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Abstract—Deep learning offers a promising solution to improve

spectrum access techniques by utilizing data-driven approaches

to manage and share limited spectrum resources for emerging

applications. For several of these applications, the sensitive wire-

less data (such as spectrograms) are stored in a shared database

or multistakeholder cloud environment and are therefore prone

to privacy leaks. This paper aims to address such privacy

concerns by examining the representative case study of shared

database scenarios in 5G Open Radio Access Network (O-RAN)

networks where we have a shared database within the near-real-

time (near-RT) RAN intelligent controller. We focus on securing

the data that can be used by machine learning (ML) models

for spectrum sharing and interference mitigation applications

without compromising the model and network performances.

The underlying idea is to leverage a (i) Shuffling-based learnable
encryption technique to encrypt the data, following which, (ii)

employ a custom Vision transformer (ViT) as the trained ML

model that is capable of performing accurate inferences on

such encrypted data. The paper offers a thorough analysis

and comparisons with analogous convolutional neural networks

(CNN) as well as deeper architectures (such as ResNet-50) as

baselines. Our experiments showcase that the proposed approach

significantly outperforms the baseline CNN with an improvement

of 24.5% and 23.9% for the percent accuracy and F1-Score

respectively when operated on encrypted data. Though deeper

ResNet-50 architecture is obtained as a slightly more accurate

model, with an increase of 4.4%, the proposed approach boasts

a reduction of parameters by 99.32%, and thus, offers a much-

improved prediction time by nearly 60%.

Index Terms—Privacy Preservation, Learnable Encryption,

Vision Transformers, and Open Radio Access Networks.

I. INTRODUCTION

Wireless communication networks have experienced rapid
growth with the integration of machine learning (ML) that
aims to apply data-driven approaches to optimize the perfor-
mance of these networks [1]. The utilization of ML techniques,
particularly Deep Learning (DL) algorithms extends across
various layers of wireless networks encompassing the physical
layer up to the application layer, covering spectrum sharing,
resource management, networking, mobility management, and
localization [1]. These ML and DL applications within the
wireless domain often rely on shared data environments such
as in the case of spectrum sharing in Citizen Broadband
Radio Service (CBRS) band [2], [3]. The existence of multiple
stakeholders with unrestricted access to data in such systems
poses a potential risk of privacy or security breaches.

A prominent case study for a shared data environment
in cellular networks can be the paradigm of Open Radio
Access Network (O-RAN), which works towards interoper-
ability and disaggregation of components in wireless networks
by enabling multi-vendor deployments and software-based
customization. These systems leverage a shared database that
can be accessed by multiple software microservices called
xApps that may employ ML-based architectures. There is an
abundance of literature that has shown superlative results for
the inclusion of ML within O-RAN with some applications
being spectrum sharing [4], resource Management [5] and
Cell-Free Support [6]. A recent use case of ML and O-RAN
for spectrum sharing has been demonstrated in [7] where
the authors developed an ML-based spectrum sensing xApp
that utilizes an object detection ML model called YOLO
for detecting radar signals present within the spectrograms
in uplink LTE/5G communications in the CBRS band. Their
purpose was to enhance the coexistence between radar sys-
tems and cellular communication by re-using existing cellular
infrastructure for sensing and communication.

These ML algorithms can be developed to work on one-
dimensional data like key performance metrics (KPMs) or I/Q
samples by using Dense Layers [8] [9]. However, due to the
nature of the inherent information, a spatio-temporal rendition
like spectrograms is a superior way to use this data [10] [11],
and ML models are usually developed for exploiting such a
data type. Here, the data is represented as images and the
obtained structural information in these spectrograms is used
to develop better predictive algorithms as the resultant ML
models have access to additional highly related features.

