0 5 10 15 20 25

g(N/mm) g(N/mm)
(a) (b)

Fig. 6. Values (circles) of the degradation function D(g) — obtained from Egs. (25), and (25); — in the Griffith criticality condition (27) that describe exactly
the crack growth presented in Fig. 3. For direct comparison, the formula (26) with g, = 5.734 N/mm, G /G, =0, K =326 (m/N)*, « = 0.2112, and g = 0.0861
is also plotted (solid line). (a) Plot of D(g) over the entire range of g values [0,730 X 10°] N/m. (b) Close-up around g = g,
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presence of such a threshold is consistent with the experimental observation that there are loading regimes that do not cause enough
damage to lead to a decrease in the value of the critical energy release rate.

For later reference, another observation worth remarking from the representative result shown in Fig. 6 is that the function D (g)
may be described by a formula of the form

1, 9= 0
G G 4
D(g) = - °°+<1__°°>Kggh<i> : 26)
G_oo Gc Gc Ith
G, * I+ K > 928

where g, >0, G, 20, K >0, and a > f > 0 are material constants. For direct comparison, Fig. 6 includes the plot (solid line) of
this formula for the constants g,;, = 5.734 N/mm, G.,/G, = 0, K = 326 (m/N)%, a = 0.2112, = 0.0861. Incidentally, the formula
(26) is of a form that has been repeatedly used in the literature to model a wide variety of dissipative phenomena ranging from the
polarization of dielectrics (Cole and Cole, 1941) to the deformation of viscous fluids and viscoelastic solids (Cross, 1965; Kumar and
Lopez-Pamies, 2016). Similar to these other phenomena, the formula (26) describes the decrease of D, from its maximum value
of 1 to its minimum value of G /G., in a monotonic fashion that is regulated by the constants K, «, and g, as g increases. The
constant G, denotes the smallest critical energy release rate that the material at hand is capable of exhibiting.
Summing up, the above derivation has shown that the Griffith criticality condition

ow ("(’)m>2

- =" = ((1-6,X,1) G, +6,X,H)D (3(t)) G,.)

or E , (27)

Qp(n)

where 0,(X, 1), given by (9), is the indicator function of the degradation region (12), the internal memory variable g(r) is given by
(24), and D (g) is any material function that satisfies (25), e.g., a function of the form (26), describes exactly any given crack growth
(5) in the elementary plate problem presented in Section 2, this for any initial crack half size A, constants C, m, and crack jump
characteristic size #, any Young’s modulus E, Poisson’s ratio v, and initial critical energy release rate G., and any maximum stress
and cycle duration T.

=0.X.n
®

Q

Omax

4. The proposed Griffith formulation of crack growth for non-monotonic loading

The ideas introduced in the preceding section that culminated in the Griffith criticality condition (27) to describe the growth
of the crack in the elementary plate problem presented in Section 2 can be seamlessly generalized to describe the growth of large
cracks in bodies of arbitrary geometry (not just a plate containing a centered crack), made of a linear elastic brittle material, that are
subjected to arbitrary non-monotonic quasistatic loading conditions (not just cyclic tensile loading). As we elaborate in this section,
the generalization hinges on the observation that the material degradation function D (g) that describes the decrease of the critical
energy release rate around crack fronts is an intrinsic macroscopic material property, one that is entirely determined by the history of
the strain field around crack fronts, whatever the geometry of the body and whatever the applied loading conditions may be.

Consider thus a body that initially, at time ¢ = 0, occupies a bounded open domain Q c R? that contains a large pre-existing
crack® Iy C Q. The body is made of a linear elastic brittle material with stored-energy function W (E(u)). A part of its boundary 0Q,
is subjected to a prescribed displacement u(X, #), while the complementary part 0Q, = 9Q \ 0Q, is subjected to a prescribed force
s(X, ) per unit undeformed area. The body is also subjected to a force b(X, ) per unit undeformed volume; see Fig. 7. Importantly,
the dependence on time ¢t € [0,7] of the prescribed boundary data u(X,¢) and s(X, ) and of the prescribed body force b(X,7) is
arbitrary, with the proviso that they are applied slowly enough that inertial effects can be neglected.

In response to the applied boundary conditions and body force, the body will deform and the crack may also possibly grow. We
denote the crack at the current time ¢ by I'(r) ¢ Q. In this work, much like in the original formulation of Griffith (1921), attention is
restricted to the special case when the crack path is known. The more general case when the crack path is not known, but rather is
determined from the formulation itself, amounts to generalizing the variational theory of Francfort and Marigo (1998) to account
for a critical energy release rate that is a material function and not just a material constant. We shall deal with such a generalization
in future work.

Now, generalizing, mutatis mutandis, the Griffith criticality condition (27) derived for the elementary plate problem above, we
posit that the crack grows whenever the Griffith criticality condition

s s
oW (s) (s) (s)
- — =0.(X,t s X,n=|1- 6’ X,1) |G 6>’ (X,)D NG, 28
— = e )g;v(,)ng(,) Co(X, 1) < ; p >> L+ ; DX,0D (g9 1) G, (28)
is satisfied. Here,
w= W(E(u))dX—/ b~udX—/ s-udX
Q\I'(r) Q\I'(r) 0Qg

3 For clarity of exposition, we restrict attention to the presence of a single crack in the body. The formulation for multiple cracks follows readily from that
of a single crack.
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§(X, 1)

Ly

Initial configuration Current configuration The degradation region Qgs) (t)

Fig. 7. Schematic of the growth of a large crack in a body made of a nominally elastic brittle material that is subjected to a surface force s(X,r) and displacement
u(X,7) on its boundary and a body force b(X,?) in its volume, all of which are arbitrary non-monotonic functions of time 7. The schematic also illustrates one
of the underlying degradation regions QS)(:) — a tube of constant diameter ¢ and arc length b(s) that emanates from the crack front, in the direction e of the
crack front — wherein the critical energy release rate G, decreases from its initial value G, to D(g®(1))G, < G,, as dictated by the material degradation function
D(g) in terms of the internal memory variable g (z).

stands for the potential energy evaluated at the displacement field u(X, ) that satisfies the equations of elastostatics, the derivative
—aW/dr is to be carried out under fixed boundary conditions and fixed body force,

G

c
is the initial uniform value of the critical energy release rate of the material, while
(s)
0 P X, 1)
g9
D(g)
are the functions that describe where, when, and how much the critical energy release rate G.(X,t) evolves and, in particular,

decreases from G, to D ( g“)(t)) G, within the body. We now spell out each of these three types of functions, one at a time.

