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Abstract

With the precision now afforded by modern space-based photometric observations from the retired K2 and current
TESS missions, the effects of general relativity (GR) may be detectable in the light curves of pulsating white
dwarfs (WDs). Almost all WD models are calculated using a Newtonian description of gravity and hydrodynamics.
To determine if the inclusion of GR leads to observable effects, we used idealized models of compact stars and
made side-by-side comparisons of mode periods computed using a: (i) Newtonian and (ii) GR description of the
equilibrium structure and nonradial pulsations. For application to WDs, it is only necessary to include the first post-
Newtonian (1PN) approximation to GR. The mathematical nature of the linear nonradial pulsation problem is then
qualitatively unchanged and the GR corrections can be written as extensions of the classic Dziembowski equations.
As such, GR effects might easily be included in existing asteroseismology codes. The idealized stellar models are
(1) 1PN relativistic polytropes and (ii) stars with a cold degenerate electron equation of state featuring a near-surface
chemical transition from p, =2 to u, = 1, simulating a surface hydrogen layer. A comparison of Newtonian and
1PN normal mode periods reveals fractional differences in the order of the surface gravitational redshift z. For a
typical WD, this fractional difference is ~10~* and is greater than the period uncertainty o /IT of many WD
pulsation modes observed by TESS. Consistent theoretical modeling of periods observed in these stars should, in
principle, include GR effects to 1PN order.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Gravitation (661); General relativity (641); White
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dwarf stars (1799)

1. Introduction

Properly speaking, all stellar interiors are general relativistic
because all stars self-gravitate. The question is never if general
relativity (GR) applies to a stellar model, but how best to
apply it.

With the exception of neutron stars, the full theory of GR is
not usually necessary for describing the equilibrium or
dynamics of stars, and the Newtonian approximation to gravity
suffices. One caveat to this rule is that it has long been known
(Harrison et al. 1965) that GR lowers the threshold for
instability to radial collapse in compact stars at a local peak of a
mass-radius relation. For massive white dwarfs (WDs), this
affects the exact value of the (idealized) Chandrasekhar mass
M. Relativistic polytropes provide a simple model for this
effect of GR, where for a star of mass M and radius R the
critical polytropic index n,. for the onset of instability is shifted
(Shapiro & Teukolsky 1983) according to

1 4 GM
=14+ —=—=4+225—-. 1
B ne 3 c2R 2

The perturbation in critical exponent 7, is clearly proportional
to the surface gravitational redshift z=GM/ (¢*R), which
serves as a post-Newtonian (PN) compactness parameter.
Recently, the effects of GR on ultra-massive WDs have been
considered (Mathew & Nandy 2017; Carvalho et al. 2018;
Nunes et al. 2021; Althaus et al. 2022). GR effects on the
internal structure become more significant as M approaches
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M., the stellar radius shrinks, and the compactness parameter
Srows.

This paper is concerned with a different role played by GR,
namely its effects on nonradial gravity mode (g-mode)
pulsations observed in ZZ Ceti and other variable WD stars.
It is reasonable to expect (which we confirm) that GR effects
will show up at first order in the PN parameter (1PN) in the
conservative dynamics of g-modes. While some variable WDs
have higher mass, typical ZZ Ceti stars have M ~0.6M.
These stars have surface redshifts of order z ~ 10~%, leading to
expected fractional shifts in g-mode periods at this level. While
these effects are obviously subtle, modern space-based
photometry using TESS and K2 data, with long-duration
observations, yields fractional uncertainties in measuring
g-mode periods down to 10~* or better. Some variables display
modes (usually with periods in the range II ~ 100-200 s) that
are coherent over lengths of time exceeding the spacecraft
observations (see Hermes et al. 2017, 2013). Even longer-
duration time series, which include decades of ground-based
observations, have revealed stars such as G117-B15A (Kepler
etal. 2021) and R458 (Mukadam et al. 2013) with stable modes
that have fractional period precisions better than o7 /T ~ 1078,
allowing attempts to measure WD cooling.

Recent WD asteroseismology work (Giammichele et al.
2018) has attempted to build WD models that reproduce
observed pulsation periods to the level of precision of space-
based data. Based on the results of our calculations comparing
Newtonian and 1PN GR models, we argue that GR effects
might sensibly be taken into account when trying to reproduce
pulsiltion spectra with fractional line widths narrower than
1077

The methods of asteroseismology (for main-sequence stars
as well as WDs) have been reviewed in multiple settings (e.g.,
Cox 1980; Hansen & Kawaler 1994; Unno et al. 1979). The
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Newtonian equations describing nonradial stellar pulsations are
usually cast into a form due to Dziembowski (1971), which
introduces dimensionless variables and takes account of regular
singular points in the system of equations at the stellar center
(origin) and surface. For example uses of these equations, see
Townsend & Teitler (2013), Takata & Loffler (2004), and
Cérsico & Benvenuto (2002). Several community codes are
available that calculate eigenmodes and periods once a stellar
background model is specified. These codes include gyre (by
Townsend & Teitler 2013) and adipls (by Christensen-
Dalsgaard 2008), which can be incorporated in stellar evolution
codes, such as MESA (by Paxton et al. 2010).

The theory of stellar pulsations in GR developed largely
separately and was focused on the possibility of pulsations in
neutron stars (Thorne & Campolattaro 1967; Price &
Thorne 1969; Thorme 1969a, 1969b; Campolattaro &
Thorne 1970; Ipser & Thorne 1973). For quadrupole or higher
order (f£>2) nonradial modes, the gravitational field is
dynamical and results in the emission of gravitational waves
(GWs). The computed modes in these cases are quasi-normal
with complex eigenfrequencies that reflect damping. Later
work (Lindblom & Detweiler 1983; Detweiler & Lind-
blom 1985) simplified the system of perturbation equations to
a fourth-order complex set, providing a means to more easily
calculate modes numerically.

It is not necessary to apply the full machinery of GR
pulsation theory to WDs. When pulsations of stars that are less
compact than neutron stars are considered, like WDs, the
conditions for applicability of both the slow-motion and weak-
field approximations prevail, which means that the PN
formalism can be used. Applied to typical WDs, where the
compactness parameter is ~10*, fractional corrections to
mode periods will be of this order. Even if 1PN corrections can
be observed, 2PN is almost certainly unobservable. Accord-
ingly, we propose using the 1PN approximation as an accurate
means of including GR effects in WD pulsation calculations
(Boston 2022) and have built an asteroseismology code,
GRPulse, based on this premise. For consistency, 1PN GR
would need to be included in both the pulsation equations and
in the background stellar model.