Regardless of the array of benefits these predictive pipelines
show, there is a growing concern regarding the security and
privacy of such data in a shared environment. Specifically, in
O-RAN architecture, there is a growing concern regarding
the vulnerability of data stored in the RIC (RAN Intelligent
Controller) database of the near-RT RIC. O-RAN Alliance
Working Group 11 (Security Working Group) in [12] have
done a comprehensive security analysis and identified various
threat models that exist in O-RAN including threat agents,
threat surfaces, and threats for each O-RAN component and
open interfaces.

Moreover, O-RAN Alliance Working Group 11 in [13]
has identified various attack vectors and threat models that
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could affect ML solutions hosted as xApps in the Near-RT
RIC. These threats could range from poisoning test data used
by ML models to altering an ML model and breaching the
confidentiality and privacy of user data.

Due to the open, shared, multi-vendor O-RAN architecture,
it is paramount that these RAN data be it in the form of I/Q
samples, spectrograms, or KPMs are secured against malicious
adversaries that may try to exploit the data to get sensitive
information on UE identity or location, traffic patterns and so
on. These data can be used to identify different traffic scenarios
and can be exploited by an adversary to track several UE
traffic patterns which can further be used to perform things
like intelligent jamming to disrupt the use of the spectrum by
legitimate users.

In existing literature, most existing works on ML data
privacy focus on federated learning [14]. This would require
training models in a distributed manner to protect sensitive
data and it primarily addresses the training information and
not privacy during real-time inference. Some other works on
privacy involve the use of SGX (Software Guard Extensions)
for cloud [15] and secure multi-party computation [16]. These
works do not address the aforementioned vulnerabilities that
are prevalent in ML use cases. To the best of our knowledge,
one paper that demonstrates privacy preservation is [17].
This paper leveraged MNIST and ImageNet datasets and
then presented a solution using AES encryption and random
permutation. The authors then obtained a final performance in
the range of 10→ 20% for fully encrypted images [17].

Contributions. Based on these identified vulnerabilities,
our focus in this paper is securing the data obtained from
the network. Specifically, our focus in this paper is on the
spectrogram data type stored in the RIC database of the near-
RT RIC. Moreover, we focus on securing the data that are used
by the ML-driven microservices called xApps. These xApps
which are located in the near-RT RIC are used for various
RAN control applications, such as spectrum sharing. We
propose the use of Vision Transformers due to their intrinsic
ability to perceive the proposed data manipulations [18] and
their robustness to the aforementioned CNN drawbacks [19].

As all the inferences are conducted on encrypted data,
and no decryption key is shared to obtain the ML model’s
predictions, this is analogous to the current work on fully
homomorphic encryption (FHE) [20]. While in FHE-driven
ML the privacy is preserved but it is highly inefficient and
leads to substantially larger computational times [21], our
proposed system does not involve an FHE-based inference
and can be implemented through the available prominent deep
learning packages and is compliant with the strict latency
requirements of O-RAN systems. The prominent contributions
of this paper can be summarized as follows:

• For the first time, we investigate data privacy concerns within
O-RAN networks. O-RAN is an open, shared, multistake-
holder architecture where sensitive RAN data are stored in
a shared database within the near-RT RIC which is accessible
by various third-party ML-based microservices called xApps.

Fig. 1: Simplified O-RAN Architecture

These xApps use these data for diverse RAN control applica-
tions, such as, spectrum sharing and interference mitigation.

• Our proposed privacy-preserving solution adopts a two-step
approach. First, it employs a novel shuffling-based learnable
encryption to encrypt the spectrogram before storing it in
the RAN database within the near-RT RIC. Subsequently, a
customized vision transformer (ViT) architecture is utilized to
derive predictions/inferences from the encrypted data, all while
maintaining a reduced model size for faster prediction times.
This design aligns with stringent latency requirements of near-
RT RIC ranging from 10ms - 1s. This innovative approach
not only safeguards data privacy but also fortifies ML-based
xApps against potential threats such as model inversion and
data extraction attacks.