The degradation regions Q(;)(t) and their indicator functions 0;S>(X, t). Precisely,

: (s)

. 1 if XeQ @

00 (X, 1) = L s=12,....8-1.8
g 0 else

stand for the indicator functions of each degradation region Q(;)(t) wherein the value of the critical energy release rate decreases.
As schematically depicted in Fig. 7, consistent with the degradation region (12) introduced in the elementary plate problem, the
degradation regions Qij)(t) are identified as tubes of the same constant diameter # and the same arc length b(r) = B(¢)/| B(t)/¢ | that
emanate from the current front of the crack I'(r), in the direction e of the crack front, and that their union Q,(r) = Uil QS)(I) spans
the entire arc length B(r) of the crack front. We refer to Q,(r) as the collective degradation region.

Remark 12. Given a crack front of arc length B(r), there is a total of S = | B(r)/¢| degradation regions Q(;)(t). In view of the bounds

B(1)

<2¢
B0)
]

on their arc length b(¢) and in view of the smallness of the characteristic size ¢, the spatial arrangement of the degradation regions
Q?)(t), s=1,2,...,8 - 1,8, along the crack front can be chosen arbitrarily.

¢ <bt)=

Remark 13. For problems in which all material points along the crack front are subjected to the same strain — as is the case, for
instance, in any 2D problem — it suffices to set b(r) = B(z), that is, it suffices to define a sole degradation region Q,(r) of constant
diameter # and arc length equal to the entire arc length B(r) of the crack front. Accordingly, in all the 2D plane-stress problems that
we consider in the sequel, we set b(r) = B(f) and drop the use of the superscript (s) in 6,(X, ) and g(?), so that the Griffith criticality
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condition (28) can be rewritten more compactly as

_ M =6.Xn| . C.X.)=(1-6,X1)G, +0,X,0D(g(1)G,. (29)

Q1)

Remark 14. As elaborated in Section 4.1.4 below, the Griffith criticality condition (28) is largely insensitive to the precise value of
the material length scale #, so long as it is selected not to exceed the correct order of magnitude, that is, the same order of magnitude
as the length scale over which the material is damaged around crack fronts. Recalling from Remark 3 above that # correlates with
the size of the largest heterogeneity of the material at hand, it suffices to choose the value of # based on such a size.

The internal memory variable g (¢). Consistent with the internal memory variable (19) with (20)-(21) introduced in the elementary
plate problem,

0, =1

(s) _ t —(s — (s —(s
AOES / H (1‘1 )(T)) H <W( )('r)> 7 )(T)d‘r, 1 <t<tpy o
1

stands for the internal memory variable that keeps track of the history of the strain field in the degradation region Q(A)(t) In this
last expression, 7; € [0, 7] denotes each instance in time at which the crack front advances during the prescribed loadmg,

O - o1
I, = /Q}"(r) tr E(u) dX and W (1) = _fb(t) /Qif’(r) W (E(u)) dX. (31)

Remark 15. By definition, the value of the internal memory variable (30) resets to zero every time that the crack front in Q?)(t)
advances at + = t;. A corollary of this property is that the internal memory variable (30) remains identically zero for loading
conditions for which the crack grows continuously in time.

Remark 16. For initial-boundary-value problems for which the stress field (X, 7) — and hence the strain field E(u) = (1+v)/E o —
v/ E(tre)l — happens to be known asymptotically around the crack front, the volume average quantities (31) can be determined
analytically in terms of that asymptotic field on account of the smallness of #. In other words, analytical knowledge of the stress
intensity factors for a given initial-boundary-value problem implies analytical knowledge (approximately, in an asymptotic sense)
of the volume average quantities (31) for that initial-boundary-value problem. For example, for plane-stress problems for which a
crack in a plate of constant thickness B is subject to Mode I, use in (31) of the classical asymptotic stress field (Irwin, 1958)

ki (1) K@ 9 0. 30 0 . 30
S) = [(1—sm—sm—>e]®e]+(1+sm§sm7)e2®e2+

Janr \/—Sz 2%

o(X,1) =

singcos%e (e, ®e; +e, ®el)]
leads to the volume average quantities
2
T =(1- 32 K1 W) = kg 1 R AP
1,() = (2 v) VaBe L and W)=k =+ 8)(1 V). (32)

In these expressions, r is the distance to the crack front, 0 is the associated polar angle, and we have included the argument of time
t in the stress intensity factor K;(#) to make explicit its dependence on the evolving applied loads. The results (32) make it plane
that if K;(r) is known analytically, so are the volume average quantities I,(r) and W (z).

with k0=6i+(
T

The material degradation function D(g). Finally, exactly as the material degradation function (25) introduced in the elementary plate
problem, the function D(g) in (28) stands for the material degradation function that describes the decrease of the critical energy
release in the degradation regions Q;‘)(t). It is a function that satisfies the properties

0<D(@<1, DO)=1, D(g)=D(g,) forallg,>g,

but that otherwise it needs to be determined from experiments, much like the initial value G, of the critical energy release rate.

Remark 17. Any experiment of choice that covers a sufficiently large range of values of the internal memory variable g can be used
to determine the material degradation function D(g). As elaborated in the Appendix, and as illustrated in the comparisons with
experiments in Section 5, standard experiments from which Paris curves are generated (i.e., problems for specimens with simple
geometries containing a centered or edge crack subjected to cyclic tensile loading) are a particularly appealing choice since g can
be computed explicitly for those and, at the same time, they typically cover a large range of values of g.