It might be argued that the effects of GWs, which set in at
2.5PN order in the fluid motion, should be considered since
they exhibit a secular behavior. However, most of the observed
WD g-modes are thought to be £ = 1 oscillations, which do not
radiate GWSs. In those modes that do radiate, the secular effect
would primarily manifest itself in the mode amplitude, and be
much more difficult to measure accurately than mode periods.
Moreover, the Q due to GW damping of an otherwise
undisturbed free WD oscillation is enormous. The coarsest
approximation for the quadrupole f-mode would be
Q0 ~ (Rct/GM)*/? ~ 10", Additionally, for g-modes, the Q
due to GW emission would be orders of magnitude larger still,
since g-modes are primarily a motion near the surface with less
mass involved in the perturbation Ap and (importantly) the
periods, set by the Brunt—Viisild frequency, are much longer
than those of the f-mode or p-modes. In any event, the observed
sustained g-modes in WDs are not likely free oscillations but
instead modes that are driven by the conversion of heat flux
from the stellar interior into mechanical work, in the region of
partial hydrogen ionization, by the trapping effects of the
convection zone (Dolez & Vauclair 1981; Winget et al. 1982;
Brickhill 1991; Goldreich & Wu 1999) and damped by the
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onset of dissipative mode coupling parametric instability (Wu
& Goldreich 2001). These stronger effects preclude the need to
consider weaker GWs (which only apply to £ > 2 pulsations),
and our proposed use of the 1PN approximation automatically
avoids the issue.

The 1PN gravitational field involves (i) a correction to the
Newtonian potential ®, (ii) an introduction of the gravitomag-
netic vector potential W (with only two nontrivial components,
W’ and W9, in the case of fluid stars), and (iii) the presence of a
new (1PN) scalar potential W. Besides adding new (elliptic)
field equations for these variables, numerous 1PN correction
terms appear in the fluid equations of motion. As we show, in
this format the usual linear pulsation equations can be extended
in a transparent way.

Stellar pulsations at 1PN order have been considered
previously (Cutler 1991), though in that paper applied to
rotating neutron stars where the unperturbed stationary model
is axisymmetric, not spherically symmetric. In Newtonian
terms, the rotational (centrifugal) potential is great enough to
make the background model oblate. We do not consider the
complication of rapid rotation here.

Nevertheless, it is worth remembering that some pulsating
WDs do exhibit the effects of rotation. Retaining only first
power in the stellar angular velocity €2 (i.e., small rotation rate),
the combined effects of the angular rate between the star and
distant inertial observer and of the Coriolis accelerations
Q2 % dv in the fluid motion lead to a splitting of circular-mode
periods proportional to their value of azimuthal mode number
m (Cox 1980). These splittings are observed in the power
spectra of WD light curves, with groupings of 2£ + 1 modes
(e.g., triplets for /=1) allowing the mode number ¢ to be
determined. See Kepler et al. (1983) for an observed rotational
splitting of £ =1 in G226-29 and Odonoghue & Warner (1982)
for the splitting of / =2 and £ =1 in L19-2. Second-order-in-{2
effects of rotation on mode splittings are suggested by analysis
of L19-2 (Odonoghue & Warner 1982; Brassard et al. 1989).
Our calculations will be relevant for small rotation rates and
when applied to the m = 0 modes.

We note in passing that other approximations in mode
calculations are sometimes made. The most common is the
Cowling approximation (Cowling 1941) in which the Eulerian
perturbation in the gravitational potential is neglected. One
historical virtue of the Cowling approximation is it showed that
the resulting second-order pulsation equations could be cast in
nearly Sturm—Liouville form, and in the mode frequency limits
w—ooor w— 0 the system assumes Sturm—Liouville form.
Out of this emerged the understanding of the existence of
infinite sequences of p-modes and g-modes, separated by the
single (for ¢ > 2) f-mode. While the Cowling approximation of
mode periods can be sufficiently accurate for some purposes, in
this paper we seek to make an unambiguous comparison
between Newtonian and 1PN GR versions of pulsation theory,
and therefore avoid the additional uncertainty associated with
the neglect of Eulerian gravitational perturbations.

In any event, while neglecting A® in the Newtonian system
is straightforward enough, to include the Cowling approx-
imation in our comparison would require a 1PN version. While
a form of the Cowling approximation for the full GR pulsation
theory has been developed by McDermott et al. (1983; see also
McDermott et al. 1985; Lindblom & Splinter 1990; Yoshida &
Lee 2002), the question arises of what parts of the metric
perturbation to include and what to ignore (Finn 1988). An
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advantage of the approximation is that it eliminates the
radiative degree of freedom (thereby eliminating GWs), yet
this is true also when we adopt the 1PN system.

We note also that Finn has developed (Finn 1986, 1987) a
slow-motion but not weak-field approximation for treating
relativistic g-modes in neutron stars. In our application to WDs,
there is no need to try to retain the complexity of a strong field
treatment.

To make a comparison between Newtonian and 1PN GR
pulsations, we opt for simplified treatments of the background
stellar model and adiabatic fluctuations in the perturbation
equations. We adopt two models for the star. The first model
treats the WD as a polytrope, with a particular choice of how to
extend the Newtonian polytrope to GR. By picking an adiabatic
index Iy that is greater than the polytropic structural exponent
v=1+41/n, the model supports g-mode oscillations. While
this affords a clean comparison, it has the disadvantage that
g-modes in this model penetrate more deeply into the star, and
the resulting periods are much shorter than observed modes.
Accordingly, we have also generated a second model for the
WD, in which the equation of state is just that of a cold
degenerate electron gas, but one in which p, shifts smoothly
from p,=2 in the core to u,=1 in a surface layer. This
mimics the behavior of a surface hydrogen layer in a real WD.
In this model, the g-mode cavity is confined near the surface,
and the mode periods more nearly approximate those seen in
real variable WDs. Neither of these stellar models is intended to
be an accurate depiction of a real WD. Instead, our goal is to
keep the microphysical description simple in order to better
highlight the differences in mode periods that occur depending
upon whether we use a Newtonian or a 1PN GR treatment.

This paper is organized as follows. In Section 2 we briefly
review the standard Newtonian pulsation theory to set the
notation. In addition to Newtonian polytropes, we describe in
Section 2.4 the stratified 7= 0 degenerate electron gas model
that imitates a surface hydrogen layer. In Section 3 we
summarize the 1PN formalism and introduce the linear wave
equations at 1PN order. This section also discusses
(Section 3.3) our particular choice for relativistic polytropes
and their 1PN reduction, and (Section 3.5) the 1PN extension of
our stratified 7=0 models. In Section 4 we reduce the
Newtonian and 1PN perturbation equations into a form more
suitable for numerical study, which in the Newtonian case is
due to Dziembowski (1971). Tests of the numerical behavior of
our two versions of the code are summarized in Section 5. We
make use, in particular, of tabulated periods of polytropes
(Cutler & Lindblom 1992; Lindblom et al. 1997) as code
checks and, in turn, provide an expanded list for future
reference. Section 5 discusses the numerical performance of the
code, which is designed to be more than adequate to accurately
capture ~10~* fractional differences between Newtonian and
1PN mode periods. Section 6 gives our calculated numerical
period shifts for both polytropic stars and the stratified models.