• Leveraging an over-the-air (OTA) O-RAN testbed, we
conduct an extensive analysis and comparisons of our pro-
posed approach against state-of-the-art baselines, including
CNN, ResNet, and DenseNet. Our experiments unequivocally
showcase that our approach strikes a remarkable equilibrium
between model accuracy and prediction times, when applied
to encrypted data, thereby ensuring robust data privacy.

These findings collectively highlight the promising potential
of our proposed approach as a robust solution for ensuring
data privacy within O-RAN systems without compromising
on the model performance and stringent real-time latency
requirements of O-RAN systems.

II. O-RAN BACKGROUND

Figure 1 shows key components of an O-RAN system. An
extensive explanation of the architecture and functions has
been given in [22]. For our study on data privacy, we focus
majorly on the near-RT RIC component which hosts other
integral components we discuss briefly below.

The near-RT RIC hosts third-party vendor applications
called xApps. These xApps act as intelligent components and
run ML algorithms that are used to determine control policies
for optimizing the RAN through the E2 interface. Other major
components of the near-RT RIC include the RIC database
that represents the shared data storage of the O-RAN system
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Fig. 2: Overview of O-RAN system showcasing the working of
exemplary ML-based Interference Classification xApp.

and internal messaging infrastructure which helps to connect
multiple xApps and also ensures message routing.

A. RIC Database
The RIC database serves as a repository for various data,

including information regarding the UEs such as their location.
It also contains data related to the RAN, offering insights
into access network-related information influencing overall
network performance. The data stored in the RIC database
may encompass key performance metrics (KPMs) such as
throughput and signal-to-interference-plus-noise ratio (SINR)
characterizing the quality of communication between UEs and
RAN. It can also include I/Q samples or spectrograms that can
be used to draw several insights of the network.

The RIC database’s role in data sharing fosters a collabo-
rative ecosystem where diverse xApps can utilize these data
to make informed decisions and collectively optimize network
performance. This highlights its pivotal role in supporting a
dynamic and agile open RAN system. Thus, it is pivotal that
the data stored in this RIC database are secure and not easy
to manipulate by a malicious entity.

B. Exemplary ML-based Interference Classification xApp
For our study, we design an ML-based interference classifi-

cation xApp that is used to detect the presence of jammers
transmitting different kinds of interference in a network.
As shown in Figure 2, it operates by taking spectrograms
as input, which are stored in the RIC database within O-
RAN, and makes real-time decisions about the presence of
interference within the network. Upon identifying the kind of
interference, the xApp sends a control message through the
internal messaging infrastructure to the RAN using the E2-
Lite1 interface thus prompting it to make certain controls to
optimize network performance. The idea behind our study is
to enable this ML-based xApp to be able to use the encrypted
data stored in the RIC database for inference purposes. The
data processing microservice performs the conversion from
I/Q samples into spectrograms and also the encryption. All
the machine learning models that are utilized in this paper

1E2-lite is a lightweight implementation of O-RAN E2 interface that
enables communication between E2 nodes (i.e., RAN) and Near-RT RIC.

are deployed in this xApp and a more accurate model would
result in better decisions for RAN control and a better network
performance.

III. PROPOSED APPROACH

We propose a privacy-preserving (data pipeline) method-
ology for a shared, multi-stakeholder O-RAN environment
while emphasizing a trade-off for predictive accuracy and com-
putational efficiency. O-RAN mandates a 10ms - 1s latency
requirement for the closed-loop communication between the
near-RT RIC and the RAN. The proposed approach includes
two subsequent steps – (1) Shuffling-based Learnable Encryp-
tion that encrypts the RAN data (in the form of spectrograms),
followed by (2) Vision Transformer (ViT) Model - that can
perform inferences on encrypted data, and thus, ensuring
privacy preservation of RAN data in the shared RIC database
in an open, multistakeholder O-RAN environment.

