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Abstract

With the precision now afforded by modern space-based photometric observations from the retired K2 and current
TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white
dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics.
To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and
made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the
equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post-
Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then
qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations.
As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are
(i) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface
chemical transition from μe= 2 to μe= 1, simulating a surface hydrogen layer. A comparison of Newtonian and
1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a
typical WD, this fractional difference is ∼10−4 and is greater than the period uncertainty σΠ/Π of many WD
pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in
principle, include GR effects to 1PN order.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Gravitation (661); General relativity (641); White
dwarf stars (1799)

1. Introduction

Properly speaking, all stellar interiors are general relativistic
because all stars self-gravitate. The question is never if general
relativity (GR) applies to a stellar model, but how best to
apply it.

With the exception of neutron stars, the full theory of GR is
not usually necessary for describing the equilibrium or
dynamics of stars, and the Newtonian approximation to gravity
suffices. One caveat to this rule is that it has long been known
(Harrison et al. 1965) that GR lowers the threshold for
instability to radial collapse in compact stars at a local peak of a
mass–radius relation. For massive white dwarfs (WDs), this
affects the exact value of the (idealized) Chandrasekhar mass
MC. Relativistic polytropes provide a simple model for this
effect of GR, where for a star of mass M and radius R the
critical polytropic index nc for the onset of instability is shifted
(Shapiro & Teukolsky 1983) according to

( )g = + = +
n

GM

c R
1

1 4

3
2.25 . 1c

c
2

The perturbation in critical exponent γc is clearly proportional
to the surface gravitational redshift z=GM/(c2R), which
serves as a post-Newtonian (PN) compactness parameter.
Recently, the effects of GR on ultra-massive WDs have been
considered (Mathew & Nandy 2017; Carvalho et al. 2018;
Nunes et al. 2021; Althaus et al. 2022). GR effects on the
internal structure become more significant as M approaches

MC, the stellar radius shrinks, and the compactness parameter
grows.
This paper is concerned with a different role played by GR,

namely its effects on nonradial gravity mode (g-mode)
pulsations observed in ZZ Ceti and other variable WD stars.
It is reasonable to expect (which we confirm) that GR effects
will show up at first order in the PN parameter (1PN) in the
conservative dynamics of g-modes. While some variable WDs
have higher mass, typical ZZ Ceti stars have M; 0.6Me.
These stars have surface redshifts of order z; 10−4, leading to
expected fractional shifts in g-mode periods at this level. While
these effects are obviously subtle, modern space-based
photometry using TESS and K2 data, with long-duration
observations, yields fractional uncertainties in measuring
g-mode periods down to 10−4 or better. Some variables display
modes (usually with periods in the range Π∼ 100–200 s) that
are coherent over lengths of time exceeding the spacecraft
observations (see Hermes et al. 2017, 2013). Even longer-
duration time series, which include decades of ground-based
observations, have revealed stars such as G117-B15A (Kepler
et al. 2021) and R458 (Mukadam et al. 2013) with stable modes
that have fractional period precisions better than σΠ/Π∼ 10−8,
allowing attempts to measure WD cooling.
Recent WD asteroseismology work (Giammichele et al.

2018) has attempted to build WD models that reproduce
observed pulsation periods to the level of precision of space-
based data. Based on the results of our calculations comparing
Newtonian and 1PN GR models, we argue that GR effects
might sensibly be taken into account when trying to reproduce
pulsation spectra with fractional line widths narrower than
10−4.
The methods of asteroseismology (for main-sequence stars

as well as WDs) have been reviewed in multiple settings (e.g.,
Cox 1980; Hansen & Kawaler 1994; Unno et al. 1979). The
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Newtonian equations describing nonradial stellar pulsations are
usually cast into a form due to Dziembowski (1971), which
introduces dimensionless variables and takes account of regular
singular points in the system of equations at the stellar center
(origin) and surface. For example uses of these equations, see
Townsend & Teitler (2013), Takata & Löffler (2004), and
Córsico & Benvenuto (2002). Several community codes are
available that calculate eigenmodes and periods once a stellar
background model is specified. These codes include gyre (by
Townsend & Teitler 2013) and adipls (by Christensen-
Dalsgaard 2008), which can be incorporated in stellar evolution
codes, such as MESA (by Paxton et al. 2010).

The theory of stellar pulsations in GR developed largely
separately and was focused on the possibility of pulsations in
neutron stars (Thorne & Campolattaro 1967; Price &
Thorne 1969; Thorne 1969a, 1969b; Campolattaro &
Thorne 1970; Ipser & Thorne 1973). For quadrupole or higher
order (ℓ� 2) nonradial modes, the gravitational field is
dynamical and results in the emission of gravitational waves
(GWs). The computed modes in these cases are quasi-normal
with complex eigenfrequencies that reflect damping. Later
work (Lindblom & Detweiler 1983; Detweiler & Lind-
blom 1985) simplified the system of perturbation equations to
a fourth-order complex set, providing a means to more easily
calculate modes numerically.

It is not necessary to apply the full machinery of GR
pulsation theory to WDs. When pulsations of stars that are less
compact than neutron stars are considered, like WDs, the
conditions for applicability of both the slow-motion and weak-
field approximations prevail, which means that the PN
formalism can be used. Applied to typical WDs, where the
compactness parameter is ∼10−4, fractional corrections to
mode periods will be of this order. Even if 1PN corrections can
be observed, 2PN is almost certainly unobservable. Accord-
ingly, we propose using the 1PN approximation as an accurate
means of including GR effects in WD pulsation calculations
(Boston 2022) and have built an asteroseismology code,
GRPulse, based on this premise. For consistency, 1PN GR
would need to be included in both the pulsation equations and
in the background stellar model.

It might be argued that the effects of GWs, which set in at
2.5PN order in the fluid motion, should be considered since
they exhibit a secular behavior. However, most of the observed
WD g-modes are thought to be ℓ= 1 oscillations, which do not
radiate GWs. In those modes that do radiate, the secular effect
would primarily manifest itself in the mode amplitude, and be
much more difficult to measure accurately than mode periods.
Moreover, the Q due to GW damping of an otherwise
undisturbed free WD oscillation is enormous. The coarsest
approximation for the quadrupole f-mode would be

( )~ ~Q Rc GM 102 5 2 10. Additionally, for g-modes, the Q
due to GW emission would be orders of magnitude larger still,
since g-modes are primarily a motion near the surface with less
mass involved in the perturbation Δρ and (importantly) the
periods, set by the Brunt–Väisälä frequency, are much longer
than those of the f-mode or p-modes. In any event, the observed
sustained g-modes in WDs are not likely free oscillations but
instead modes that are driven by the conversion of heat flux
from the stellar interior into mechanical work, in the region of
partial hydrogen ionization, by the trapping effects of the
convection zone (Dolez & Vauclair 1981; Winget et al. 1982;
Brickhill 1991; Goldreich & Wu 1999) and damped by the

onset of dissipative mode coupling parametric instability (Wu
& Goldreich 2001). These stronger effects preclude the need to
consider weaker GWs (which only apply to ℓ� 2 pulsations),
and our proposed use of the 1PN approximation automatically
avoids the issue.
The 1PN gravitational field involves (i) a correction to the

Newtonian potential Φ, (ii) an introduction of the gravitomag-
netic vector potential W (with only two nontrivial components,
Wr and Wθ, in the case of fluid stars), and (iii) the presence of a
new (1PN) scalar potential Ψ. Besides adding new (elliptic)
field equations for these variables, numerous 1PN correction
terms appear in the fluid equations of motion. As we show, in
this format the usual linear pulsation equations can be extended
in a transparent way.
Stellar pulsations at 1PN order have been considered

previously (Cutler 1991), though in that paper applied to
rotating neutron stars where the unperturbed stationary model
is axisymmetric, not spherically symmetric. In Newtonian
terms, the rotational (centrifugal) potential is great enough to
make the background model oblate. We do not consider the
complication of rapid rotation here.
Nevertheless, it is worth remembering that some pulsating