Remark 18. Exactly as the Young’s modulus E, the Poisson’s ratio v, and the initial value G, of the critical energy release rate, the
material degradation function D (g) is an intrinsic macroscopic property of the material. As such, once it has been measured from
an experiment for a material of interest, it is known once and for all for that material. Put another way, by using, for example, the
formula (26) for the material degradation function D (g), a total of 8 material constants (E, v, G, g, G, K, @, ) would suffice
to describe the linear elastic deformation and growth of large cracks in structures that are subjected to arbitrary non-monotonic
quasistatic loading conditions.
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Table 1

Elasticity constants and initial critical energy release rate for
silicon nitride.

E (GPa) v G, (N/m)

300 0.25 120

Table 2
Constants in the material degradation function (26) for silicon nitride for four different
values of the characteristic size # of the degradation region Q, (7).

G,
¢ (pm) G°° g (N/m) K (m/N)* a p
5 0 1439 0.14 1.2768 1.1518
10 0 2874 745 0.2255 0.1003
20 0 5734 326 0.2112 0.0861
30 0 8579 213 0.1839 0.0587

4.1. Properties of the proposed Griffith formulation

In the sequel, we set forth the basic properties of the proposed Griffith formulation (28) and illustrate via examples how it
describes the growth of large cracks in elastic brittle materials in a manner that is consistent with experimental observations,
irrespective of how the loading is applied as a function of time.

All the numerical examples that are presented below pertain to the same generic silicon nitride ceramic utilized in Sections 2
and 3 for the elementary plate problem. Tables 1 and 2 list the values of the elasticity constants and initial critical energy release
rate for this representative material, as well as the corresponding constants in the formula (26), used here to describe its material
degradation function, for four different values of the characteristic size £ of the degradation region Q, ().

4.1.1. Response under monotonic loading
We begin by considering the limiting classical case when the loading is applied monotonically in time, that is, when

uX,n =uy(X)t, s(X, 1) = s(X)t, b(X, 1) = by(X)1,

where u(X), 5, and b, (X) are suitably well-behaved functions of choice.

Under this type of loading conditions, experiments indicate that large cracks grow in a manner that appears to be either
continuous in time (stable crack growth) or discontinuous in time by brutal large jumps (unstable crack growth). In both scenarios,
the internal memory variable (30) specializes to g(f) = 0, the material degradation function remains then at its initial value
D (g®()) = D(0) = 1, and consequently the critical energy release rate remains at its initial constant value ¢.(X, 1) = G, throughout
the entire body for the entire duration [0, 7] of the loading process. As a result, for the case of monotonic loading conditions, the
Griffith criticality condition (28) reduces identically to the classical Griffith criticality condition.

4.1.2. Response under cyclic loading with different constant maximum loads, load ratios, and frequencies
Next, we consider cyclic loadings with different constant maximum loads, load ratios, and frequencies. In particular, in view of
its popular use by practitioners, we consider the disk-shaped compact tension test depicted in Fig. 8 with applied linear cyclic force

! Pmin Tc
2| = (N =D (1= 5" ) P+ Py (N = DT, 1SN = DT, + 5
P(t) = c max
t Pmin Tc ’
2|~ + N| (1= 5™ ) P + P (N =T, + 5 <1< NT,
c max
where P,,. > P,, > 0, T, stands for the cycle duration, and N € Z* denotes the number of loading cycles. Making use of the
standard notation
1 P, P, Omi
fc:F’ Omax = éﬂzx’ Omin = Ble’ R:ﬂ*
c O_max

we parameterize the applied cyclic loading in terms of the global stress measure

2[fit=(N = D] (I = R)o,0, + Ro

max?

PW) _ (N-DSfrS(N-1+3

B %)

o(t) =
2[=fet + N (1 = R)Gpay + ROy, (N - l)+%<fctsN

For this initial-boundary-value problem, wherein the crack is subject to Mode I, the stress intensity factor K;(¢) is accurately
described by the formula (Tada et al., 1973)

K1(0) = 6()V LF(a(t)) (34)
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P(t
0.25 L X b o(t) = B(L) A
— A

0.25 L

1.35 L
2

Omin

time ¢

Fig. 8. Schematic of the disk-shaped compact tension test, containing a large pre-existing edge crack of initial size A, under linear cyclic loading, with cycle

duration 7,, and hence loading frequency f, = 1/7,, constant maximum stress o,,, > 0, constant minimum stress 0 < ¢,,, < 0,,,, and hence load ratio
R =640/ Opax 2 0.
with
at)
() a) a0\’ a0\’ a\’
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where a(?) is the current size of the crack at time ¢, as measured from the axis where the force P(¢) is applied; see Fig. 8.

Making use of the formula (34) in expressions (32) and, subsequently, making use of the resulting volume average quantities T, (¢)
and W () in expression (30) yield an internal memory variable g(r) that can be computed explicitly for any choice of the maximum

stress o,,,,, any choice of the load ratio R, and any choice of the loading frequency f, in the applied cyclic loading (33). The result

reads
0, 1=t
9 =9 kyLF?(a(t;)) (36)
J 2\~2
— (- R, (LSt - |t )+ =c (1), 1 <t<tj
T T T T ¥ Y T T T ¥ T ¥
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) 3 7S i
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o
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c g 10°F e
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Fig. 9. Predictions generated by the Griffith criticality condition (29) for the crack growth in disk-shaped compact tension tests under the linear cyclic loading
(33) with load ratio R = 0, loading frequency f, =50 cycles/s, and three different values of maximum stress, o,,,, = 4.86,5.07,5.28 MPa. (a) The size a(r) of the
crack as a function of time. (b) The rate da/dN of crack growth as a function of the range of stress intensity factors AKj.
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Fig. 10. Predictions generated by the Griffith criticality condition (29) for the crack growth in disk-shaped compact tension tests under the linear cyclic loading
(33) with maximum stress ¢ = 5.28 MPa, loading frequency f. = 50 cycles/s, and three different values of load ratio, R = 0,0.2,0.4. (a) The size a(t) of the crack
as a function of time. (b) The rate da/dN of crack growth as a function of the range of stress intensity factors AKj.
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Fig. 11. Predictions generated by the Griffith criticality condition (29) for the crack growth in disk-shaped compact tension tests under the linear cyclic loading