A. Shuffling-based Learnable Encryption
The proposed Shuffling-based Learnable Encryption method

involves the conversion of the spectrogram image to a set of
N ↑N grids (where N is a hyperparameter dependent on the
predefined patch size). Specifically, the proposed technique
conducts two subsequent shuffling-based operations to create
an encrypted spectrogram –

1) Grid-based Shuffling: In this operation, N ↑N grids are
randomly shuffled. Figure 3 (A) showcases the encrypted
spectrogram after this operation, and

2) Pixel-based Shuffling: For each resultant grid, the pixels
are shuffled and the outcome can be seen in Figure 3 (B).

As the encryption still results in a spectrogram where
essentially every pixel has been shuffled through a different
random seed, it is extremely difficult to retrieve the original
spectrogram, hence enhancing effective privacy. If there is a
malicious xApp, the malicious xApp cannot understand the
shuffled or encrypted images, and it would be difficult to
reverse the said process as seen in the paper [18]. Therefore,
we can confidently say that privacy is preserved. The paper
[18] also validated the potency of this method by subjecting
this and other alternatives to a multitude of reconstruction
attacks.

Fig. 3: Overview of Shuffling-based Learnable Encryption: (A) grid-
based shuffling, and (B) pixel-based shuffling.

B. Vision Transformer (ViT) Model
We first elaborate on the motivation behind using the ViT

model as a subsequent key component of the proposed privacy-
preserving computation pipeline. Following that, we give a
detailed explanation of the ViT architecture.

2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

341
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 29,2024 at 18:41:47 UTC from IEEE Xplore.  Restrictions apply. 



1) Motivation behind using ViT Model: There are two
properties of the Vision Transformer architecture that depict
a superior pair-up with the encryption pipeline. As the ViT
showcases a superlative invariance and robustness to patch
order (the spatial location of a particular grid) patch order
and its intrinsic nature of working with image patches instead
of an entire image it is highly relevant for our study [18].

Patch-order invariance is the property where the output of
the transformer encoder remains consistent and unaffected,
regardless of the sequence or arrangement of input patches. We
can also say that the pixel shuffling aspect of the encryption
pipeline can be perceived by the Linear Embedding Layer due
to the encryption being a learnable linear transformation the
pixel shuffling aspect of the encryption pipeline should also be
addressed accurately [18]. We believe that the natural affinity
of the ViT model to perceive such encrypted images is an
important motivation, and it should enable us to create a viable
ML predictor with fewer parameters which are extremely
important for a real-time network use case.

2) ViT Architecture: Having a shallower model is necessary
for achieving the strict latency constraints and at the same
time, having an acceptable level of accuracy is also important.
If we look at contemporary research in ML the accurate
models do showcase a larger model size, hence having an
architecture that naturally supports the encryption technique
does showcase substantial utility and the possibility of having
a sufficiently accurate model with considerably lesser parame-
ters. Keeping these in mind, we design a shallower ViT model,
where the architecture is divided into three primary parts, the
linear Embedding layer, and the transformer encoder, which is
followed by the softmax-activated classifier head. The internal
functioning is also depicted in Figure 4.

Fig. 4: Overview of ViT architecture: (A) showcases the Linear
Embedding layer, (B) showcases the Transformer layers, and (C) is
the classifier head.

a) Linear Embedding Layer: The linear embedding layer
is responsible for converting the input sequence of image grids
to a continuous vector representation. It leverages a learnable
Embedding Matrix E of dimensionality d which maps each
patch to a lower-dimensional vector space and a Classification
Token (vc) which is concatenated into the embedded image
patches to mimic the original transformer architecture [23].
The classification token serves as a global representation of
the entire image, allowing the model to make predictions by

considering both local patch embeddings and the essential
global context provided by this token. The governing equation
for the linear transformation layer can be perceived as:

k0 = [vc; a1E; a2E; . . . ; anE] + Ep (1)

Here, Ep ↓ R(n+ 1)↑ d and the variable k0 represents the
resultant embedding sequence, Ep pertains to the positional
information and instills spatial information, and ai represents
the image patches where the maximum value of i is n [23].