WDs do exhibit the effects of rotation. Retaining only first
power in the stellar angular velocity Ω (i.e., small rotation rate),
the combined effects of the angular rate between the star and
distant inertial observer and of the Coriolis accelerations
Ω× δv in the fluid motion lead to a splitting of circular-mode
periods proportional to their value of azimuthal mode number
m (Cox 1980). These splittings are observed in the power
spectra of WD light curves, with groupings of 2ℓ+ 1 modes
(e.g., triplets for ℓ= 1) allowing the mode number ℓ to be
determined. See Kepler et al. (1983) for an observed rotational
splitting of ℓ= 1 in G226-29 and Odonoghue & Warner (1982)
for the splitting of ℓ= 2 and ℓ= 1 in L19-2. Second-order-in-Ω
effects of rotation on mode splittings are suggested by analysis
of L19-2 (Odonoghue & Warner 1982; Brassard et al. 1989).
Our calculations will be relevant for small rotation rates and
when applied to the m= 0 modes.
We note in passing that other approximations in mode

calculations are sometimes made. The most common is the
Cowling approximation (Cowling 1941) in which the Eulerian
perturbation in the gravitational potential is neglected. One
historical virtue of the Cowling approximation is it showed that
the resulting second-order pulsation equations could be cast in
nearly Sturm–Liouville form, and in the mode frequency limits
ω→∞ or ω→ 0 the system assumes Sturm–Liouville form.
Out of this emerged the understanding of the existence of
infinite sequences of p-modes and g-modes, separated by the
single (for ℓ� 2) f-mode. While the Cowling approximation of
mode periods can be sufficiently accurate for some purposes, in
this paper we seek to make an unambiguous comparison
between Newtonian and 1PN GR versions of pulsation theory,
and therefore avoid the additional uncertainty associated with
the neglect of Eulerian gravitational perturbations.
In any event, while neglecting ΔΦ in the Newtonian system

is straightforward enough, to include the Cowling approx-
imation in our comparison would require a 1PN version. While
a form of the Cowling approximation for the full GR pulsation
theory has been developed by McDermott et al. (1983; see also
McDermott et al. 1985; Lindblom & Splinter 1990; Yoshida &
Lee 2002), the question arises of what parts of the metric
perturbation to include and what to ignore (Finn 1988). An
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advantage of the approximation is that it eliminates the
radiative degree of freedom (thereby eliminating GWs), yet
this is true also when we adopt the 1PN system.

We note also that Finn has developed (Finn 1986, 1987) a
slow-motion but not weak-field approximation for treating
relativistic g-modes in neutron stars. In our application to WDs,
there is no need to try to retain the complexity of a strong field
treatment.

To make a comparison between Newtonian and 1PN GR
pulsations, we opt for simplified treatments of the background
stellar model and adiabatic fluctuations in the perturbation
equations. We adopt two models for the star. The first model
treats the WD as a polytrope, with a particular choice of how to
extend the Newtonian polytrope to GR. By picking an adiabatic
index Γ1 that is greater than the polytropic structural exponent
γ= 1+ 1/n, the model supports g-mode oscillations. While
this affords a clean comparison, it has the disadvantage that
g-modes in this model penetrate more deeply into the star, and
the resulting periods are much shorter than observed modes.
Accordingly, we have also generated a second model for the
WD, in which the equation of state is just that of a cold
degenerate electron gas, but one in which μe shifts smoothly
from μe= 2 in the core to μe= 1 in a surface layer. This
mimics the behavior of a surface hydrogen layer in a real WD.
In this model, the g-mode cavity is confined near the surface,
and the mode periods more nearly approximate those seen in
real variable WDs. Neither of these stellar models is intended to
be an accurate depiction of a real WD. Instead, our goal is to
keep the microphysical description simple in order to better
highlight the differences in mode periods that occur depending
upon whether we use a Newtonian or a 1PN GR treatment.

This paper is organized as follows. In Section 2 we briefly
review the standard Newtonian pulsation theory to set the
notation. In addition to Newtonian polytropes, we describe in
Section 2.4 the stratified T= 0 degenerate electron gas model
that imitates a surface hydrogen layer. In Section 3 we
summarize the 1PN formalism and introduce the linear wave
equations at 1PN order. This section also discusses
(Section 3.3) our particular choice for relativistic polytropes
and their 1PN reduction, and (Section 3.5) the 1PN extension of
our stratified T= 0 models. In Section 4 we reduce the
Newtonian and 1PN perturbation equations into a form more
suitable for numerical study, which in the Newtonian case is
due to Dziembowski (1971). Tests of the numerical behavior of
our two versions of the code are summarized in Section 5. We
make use, in particular, of tabulated periods of polytropes
(Cutler & Lindblom 1992; Lindblom et al. 1997) as code
checks and, in turn, provide an expanded list for future
reference. Section 5 discusses the numerical performance of the
code, which is designed to be more than adequate to accurately
capture ∼10−4 fractional differences between Newtonian and
1PN mode periods. Section 6 gives our calculated numerical
period shifts for both polytropic stars and the stratified models.

2. Newtonian Nonradial Pulsations

For the sake of comparison to the 1PN equations, we
summarize linear adiabatic pulsations in Newtonian stars. A
fuller discussion is available in Cox (1980) and Unno et al.
(1979).

2.1. Newtonian Stellar Dynamics

Consider a star with density ρ(t, r), pressure P(t, r), and
Newtonian gravitational potential Φ(t, r). The fluid motions
inside the star are described by

( )p r F = G4 , 2a2

· ( ) ( )r r¶ +  =v 0, 2bt

( ) · ( ) ( )r r r¶ +  = - - Fv vv P . 2ct

Here Equation (2b) is the familiar continuity equation, and
Equation (2c) is Newton’s Second Law for a fluid under self-
gravity. In the static spherically symmetric limit, Equation (2c)
becomes the equation of hydrostatic equilibrium:

( )r= +
FdP

dr

d

dr
0 . 3

2.2. Newtonian Polytropes

We consider a simple model of a static star governed by a
polytropic equation of state:

( )r= +P K , 41 n
1

where n is the polytropic index. When using this simple
equation of state for a static, spherical star, Equation (2)
reduces to the Lane–Emden Equation (Lane 1870):

⎛
⎝

⎞
⎠

( )q
q= -

s

d

ds
s

d

ds

1
, 5n

2
2

where the Lane–Emden solution θ is related to the density and
pressure by

( ) ( ) ( ) ( ) ( )r r q q= = +r s P r P s, . 6c
n

c
n 1

The dimensionless radial variable s is defined by1

( ) ( )
p r

=
+

r s
n P

G

1

4
. 7c

c
2

See, e.g., Chandrasekhar (1939).

2.3. The Linearly Perturbed Newtonian Equations

If an element of fluid is displaced by δr= ξ(t, r), then the
density, pressure, and Newtonian potential will be perturbed in
response.2 The unperturbed background star is described by a
solution to Equations (3) and (2). For such a background,
Equation (2), perturbed to first order, becomes

( )p r DF = DG4 8a2

· ( ) ( )r rxD = - 8b

( )r
x

r r
¶
¶

= -D - D F - DF
t

P . 8c
2

2

These equations define a fourth-order system for the nonradial
perturbations.

1 In the Lane–Emden equation we use s and not the common ξ to avoid
confusion with δr = ξ.
2 Throughout, we denote the Lagrange perturbations by δ and Euler
perturbations by Δ. This is the opposite convention used in the GR literature,
e.g., Shapiro & Teukolsky (1983). Our notation is a compromise with the
Newtonian literature.
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In spherical stars, the normal modes can be decomposed into
spherical harmonics. Scalar perturbations become, e.g.,

( ) ( ) ( ) ( )r r q fD = D wrt r e Y, , . 9ℓm
i t

ℓm

The displacement vector ξ is decomposed into a radial and a
transverse vector spherical harmonic Yℓm= r∇Yℓm, (see Barrera
et al. 1985), so that

( ) ( ) ˆ ( ) ( )x x x= +w wr r Yt r Y e r e, . 10ℓm
r

ℓm
i t

ℓm
H

ℓm
i t

When broken up in this way, Equation (8), describing the
displacement, can be written in component form:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( )

x
x

w
c= - +

+
- + DF

d

dr

g

v r

ℓ ℓ

r v v

2 1 1 1
,

11a

r

s

r

s s
2 2 2 2 2

[ ] ( )c
w x c= - + - DF

d

dr
N

N

g

N

g
, 11br2 2

2 2

where χ= rω2ξH and we suppress the ℓ, m indices on the
perturbed quantities, and where ( )r= ¶ ¶v Ps ad is the local
sound speed.