2. Newtonian Nonradial Pulsations

For the sake of comparison to the 1PN equations, we
summarize linear adiabatic pulsations in Newtonian stars. A
fuller discussion is available in Cox (1980) and Unno et al.
(1979).

Boston, Evans, & Clemens

2.1. Newtonian Stellar Dynamics

Consider a star with density p(t, r), pressure P(z, r), and
Newtonian gravitational potential ®(¢, r). The fluid motions
inside the star are described by

V2% = 47Gp, (2a)
Oip + V- (pv) =0, (2b)
O(pv) + V - (pvv) = —=VP — pVO. (2¢)

Here Equation (2b) is the familiar continuity equation, and

Equation (2c) is Newton’s Second Law for a fluid under self-

gravity. In the static spherically symmetric limit, Equation (2c)

becomes the equation of hydrostatic equilibrium:
dp dd

= +

0="— —_
dr pdr

(3)
2.2. Newtonian Polytropes

We consider a simple model of a static star governed by a
polytropic equation of state:

P =Kp'tn, 4)

where n is the polytropic index. When using this simple
equation of state for a static, spherical star, Equation (2)
reduces to the Lane-Emden Equation (Lane 1870):

1 d ( ,do
—_—— S R—
s2ds\ ds

) = —om, (5)

where the Lane-Emden solution @ is related to the density and
pressure by
p(r) = pH(s)",

The dimensionless radial variable s is defined by’

P
r=s 7(’147_:Gp)23 . @)

See, e.g., Chandrasekhar (1939).

P(r) = R.O(s)"*". (6)

2.3. The Linearly Perturbed Newtonian Equations

If an element of fluid is displaced by ér = £(¢, r), then the
density, pressure, and Newtonian potential will be perturbed in
response.” The unperturbed background star is described by a
solution to Equations (3) and (2). For such a background,
Equation (2), perturbed to first order, becomes

V2AD = 47GAp (8a)
Ap=—V - (p6) (8b)

02¢
Pz = ~VAP = ApVE — pVAS. (8¢)

These equations define a fourth-order system for the nonradial
perturbations.

' In the Lane-Emden equation we use s and not the common ¢ to avoid

confusion with ér = &.

2 Throughout, we denote the Lagrange perturbations by ¢ and Euler
perturbations by A. This is the opposite convention used in the GR literature,
e.g., Shapiro & Teukolsky (1983). Our notation is a compromise with the
Newtonian literature.
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In spherical stars, the normal modes can be decomposed into
spherical harmonics. Scalar perturbations become, e.g.,

Ap(t, 1) = Ap(r)ume™ Yum (0, ¢). ©)

The displacement vector ¢ is decomposed into a radial and a
transverse vector spherical harmonic Y,,, =rVY,,, (see Barrera
et al. 1985), so that

€, r) =&, (NPYie™ + & (1) Ve, (10)

When broken up in this way, Equation (8), describing the
displacement, can be written in component form:

de _ [%_z}g+ [M_Lz]w%m,
r

dr v, riw? v, ;
(11a)
2 2
IX 2 Ny N Mg, (11b)
dr g g

where y = rw’¢? and we suppress the £, m indices on the

perturbed quantities, and where v; = /(OP/0p)aq is the local
sound speed.

The quantity N appearing in Equation (11) is the Brunt—
Viisild frequency, which, along with the Lamb frequency
(Cox 1980), is important for classifying regions of mode
stability. The g-modes are restored by buoyancy forces, and
cannot propagate within convective regions in the star. Stability
against convection and propagation of g-modes depends on N*
being positive (see, e.g., Kawaler et al. 1985). The Brunt—
Viisild frequency is closely related to the Schwarzschild
discriminant:

_dlnp 1ldlnP _ N?

A , (12)
dr L dr g

where g is the local gravity. Thus, the Schwarzschild
discriminant satisfies A <0 in regions where g-modes
propagate.

In a spherically symmetric star, the g- and p-modes can be
labeled by the angular momentum number ¢ (the modes are
independent of the azimuthal number m in nonrotating stars),
and further labeled by the principal radial mode number k
counting the radial nodes in each mode. Using the Osaki—
Scuflaire classification scheme (Osaki 1975; Scuflaire 1974),
we can classify k <0 as g-modes, k>0 as p-modes, and the
fundamental mode (f-mode) as k=0.

2.4. Stratified Degenerate Electron Gas Models (CHWD++)

To begin building a simplified model that will mimic the
pulsational behavior of WDs, we start with the Chandrasekhar
WD (CHWD) equation of state, with the only pressure
contribution coming from the completely degenerate (T = 0)
electrons immersed in a sea of ions (Chandrasekhar 1939). We
neglect electrostatic corrections. The CHWD models are not
immediately suitable for asteroseismology since they have
N?=0 everywhere and do not admit g-mode solutions. Real
variable WDs have g-modes that are confined near the surface
(Winget et al. 1982). Important in explaining the presence of
these near-surface modes is the addition of the Ledoux term in
the Brunt—Viisild frequency (Brassard et al. 1991), associated
with composition transitions occurring in the outer layers. We
can make a small adjustment to the CHWD 7T = 0 equation of
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state by adding a composition transition, and thereby construct
simple stellar models that support g-modes.

To account for a chemical transition, we consider g, (the
mean molecular weight per electron) defined by

L = ZEX, (13)
I A

where Z; and A; are the nuclear charge and nuclear mass
numbers, respectively, and X; is the (local) mass fraction of any
elemental species. In the outermost layer composed of pure
hydrogen, we will have p,=1, while p, =2 in any region
composed only of “He, '? C, !9 0, or combinations thereof. If
an outer region exists where Xy, + Xy =1 and Xy smoothly
transitions from 1 to 0, then p,(r) will smoothly transition from
2 to 1, yielding the desired near-surface cavity.