b) Transformer Encoder: The transformer encoder pri-
marily consists of the Multi-head Self-Attention block which
is abbreviated as MSA and is responsible for gauging the
relative importance of each patch embedding in comparison
with the other embeddings, and the fully connected feed-
forward dense block which can be perceived as a Multi-
Layered Perceptron or MLP [23] [24]. The governing equa-
tions for both use the paradigm of Layer normalization LN
and can be explained as:

k→ω = MSA(LN(kω↑1)) + kω↑1, ω = 1 . . . J (2)

kω = MLP (LN(k→ω)) + k→ω, ω = 1 . . . J (3)

For obtaining the softmax predictions the first element of
the sequence Koω is used as an input for a final dense layer.
The MSA further consists of the self-attention layer, and the
concatenation layer, which is responsible for combining the
outputs of the multiple attention heads [23] [24]. Here, the
number of dimensions for the MLP output is kept at 128, the
hidden size for the embedding layer is fixed at 64, and each
MSA has 4 attention heads. Here, the encoder would include
J identical layers and to obtain a lower inference time, we
only use 3 transformer layers.

IV. RESULTS AND DISCUSSION

This section conducts a thorough analysis of the proposed
approach against several baselines (see subsection IV-A) using
an OTA O-RAN testbed (see subsection IV-B) with ML-
based Interference classification xApp (Section III-B) as the
exemplary case study for ML data pipeline within an open,
shared, multistakeholder O-RAN network.

A. Comparison Baselines

1) Convolutional Neural Network (CNN) Architecture: The
proposed ViT model has three transformer layers which are
followed by the classifier head. To have a similar parameter-
ized model for the baseline CNN, we use three convolutional
layers with 64 filters of size (3,3), where each layer is
followed by the aforementioned MaxPooling layer that is
finally succeeded by a flattening layer and a Softmax activated
classifier for obtaining the probabilistic distribution.
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Fig. 5: O-RAN testbed. The left image shows our base station, user
equipment, and the jammer USRPs. The right image shows the server
hosting the near-RT RIC

2) Other Baselines (ResNet-50, DenseNet-121, MobileNet-
v2, and VGG): We also compare the proposed approach with
other prominent CNN-based architectures, mainly ResNet-
50 [25], DenseNet-121 [26], MobileNet-v2 [27], and VGG
[28]. The MobileNet was developed to implement CNN in
resource-constrained devices with a lower inference time [27].
The ResNet is a very deep architecture that leverages skip-
connections, it has shown superlative results for multiple
utilities but contains significantly higher parameters. Similar
to the ResNet, the DenseNet and VGG also implicate a
strong baseline, however, they are very deep models with
substantially higher model sizes. To implement such existing
architectures, we import the models without any pre-trained
weights without any classifier head and append the model
with a Global Average Polling Layer [29], a hidden layer
with 128 ReLU activated neurons, and a SoftMax layer for
the classification probabilities. The Global Average Polling
Layer is used to reduce the spatial dimensions of feature maps
and encourage the model to focus on more meaningful and
compact representations

B. Experimental Setup

As illustrated in Figure 5, our O-RAN testbed comprises a
RAN/core network which is co-located on the same computing
system, a UE, and then, a jammer responsible for generating
jamming/interference signals on the uplink signal of the UE.
The near-RT RIC is hosted on a rack server and can serve
multiple base stations. The RAN and UE are implemented
using the open-source srsRAN cellular software stack (version
21.10), which is designed for building LTE/5G cellular net-
works [30]. We made modifications to the srsRAN codebase to
tailor it for our testbed’s requirements, adding functionalities
like creating a buffer for storing collected I/Q samples and
certain RAN control capabilities such as switching between
adaptive or fixed MCS based on the decision from the inter-
ference classification xApp.

We employ USRP B210 SDRs as the RF devices for both
the RAN and UE. For the near-RT RIC, we utilize the O-RAN
software community’s open-source codebase to implement it.
We compile this source code on our server and establish
connections to the base station via an E2-lite interface (this is a
simple implementation of the E2 interface) [31]. The jamming

signals are generated using MATLAB and transmitted over the
air (OTA) using another USRP.