The quantity N appearing in Equation (11) is the Brunt–
Väisälä frequency, which, along with the Lamb frequency
(Cox 1980), is important for classifying regions of mode
stability. The g-modes are restored by buoyancy forces, and
cannot propagate within convective regions in the star. Stability
against convection and propagation of g-modes depends on N2

being positive (see, e.g., Kawaler et al. 1985). The Brunt–
Väisälä frequency is closely related to the Schwarzschild
discriminant:

( )r
= -

G
= -A

d

dr

d P

dr

N

g

ln 1 ln
, 12

1

2

where g is the local gravity. Thus, the Schwarzschild
discriminant satisfies A< 0 in regions where g-modes
propagate.

In a spherically symmetric star, the g- and p-modes can be
labeled by the angular momentum number ℓ (the modes are
independent of the azimuthal number m in nonrotating stars),
and further labeled by the principal radial mode number k
counting the radial nodes in each mode. Using the Osaki–
Scuflaire classification scheme (Osaki 1975; Scuflaire 1974),
we can classify k< 0 as g-modes, k> 0 as p-modes, and the
fundamental mode (f-mode) as k= 0.

2.4. Stratified Degenerate Electron Gas Models (CHWD++)

To begin building a simplified model that will mimic the
pulsational behavior of WDs, we start with the Chandrasekhar
WD (CHWD) equation of state, with the only pressure
contribution coming from the completely degenerate (T = 0)
electrons immersed in a sea of ions (Chandrasekhar 1939). We
neglect electrostatic corrections. The CHWD models are not
immediately suitable for asteroseismology since they have
N2= 0 everywhere and do not admit g-mode solutions. Real
variable WDs have g-modes that are confined near the surface
(Winget et al. 1982). Important in explaining the presence of
these near-surface modes is the addition of the Ledoux term in
the Brunt–Väisälä frequency (Brassard et al. 1991), associated
with composition transitions occurring in the outer layers. We
can make a small adjustment to the CHWD T= 0 equation of

state by adding a composition transition, and thereby construct
simple stellar models that support g-modes.
To account for a chemical transition, we consider μe (the

mean molecular weight per electron) defined by

( )åm
=

Z

A
X

1
, 13

e

i

i
i

where Zi and Ai are the nuclear charge and nuclear mass
numbers, respectively, and Xi is the (local) mass fraction of any
elemental species. In the outermost layer composed of pure
hydrogen, we will have μe= 1, while μe= 2 in any region
composed only of 4 He, 12 C, 16 O, or combinations thereof. If
an outer region exists where XHe+ XH= 1 and XHe smoothly
transitions from 1 to 0, then μe(r) will smoothly transition from
2 to 1, yielding the desired near-surface cavity.
We take for the equation of state

( ) ( )r m=r B x , 14ae0
3

( ) ( ) ( )=P r A f x , 14b0

with A0 and B0 being parameters (Hansen & Kawaler 1994)
dependent upon electron and proton masses and physical
constants h and c. Here, x and f (x) are the dimensionless Fermi
momentum and dimensionless degeneracy pressure function
(Chandrasekhar 1939), respectively, and μe is assumed to vary
spatially. To construct our stratified model, we set μe to be a
function of pressure:

( )
{ ( ( ))}

( )m
a

= +
+ -

r
f f x

1
1

1 exp ln ln
. 15e

c

With appropriate choices for α and fc, we can place the
transition near the WD surface. Then, in constructing the stellar
model, μe will begin at μe(0)= 2 in the center and near the
surface smoothly transition to μe(R)= 1. With this simple
equation of state, the equation of hydrostatic equilibrium
reduces (in terms of dimensionless radius s) to

⎛
⎝

⎞
⎠

( ) ( )m
m

m
= - - +

s

d

ds
s

dy

ds
y

dy

ds

d

ds

1
1

1
, 16e

e

e
2

2 2 2 3 2

where = -y x 12 and p=s rB G A20 0 . Following Bras-
sard et al. (1991), we can choose μe as the unique indicator of
composition change, and it can be shown that N2 becomes

( )
m

= -N g
d

dr

ln
. 17e2

Thus, g-modes will exist in any region of decreasing μe, which
we choose to be near the surface. As seen in Figure 1, this leads
to a curve for N2 that has qualitative similarities to those seen in
realistic WDs. We refer to this cold degenerate but stratified
model as the CHWD++ model (Boston 2022).

3. Post-Newtonian Nonradial Pulsations

Modern post-Newtonian theory, using either the multipolar
post-Minkowskian (MPM) or PN approach or the direct
integration of the relaxed Einstein equations formulation, has
been successful in self-consistently pushing PN results to high
order. See Blanchet (2014) and Poisson & Will (2014) for
reviews. For example, the source motion and gravitational
waves in the two-body problem have been computed to third
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post-Newtonian order (Arun et al. 2008) and beyond. Our
present interest in 1PN is more modest and allows the use of the
simple classic approach to PN theory (Poisson & Will 2014;
see their Section 8.2). We briefly summarize the formal-
ism here.

3.1. Post-Newtonian Field Equations

Gravity arises as the result of spacetime curvature respond-
ing to the presence of matter (i.e., energy, momentum, and
stress). The gravitational field is described by the metric tensor
gαβ, which determines, in part, the line element that expresses
infinitesimal proper distances and times between events. At
1PN order, the line element can take the form

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ·

[ ]

( )

=

=- +
F

+
Y + F

+

+ -
F

+ +

ab
a bds g dx dx

c c
c dt

c
W dx dt

c
dx dy dz

1
2 2 8

1
2

,

18

2

2

2

4
2 2

2

2
2 2 2

 

where Φ is the usual Newtonian gravitational potential, W is a
1PN vector (gravitomagnetic) potential, and Ψ is a 1PN scalar
potential. (Much of the PN literature uses U=−Φ for the
gravitational potential and opposite signs on the 1PN fields.
Because we make the connection with Newtonian asteroseis-
mology, we retain the astrophysical convention for Φ and keep
signs on W and Ψ consistent with that). The field is assumed to
be weak, with the gravitational field spurring small deviations
in the metric from that of flat space. Factors of 1/c2 keep track
of relative PN order. The coordinates x,y,z are nearly
Minkowskian, and the harmonic gauge condition

( )¶ F + ¶ =W 0 19t k
k

is adopted.
The metric of Equation (18) is assumed to satisfy the

Einstein field equations (see Weinberg 1972; Poisson &

Will 2014),

( )p
=ab abG

G

c
T

8
, 20

4

term by term in the weak-field and slow-motion expansions.
Here Gαβ is the Einstein tensor, which describes spacetime
curvature, and Tαβ is the stress–energy tensor, which describes
the matter. Both tensors depend on the metric gαβ. We take the
matter to be a perfect fluid described by

( ) ( )r= + +ab a b abT P c u u P g , 212

with ρ the total energy density, P the isotropic pressure, and uα

the fluid 4-velocity. The 4-velocity is constrained by
uαu

α=− c2, so that uα= γ(c, v k) with γ determined from
the coordinate velocity v k and the constraint. We further define
the baryon rest mass density ρ0 that gives rise to baryon
conservation ( )r =a

au 00 . Then, ρ and ρ0 are related by
defining the specific internal energy ε such that
ρ= ρ0(1+ ε/c2). The matter configuration is determined by a
set of matter variables, such as {ρ, P, ε, v k}. Alternatively, ρ0
may be used in place of ρ. Another more common alternative is
to use the conserved, or rescaled, mass density ρ

*

(Poisson &
Will 2014) defined by *r gr= -g 0.
Using the matter set {ρ, P, ε, v k} and recalling that in the

slow-motion near zone, time derivatives of functions are of
order 1/c compared to space derivatives, the 1PN field
equations become

( )p r F = G4 , 22a2

( )p r =W vG4 , 22b2

( ) ( )p r r Y =
¶ F
¶

+ - F +
t

G v P4 2 2 3 , 22c2
2

2
2

where ∇2 is the flat-space Laplacian. Leaving aside the choice
of sign for the potentials, the use of ρ in the fundamental matter
set, rather than ρ0 or ρ

*

, affects the form of the source in (22c)
and, therefore, the definition of Ψ. The form of the 1PN field
equations we list here is equivalent to that found in Weinberg
(1972) but differs from that in Poisson & Will (2014). A more

Figure 1. Comparison between the square of the Brunt–Väisälä frequency N2 found in the CHWD++ models (blue curve) developed in this paper with N2 that
appears in realistic WD models (magenta curve) (see Boston 2022). Also plotted is the Lamb frequency L1

2 for ℓ = 1 (green and gold curves) to highlight the presence
of the g-mode cavities, which occur in regions where the mode frequency ω satisfies both ω2 < N2 and w < L2

1
2. The stellar surface is located to the left in the plot and

the stellar core to the right. The presence of the composition change in the outer layers allows for a nonzero N2 in the stratified degenerate electron model, forming a
g-mode cavity qualitatively similar to those found in realistic WDs.
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detailed derivation of these equations is found in Bos-
ton (2022).