We take for the equation of state

p(r) = Bouex3, (14a)
P(r) = Ao f ), (14b)

1

with Ay and B, being parameters (Hansen & Kawaler 1994)
dependent upon electron and proton masses and physical
constants & and c. Here, x and f(x) are the dimensionless Fermi
momentum and dimensionless degeneracy pressure function
(Chandrasekhar 1939), respectively, and g, is assumed to vary
spatially. To construct our stratified model, we set i, to be a
function of pressure:

1
1 + exp{a(nf, — Inf(x)}

With appropriate choices for o and f., we can place the
transition near the WD surface. Then, in constructing the stellar
model, u, will begin at p.(0) =2 in the center and near the
surface smoothly transition to u.(R)=1. With this simple
equation of state, the equation of hydrostatic equilibrium
reduces (in terms of dimensionless radius s) to

1 d 2dy) 2, 5 3 1 dy du,
S22 = - — )24 e 16
52 ds( ds ey ) u, ds ds (16)

where y = Vx? — 1 and s = rBy+/7wG /24, . Following Bras-
sard et al. (1991), we can choose p, as the unique indicator of
composition change, and it can be shown that N* becomes

te(r) =1 + 5)

dnyp,
dar

Thus, g-modes will exist in any region of decreasing ., which
we choose to be near the surface. As seen in Figure 1, this leads
to a curve for N that has qualitative similarities to those seen in
realistic WDs. We refer to this cold degenerate but stratified
model as the CHWD++ model (Boston 2022).

N? = —¢ A7)

3. Post-Newtonian Nonradial Pulsations

Modern post-Newtonian theory, using either the multipolar
post-Minkowskian (MPM) or PN approach or the direct
integration of the relaxed Einstein equations formulation, has
been successful in self-consistently pushing PN results to high
order. See Blanchet (2014) and Poisson & Will (2014) for
reviews. For example, the source motion and gravitational
waves in the two-body problem have been computed to third
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Brunt-Viisila frequency comparing CHWD++ to realistic WD

N2 L2

wp N

WD L} ——
CHWD++ N?
CHWD++ L?

logyo(1 —m/M)

Figure 1. Comparison between the square of the Brunt—Viisild frequency N* found in the CHWD-++ models (blue curve) developed in this paper with N* that
appears in realistic WD models (magenta curve) (see Boston 2022). Also plotted is the Lamb frequency L for £ = 1 (green and gold curves) to highlight the presence
of the g-mode cavities, which occur in regions where the mode frequency w satisfies both w? < N? and w? < L. The stellar surface is located to the left in the plot and
the stellar core to the right. The presence of the composition change in the outer layers allows for a nonzero N in the stratified degenerate electron model, forming a

g-mode cavity qualitatively similar to those found in realistic WDs.

post-Newtonian order (Arun et al. 2008) and beyond. Our
present interest in 1PN is more modest and allows the use of the
simple classic approach to PN theory (Poisson & Will 2014;
see their Section 8.2). We briefly summarize the formal-
ism here.

3.1. Post-Newtonian Field Equations

Gravity arises as the result of spacetime curvature respond-
ing to the presence of matter (i.e., energy, momentum, and
stress). The gravitational field is described by the metric tensor
8ap Which determines, in part, the line element that expresses
infinitesimal proper distances and times between events. At
1PN order, the line element can take the form

ds* = g, zdxdx"?

2
_ —(1 n % ¥ Ltm)czdﬂ + %W L d¥ dt
C C C

+ (1 - g)[dx2 + dy? + dz*],
c

(18)

where @ is the usual Newtonian gravitational potential, W is a
IPN vector (gravitomagnetic) potential, and W is a 1PN scalar
potential. (Much of the PN literature uses U= — & for the
gravitational potential and opposite signs on the 1PN fields.
Because we make the connection with Newtonian asteroseis-
mology, we retain the astrophysical convention for ¢ and keep
signs on W and W consistent with that). The field is assumed to
be weak, with the gravitational field spurring small deviations
in the metric from that of flat space. Factors of 1/c* keep track
of relative PN order. The coordinates x,y,z are nearly
Minkowskian, and the harmonic gauge condition

0P + Wk =0 19)
is adopted.

The metric of Equation (18) is assumed to satisfy the
Einstein field equations (see Weinberg 1972; Poisson &

Will 2014),

81G
4

Gaﬂ — T"S, (20)
term by term in the weak-field and slow-motion expansions.
Here G“” is the Einstein tensor, which describes spacetime
curvature, and 77 is the stress—energy tensor, which describes
the matter. Both tensors depend on the metric g,5. We take the
matter to be a perfect fluid described by

T = (p + P/ uu’ + P g*°, (1)

with p the total energy density, P the isotropic pressure, and u
the fluid 4-velocity. The 4-velocity is constrained by
uu®=—c% so that u®=~(c, v*) with v determined from
the coordinate velocity v* and the constraint. We further define
the baryon rest mass density p, that gives rise to baryon
conservation V,(pyu®) = 0. Then, p and p, are related by
defining the specific internal energy & such that
p=po(l+¢/ ¢?). The matter configuration is determined by a
set of matter variables, such as {p, P, ¢, vk}. Alternatively, pg
may be used in place of p. Another more common alternative is
to use the conserved, or rescaled, mass density p* (Poisson &
Will 2014) defined by p* = /=g vp,.

Using the matter set {p, P, €, v’} and recalling that in the
slow-motion near zone, time derivatives of functions are of
order 1/c compared to space derivatives, the IPN field
equations become

V2® = 4rGp, (22a)
V2W = 4xGpv, (22b)
2 0*® 2
VU = e 4+ 417G 2pv- — 2pd + 3P), (22¢)
t

where V7 is the flat-space Laplacian. Leaving aside the choice
of sign for the potentials, the use of p in the fundamental matter
set, rather than py or p*, affects the form of the source in (22c¢)
and, therefore, the definition of W. The form of the 1PN field
equations we list here is equivalent to that found in Weinberg
(1972) but differs from that in Poisson & Will (2014). A more



THE ASTROPHYSICAL JOURNAL, 952:87 (16pp), 2023 July 20

detailed derivation of these equations is found in Bos-
ton (2022).

3.2. Post-Newtonian Hydrodynamics

The 1PN system is completed by deriving the 1PN equations
of motion of the perfect fluid. The stress—energy tensor has
vanishing covariant divergence:

VuT = 9,T*% + PfiA/T“"" + Fff,wT”"ﬂ =0. (23)
Inserting the perfect fluid stress tensor and expansions for the

connection, metric determinant, and 4-velocity through 1PN
order, the time component of Equation (23) is found to be

()]

v [pv(l + —2‘1’) 4 P—ZV] _ 2%
c? c c® Ot

where V is the flat-space operator. The space components of
Equation (23) reduce to 1PN order in a similar fashion:

9 v1+vz_74q) +ﬁ
8tp c? c?

2 _
v [pvv(l + Y 24(1)) + P_va] + VP + pVa
C

¢
+i{pV\I' + (P + 2pv*V®
c?

(4p88—W — 2pv88—(1) —20v(v - V®) — 4pv x (V X W)} =0

(24b)

Combining Equations (24a) and (24b) we can derive the 1PN
version of Euler’s equation for the time rate of change of the
3-velocity.