C. Dataset Generation
The data used for our study was collected using the ex-

perimental setup described previously. Our dataset comprises
2100 spectrograms, which have been divided into three distinct
classes for training purposes with 700 samples each. We
also normalize all the images between the range of [0, 1] by
dividing each pixel by 255. As we perform experiments on
three different patch sizes, the same images are leveraged for
the model training and inferences and each encrypted image
is generated with a different random key, leading to a more
difficult performance benchmark.

The first class represents the uplink UE signal with no
interference which we call signal of interest (SOI). These SOI
are transmitted at an uplink carrier frequency of 2.56 GHz.
For network configurations, we leveraged 25 physical resource
blocks (PRBs), which correspond to approximately 5 MHz of
bandwidth, necessitating a sampling rate of 7.68 Mega samples
per second. We also generated uplink TCP traffic at a rate of
5MHz between the UE and the base station using iperf3. We
set up an iperf3 server at the RAN end, with the iperf3 client
running on the UE side.

The second class and third class used for training data
represent scenarios with interference, specifically continuous
wave interference (CWI) and chirped interference (CI). These
interference signals were generated at various gain values
ranging from 30 dB to 40 dB. There are 700 CWI and 700
CI spectrograms respectively.

The SOI signals were transmitted leveraging the open-
source srsRAN stack, while the jamming signals CWI and
CI were transmitted OTA on the same carrier frequency as the
SOI. We used a MATLAB-generated script to generate the
baseband I/Q samples for the CWI and CI signals and then
utilized another USRP to transmit these signals OTA.

D. ML model Setting
The primary mode of comparison is performed via a strat-

ified train-test split where 70% of the total data is reserved
for training, 15% is used for validating the models and for
selecting the best weights through multiple epochs, and the
rest is reserved for testing. All the models are trained using
early stopping and the ’ReduceLROnPlateau’ functionality as
callbacks. The maximum epochs are kept as 100 for the
shallower models and 35 for the denser models to adhere to the
computational constraints. All the architectures are trained on
an identical data distribution to remove unwanted biases and
maintain a fair comparison. We also present the associated
temporal metrics.

E. Model Accuracy and Prediction Times
The primary experiments (i.e., Model accuracy and Pre-

diction time) are performed on the aforementioned train-test
split, and the obtained results are mentioned in table I. We
include classification metrics like Precision, Recall, F1-Score,
Accuracy, as showcased in the paper [32], and inference time.
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TABLE I: Results for the main experiments, here the prediction times are calculated for obtaining the predictions for a single image and are
mentioned in seconds. The parameters are mentioned in the orders of Millions.

Models F1 Score Accuracy Precision Recall Prediction Time (s) Parameters (M)
CNN (Baseline) 0.567 0.565 0.570 0.570 0.097 0.205
ViT (Proposed Work) 0.806 0.810 0.807 0.810 0.094 0.162

ResNet50 0.855 0.854 0.857 0.854 0.237 23.850
DenseNet121 0.767 0.762 0.828 0.762 0.266 7.169
MobileNetV2 0.167 0.333 0.111 0.333 0.131 2.422
VGG16 0.167 0.333 0.111 0.333 0.295 14.780