3.2. Post-Newtonian Hydrodynamics

The 1PN system is completed by deriving the 1PN equations
of motion of the perfect fluid. The stress–energy tensor has
vanishing covariant divergence:

( ) = ¶ + G + G =a
ab

a
ab

ag
b ag

ag
a gbT T T T 0. 23

Inserting the perfect fluid stress tensor and expansions for the
connection, metric determinant, and 4-velocity through 1PN
order, the time component of Equation (23) is found to be

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
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⎤
⎦⎥

· ( )

r

r
r

¶
¶

+
- F

+ +
- F

+ -
¶F
¶

=v
v

t

v

c

v

c

P

c c t

1
2

1
2

0, 24a

2

2

2

2 2 2

where ∇ is the flat-space operator. The space components of
Equation (23) reduce to 1PN order in a similar fashion:

⎜ ⎟
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24b

v
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c
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c
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c
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1
4

1
4

1
2

4 2 2 4 0.

2

2 2

2
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2
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Combining Equations (24a) and (24b) we can derive the 1PN
version of Euler’s equation for the time rate of change of the
3-velocity.

For a relativistic barytropic equation of state, P= P(ρ) (such
as the 1PN polytropes we consider below) and Equation (22)
along with Equation (24) suffice to characterize the 1PN
system. For a more general equation of state, where
P= P(ρ0, Π), these equations must be supplemented with the
expression for the conservation of the baryon number. In the
limit, as 1/c→ 0, everything reduces to the Newtonian system
of Equation (2).

In the static limit for a spherical configuration,
Equation (24b) reduces to

( ) ( )r
r

+ +
F

+
Y

=
dP

dr
P c

d

dr c

d

dr
0, 252

2

which is the 1PN version of the Tolman–Oppenheimer–Volkoff
(TOV) equation of relativistic hydrostatic equilibrium (Oppen-
heimer & Volkoff 1939; Tolman 1939).

3.3. 1PN Polytropes

For the case of a 1PN static spherical polytrope, we follow
Tooper’s (1964) solution to the equations of a static fluid
sphere in GR (see also Oppenheimer & Volkoff 1939;
Tolman 1939). We specify an equation of state identical in
form to Equation (4), where ρ= ò/c2 represents the mass-
energy density inside the star (and not merely the baryon
density as in Tooper’s 1965 paper). We define the

dimensionless relativistic parameter:

( )s
r

=
P

c
, 26c

c
2

specifying the strength of relativity within the star. This σ can
be related to the surface redshift z. In addition to θ defined by
Equation (6) and s defined by Equation (7), we define f and ψ

such that

( ) ( ) ( ) ( )
r

fF =
+

r
n P

s
1

, 27ac

c

( ) ( ) ( ) ( )
r

yY =
+

r
n P

s
1

. 27bc

c

2

2

In the static case, Equations (22) and (24a) can be reduced to

⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

( ) ( )

q
q

s q f q
f q
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+ + - -+
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d

ds
s

d
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d
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1

2 1 4 , 28a

n

n n

2
2

1

⎛
⎝

⎞
⎠

( )f
q=

s

d

ds
s

d

ds

1
, 28bn

2
2

⎛
⎝

⎞
⎠

( ) ( )y
q q f= - ++

s

d

ds
s

d

ds
n

1
3 2 1 , 28cn n

2
2 1

which are 1PN Lane–Emden equations. In this form, it is clear

that in the Newtonian limit σ→ 0,
f q

 -
d

ds

d

ds
, and

Equation (28) reduce to Equation (5). From Equation (25),
Equation (28b) can be replaced by

( ) ( )q
sq

f
s

y
= - + -

d

ds

d

ds

d

ds
1 , 29

which is better for numerical analysis. The boundary conditions
(BCs) on these equations are that θ= 1 at the center, θ= 0 at
the surface, df/ds= dψ/ds= 0 at the center, and f must have
an initial value so that Φ=−GM/R at the surface. The value
of σ must be chosen to match the redshift by

( ) ( ) ( )s
f

= - - » +-z GM c R n s
d

ds
1 2 1 1 , 302 1 2

1
1

with s1 the value of s at the surface. This matching of f(0), σ
must be accomplished by an iterative convergence routine.

3.4. The Linearly Perturbed 1PN Equations

Consider a solution to Equation (24) for the case of a static,
spherically symmetric star, and consider its response to a
displacement of the fluid elements by δr= ξ. This will result in
perturbations Δρ, ΔP, ΔΦ, ΔΨ, and ΔW. Perturbed to first
order on a static background, Equation (24) will become

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

⎛
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·
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x r
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r
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=  +
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+ D -
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-
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c c c
0

2
1

2 3
,

31a

2 2 2
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⎛
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2
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The equations for the potentials are simply

( )p r DF = DG4 , 32a2

( )p r x D = ¶W G4 , 32bt
2

[ ] ( )p r r DY = ¶ DF + D - DF - FDG P4 3 2 2 . 32ct
2 2

On a spherical background, the scalar perturbations of the
normal modes will be proportional to a spherical harmonic Yℓm
and have harmonic time dependence e iω t, analogously to the
Newtonian case. Because ξ and ΔW are vectors, they require
vector spherical harmonics,

( ) ˆ ( )x x x= +w wr r Yt Y e e, , 33ar
ℓm

i t H
ℓm

i t

( ) ˆ ( )D = D + Dw wW r r Yt W Y e W e, . 33br
ℓm

i t H
ℓm

i t

The vector Laplacian acting on ΔW will produce two second-
order equations,

⎛
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2
2

2 2

This apparent tenth-order system actually reduces to the
eighth-order system of Equation (49), due to the harmonic
coordinate condition of Equation (19). The perturbed version of
the gauge condition is

·

( ) [ ( )] ( ) ( )w

= ¶ DF +  D

= DF + D -
+

D

W

i r
r

d

dr
r W r

ℓ ℓ

r
W

0
1 1

. 35

t

r H
2

2

This, and its derivative, allow us to eliminate two degrees of
freedom from the system.

3.5. 1PN CHWD++

The 1PN generalization of the CHWD++ model introduced
in Section 2.4 can be readily derived from the GR degenerate
gas equation of state given by Chandrasekhar & Tooper (1964),
using their functions g(x) and h(x), with

( ) ( ) ( )

( ) [ ( ) ( )] ( )

r r

m s

= +

= = +

r r
c

U r

B h x s B s x g x

1

, , 36a

B e

e

2

0 0
3

( ) ( ) ( )=P r A f x , 36b0

and with μe(x), as in Equation (15). Then, the static equilibrium
condition of Equation (25) becomes

{ }[ ( ) ( )] ( ) ( )s
f

s
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= - + +
dx

ds

y

x
h x f x
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ds
h x

d

ds
37a

4

( ) ( )f f
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d

ds
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ds
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2
37b

( ) ( ) ( )y
f

y
= - -

d

ds

d

ds
f x h x

s

d

ds
3 16

2
, 37c

where Φ= 8A0/B0f and yY = A B8 0
2

0
2 . The BCs are that

x= 0 at the surface, that df/ds= dψ/ds= 0 at the center, and
that f must have an initial value so that Φ=−GM/R at the
surface. The central value of y (and hence x) is specified by the
free parameter y0, and σ= A0/B0c

2 is fixed by the relative
masses of protons and electrons.

4. The Dziembowski Form for Numerical Solution

We seek dimensionless forms of both Equation (8) and
Equation (31) that are suitable for the numerical study of the
wave equations. We choose the dimensionless form of
Dziembowski (1971) for the Newtonian case, which we
generalize to 1PN.