For a relativistic barytropic equation of state, P = P(p) (such
as the 1PN polytropes we consider below) and Equation (22)
along with Equation (24) suffice to characterize the 1PN
system. For a more general equation of state, where
P = P(py, II), these equations must be supplemented with the
expression for the conservation of the baryon number. In the
limit, as 1/c — 0, everything reduces to the Newtonian system
of Equation (2).

In the static limit for a spherical configuration,
Equation (24b) reduces to

dpP pd\I/
— +(+P 2—+
5 Tt P/ T

which is the 1PN version of the Tolman—Oppenheimer—Volkoff
(TOV) equation of relativistic hydrostatic equilibrium (Oppen-
heimer & Volkoff 1939; Tolman 1939).

=0, (25)

3.3. IPN Polytropes

For the case of a 1PN static spherical polytrope, we follow
Tooper’s (1964) solution to the equations of a static fluid
sphere in GR (see also Oppenheimer & Volkoff 1939;
Tolman 1939). We specify an equation of state identical in
form to Equation (4), where p=e/c”® represents the mass-
energy density inside the star (and not merely the baryon
density as in Tooper’s 1965 paper). We define the
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dimensionless relativistic parameter:

o= —— (26)

specifying the strength of relativity within the star. This ¢ can
be related to the surface redshift z. In addition to 6 defined by
Equation (6) and s defined by Equation (7), we define ¢ and 1
such that

(n+ DHE

o(r) = P(s), (27a)

c

(n 4+ 1)P?
2

U(r) = P (s). (27b)

c

In the static case, Equations (22) and (24a) can be reduced to

1 d ( d@)
_pn
s2ds\" ds

+a[2(n + 1)@ — 4pn+1 — ‘fl—‘b‘;—e], (28a)
s as
1d(,do
0", 28b
52 ds( ds) (28b)
i d dw n + 1 -2 1) 2
. ds( ds) 30 (n + 1)0"¢, (28¢)

which are 1PN Lane—Emden equations. In this form, it is clear
that in the Newtonian limit o — 0, @ — —2—9, and
s s

Equation (28) reduce to Equation (5). From Equation (25),
Equation (28b) can be replaced by

do qb dz/;

1+ o0 o—, 29

e —( ) s (29)
which is better for numerical analysis. The boundary conditions
(BCs) on these equations are that 6 =1 at the center, # =0 at
the surface, d¢/ds = dip/ds = 0 at the center, and ¢ must have
an initial value so that ® = — GM/R at the surface. The value
of o must be chosen to match the redshift by

z=0 —2GM/c*R)y""? — 1 ~ (n + 1)as1§—¢, (30)

S1

with s; the value of s at the surface. This matching of ¢(0), o
must be accomplished by an iterative convergence routine.

3.4. The Linearly Perturbed 1PN Equations

Consider a solution to Equation (24) for the case of a static,
spherically symmetric star, and consider its response to a
displacement of the fluid elements by ér = £. This will result in
perturbations Ap, AP, A®, AU, and AW. Perturbed to first
order on a static background, Equation (24) will become

I I

c? c?

(31a)
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_ 2
02(p+¢)2§ + VAP 4 pVAD + ApVd
c

Jri2 {pVAU + ApVV¥
c

+PVAD + APV + 4 82—“’}
t
(31b)
The equations for the potentials are simply
V2A® = 47GAp, (32a)
VAW = 47Gpdé, (32b)

V2AU = 9?Ad + 471G [3AP — 2pAd — 20Ap].  (32¢)

On a spherical background, the scalar perturbations of the
normal modes will be proportional to a spherical harmonic Yy,
and have harmonic time dependence ¢’“’, analogously to the
Newtonian case. Because & and AW are vectors, they require
vector spherical harmonics,

£, 1) = EPYpne™ + EMYpe™, (33a)
AW, 1) = AW'FY,e + AW, e, (33b)

The vector Laplacian acting on AW will produce two second-
order equations,

ii(rszW ) 24D e, 2D
r2dr dr r2 r2
=4nGpiwt’, (34a)
H
LA (LAWY D) - 2 o
rZdr dr r2

=47GpiwtH. (34b)

This apparent tenth-order system actually reduces to the
eighth-order system of Equation (49), due to the harmonic
coordinate condition of Equation (19). The perturbed version of
the gauge condition is

0=0,A® + V- AW

1 d

= WAD() + - IPAW ()] - LE+ D Ayn (35
r

This, and its derivative, allow us to eliminate two degrees of
freedom from the system.

3.5. 1PN CHWD++

The 1PN generalization of the CHWD++ model introduced
in Section 2.4 can be readily derived from the GR degenerate
gas equation of state given by Chandrasekhar & Tooper (1964),
using their functions g(x) and Ah(x), with

() = py(r) + Cl—tem

= Boh(x, 5) = Bolp,(s)x* + og(x)], (36a)

P(r) =Aof(x), (36b)

and with p,(x), as in Equation (15). Then, the static equilibrium
condition of Equation (25) becomes

dx

y {[h(x) +of 1< ¢ + h(x)‘w} (37a)
)
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Ads e 240
ds ds s ds

d dy 2 dw

——— =3 — 16h - —— 37c

75 ds f (x) ()¢ s (370
where ® =8A,/By$ and ¥ = 8A¢/Bi+. The BCs are that
x =0 at the surface, that d¢/ds = dip/ds = 0 at the center, and
that ¢ must have an initial value so that ® = — GM/R at the
surface. The central value of y (and hence x) is specified by the
free parameter yo, and a:AO/B(,c2 is fixed by the relative
masses of protons and electrons.

(37b)

4. The Dziembowski Form for Numerical Solution

We seek dimensionless forms of both Equation (8) and
Equation (31) that are suitable for the numerical study of the
wave equations. We choose the dimensionless form of
Dziembowski (1971) for the Newtonian case, which we
generalize to 1PN.

4.1. The Newtonian Dziembowski Equations

We begin with the Newtonian Equations of (8). Define
variables

r(r w2
v, = xzfzf ( )’ vy = 2t ey,
r 8
S xz_[A@(r) ’ \ = xz‘fl dA<I>(r)’ (38)
gr g dr
with g =d®/dr, x = r/R, and the factor ‘o improve

behavior near the center. We then define a set of dimensionless
stellar structure quantities:

A*:idlnP _dlnp __ldhp
Lidinr dinr’ ° T dlnr
y=dne  , _GMr (39)
dinr R g
and define the dimensionless frequency
3
@ = w2R—. (40)
GM

The linear system describing the pulsations now becomes the
Dziembowski form:

d
B A G
dx
L+ 1
+[ e+D_ vg]y2 + Vs, (41a)
caQw

d
¥ 22 = [e@? — Ay,
dx

+ [l +A* - U+ Q2 - 0Oly, — A*y,, (41b)
d
B U+ Q= Olys + (41¢)
X

=UA"y, + UVyy, + [£( + 1) — UV,ly,
+12 =0 = Uly, (41d)

x —
dx
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Near the center, all solutions can be expanded in positive, even
powers of x, and the central values satisfy

C] @?