(33) with maximum stress ¢ = 5.28 MPa, load ratio R =0, and three different values of loading frequency, f. = 10,25,50 cycles/s. (a) The size a(r) of the crack

as a function of time. (b) The rate da/dN of crack growth as a function of the range of stress intensity factors AKj.
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In turn, the material degradation function D (g(¢)) and hence the evolution of the critical energy release rate G.(X,7) can be readily
determined along the entire loading process for any choice of ¢,,,,, R, and f.. As we illustrate next via numerical examples, this
evolution is such that the Griffith criticality condition (29) predicts that the crack grows by jumps of length scale ¢, in a manner

that, consistent with experimental observations, depends on all three loading parameters ¢,,,,, R, and f..
Figs. 9, 10, and 11 present results for the crack growth in disk-shaped compact tension tests, under the linear cyclic loading (33),

as predicted by the Griffith criticality condition (29). The results pertain to specimens of length L = 24.9 mm, thickness B = 1.9 mm,
and initial crack size A = 8 mm, that are made of a silicon nitride with the material constants listed in Table 1 and those listed in
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Table 2 for the characteristic size £ = 20 pm of the degradation region Q, (7). Parts (a) of the figures provide plots for the size a(r)
of the crack as a function of time ¢, while parts (b) provide plots for the rate da/dN of crack growth as a function of the range of
stress intensity factors AK; = (1 — R)0,,4y \/ZF(a). Specifically, on the one hand, Fig. 9 shows results for the fixed load ratio R =0
and three different values of maximum stress, ¢,,,, = 4.86,5.07,5.28 MPa, while Fig. 10 shows results for the fixed maximum stress
Omax = 5-28 MPa and three different values of load ratio, R = 0,0.2,0.4. All the results in Figs. 9 and 10 correspond to the same
loading frequency f. = 50 cycles/s. On the other hand, Fig. 11 shows results for fixed maximum stress o,,,, = 5.28 MPa, fixed load
ratio R = 0, and three different values of loading frequency, f, = 10,25,50 cycles/s.

The main observation from Figs. 9(a), 10(a), and 11(a) is that the crack growth in disk-shaped compact tension tests is indeed
significantly affected by the maximum stress o,,,, the load ratio R, and the loading frequency f, in the applied cyclic loading.
Specifically, as expected from basic physical intuition, larger values of the maximum stress o,,,, and of the loading frequency f.
lead to faster growths of the crack, while larger load ratios R lead to slower growths. From Figs. 9(b), 10(b), and 11(b), moreover,
the main observation is that the corresponding growth rates da/dN show the typical Paris-law behavior observed in experiments.
What is more, Fig. 10(b) shows that larger values of the load ratio R result in a left translation of the Paris curves. On the other
hand, Figs. 9(b) and 11(b) show that larger values of the maximum stress ¢,,,, result in a shift along the same Paris curve, while
different values the loading frequency f. have no impact on the Paris curves.

4.1.3. Response under cyclic loading with nonlinear waveforms and overloads

We proceed by considering cyclic loadings with a nonlinear waveform — as opposed to the linear waveform used in (33) —
that may also contain overloads, this still within the initial-boundary-value problem of the disk-shaped compact tension test. In
particular, for definiteness, we consider that the specimen is subjected to the sinusoidal cyclic global stress

* _ * —_—
I+R* . [ 1-R* , sin(22f,1— %), N-1<fa<N and L ez
n

P (o3
o(t) = ) _ 2 max 2 max i (37)
BL 1+ R 1-R . T
Tamax+Tamaxsm (2ﬂfct—5>, else

in which an overload P* > P,,. is applied every n* € Z% loading cycles and where use has been made of the notation

max -
or..=P* /(BL)and R* =o,,,/c%, .
Similar to the linear cyclic global stress (33) considered above, the internal memory variable g(¢) that results from the sinusoidal
global stress (37) can be computed explicitly. Precisely, substitution of (37) in the formula (34) for the stress intensity factor and

the successive evaluations of the average volume quantities (32) and of the integral in (30) lead to the internal memory variable
0, =t
90 =9 koLF*a(t) [(n* — 1)1 - R?) , L

E n* max n*

, (38)

A= RDo*2 N (Ufet] = [ fut;]) + e —c(t)), 1, <t <1,

where ¢() is a correction term, different from the correction ¢,(¢) in (36), not spelled out here for conciseness. With the result (38)
at out disposal, the material degradation function D (g(r)) and hence the evolution of the critical energy release rate G.(X,t) can
be readily determined along the entire loading process for any choice of the maximum stress o,,,,, the load ratio R, the loading

T T 1 . . i
n
W= 105\
9 B -
= n* =3 x 101
E N
g
< o
O =1 1G4
° Omaz = 4.86 MPa | |
R=0
fe =50cycles/s
i | | | i -
0 10 20 30 40 50 60

10°x N
Fig. 12. Predictions generated by the Griffith criticality condition (29) for the growth of the size a(t) of the crack in disk-shaped compact tension tests under

the sinusoidal cyclic loading (37), with an overload maximum stress o  applied every n* =3 x 10,10, and +oo loading cycles, plotted as a function of the
number N of loading cycles.
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frequency f,, the overload maximum stress ¢, and the number [N /n*J of instances at which the overload is applied. As in the
preceding subsection, this evolution is such that the Griffith criticality condition (29) predicts that the crack grows by jumps of
length scale .

In the absence of an overload, when ¢, = 0,,,, we begin by noting that, up to the difference in the correction terms ¢,(r) and
¢ (1), both of which are typically small, the internal memory variable (38) is identical to the internal memory variable (36) for the
case when the cyclic load is applied linearly. This implies that the use of different waveforms for the applied cyclic load in disk-
shaped compact tension tests has little impact on the growth of the crack. This prediction by the Griffith criticality condition (29)
is yet again consistent with experimental observations; see, e.g., (Ritchie and Dauskardt, 1991).