4.1. The Newtonian Dziembowski Equations

We begin with the Newtonian Equations of (8). Define
variables

( ) ( )

( ) ( ) ( )

x w
x= =

=
DF
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y x
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g
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1

, 38

ℓ
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ℓ H
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1
2

2
2

2

3
2

4
2

with g= dΦ/dr, x = r/R, and the factor x2− ℓ to improve
behavior near the center. We then define a set of dimensionless
stellar structure quantities:

*
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r
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G
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= + =
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d P
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d

d r
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,
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ln
2, , 39

g
1 1

1 3

and define the dimensionless frequency

¯ ( )w w=
R

GM
. 402 2

3

The linear system describing the pulsations now becomes the
Dziembowski form:
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Near the center, all solutions can be expanded in positive, even
powers of x, and the central values satisfy

( ) ¯ ( ) ( ) ( ) ( )w
= =y

c

ℓ
y y ℓy0 0 , 0 0 . 42a2

1
2

1 4 3

Near the surface, due to the vanishing pressure and density, the
variables A

*

and Vg will both diverge. Nonetheless, imposing
the condition δP= 0 at the surface (x = 1) leads to BCs:

( ) ( ) ( ) ( ) ( ) ( ) ( )= + = - +y y y y ℓ y1 1 1 , 1 1 1 . 42b2 1 3 4 3

While the BCs given in Equation (42) relate the boundary
values, more care is needed for numerical solutions at both
boundaries. For improved accuracy, we use an even-powered
series at the center (see Cox 1980, Section 17.6), and follow the
surface expansion approach detailed by Christensen-Dalsgaard
& Mullan (1994) in their Appendix. See Boston (2022) for
further details.

4.2. The 1PN Dziembowski Equations

We now consider the 1PN Equation of (31). We define
variables y1–y4 analogously to Equation (38), but replacing

( ) =
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g q
d

dr c

d
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1
. 43

2

We then define additional variables for the 1PN potentials:
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where Φs=−GM/R is the surface gravitational potential.
While there are 10 variables, due to the harmonic coordinate
condition only 8 of them are independent.

As in the Newtonian case of Equation (39), we define stellar
quantities
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and use w̄2, as in Equation (40). Additionally, we define

*
* ( )bF = F F = Fv, , 48s s s
2 2

where ( )r= ¶ ¶v Ps ad is the local relativistic sound speed.

To 1PN order, the surface redshift is = = -Fz GM

c R c
s

2 2 , which
will be used as a relativistic PN compactness parameter.

We can eliminate z4 and z6 from all equations using
Equation (35), which leads to an eighth-order system of

equations describing 1PN pulsations:
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We have derived Equation (49) in two ways: one by using the
classical PN approach directly; and again using the MPM/PN
approach mentioned earlier. Compare these equations to
Equation (41). Notice that all new terms in these equations
occur multiplied by the 1PN compactness parameter z. We
therefore recover the classical Dziembowski equations in the
Newtonian limit of z→ 0.
At the center of the star,

( ) ¯ ( ) ( ) ( ) ( )w
= =y

c

ℓ
y y ℓy0 0 , 0 0 , 50a2

1
2

1 4 3

( ) ( ) ( ) ( ) ( )= =z ℓz z ℓz0 0 , 0 0 , 50b2 1 3 5
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while at the surface

*
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[ ( ) ( )] ( )
b= + - - F

- +
y y y z z

z z z

1 1 1 1 3 4
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Similarly to the Newtonian problem, the solution at both the
center and surface boundaries can be expanded in a power
series, where the coefficients are determined only by the
background model.

We draw a comparison between these 1PN terms and the
Newtonian Cowling approximation. For nonradial pulsations,
the full analysis should include matter perturbations, Eulerian
gravitational perturbations, and thermodynamic perturbations.
Often, we are most interested in the adiabatic approximation,
which includes only the matter and gravitational perturbations.
In the Cowling approximation, we further simplify by
neglecting the Eulerian gravitational perturbations and includ-
ing only matter perturbations. The adiabatic analysis can be
considered to be the Cowling approximation with additional
gravitational terms, and the nonadiabatic analysis can be
considered to be the adiabatic approximation with additional
thermodynamic terms.

In a similar way, the adiabatic 1PN effects of this paper can
be considered an additional add-on to the Newtonian adiabatic
approximation and can be handled similarly to the nonadiabatic
effects (i.e., with numerical flags). This makes the 1PN
Equation (49) easy to integrate into codes written for
Newtonian analysis. This is another major benefit of the 1PN
approach.

In Section 6 we will discuss the eigenfrequencies of the
system of Equation (49) and compare them with the Newtonian
results.

5. Numerical Tests

To ensure parity in the analysis, we produced a code to
calculate eigenmodes using Newtonian and 1PN physics with
polytropic backgrounds. While there are published tables for
frequencies in the Newtonian case (such as Christensen-
Dalsgaard & Mullan 1994, henceforth JCD–DJM) and readily
available community codes (such as gyre and adipls),
making our own Newtonian code grants an additional check to
the 1PN frequencies that the differences are not due to method
or machine.

5.1. The GRPulse Asteroseismology Code

Our code for both Newtonian and GR pulsations is called
GRPulse,3 originally introduced in Boston (2022). This code
may be obtained from GitHub.4 Documentation and sample
input files to generate the tabulated values in this paper are
available. The program leverages object-oriented design for
easy compatibility with different stellar models, different wave
equations, or different integration methods. We offer this code
under the GNU General Public License.

The code is being further developed in two directions. This
present work highlights GRPulse’s capabilities for Newtonian
and 1PN asteroseismology on simple models. GRPulse is also
capable of calculating frequencies in the GR Cowling
approximation, and we anticipate further developing its
abilities to the full GR mode equations of Thorne &
Campolattaro (1967) and Detweiler & Lindblom (1985). We
have also extended the range of Newtonian stellar models to
include more realistic models of WDs beyond polytropes,
which we will present in a future study. We anticipate further
expanding the number of models available in each regime of
physics.

5.2. Polytropic Background Codes

We calculate the Newtonian polytropic background by
numerically solving Equation (5) with simple RK4 on a
uniform grid of fixed size Nstar. For n= 0, 1, and 5 there exist
analytic solutions to test against (see Hansen & Kawaler 1994,
Section 7.2). For a grid size Nstar= 105, we find relative errors
from the analytic solutions always smaller than 10−13. In
addition, we can convert our solution to Equation (5) in terms
of s and θ to a solution in terms of physical variables, such as r,
ρ, P, and Φ, and insert these variables back into the original
Equation (2) to calculate a scaled residual, e.g., for
Equation (2a),

( )
( )

( )
∣ ∣

( )
p r

p r
=

-

+

F

F
r

r G r

r G r
res

4

4
. 52

d

dr

d

dr

d

dr

d

dr

2 2

2 2

Across a range of indices n, and for Nstar= 105, we find this
residual to be on the order 10−12. We can define an rms
residual (RMSR):

( ) ( )ò=
R

r drRMSR
1

res , 53
R

0

2

which gives an estimate of numerical error. We can similarly
define an RMSR for the eigenmodes by defining an analog to
Equation (52) for Equation (8). If the RMSR is significantly
smaller than the relative difference of the frequencies, we can
be confident the difference is not due to numerical limitations
in the calculation.
We calculate the 1PN polytropic background using an

identical method, but where the parameter σ appearing in
Equation (28) must also be fixed to match the surface redshift
=z GM

c R2 . There are no known solutions to the 1PN polytrope
equations, so no exact test can be performed. Tests of the
residuals in the original Equation (24) are on the order 10−12

for Nstar= 105, across a range of n.
An additional test of the 1PN polytrope is to calculate overlap

coefficients with both the Newtonian (0PN) and GR polytropic
solutions, where the overlap is defined by

( ) ( )q q

q q q q
= -

á ñ

á ñá ñ
o 1, 2 1 , 541 2

1 1 2 2

with 〈θ1θ2〉 being the usual inner product of functions. The
equation for a GR polytrope is a solution to the TOV equations
with a polytropic equation of state and has been explored in
depth elsewhere (Tooper 1964, 1965; Bludman 1973). It is
expected that θ1pn differs from θ0pn by an amount that scales

3 https://zenodo.org/badge/latestdoi/442700026
4 https://github.com/rboston628/GRPulse
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with σ defined in Equation (26), and that, therefore, o(0pn,
1pn)∼ σ2. Similarly, o(0pn, GR)∼ σ2, whereas o(1pn,
GR)∼ σ4. When both the 1PN and GR solutions are matched
to Schwarzschild coordinates and compared, we find the
expected scaling in σ for the overlaps, confirming that our 1PN
polytrope accounts for GR up to order σ, with additional effects
at order σ2 (see Figure 2).

5.3. CHWD++ Background Codes

We calculate the Newtonian and 1PN CHWD++ back-
ground as above for the polytropes, using simple RK4 on a
fixed grid of size Nstar. There are no exact solutions to compare
against, though we can compare the mass–radius relation of
these models to the mass–radius relationship of real WDs.
Tests of the residual in (2) and (24) are on the order 10−12 for
Nstar= 105.