¥,0) = 7

¥1(0), %(0) = £y;(0). (42a)

Near the surface, due to the vanishing pressure and density, the
variables A" and V, will both diverge. Nonetheless, imposing
the condition 6P = 0 at the surface (x = 1) leads to BCs:

Y2 (1) =y (1) 4 y3(1), (1) = =€+ Dyy(1). (42b)

While the BCs given in Equation (42) relate the boundary
values, more care is needed for numerical solutions at both
boundaries. For improved accuracy, we use an even-powered
series at the center (see Cox 1980, Section 17.6), and follow the
surface expansion approach detailed by Christensen-Dalsgaard
& Mullan (1994) in their Appendix. See Boston (2022) for
further details.

4.2. The 1PN Dziembowski Equations

We now consider the 1PN Equation of (31). We define
variables y,—y, analogously to Equation (38), but replacing

do 1 dv
Lg= 222 43
R R R R @

We then define additional variables for the 1PN potentials:

0= x%f’A_\I}’ = XZ*ZLdA_\I/, (44)
qrd; q®, dr
and
= Ay, = Hr dAWT
q9; q®, dr
along with
. H
25 = 22 [4MAWH 6= x27[4zwr dAW ’ (46)
q(I)v q@s dr

where &= —GM/R is the surface gravitational potential.
While there are 10 variables, due to the harmonic coordinate
condition only 8 of them are independent.

As in the Newtonian case of Equation (39), we define stellar
quantities

AF 1dhnp 1 dlnp
Fldlnr 1+P/pczdlnr
1 InP 1 M
V=t APy Ay = G 4w
"Ldinr’ dinr R g
and use @?, as in Equation (40). Additionally, we define

=®/B, Bi=v/d, (48)

where v, = J/(OP/0p)aq is the local relativistic sound speed.
To 1PN order, the surface redshift is z = M _ %

C
will be used as a relativistic PN compactness parameter.
We can eliminate z4 and z¢ from all equations using
Equation (35), which leads to an eighth-order system of

Boston, Evans, & Clemens
equations describing 1PN pulsations:

dy

L= [V, -3 =3V, 8L+ 2 - Oly,
dx
+[Lf21> v 4@*]
Clw
xyy + [V = 32V, B31ys — 2Ve — 2Vzs, (492)
-2.2
x@: a? — A* + 2 4A*(I)*—M
I (e +1)
xy, + [1 + A* — U — 4ngﬁi + @2 = Dly,

+[—A* + 424%0%]

42x2
Xyy — 72| ——— |y + A7+ zA™zs, 49b
Y3 Z[f(f-ﬁ- l)]y4 2 <5 (49b)
d
x% =[1—U+Q—=0Dly; + n (49¢)
X

» UA*[I + 2z(ﬁ* @*)]
dx I
1+ 2z(i* <I>*)]yz
lau 1 - UV(I + 2z[5* - @*])]y3
1

xy, + UV,

+[(2 = O) — Uly, + zUV,z1 + zUV,zs, (49d)
d
o1 -U+ Q- 0lz+ 2, (49)
X
22 opryary,
X
+[3UV, B35 — 2UV,9*]

Xy, + RUV,®* — 5UV, 55 + @*]y; + £ + D)z
+[(2 = 0) — Ulz,

(491)
d
xf = —42%2%y, + [2 — 0) — Ulzs + £(¢ + Dzs, (49g)
X
dz5 4Uwm%x2 4a2x2

w+zn+1—-U+ Q- 0lzs.

Y& W e

(4%h)

We have derived Equation (49) in two ways: one by using the
classical PN approach directly; and again using the MPM /PN
approach mentioned earlier. Compare these equations to
Equation (41). Notice that all new terms in these equations
occur multiplied by the 1PN compactness parameter z. We
therefore recover the classical Dziembowski equations in the
Newtonian limit of z — 0.
At the center of the star,

»,0) = Tyl(O)

22(0) = £(0),

34(0) = £y;(0), (50a)

23(0) = £z5(0), (50b)



THE ASTROPHYSICAL JOURNAL, 952:87 (16pp), 2023 July 20
while at the surface

Y2 (1) = [y (1) + y3(DI(1 = 3205 — 429%)

—z[z (D) + z5(D)], (51a)
w1 = =€ + Dyy(D), (51b)
(1) = = + Dz(1), (51c)
457
z3(1) = = (¢ + Dzs(1) + 7)’3(1)- (51d)

Similarly to the Newtonian problem, the solution at both the
center and surface boundaries can be expanded in a power
series, where the coefficients are determined only by the
background model.

We draw a comparison between these 1PN terms and the
Newtonian Cowling approximation. For nonradial pulsations,
the full analysis should include matter perturbations, Eulerian
gravitational perturbations, and thermodynamic perturbations.
Often, we are most interested in the adiabatic approximation,
which includes only the matter and gravitational perturbations.
In the Cowling approximation, we further simplify by
neglecting the Eulerian gravitational perturbations and includ-
ing only matter perturbations. The adiabatic analysis can be
considered to be the Cowling approximation with additional
gravitational terms, and the nonadiabatic analysis can be
considered to be the adiabatic approximation with additional
thermodynamic terms.

In a similar way, the adiabatic 1PN effects of this paper can
be considered an additional add-on to the Newtonian adiabatic
approximation and can be handled similarly to the nonadiabatic
effects (i.e., with numerical flags). This makes the 1PN
Equation (49) easy to integrate into codes written for
Newtonian analysis. This is another major benefit of the 1PN
approach.

In Section 6 we will discuss the eigenfrequencies of the
system of Equation (49) and compare them with the Newtonian
results.

5. Numerical Tests

To ensure parity in the analysis, we produced a code to
calculate eigenmodes using Newtonian and 1PN physics with
polytropic backgrounds. While there are published tables for
frequencies in the Newtonian case (such as Christensen-
Dalsgaard & Mullan 1994, henceforth JCD-DJM) and readily
available community codes (such as gyre and adipls),
making our own Newtonian code grants an additional check to
the 1PN frequencies that the differences are not due to method
or machine.