In contrast to the type of waveform, the presence of overloads does have a significant effect on how cracks grow in disk-shaped
compact tension tests. To illustrate their impact, Fig. 12 presents results for the crack growth in disk-shaped compact tension
tests, as predicted by the Griffith criticality condition (29), under the sinusoidal cyclic loading (37) with ¢,,,, = 4.86 MPa, R = 0,
fe =50 cycles/s, o, = 1.16,,, = 5.35 MPa, for three different values of the number of cycles at which the overload is applied,
n* =3x10% 105, and +oco. The results, which are shown in terms of the size a(t) of the crack as a function of the number of loading
cycles N = f.t, pertain to the same specimens used above, that is, specimens of length L = 24.9 mm, thickness B = 1.9 mm, and
initial crack size A = 8 mm, that are made of a silicon nitride with the material constants listed in Table 1 and those listed in Table 2
for the characteristic size # = 20 pm of the degradation region Q,(¢).

As expected from basic physical intuition, the results in Fig. 12 show that the presence of overloads accelerates the growth of
the crack, more so the larger the number of instances at which the overload is applied.

4.1.4. Sensitivity to the choice of the characteristic size ¢ of the degradation region Q,(t)

In the extraction of the material degradation function D(g) from the measured growth of the size a(f) of a crack in an experiment,
one must choose a specific value for the characteristic size £ of the degradation region Q,(¢). Naturally, different choices of # lead to
different material degradation functions D(g). In this subsection, we show via an example that the Griffith criticality condition (28)
is largely insensitive to the specific choice of characteristic size #, so long as the material degradation function D(g) utilized in (28)
corresponds to the chosen # and so long as the chosen # does not exceed the correct order of magnitude.

Consider again the growth of the half size a(f) of the crack presented in Fig. 3 for the elementary plate problem analyzed in
Sections 2 and 3. That crack growth corresponds to the choice of # = 20 pm. Fig. 13 presents plots of the same crack growth for
¢ = 20 pm and for the three additional values # = 5,10, and # = 30 pm. Use of these four sets of crack-growth descriptions in
Egs. (24), (25),, and (25); leads to the four different material degradation functions D(g) plotted (circles) in Fig. 14. As expected,
all four are different. In spite of their differences, all four material degradation functions can be accurately approximated by the
formula (26) with the constants listed in Table 2 for each #. For direct comparison, Fig. 14 includes plots (solid lines) of this formula
for the four characteristic sizes # = 5, 10,20, 30 pm.

Armed with the four material degradation functions (26), with the constants listed in Table 2 for the four characteristic sizes
¢ = 5,10,20,30 pm, we can now deploy the Griffith criticality condition (28) to investigate how the choice of the value of #Z impacts its
predictions for crack growth in the generic silicon nitride used throughout this section. Here, we do so again for the experimentally
prominent disk-shaped compact tension test. Specifically, we consider the same specimen used above with length L = 24.9 mm,

T T T T T 12:2 T T T T
18 |- -
16if- T 12,0 |- -
g )
= é 4 =30 pm
S 14 | =30 um 1 : =10 pm ~¢ =20 um
N ¢ =5pum
¢ =20 pm 1.8 =
\
\
12 + ¢=10pm —
{=5pum 5
10 1 1 1 1 1 . 16 | | L L
0 1 2 3 4 5 4 4.1 42 43 4.4 45
A
t (10*xs) t (10*xs)
(a) (b)

Fig. 13. Time-discontinuous evolution of the half size (5) of a crack, of initial half size A =10 mm, by jumps of constant sizes # = 5,10,20,30 pum. The results
pertain to same initial-boundary-value problem considered in Fig. 3 for a silicon nitride. (a) Plots of a(f) over the entire loading interval [0,5.6615 x 10*] s. (b)
Close-up over the interval [4.00 X 10*,4.50 x 10*] s.
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Fig. 14. The material degradation functions D(g) extracted from the crack growths in Fig. 13 for four different choices of the characteristic size ¢ of the
degradation region Q,(1). (a) Plot of D(g) over the entire range of g values. (b) Close-up around g = g,.
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Fig. 15. Predictions generated by the Griffith criticality condition (29) for the crack growth in a disk-shaped compact tension test under the linear cyclic loading
(33) with maximum stress ¢ = 5.28 MPa, load ratio R = 0, and loading frequency f, = 50 cycles/s, for four different values of the characteristic size of the
degradation region Q,(1), £ = 5,10,20,30 pm. (a) The size a(t) of the crack as a function of time. (b) The rate da/dN of crack growth as a function of the range
of stress intensity factors AK;.

thickness B = 1.9 mm, and initial crack size A = 8 mm, under the linear cyclic loading (33) with maximum stress ¢ = 5.28 MPa, load
ratio R = 0, and loading frequency f. = 50 cycles/s. Figs. 15(a) and 15(b) present the results generated by the Griffith criticality
condition (29) for the size a(t) of the crack as a function of time, as well as for the corresponding rate da/dN of crack growth as a
function of the range of stress intensity factor AK;.

A quick glance at the results in Fig. 15 suffices to recognize that the Griffith criticality condition (29) is indeed largely insensitive
to the specific choice of the characteristic size ¢ of the degradation region Q,(¢). The results further suggest that there is a limit
response as # \, 0 that may be equivalent to the one associated with the actual value of #. We shall explore this limit in future
work.

5. A first set of validation results

The examples presented in the preceding section have shown that the proposed Griffith criticality condition (28) describes
the growth of large cracks in elastic brittle materials in a manner that is qualitatively consistent with experimental observations,
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irrespective of how the loading is applied as a function of time. In this section, we show the same in a quantitative manner by means
of comparisons with three sets of fatigue fracture experiments on a commercial-grade silicon nitride ceramic (Gilbert et al., 1995),
on mortar (Wang, 1991), and on a commercial PMMA (Clark et al., 1990).

5.1. Comparisons with the experiments of Gilbert et al. (1995) on a commercial silicon nitride

Gilbert et al. (1995) carried out disk-shaped compact tension tests (see Fig. 8) on specimens of length L = 24.9 mm, thickness
B = 1.9 mm, and initial crack size A > 5 mm that were made of the commercial silicon nitride EC-141 manufactured by NTK
Technical Ceramic. Table 3 lists the values of the elasticity constants and initial critical energy release rate for this material, as
reported by Gilbert et al. (1995). These authors also reported that the average grain size was about 2 pm. The specimens were
subjected to the sinusoidal loading (37) with load ratios R = 0.1,0.5,0.7, no overload cr,:” = 0,4, and loading frequency f, = 25
cycles/s. While Gilbert et al. (1995) did not report the precise initial size A of the crack or the precise value of the maximum stress
6,.qx that they applied, the choices A = 8 mm and ¢,,,, = 4 MPa appear to be consistent with all their data. We therefore consider that
A =8 mm and o,,,, =4 MPa in their experiments. The main experimental results presented by Gilbert et al. (1995) correspond to
the three Paris curves that they plotted in Fig. 6 of their work for each of the three load ratios R = 0.1,0.5,0.7 that they considered.