5.4. Newtonian Stellar Pulsation Code

As with the background, we solve the pulsation equations using
simple RK4 on a fixed, uniform grid. We choose the grid for
pulsations to be =N Nosc

1

2 star so that the calculated background
values can be used in the half-steps of the RK4 method without
interpolation. The solution is found using a method similar to
Christensen-Dalsgaard (2008). We shoot from both the center and
the surface to an internal fitting position xfit. At each boundary two
independent solutions can be formed by choices of y1 and y3 in
Equations (42) and (42b). The frequency w̄ is adjusted to cause
the two inward and two outward solutions to match, as determined
by the vanishing of the Wronskian of the four solutions at xfit. The
physical solution is then made by a linear combination of the four
solutions.

The resulting eigenmode is classified using the Osaki–
Scuflaire method to identify mode order k for p- and g-modes.
This method counts the mode order by the zero-crossings on a
graph of y1 and y2, with clockwise crossings counted as

negative. Positive mode orders are considered p-modes, and
negative are g-modes.
In the case of an n= 0 polytrope (i.e., a uniform density

star), there is an exact formula for the Newtonian eigenfre-
quencies of p-modes due to Pekeris (1938):

¯ ( ) ( )w = + + +D D ℓ ℓ 1 , 55kℓ kℓ kℓ
2 2

where (JCD–DJM, Equation (3.3))

⎛
⎝

⎞
⎠

( )= G + + -D k k ℓ
1

2
2. 56kℓ 1

Here k= 0, 1, 2, K is the mode number, which counts radial
nodes. An equivalent form of this equation is found in
(Cox 1980, Equation (17).76), where n= 0, 1, 2, K is a
recursion relation index, and is matched to mode number by
n= k− 1. In the original of Pekeris (1938, Equation (32)), n
corresponds to ℓ, and k= 0, 2, 4, K is another recursion
relation index, which corresponds to 2n as found in Cox
(1980). The uniform density model allows us to check the
scaling of errors with Nstar and with the mode order k. The
results are shown in Figure 3.
We may also compare against the compiled tables of JCD–

DJM, which are listed for p-modes to eight digits. To make this
comparison, we multiply w̄ by their scaling factor
νg= 99.855377μHz. When compared to JCD–DJM, we almost
always find either no difference or a difference of exactly
10−4μ Hz (i.e., at the least significant digit). The only
exceptions occur due to an apparent difference in mode
labeling in the low-order dipole (ℓ= 1) p-modes of the n= 4
polytrope. This is due to the breakdown of the Osaki–Scuflaire
method for classifying low-order dipole modes in centrally
condensed stars, as discussed in Takata (2005; see Table 2).
Correcting the labeling for the k= 1, 2, 3, 4, and 5 p-modes, we
again find agreement with JCD–DJM to all digits in the n= 4
polytrope.

Figure 2. Convergence of 1PN and GR models to Newtonian as σ→ 0. The 1PN and GR models converge to the Newtonian model like σ2, but converge to each other
like σ4. Shown for n = 3/2 (left) and n = 3 (right).

10

The Astrophysical Journal, 952:87 (16pp), 2023 July 20 Boston, Evans, & Clemens



As with the background, the eigenfunctions, which are
written in terms of the yi variables, can be converted into a
solution in terms of ΔP, ξ, etc., and inserted into Equation (8)
to calculate an RMSR as in Equation (53). This residual is
displayed in the tables in Section 6.

5.5. 1PN Stellar Pulsation Code

The same double-shooting RK4 method is used to solve the
1PN pulsation equations. Because there are eight equations,
there are two additional solutions at both the center and surface
and the Wronskian is the determinant of an 8× 8 matrix
instead of a 4× 4. Otherwise, the 1PN eigenmodes are found in
an identical manner to the Newtonian case. The eigenmode is
also classified using the Osaki–Scuflaire method, again by
counting crossings in y1 and y2, defined as in the 1PN
approximation. For the 1PN case, the only error measurement
we can use is the residual in the original physical equation. Due
to mathematical manipulations truncating at first order in z, this
residual scales with z2, and for z∼ 10−4, the residual should be
∼10−8. Because we are using identical numerical methods that

we have verified in the Newtonian code, we can have
additional confidence in the accuracy of the results.
There are no known analytic solutions for the 1PN

frequencies. We do have a small table of f-mode frequencies
to compare against, due to Cutler & Lindblom (1992; their
Table 1), based on early work on the topic of 1PN oscillations
in rotating neutron stars. They model the neutron star as an
n= 1 polytrope, and list frequencies for ℓ= 2 to 6 calculated
using Γ1= 1+ 1/n. For the Newtonian star, they use
M= 1.736Me and R = 15.343 km, and for the 1PN star they
use M= 1.4Me and R = 12.374 km, which both give
z = 0.2256. Their definition of the dimensionless frequency
listed in their Table 1 differs from w̄, defined in Equation (40)
by ¯ ¯w w= 4 3 .CL Accounting for this difference, we find our
numbers compare to theirs, as in Table 1. There is very close
agreement on the Newtonian frequencies, and for the 1PN
frequencies, differences are on the same order as the expected
errors, z2∼ 0.05, which account for methodological differences
made in the 1PN approximation.
There is a similar table in Lindblom et al. (1997; their Table

1), with M= 1.4Me and R= 14.45 km, that lists both 1PN

Figure 3. Left: the scaling of mode errors for ℓ = 1 modes calculated against Equation (55) in an n = 0 polytrope. The errors scale like N−4, and tend to increase for
increasing k. Right: the scaling of differences between Newtonian and 1PN models for a range of redshifts z. Several polytropes were used with ℓ = 1 − 3
and k = 1 − 5.

Table 1
Comparison of Fundamental Frequencies for

Corresponding Newtonian 1PN Models with Cutler & Lindblom (1992)

Newtonian Post-Newtonian, z = 0.2256

ℓ w̄2022 w̄1992 % Err. w̄2022 RMSR w̄1992 Rel. Diff.

2 1.227 1.226 0.05% 1.317 0.07 1.232 0.06
3 1.698 1.697 0.05% 1.694 0.06 1.606 0.05
4 2.037 2.036 0.03% 1.984 0.05 1.885 0.05
5 2.310 2.309 0.03% 2.228 0.05 2.120 0.05
6 2.546 2.545 0.02% 2.444 0.04 2.324 0.05

Note. Mass and radius as in their Table 1. All models are a polytrope with
n = 1 and P ∼ ρ2 = (ò/c)2, Γ1 = 1 + 1/n.

Table 2
Comparison of Fundamental Frequencies for

Corresponding 1PN GR Models with Lindblom et al. (1997)

Post-Newtonian, z = 0.1836 General Relativity

ℓ w̄2022 RMSR w̄1997 Rel. Diff. w̄1997 Rel. Diff.

2 1.279 0.05 1.231 0.04 1.201 0.06
3 1.687 0.05 1.619 0.04 1.586 0.06
4 1.989 0.04 1.907 0.04 1.874 0.06
5 2.240 0.04 2.147 0.04 2.113 0.06

Note. Mass and radius as in their Table 1. All models are a polytrope with
n = 1 and P ∼ ρ2 = (ò/c)2, Γ1 = 1 + 1/n.
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frequencies and GR frequencies for the same star. We find
similar agreement with both sets of numbers, shown in Table 2.

The 1PN approximation is not ideal for a highly compact
object such as a neutron star, unless numerical errors as high as
5% are acceptable. For a WD, the systemic errors in using the
1PN approximation are orders of magnitude smaller.

6. Results

For the following calculations we model polytropes, scaled
so that the total mass equals a typical field WD mass of
M= 0.6Me (or M= 1.1934× 1033 g), with R= 1.3R⊕ (or
R = 8282 km). The radius is picked based on models of the
WD mass–radius relationship. There is an important subtlety
here in how we choose background WD models in order to
compare Newtonian and 1PN mode periods. We consider the
mass of the stars first. For a Newtonian polytrope, the meaning
of mass is clear. When considering GR, the observed mass of a
WD is the gravitational mass M, which is a combination of the
integrated baryon mass, internal energy, and gravitational
binding energy. When we compare a Newtonian WD to a 1PN
WD, we keep the mass M fixed.