From the table I, it can be inferred that the proposed
approach (utilizing the ViT model) demonstrates the most
favorable balance between classification metrics and ML in-
ference time when we apply the shuffling-based encryption
on our dataset. All models, excluding MobileNet and VGG-
16, show convergence and valid performance scores compared
to the baseline CNN. Specifically compared to baseline CNN
(preferably used as a status-quo ML technique in wireless net-
works), our proposed ViT approach significantly outperforms
the baseline CNN, achieving a remarkable absolute increase
of 24.5% and 23.9% for accuracy and F1-Score, respectively.
The only model that was able to outperform the ViT was the
ResNet-50 architecture, with an increase of 4.4% and 4.9%
for percent accuracy and F1-Score. However, it requires a
substantially large number of parameters and thus, suffers
from huge inference time overheads, which may become a
bottleneck in utilizing such deep models in latency-critical O-
RAN systems. The ViT is capable of performing similarly to
a ResNet-50 while showcasing a 99.32% decrease in the total
parameters and a 60.23% decrease in the model prediction
times for one fully encrypted image. The ViT was able to
showcase a better performance than the DenseNet which is
also a prominent CNN-based architecture for classification
tasks, with an increase of 4.8% and 3.9% for percent accuracy
and F1-Score respectively.

1) Confidence Scores: We evaluate models at various con-
fidence thresholds to grasp their performance across different
inputs and error rates. Typically, models offer probability dis-
tributions for each class, and we commonly select the highest
probability as the predicted class. To enhance interpretability,
we treat each class probability as a confidence score. By
incrementally adjusting the threshold, we wait for confidence
scores to surpass it before making final predictions, thereby
improving explainability. The pictorial representation of this
experiment is mentioned below in figure 6.

As we are only registering the predictions where the max-
imum softmax probability exceeds a particular value, it is
intuitive to believe that the number of predictions would
decrease. The obtained graph further reinforces our results as
the ViT significantly performs the baseline CNN both for the
prediction accuracies and the data prediction rates. It was also
interesting to see that the ViT has a very similar performance
to the ResNet and DenseNet at substantially lesser parameters,
and it was able to outperform the said approaches at stricter
confidence thresholds. We have not tested the MobileNet and
VGG for this due to the poor performance of the original test
set and the lack of convergence.

Fig. 6: Accuracy and Data usage trends for different confidence
thresholds.

TABLE II: Experiments pertaining to different patch sizes

Model Patch Size: 8 Patch Size: 32
F1 Score Accuracy F1 Score Accuracy

CNN (Baseline) 0.674 0.679 0.167 0.333
ViT (Proposed Work) 0.754 0.762 0.728 0.740
ResNet50 0.735 0.746 0.856 0.857
DenseNet121 0.433 0.543 0.898 0.898

MobileNetV2 0.167 0.333 0.167 0.333
VGG16 0.167 0.333 0.167 0.333

F. Hyperparameter Analysis
This section indicates the auxiliary experiments which pri-

marily include real-time characteristics, variable patch sizes,
token sparsification, and tests for shuffling-based invariance.

1) Variable Patch Sizes: As the encryption techniques rely
on a patch size parameter, we can alter the variable to increase
the effective randomness, hence stronger encryption.

From the table II, we can further solidify the inference
that ViT offers a superlative trade-off between accuracy and
temporal trade-offs. It was also interesting to note that at larger
patch sizes when each patch has access to more information
the deeper models like ResNet and DenseNet were able to
showcase a better performance. For a smaller patch size, the
ViT outperformed all the other models, while maintaining a
performance boost relative to the baseline at all times. The two
architectures, MobileNet and VGG also presented an inferior
performance for this experiment.

2) Tests for Shuffle Invariance: As it is possible to create
multiple encrypted versions of the same spectrogram by the
leveraged encryption mechanism, it is also necessary to under-
stand how these different models perform when provided the
same information with a different encrypted form. If a model
can provide us the same prediction on different encrypted
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Fig. 7: CDF plots for (a) SINR, (b) Throughput, and (c) BLER for each considered ML model.

versions of the same image we can say that the model is
invariant to the grid shuffling and it has learned specific
features that are invariant to the random seed. It can also
implicate that the model has learned the required features
despite the structural information that happens when we shuffle
the grids on a spatial level. This experiment is conducted by
taking 30 new samples for each class and by generating 15
encrypted versions for each image. We also check how the
model functionalities change for each class and the overall
accuracy associated with the newer combined distribution. The
obtained results are mentioned in figure 8.