In order to confront the predictions generated by the Griffith criticality condition (29) to the experiments of Gilbert et al. (1995),
we must first determine an appropriate value for the characteristic size # of the degradation region Q,(7), as well as the associated
material degradation function D(g) for the silicon nitride EC-141 that they tested.

Given that the underlying microstructure of the material featured an average grain size of about 2 pm, we set £ = 20 pum.

Granted the characteristic size # = 20 pm, in order to determine the material degradation function D(g), we proceed by integrating
one of the Paris curves reported by Gilbert et al. (1995), say that for load ratio R = 0.1, so as to have a set of experimental data for

Table 3
Elasticity constants and initial critical energy release rate
for the commercial silicon nitride EC-141.

E (GPa) v G, (N/m)

310 0.27 108

Table 4
The characteristic size # of the degradation region Q,(r) and the associated constants in the
material degradation function (26) for the commercial silicon nitride EC-141.

G,
¢ (um) G°° g (N/m) K (m/N)* a B
20 0 16 12440 0.8571 0.7847
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Fig. 16. (a) The size a(t) of the crack as a function of time from the disk-shaped compact tension test of Gilbert et al. (1995) on the commercial silicon nitride
EC-141 for the load ratio R = 0.1. The result corresponds to the choice of # =20 pum for the characteristic size of the degradation region Q,(r). (b) Plot (circles)
of the corresponding degradation function D(g). For direct comparison, the formula (26), with the material constants listed in Table 4, is also plotted (solid
line).
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Fig. 17. Comparison between the predictions (solid lines) generated by the Griffith criticality condition (29) and the experiments (circles) of Gilbert et al. (1995)
on the commercial silicon nitride EC-141.

the growth of the size a(r) of a crack under cyclic loading. Then, making use of this data for a(r) and the result (38) for the internal
memory variable g(¢) relevant to this problem, direct use of the relations

(ot VEIF@))’

G.E

>

0<D@<1, DO)=1, lim D(g®) =
1/1j11

where we recall that for a disk-shaped compact tension test the function F(a(?)) is given by (35), allows to construct the material
degradation function D(g). Fig. 16(a) plots the size a(t) of the crack as a function of time for the load ratio R = 0.1, while Fig. 16(b)
plots (circles) the corresponding material degradation function D(g).

As has been the case in the preceding sections, the material degradation function D(g) can be accurately described by the formula
(26), in this case, with the constants listed in Table 4. For direct comparison, Fig. 16(b) includes the plot (solid line) of this formula
with such constants.

Having determined the characteristic size # of the degradation region Q,(r) and the associated material degradation function
D(g), we are now in a position to deploy the Griffith criticality condition (29) to compare with the experiments of Gilbert et al.
(1995). Fig. 17 provides plots of the comparison for the rate da/dN of crack growth as a function of the range of stress intensity
factors AK;. A quick glance at the results suffices to recognize that the theoretical predictions are in good agreement with the
experiments for all three load ratios R = 0.1,0.5,0.7.

5.2. Comparisons with the experiments of Wang (1991) on mortar

Wang (1991) carried out four-point bending tests on notched beams of length L = 406 mm, height H = 102 mm, thickness
B =76 mm, and initial crack size A > 15 mm that were made of a mortar with 1 part water, 2 parts cement, and 3.5 parts sand by
weight. Table 5 lists the values of the elasticity constants and initial critical energy release rate for this type of material (Giaccio

Table 5
Elasticity constants and initial critical
energy release rate for mortar.

E (GPa) v G. (N/m)

30 0.15 55

Table 6
The characteristic size # of the degradation region Q,(r) and the associated constants in
the material degradation function (26) for mortar.

G,
#Z (mm) G°° gy (N/m) K (m/N)* a B
0.2 0.14 55.9 17 0.8242 0.5532
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and Zerbino, 1998). Wang (1991) also reported that the largest sand particles did not exceed 3 mm in diameter. The specimens
were subjected to a sinusoidal pure bending M (r), parameterized in terms of the global stress measure
- 6M (1) — Omax + Omin Omax ~ Omin sin (Zﬂfct _ E)

BH? 2 2 2
with minimum stress o,,;, = 0.29 MPa and loading frequency f, = 5 cycles/s. While Wang (1991) did not explicitly state the
maximum stress o,,,, that he applied, a value of about 50% of the corresponding critical stress for fracture under monotonic loading
is consistent with his data. For this initial-boundary-value problem, the stress intensity factor K;(¢) is approximately described by
the formula (Tada et al., 1973)

K1) = o()Vma(®F (a(®))

o(t)

with

a() at)\? an\? at\*
Fa() = 1.122 = 14=2 +7.33 <?> ~13.08 <?> +14 <?> , (39)
where a(?) is the current size of the crack at time r. The main experimental results presented by Wang (1991) correspond to the
plots in Figs. 4.3.5 and 4.3.8 of his work for the size of the crack a(r), as a function of the number N of loading cycles, in specimens
with two different initial crack sizes, A = 22.79 mm and 32.58 mm. The values for the maximum stress ¢,,,, applied in these tests
are estimated to be o,,,, = 2.40 MPa and ¢,,,, = 1.94 MPa, respectively.