For a Newtonian polytrope, the natural second parameter
needed to specify the star is the radius, R, which is
unambiguously defined. Other quantities that are combinations
of M and R might be used in place of R in order to define the
polytrope. In GR, there is, however, a coordinate ambiguity in
defining the radius of a star. Our equations for the static
background model are written in terms of an isotropic radial
coordinate r= ri, which appears when we convert the

background line element (Equation (18)) into spherical
coordinates:

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( )
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c
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However, the radius of an isolated real WD can be indirectly
estimated from observables such as the surface gravitational
redshift z or the surface gravity gs, determined by spectal line
shifts and broadening, respectively. For a spherical WD
background, the exterior region, which connects the surface
properties to a distant observer, is described by the Schwarzs-
child solution. In standard Schwarzschild coordinates it has a
line element given by
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where ra is the areal radial coordinate. Any calculation of the
radius from surface redshift z=GM/(c2R) (or from the surface
gravity) will give a value for R= Ra in this latter coordinate
system. We make the choice that the radius we specify based
on the mass–radius relation is the areal radius Ra. On the other
hand, the background star might be described in terms of

Table 3
Normal Mode Frequencies and Periods for n = 1.5 Polytrope

Newtonian Polytrope (RMSR = 2 × 10−12) Post-Newtonian Polytrope (RMSR = 2 × 10−12) z ∼ 10−4

l, k w̄ f (Hz) Π (s) RMSR w̄ f (Hz) Π (s) RMSR Rel. Diff.

1, 1 2.571761 0.153246 6.525466 4 × 10−9 2.571531 0.153207 6.527097 6 × 10−8 −9.0 × 10−5

1, 2 4.256099 0.253612 3.943034 4 × 10−9 4.255778 0.253552 3.943964 7 × 10−8 −7.5 × 10−5

1, 3 5.838061 0.347878 2.874575 4 × 10−9 5.837646 0.347797 2.875240 7 × 10−8 −7.1 × 10−5

1, 4 7.373488 0.439370 2.275984 4 × 10−9 7.372978 0.439269 2.276507 7 × 10−8 −6.9 × 10−5

1, 5 8.881992 0.529259 1.889435 4 × 10−9 8.881386 0.529138 1.889867 7 × 10−8 −6.8 × 10−5

1, 10 16.248203 0.968196 1.032849 4 × 10−9 16.247119 0.967976 1.033084 7 × 10−8 −6.7 × 10−5

1, 15 23.505846 1.400663 0.713948 4 × 10−9 23.504284 1.400345 0.714110 7 × 10−8 −6.6 × 10−5

1, 20 30.727923 1.831011 0.546146 4 × 10−9 30.725885 1.830596 0.546270 7 × 10−8 −6.6 × 10−5

2, 0 1.455807 0.086748 11.527589 4 × 10−3 1.455893 0.086740 11.528757 6 × 10−8 − 5.9 × 10−5

2, 1 3.207357 0.191120 5.232327 3 × 10−9 3.207218 0.191081 5.233395 6 × 10−8 −4.3 × 10−5

2, 2 4.849223 0.288955 3.460748 4 × 10−9 4.848949 0.288892 3.461499 6 × 10−8 −5.6 × 10−5

2, 3 6.426896 0.382965 2.611205 4 × 10−9 6.426508 0.382880 2.611782 7 × 10−8 −6.0 × 10−5

2, 4 7.966983 0.474735 2.106436 4 × 10−9 7.966488 0.474630 2.106905 7 × 10−8 −6.2 × 10−5

2, 5 9.482660 0.565051 1.769750 4 × 10−9 9.482060 0.564925 1.770146 7 × 10−8 −6.3 × 10−5

2, 10 16.882254 1.005977 0.994058 4 × 10−9 16.881155 1.005750 0.994282 7 × 10−8 −6.5 × 10−5

2, 15 24.160416 1.439668 0.694605 4 × 10−9 24.158830 1.439342 0.694762 7 × 10−8 −6.6 × 10−5

2, 20 31.395293 1.870778 0.534537 4 × 10−9 31.393225 1.870355 0.534658 7 × 10−8 −6.6 × 10−5

3, 0 1.93432779 0.11526246 8.67585175 5 × 10−3 1.93436853 0.11524638 8.67706176 5 × 10−8 − 2.1 × 10−5

3, 1 3.695765 0.220223 4.540858 3 × 10−9 3.695660 0.220181 4.541716 5 × 10−8 −2.8 × 10−5

3, 2 5.348647 0.318714 3.137605 4 × 10−9 5.348409 0.318649 3.138248 6 × 10−8 −4.5 × 10−5

3, 3 6.941521 0.413630 2.417617 4 × 10−9 6.941161 0.413543 2.418132 6 × 10−8 −5.2 × 10−5

3, 4 8.496828 0.506308 1.975083 4 × 10−9 8.496354 0.506198 1.975510 6 × 10−8 −5.6 × 10−5

3, 5 10.026632 0.597466 1.673737 4 × 10−9 10.026048 0.597335 1.674103 6 × 10−8 −5.8 × 10−5

3, 10 17.477641 1.041455 0.960195 4 × 10−9 17.476538 1.041222 0.96042- 7 × 10−8 −6.3 × 10−5

3, 15 24.785387 1.476908 0.677090 4 × 10−9 24.783786 1.476576 0.677243 7 × 10−8 −6.5 × 10−5

3, 20 32.038738 1.909120 0.523802 4 × 10−9 32.036649 1.908689 0.523920 7 × 10−8 −6.5 × 10−5

Note. Both stars are scaled to M = 0.6Me and R = 1.3R⊕. All modes use Γ1 = 5/3. There are no g-modes for this model.
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isotropic coordinates, in which case its radius would be Ri,
differing at 1PN order from Ra. These two radii can be related
by

( )= -R R
GM

c R
1

2
. 59a i 2

i

Given our choice for mass M and radius Ra, we might
alternatively view the surface redshift
z=GM/(c2Ra)= 1.07× 10−4 as the second polytropic para-
meter to hold fixed in comparing Newtonian and 1PN models.
We adopt these values as parameters in our subsequent
polytrope calculations.

In Tables 3 and 4, we compile eigenfrequencies calculated
on n = 1.5 and n= 3 polytrope backgrounds. The table records

the dimensionless frequency w̄, the cyclic frequency f (in
hertz), the period Π (in seconds), and the RMSR. In an
additional column, we specify the relative difference between w̄
in the Newtonian and 1PN calculations, defined in the sense

¯ ¯
¯

( )
w w

w
=

-
rel. diff. , 60

1pn 0pn

avg

àso that a positive relative difference means the 1PN frequency
is blueshifted, while a negative difference means redshifted.
The differences between periods are similar to those between
w̄. The RMSR for the stars and modes is as defined in
Equation (53). Additional tables for several values of n can be
found in Boston (2022).
Note that g-modes are unstable for n� 1.5 and that there is

no f-mode (k = 0) for ℓ= 1.

Table 4
Normal Mode Frequencies and Periods for n = 3 Polytrope

Newtonian Polytrope (RMSR = 2 × 10−12) Post-Newtonian Polytrope (RMSR = 2 × 10−12) z ∼ 10−4

l, k w̄ f (Hz) Π (s) RMSR w̄ f (Hz) Π (s) RMSR Rel. Diff.