5.1. The GRPulse Asteroseismology Code

Our code for both Newtonian and GR pulsations is called
GRPulse,” originally introduced in Boston (2022). This code
may be obtained from GitHub.* Documentation and sample
input files to generate the tabulated values in this paper are
available. The program leverages object-oriented design for
easy compatibility with different stellar models, different wave
equations, or different integration methods. We offer this code
under the GNU General Public License.

> hups: //zenodo.org /badge /latestdoi /442700026
4 https://github.com/rboston628 /GRPulse
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The code is being further developed in two directions. This
present work highlights GRPulse’s capabilities for Newtonian
and 1PN asteroseismology on simple models. GRPulse is also
capable of calculating frequencies in the GR Cowling
approximation, and we anticipate further developing its
abilities to the full GR mode equations of Thormne &
Campolattaro (1967) and Detweiler & Lindblom (1985). We
have also extended the range of Newtonian stellar models to
include more realistic models of WDs beyond polytropes,
which we will present in a future study. We anticipate further
expanding the number of models available in each regime of
physics.

5.2. Polytropic Background Codes

We calculate the Newtonian polytropic background by
numerically solving Equation (5) with simple RK4 on a
uniform grid of fixed size Ny, For n =0, 1, and 5 there exist
analytic solutions to test against (see Hansen & Kawaler 1994,
Section 7.2). For a grid size Ny, = 10°, we find relative errors
from the analytic solutions always smaller than 10~ . In
addition, we can convert our solution to Equation (5) in terms
of s and 6 to a solution in terms of physical variables, such as r,
p, P, and ®, and insert these variables back into the original
Equation (2) to calculate a scaled residual, e.g., for
Equation (2a),

dr dr

i (75) |+ wncort

4 (rzﬂ) — 47Gpr?

res(r) = (52)

Across a range of indices n, and for Ny, = 10°, we find this
residual to be on the order 1072, We can define an rms
residual (RMSR):

RMSR = |+ f ¥ res2(r)dr (53)
R Jo ’

which gives an estimate of numerical error. We can similarly
define an RMSR for the eigenmodes by defining an analog to
Equation (52) for Equation (8). If the RMSR is significantly
smaller than the relative difference of the frequencies, we can
be confident the difference is not due to numerical limitations
in the calculation.

We calculate the 1PN polytropic background using an
identical method, but where the parameter o appearing in
Equation (28) must also be fixed to match the surface redshift
z= %' There are no known solutions to the 1PN polytrope
equations, so no exact test can be performed. Tests of the
residuals in the original Equation (24) are on the order 1072
for Ny = 10°, across a range of n.

An additional test of the 1PN polytrope is to calculate overlap
coefficients with both the Newtonian (OPN) and GR polytropic
solutions, where the overlap is defined by

o(1,2) =1 — ﬂ, (54)
(6101) (0202)

with (6,60,) being the usual inner product of functions. The
equation for a GR polytrope is a solution to the TOV equations
with a polytropic equation of state and has been explored in
depth elsewhere (Tooper 1964, 1965; Bludman 1973). It is
expected that 0,,, differs from 60y, by an amount that scales


https://zenodo.org/badge/latestdoi/442700026
https://github.com/rboston628/GRPulse

THE ASTROPHYSICAL JOURNAL, 952:87 (16pp), 2023 July 20

Boston, Evans, & Clemens

Scaling of Overlap between Polytropes in Classical, GR, and 1PN

polytrope n = 3/2
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polytrope n = 3
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Figure 2. Convergence of 1PN and GR models to Newtonian as o — 0. The 1PN and GR models converge to the Newtonian model like o°, but converge to each other

like o*. Shown for n =3 /2 (left) and n =3 (right).

with o defined in Equation (26), and that, therefore, o(Opn,
1pn) ~ o’ Similarly, o(Opn, GR)~ 02, whereas o(1pn,
GR) ~ o*. When both the 1PN and GR solutions are matched
to Schwarzschild coordinates and compared, we find the
expected scaling in o for the overlaps, confirming that our 1PN
polytrope accounts for GR up to order o, with additional effects
at order o” (see Figure 2).

5.3. CHWD++ Background Codes

We calculate the Newtonian and 1PN CHWD-++ back-
ground as above for the polytropes, using simple RK4 on a
fixed grid of size Ny, There are no exact solutions to compare
against, though we can compare the mass—radius relation of
these models to the mass—radius relationship of real WDs.
Tests of tlsle residual in (2) and (24) are on the order 10~ for
Nyar = 10°.

5.4. Newtonian Stellar Pulsation Code

As with the background, we solve the pulsation equations using
simple RK4 on a fixed, uniform grid. We choose the grid for
pulsations to be Ny, = %Nsm so that the calculated background
values can be used in the half-steps of the RK4 method without
interpolation. The solution is found using a method similar to
Christensen-Dalsgaard (2008). We shoot from both the center and
the surface to an internal fitting position xg,. At each boundary two
independent solutions can be formed by choices of y; and y; in
Equations (42) and (42b). The frequency & is adjusted to cause
the two inward and two outward solutions to match, as determined
by the vanishing of the Wronskian of the four solutions at xg.. The
physical solution is then made by a linear combination of the four
solutions.

The resulting eigenmode is classified using the Osaki—
Scuflaire method to identify mode order k for p- and g-modes.
This method counts the mode order by the zero-crossings on a
graph of y; and y,, with clockwise crossings counted as

10

negative. Positive mode orders are considered p-modes, and
negative are g-modes.

In the case of an n =0 polytrope (i.e., a uniform density
star), there is an exact formula for the Newtonian eigenfre-
quencies of p-modes due to Pekeris (1938):

@Y = Dy + D& + Ll + 1), (55)
where (JCD-DJM, Equation (3.3))
Dy = Dk(k + ¢+ %) - 2. (56)

Here k=0, 1, 2, ... is the mode number, which counts radial
nodes. An equivalent form of this equation is found in
(Cox 1980, Equation (17).76), where n=0, 1, 2, ... is a
recursion relation index, and is matched to mode number by
n=k— 1. In the original of Pekeris (1938, Equation (32)), n
corresponds to ¢, and k=0, 2, 4, ... is another recursion
relation index, which corresponds to 2n as found in Cox
(1980). The uniform density model allows us to check the
scaling of errors with Ny, and with the mode order k. The
results are shown in Figure 3.