Now, to compare the predictions generated by the Griffith criticality condition (29) with the experiments of Wang (1991), we
again must first determine an appropriate value for the characteristic size # of the degradation region Q,(r) alongside the associated
material degradation function D(g) for the mortar that he tested. In view of the size of the underlying sand, the largest constituent
in the mortar, we set # = 0.2 mm. Given this value, we proceed by fitting one of the crack growth results reported by Wang (1991),
say that for initial crack size A = 22.79 mm. Fig. 18(a) presents a plot of that fit. Then, making use of this data for a(f) and the
internal memory variable

0, t,=t
9() =9 kora(t;)F*(a(t,))
e (0 = %) (el = St ) + 0=, 1y <1<ty

pertinent to this problem, where the function F(a(r)) is given by (39) and ¢(z) is a correction term similar to that in (38), not spelled
out here for conciseness, direct use of the relations
2
(6@t )\ malF (a(1))))
G.E

0<D(@=<1 DO=1, }itm D(g®) =
/141

allows to construct the material degradation function D(g). Fig. 18(b) plots the resulting material degradation function (circles),
together with its description (solid line) by the formula (26) with the material constants listed in Table 6.
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Fig. 18. (a) The size a(t) of the crack as a function of time from the four-point bending test of Wang (1991) on a notched beam, with initial crack size
A =22.79 mm, that is made of mortar. The result corresponds to the choice of # = 0.2 mm for the characteristic size of the degradation region Q,(r). (b) Plot
(circles) of the corresponding degradation function D(g). For direct comparison, the formula (26), with the material constants listed in Table 6, is also plotted
(solid line).

23



S. Saha et al. Journal of the Mechanics and Physics of Solids 191 (2024) 105754

Experiment o

50 - Theory —— 7]

40+ 4

5
M

a (mm)

30 =
o 098
Ooo00 902~
L 000600 >
M
20 -
1 1
0 50 100

N (x10%)

Fig. 19. Comparison between the predictions (solid lines) generated by the Griffith criticality condition (29) and the experiments (circles) of Wang (1991) on
mortar.

At this point, having determined the characteristic size # of the degradation region Q,(¢) and the associated material degradation
function D(g), we can deploy the Griffith criticality condition (29) to compare with the experiments of Wang (1991). Fig. 19 provides
plots of the comparison for the size a(z) of the crack as a function of the number N of loading cycles for the beam with the initial
crack size A = 32.58, as well as for the beam with A = 22.79 mm used to determine the degradation function. Once again, the
agreement between the theoretical predictions and the experimental results is evident.

5.3. Comparisons with the experiments of Clark et al. (1990) on a commercial PMMA

Finally, Clark et al. (1990) performed disk-shaped compact tension tests (see Fig. 8) on specimens of length L = 84 mm and
thickness B = 6.38 mm that were made of a commercial PMMA (polymethyl methacrylate) manufactured by Rohm and Haas. No
material constants were reported.

Here, as listed in Table 7, we make use of typical values for PMMA found in other works in the literature (Dunn et al., 1997).
The specimens were subjected to the sinusoidal loading (37) with load ratios R = 0.1, 0.65,0.8, no overload a;; ax = Omaxs and loading
frequency f, =20 cycles/s. Clark et al. (1990) did not report the precise initial size A of the crack in the specimens or the precise
value of the maximum stress ¢,,,, that they applied. A straightforward analysis, however, indicates that the choices A = 25 mm and
6max = 0.3 MPa are consistent with all their data. We therefore consider that A = 25 mm and 6,,,, = 0.3 MPa in their experiments.
The main experimental results presented by Clark et al. (1990) correspond to the three Paris curves that they plotted in Fig. 5(a)
of their work for each of the three load ratios R = 0.1,0.65,0.8.

In order to compare the predictions generated by the Griffith criticality condition (29) with the experiments of Clark et al.
(1990), we follow the same steps laid out in the two preceding subsections. In short, we begin by setting the characteristic size of
the degradation region Q,(¢) to # = 5 um, since the largest heterogeneity in PMMA is expected to be submicron. We then determine
the material degradation function D(g) from one of the Paris curves provided by Clark et al. (1990). We choose the Paris curve
with load ratio R = 0.8. The resulting material degradation function D(g) can be described with the formula (26) and the material

Table 7
Elasticity constants and initial critical
energy release rate for PMMA.

E (GPa) v G. (N/m)
2.3 0.36 394

Table 8
The characteristic size # of the degradation region Q,(r) and the associated constants in
the material degradation function (26) for PMMA.

G,
¢ (pm) G°° g (N/m) K (m/N)* a p
5 0 64 50373 1.1481 0.8833
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Fig. 20. Comparison between the predictions (solid lines) generated by the Griffith criticality condition (29) and the experiments (circles) of Clark et al. (1990)
on a commercial PMMA.

constants listed in Table 8. Having set # = 5 pm and having determined D(g), we can deploy the Griffith criticality condition (29)
to compare with the experiments of Clark et al. (1990). Fig. 20 presents the comparison for the rate da/dN of crack growth as a
function of the range of stress intensity factors AK; for all three load ratios R = 0.1,0.65,0.8. Much like the observations from Figs. 17
and 19 above, the main observation from Fig. 20 is that the theoretical predictions are in good agreement with the experimental
results.

6. Summary and final comments

In this paper, we have formulated a generalization of the classical Griffith energy competition (Griffith, 1921) to describe the
growth of large cracks in nominally elastic brittle materials subjected to arbitrary non-monotonic quasistatic loading conditions.
The resulting Griffith criticality condition is given by expression (28) in its complete form, and by expression (29) for 2D problems
and for 3D problems with a uniformly propagating crack front.

Guided by an abundance of experimental observations amassed over the past seven decades for a variety of nominally elastic
brittle materials ranging from rubbers, to ceramics, to rocks, the three-pronged idea behind the proposed formulation is that:

1. the critical energy release rate G, is a not a material constant — as assumed under monotonic loading — but rather a material
function G.(X,t) of both space and time,

2. one whose initially uniform value ¢.(X,0) = G, decreases as the loading progresses, this solely within a small degradation
region Q, () around crack fronts, with the characteristic size # of such a region being material specific, and

3. whose decreasing value G.(X,7) = D(g(1)) G, in Q,(r) is described by a material degradation function D(g) in terms of an
internal memory variable g(¢) that keeps track of the history of the strain field around the evolving crack fronts.