1, −10 0.343611 0.020475 48.839961 9 × 10−12 0.343666 0.020475 48.839927 4 × 10−7 1.6 × 10−4

1, −5 0.608215 0.036242 27.592119 3 × 10−12 0.608315 0.036242 27.592025 4 × 10−7 1.6 × 10−4

1, −4 0.719567 0.042877 23.322293 3 × 10−12 0.719686 0.042878 23.322150 4 × 10−7 1.7 × 10−4

1, −3 0.880757 0.052482 19.053998 2 × 10−12 0.880909 0.052483 19.053777 3 × 10−7 1.7 × 10−4

1, −2 1.133891 0.067566 14.800318 2 × 10−12 1.134099 0.067568 14.799968 3 × 10−7 1.8 × 10−4

1, −1 1.586168 0.094516 10.580181 1 × 10−12 1.586506 0.094521 10.579625 2 × 10−7 2.1 × 10−4

1, 1 3.377036 0.201230 4.969429 1 × 10−12 3.377300 0.201214 4.969838 2 × 10−7 7.8 × 10−5

1, 2 4.642432 0.276633 3.614903 2 × 10−12 4.642751 0.276607 3.615235 2 × 10−7 6.9 × 10−5

1, 3 5.909240 0.352119 2.839949 2 × 10−12 5.909632 0.352086 2.840217 2 × 10−7 6.6 × 10−5

1, 4 7.176668 0.427642 2.338403 2 × 10−12 7.177142 0.427602 2.338624 2 × 10−7 6.6 × 10−5

1, 5 8.443277 0.503117 1.987610 2 × 10−12 8.443837 0.503069 1.987797 2 × 10−7 6.6 × 10−5

1, 10 14.751133 0.878988 1.137671 1 × 10−11 14.752152 0.878908 1.137775 2 × 10−7 6.9 × 10−5

2, −10 0.567887 0.033839 29.551565 2 × 10−11 0.567978 0.033839 29.551593 4 × 10−7 1.6 × 10−4

2, −5 0.967663 0.057661 17.342746 4 × 10−12 0.967817 0.057661 17.342780 4 × 10−7 1.6 × 10−4

2, −4 1.127173 0.067166 14.888523 4 × 10−12 1.127352 0.067166 14.888544 4 × 10−7 1.6 × 10−4

2, −3 1.349915 0.080439 12.431848 2 × 10−12 1.350133 0.080439 12.431843 3 × 10−7 1.6 × 10−4

2, −2 1.681711 0.100210 9.979088 2 × 10−12 1.681991 0.100210 9.979029 3 × 10−7 1.7 × 10−4

2, −1 2.216884 0.132099 7.570059 2 × 10−12 2.217291 0.132102 7.569883 3 × 10−7 1.8 × 10−4

2, 0 2.859255 0.170377 5.869340 1 × 10−12 2.859867 0.170386 5.869026 2 × 10−7 2.1 × 10−4

2, 1 3.906874 0.232802 4.295491 1 × 10−12 3.907499 0.232802 4.295493 2 × 10−7 1.6 × 10−4

2, 2 5.169469 0.308038 3.246357 1 × 10−12 5.170107 0.308026 3.246478 2 × 10−7 1.2 × 10−4

2, 3 6.439990 0.383745 2.605895 2 × 10−12 6.440673 0.383724 2.606037 2 × 10−7 1.1 × 10−4

2, 4 7.708951 0.459360 2.176942 2 × 10−12 7.709691 0.459330 2.177083 2 × 10−7 9.6 × 10−5

2, 5 8.975891 0.534854 1.869668 2 × 10−12 8.976697 0.534816 1.869802 2 × 10−7 9.0 × 10−5

2, 10 15.284901 0.910795 1.097942 2 × 10−11 15.286091 0.910719 1.098033 2 × 10−7 7.8 × 10−5

3, −10 0.766497 0.045674 21.894321 2 × 10−11 0.766618 0.045674 21.894388 4 × 10−7 1.6 × 10−4

3, −5 1.259737 0.075065 13.321780 5 × 10−12 1.259929 0.075064 13.321887 4 × 10−7 1.5 × 10−4

3, −4 1.446622 0.086201 11.600779 9 × 10−12 1.446840 0.086200 11.600890 4 × 10−7 1.5 × 10−4

3, −3 1.699020 0.101241 9.877421 4 × 10−12 1.699274 0.101240 9.877531 3 × 10−7 1.5 × 10−4

3, −2 2.058262 0.122647 8.153451 2 × 10−12 2.058568 0.122646 8.153550 3 × 10−7 1.5 × 10−4

3, −1 2.601340 0.155008 6.451267 2 × 10−12 2.601732 0.155007 6.451330 3 × 10−7 1.5 × 10−4

3, 0 3.068190 0.182827 5.469654 2 × 10−12 3.068607 0.182822 5.469790 3 × 10−7 1.4 × 10−4

3, 1 4.294602 0.255906 3.907682 2 × 10−12 4.295218 0.255902 3.907750 2 × 10−7 1.4 × 10−4

3, 2 5.591067 0.333160 3.001563 2 × 10−12 5.591792 0.333149 3.001656 2 × 10−7 1.3 × 10−4

3, 3 6.878680 0.409886 2.439704 2 × 10−12 6.879493 0.409869 2.439807 2 × 10−7 1.2 × 10−4

3, 4 8.158826 0.486167 2.056906 2 × 10−12 8.159719 0.486142 2.057011 2 × 10−7 1.1 × 10−4

3, 5 9.433911 0.562147 1.778895 3 × 10−12 9.434880 0.562114 1.778998 2 × 10−7 1.0 × 10−4

3, 10 15.767068 0.939526 1.064367 2 × 10−11 15.768422 0.939456 1.064446 2 × 10−7 8.6 × 10−5

Note. Both stars are scaled to M = 0.6Me and R = 1.3R⊕. All modes use Γ1 = 5/3.
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Results for many more polytrope models are graphed in
Figure 4. A careful look at the tables will reveal that between
n = 1.5 and n= 3 the frequencies change from redshifted to
blueshifted. In Figure 5 more results are graphed in the range
n= 2 to n= 3, showing this shift occurs around n = 2.6.

For the CHWD++ models, the choice of y0 fixes M and R
according to a mass–radius relation, and therefore it is not
possible to freely scale z to match between the Newtonian and
1PN models. We therefore choose to match them according to
M. In Table 5, we list eigenfrequencies calculated on a CHWD
++ background matched to M= 0.607158Me. This table
records the dimensionless frequency w̄, the period Π (in
seconds), and the RMSR, along with the relative difference, as
in Equation (60).

7. Discussion

The results presented in Section 6 generally confirm that GR
will lead to measurable changes at the 1PN level in periods
derived from space-based photometry for compact stellar
objects of similar mass and radius as WDs. This change,
represented by the relative difference, is roughly of the same
order of magnitude as the gravitational surface redshift z.
Because the effect is measurable, the full precision of the
photometric data from K2 and TESS cannot be used to fit
asteroseismic models of stars unless GR is first included in both
the model and perturbation equations. We recommend the 1PN
formalism as the simplest way to do this, and our set of
Equations (49a)–(49h) might conveniently be added to existing
asteroseismology codes.

Figure 4. Graph of relative differences in w̄ between models for several polytrope models. The central red line shows z = 1.07 × 10−4. The dependence on mode type
(g- or p-modes) and the dependence on model is evident from the graph. Of particular interest is n = 2.5, where the difference between Newtonian and 1PN
frequencies becomes much smaller than z, or for n > 3, where the difference becomes much larger than z.

Figure 5. Refined graph for many models in the range n ä [2, 3], arranged in rough chromatic order with increasing n, with ℓ = 1 for all modes. Frequencies with a
positive difference (meaning w̄1pn has been blueshifted) and frequencies with a negative difference (meaning w̄1pn has been redshifted) are marked with different
symbols. The sign shift occurs between n = 2.5 and n = 2.7, suggesting the existence of a polytropic index where the difference will be zero for some modes.
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The neglect of GR is not the largest source of error in normal
mode calculations for WDs. Other factors besides 1PN
gravitational fields, such as differences in the equation of
state, composition, opacity, or treatment of convection, will
have larger numerical impacts. Using the 1PN equations does
not guarantee a full fit to the K2 and TESS data. However, our
results indicate that the size of the 1PN correction is now
observationally significant. One of the main purposes of
asteroseismology is to solve the inverse problem, using
observed mode periods to infer underlying stellar parameters,
such as total mass, fractional composition, temperature, radius,
rotation, existence of solid core, etc. Any purely Newtonian
approach to model a pulsating WD, such as fitting eigenperiods
to the full resolution of K2 or TESS, will give rise to errors in
interpreted values of physical parameters at a fractional level of
∼10−4.

The results also show that the underlying stellar model is
important in determining not only the extent that GR changes the
frequency, but whether the frequencies are blue- or redshifted.
The relative differences for polytropes undergo a sign change
between n= 2 and n= 3, which suggests a balancing act of
competing effects. For larger n, the mass of the star is more
centrally condensed, causing

*
b2 to become distinctly larger than

z in the center, driving up the difference. At the same time, with
increasing n the star becomes more diffuse near the surface, and
smaller densities lead to a smaller local strength of relativity in
the outer layers, driving down the difference. Somewhere
between n = 2.5 and n = 2.7, the diffuse atmosphere becomes
the most important effect and the difference drops to nearly zero,
whereas with further increasing n, the increasingly compact core

becomes the more important effect.5 Whether this same
balancing act occurs in a real WD is a subject for future study,
but the present work indicates that the GR correction in a real
WD will not be as simple as merely gravitationally redshifting
the frequencies.
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