Fig. 8: Results pertaining to shuffling-based invariance.

The results reinforce the previous inferences concerning
model performances. We can also see that the SOI+CI was
the easier class to predict for the CNN-based models, and the
ViT was able to outperform the other models for predicting
the SOI+CWI. Since all models can showcase an acceptable
level of robustness in relation to the standard result from table
I which shows the performance metrics, we can say that the
models could learn some features from the shuffled data and
that this method of encryption is learnable by such deep-
learning architectures.

G. Network Performance Evaluation

Here, we compare the performance of our proposed ViT
model against two other architectures, the baseline CNN and
the ResNet-50 which were deployed as ML models in our
xApp located in the near-RT RIC using the O-RAN testbed.
The CNN was our primary baseline and was developed to
showcase an analogous architecture to the proposed ViT. The
ResNet-50 was the only convolutional-based network that gave

a better performance than our ViT but required substantially
more parameters.

To evaluate network performance on each model deployed,
we initiate uplink traffic from the UE to the RAN, spanning
a duration of 180 seconds. In the initial 90 seconds, the
UE transmits uplink traffic without interference from the
jammer. Subsequently, for the next 90 seconds, we deliberately
introduce OTA interference from the jammer, with a relative
gain of 40 dB. The plots in Figure 7 showcase the Cumulative
Distribution Function (CDF) of SINR (dB) (Figure 7(a)),
uplink throughput (Figure 7(b)) and Block Error Rate (BLER)
(Figure 7(c)). Notably, from observation, we can see that the
ResNet-50 model outperforms the ViT and CNN models in
terms of network performance. This can be attributed to the
fact that RESNET achieves the highest accuracy compared to
the other two models (See Table 1). Nevertheless, the ViT
model also demonstrates a network performance comparable
to ResNet-50 with considerably fewer parameters, while CNN,
on the other hand, exhibits the worst network performance,
primarily attributed to its lower accuracy.

H. O-RAN Timing Evaluation
To evaluate the performance of our O-RAN system in terms

of latency, we have analyzed the round trip timing (RTT) it
takes when each model is deployed on our testbed. This RTT
encapsulates the time it takes the data to be sent from the
RAN to the near-RT RIC, the time it takes to process the data
and store it in the database, the time for model inference, and
then the time to send control decision back to the RAN via
the E2-Lite interface. All these processes can be visualized in
Figure 2. For the ViT, CNN, and ResNet-50 models, the total
RTT were 611.05ms, 584.4ms, and 713.13ms respectively.
The ResNet-50 model has the highest RTT time which can
be attributed to the fact that it has the highest number of
parameters. Therefore, we can see that we are still under the
latency requirement of 1s mandated by O-RAN for closed-
loop control and communication between the near-RT RIC
and RAN.

V. CONCLUSION AND FUTURE WORK

The paper proposed a privacy-preserving solution for se-
curing RAN spectrogram data against various privacy at-
tacks/leaks in an open, multistakeholder wireless environment
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with a case study of O-RAN networks. The proposed ap-
proach comprised of two subsequent steps – first it encrypts
the RAN spectrogram data using a shuffling-based learnable
encryption model, that can be stored in the shared envi-
ronment. Following this, it utilizes a ViT model that can
perform accurate inferences on encrypted data within the
required latency constraints. Our extensive analysis using an
OTA O-RAN testbed against various baselines demonstrated
the superiority of the proposed approach in achieving better
inference accuracy as well as lower prediction times while
ensuring data privacy, which together make it suitable for
deployments for latency-critical ML-driven applications in
wireless networks. Looking ahead, our future research aims
to explore deeper transformer architectures and other speed-
up techniques that can be leveraged to incorporate more
intricate and parameterized architectures while accounting for
compliance with the established wireless network standards.
As we were able to see promising results from the ViT model
by only using 3 transformer layers, we also wish to work
towards deeper architectures as it can be assumed that an
equally deep and parametrized model can further enhance the
performance significantly.
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