Importantly, the material degradation function D (g) is an intrinsic macroscopic property of the material. Together with the
characteristic size ¢ of the degradation region Q,(r) and the initial critical energy release rate G,, they completely define the
critical energy release rate G.(X, ). All these three material properties can be measured by standard tests making use of conventional
equipment. Indeed, as exemplified in Section 5, the characteristic size # can be estimated from microscopy images of the largest
heterogeneity of the material at hand. The initial critical energy release rate G, can be obtained from a plethora of standardized tests.
Finally, as exemplified in Sections Section 3.3.2, 4.1.4, and Section 5, the material degradation function D (g) can be expediently
obtained from any of the conventional tests used to generate Paris curves under cyclic loading. Its success to describe the various
types of materials that we have considered until now suggests that the expression (26) may be a useful formula for D (g).

By construction, for the limiting case when the loading is monotonic, the proposed Griffith formulation reduces to the classical
Griffith formulation. For the opposite limiting case of cyclic loading, the formulation is able to describe any Paris-law behavior of the
growth of large cracks observed in experiments. This, together with the properties showcased in Section 4.1 and the comparisons with
experiments presented in Section 5, provides ample motivation to continue the investigation of the proposed Griffith formulation
as a plausible principle in continuum mechanics that describes the growth of large cracks in solids.

An obvious next step is to work out the proposed Griffith formulation in the setting of finite deformations for nonlinear elastic
brittle materials at large and to confront it to a larger set of experiments in order to further scrutinize its predictive capabilities.

Another direction of interest, already mentioned at the beginning of Section 4, is to make use of the same three-pronged idea
within the variational setting of brittle fracture (Francfort and Marigo, 1998; Larsen, 2024) so as to work out a formulation that
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also predicts crack path. As a first step to gain insight into this extension of the work, it is obvious that one can readily implement
the proposed Griffith criticality condition in the regularized phase-field formulations of the variational theory (Bourdin et al., 2000,
2008).

Yet another direction of interest is to account for the presence of energy dissipation not just by the creation of new surface but
also by deformation, such as, for instance, viscous and plastic deformation. The recent work by Shrimali and Lopez-Pamies (2023)
should prove invaluable here.

Finally, following in the footstep of Kumar et al. (2018, 2020), Kamarei et al. (2024), Larsen et al. (2024), another direction
of immediate interest is to incorporate the proposed Griffith formulation into a formulation where the strength of the material is
also taken into account so as to work out a complete theory of fracture nucleation and propagation in solids subjected to arbitrary
non-monotonic quasistatic loading conditions.

CRediT authorship contribution statement

Subhrangsu Saha: Writing — review & editing, Visualization, Software, Methodology, Formal analysis, Conceptualization. John
E. Dolbow: Writing — review & editing, Methodology, Funding acquisition, Conceptualization. Oscar Lopez-Pamies: Writing
- review & editing, Writing — original draft, Visualization, Supervision, Methodology, Funding acquisition, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work was funded by the National Science Foundation through the collaborative Grants CMMI-2132528 and CMMI-2132551.
This support is gratefully acknowledged.

Appendix. Calibration of the material degradation function D (g) from experimental Paris curves

Consider the practical case when data in the form of a Paris curve (da/dN vs. AK;) is available from experiments in which the
crack front grows uniformly. In order to calibrate the material degradation function D(g) from such data, we begin by fitting it
with the corresponding Paris relation da/dN = CAK]'. For example, for the case presented in Section 5.1 based on the popular
disk-shaped compact tension test, we fit the data via the relation

da _ m
v = CAK]
1 da "
EE(I) =C ((1 — R)C \/EF(Q(I))) ) “0

where F(a(?)) is given by expression (35), T,, L, R, and o,,,, are known from the experiments, and where C and m are the parameters
to be fitted. Precisely, for the data considered in Section 5.1, we have T, = 0.04 s, L = 249 mm, R = 0.1,0.5,0.7, ¢,,,, = 4 MPa.
Fitting the parameters C and m in (40) to the test for load ratio R = 0.1, as done in Section 5.1, yields C = 7.383 x 10798 M Pa=2¢
m~138 and m = 29.6.

Now, having determined the values of the parameters C and m in the Paris relation, we proceed by solving the resulting ODE
for the crack size a(f). Note that this requires having knowledge of the initial size a(0) = A of the crack. In general, the resulting
ODE is strongly nonlinear and hence must be solved numerically. Nevertheless, being a first-order ODE, its numerical solution is a
simple matter. This is indeed the case for the representative ODE (40).

Next, having determined the crack growth a(r), we proceed by identifying the times ¢; € {0 = 1,1, ..., 1;_;,#,} at which the
crack jumps for the chosen characteristic size ¢ of the degradation region Q,(¢). For the data considered in Section 5.1, used here
as a representative case, see Fig. 16(a).

Once the times #; € {0 = 1,7, ...,7;_y,1,} at which the crack jumps are known for the chosen ¢, the internal memory variable
(30) can be readily computed, often times explicitly. For instance, for the case considered in Section 5.1, the internal memory
variable is given by the explicit expression (38).

At this stage in the calibration procedure, we have at our disposal all the times 7; € {0 = #y,#,,....#,_;,7,;} at which the crack
jumps, the corresponding values of the crack size a(7;), and the associated limit values of the internal memory variable lim, 1, g(1).
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We can therefore proceed to determine the limit values lim, 1, D (g(1)) of the material degradation function D (g) at each time
1, € {0=1p,1y,...,1;_y,1;} directly from the Griffith criticality condition

. ow .
lim —== = lim D(g(1)G,. 41
t/,ltjrril ar t/lrI,»I},] (e G, 41

For instance, for the case considered in Section 5.1, we have that

2
o (e VIF@))
Sy oC E

and hence that

2
_ (ot VIF(@))
t}ltferlrl D(g(0) = T

for ¢ G ELO=10,1p, ..t gty ) The values lim, 7t D (g(1)) generated from this last expression are plotted (circles) in Fig. 16(b).

The final step in the calibration procedure amounts to fitting the discrete values lim, o1, D(@®) generated from (41) by a formula
that generates values for D as a continuous function of g. As noted in the main body of the text, the five-constant explicit formula
(26) appears to work well for all the experiments that we have considered.
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