We may also compare against the compiled tables of JCD—
DJM, which are listed for p-modes to eight digits. To make this
comparison, we multiply @ by their scaling factor
v, = 99.855377Hz. When compared to JCD-DJM, we almost
always find either no difference or a difference of exactly
10°*4 Hz (ie., at the least significant digit). The only
exceptions occur due to an apparent difference in mode
labeling in the low-order dipole (/ =1) p-modes of the n =4
polytrope. This is due to the breakdown of the Osaki—Scuflaire
method for classifying low-order dipole modes in centrally
condensed stars, as discussed in Takata (2005; see Table 2).
Correcting the labeling for the k =1, 2, 3, 4, and 5 p-modes, we
again find agreement with JCD-DJM to all digits in the n =4
polytrope.
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Relative Error in Calculated Frequencies for n = 0 Polytrope Scale of Calculated Frequencies with Redshift, for n = 1,2, 3 Polytropes
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Figure 3. Left: the scaling of mode errors for £ = 1 modes calculated against Equation (55) in an n = 0 polytrope. The errors scale like N~*, and tend to increase for
increasing k. Right: the scaling of differences between Newtonian and 1PN models for a range of redshifts z. Several polytropes were used with /=1 —3
and k=1-35.

Table 1 Table 2
Comparison of Fundamental Frequencies for Comparison of Fundamental Frequencies for
Corresponding Newtonian 1PN Models with Cutler & Lindblom (1992) Corresponding 1PN GR Models with Lindblom et al. (1997)

Newtonian Post-Newtonian, z = 0.2256 Post-Newtonian, z = 0.1836 General Relativity
U @apm @199 % Err. @222 RMSR 49,  Rel Diff. 14 @022 RMSR ©1997 Rel. Diff. ©1997 Rel. Diff.
2 1227 1226 0.05% 1.317 0.07 1.232 0.06 2 1.279 0.05 1.231 0.04 1.201 0.06
3 1.698 1.697 0.05% 1.694 0.06 1.606 0.05 3 1.687 0.05 1.619 0.04 1.586 0.06
4 2037 2036 0.03% 1.984 0.05 1.885 0.05 4 1.989 0.04 1.907 0.04 1.874 0.06
5 2310 2309 0.03% 2.228 0.05 2.120 0.05 5 2.240 0.04 2.147 0.04 2.113 0.06
6 2546 2545 0.02% 2.444 0.04 2.324 0.05

Note. Mass and radius as in their Table 1. All models are a polytrope with
Note. Mass and radius as in their Table 1. All models are a polytrope with n=1and P~ p* = (¢/ o I=1+1 /n.
n=land P~ p*=(c/c)’, T\ =1+ 1/n.

we have verified in the Newtonian code, we can have

As with the background, the eigenfunctions, which are additional confidence in the accuracy of the results.
written in terms of the y; variables, can be converted into a There are no known analytic solutions for the 1PN
solution in terms of AP, &, etc., and inserted into Equation (8) frequencies. We do have a small table of f-mode frequencies

to calculate an RMSR as in Equation (53). This residual is

) A ) ; to compare against, due to Cutler & Lindblom (1992; their
displayed in the tables in Section 6.

Table 1), based on early work on the topic of 1PN oscillations
in rotating neutron stars. They model the neutron star as an
5.5. IPN Stellar Pulsation Code n=1 polytrope, and list frequencies for £ =2 to 6 calculated

) ) using I'y=1+1/n. For the Newtonian star, they use
The same double-shooting RK4 method is used to solve the M=1.736M_, and R = 15.343 km, and for the 1PN star they

IPN pulsation eqqations. Betcause there are eight equations, use M=14M. and R = 12374 km, which both give
there are two additional solutions at both the center and surface
and the Wronskian is the determinant of an 8 x 8 matrix
instead of a 4 x 4. Otherwise, the 1PN eigenmodes are found in
an identical manner to the Newtonian case. The eigenmode is

z = 0.2256. Their definition of the dimensionless frequency
listed in their Table 1 differs from @, defined in Equation (40)
by @cL = @+/4/3. Accounting for this difference, we find our

also classified using the Osaki—Scuflaire method, again by numbers compare to thelrs,.as in Table 1 There is very close
counting crossings in y; and y,, defined as in the 1PN agreement on the Newtonian frequencies, and for the 1PN
approximation. For the 1PN case, the only error measurement frequenczies, differen.ces are on the same order as the. expected
we can use is the residual in the original physical equation. Due errors,'z ~ 0.05, which gccognt for methodological differences
to mathematical manipulations truncating at first order in z, this made in the 1PN approximation.

residual scales with z°, and for z ~ 10™%, the residual should be There is a similar table in Lindblom et al. (1997, their Table
~1078, Because we are using identical numerical methods that 1), with M=14M; and R=14.45 km, that lists both 1PN

11
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Table 3
Normal Mode Frequencies and Periods for n = 1.5 Polytrope
Newtonian Polytrope (RMSR = 2 x 107'?) Post-Newtonian Polytrope (RMSR = 2 x 107'?) 2~ 107
Ik o £ (Hz) II (s) RMSR o f (Hz) II (s) RMSR Rel. Diff.
1,1 2.571761 0.153246 6.525466 4x107° 2.571531 0.153207 6.527097 6x10°% —9.0x107°
1,2 4.256099 0.253612 3.943034 4x107° 4.255778 0.253552 3.943964 7% 1078 -75%x107°
1,3 5.838061 0.347878 2.874575 4x107° 5.837646 0.347797 2.875240 7% 1078 —7.1x107°
1,4 7.373488 0.439370 2.275984 4%x107° 7.372978 0.439269 2.276507 7% 1078 —69x107°
1,5 8.881992 0.529259 1.889435 4x107° 8.881386 0.529138 1.889867 7 %1078 —68 x107°
1, 10 16.248203 0.968196 1.032849 4x107° 16.247119 0.967976 1.033084 7% 1078 —6.7x107°
1, 15 23.505846 1.400663 0.713948 4%x107° 23.504284 1.400345 0.714110 7 %1078 —6.6 x 107°
1, 20 30.727923 1.831011 0.546146 4x107° 30.725885 1.830596 0.546270 7% 1078 —6.6 x 1077
2,0 1.455807 0.086748 11.527589 4x107° 1.455893 0.086740 11.528757 6x 1078 —-59%x107°
2,1 3.207357 0.191120 5.232327 3%x107° 3.207218 0.191081 5.233395 6x 1078 —43x107°
2,2 4.849223 0.288955 3.460748 4%x107° 4.848949 0.288892 3.461499 6x 1078 —56x107°
2,3 6.426896 0.382965 2.611205 4x107° 6.426508 0.382880 2.611782 7x 1078 —6.0x 1077
2,4 7.966983 0.474735 2.106436 4x107° 7.966488 0.474630 2.106905 7% 1078 —-62x107°
2,5 9.482660 0.565051 1.769750 4x107° 9.482060 0.564925 1.770146 7 %1078 —63x107°
2, 10 16.882254 1.005977 0.994058 4x107° 16.881155 1.005750 0.994282 7% 1078 —6.5%x107°
2,15 24.160416 1.439668 0.694605 4x107° 24.158830 1.439342 0.694762 7x 1078 —6.6 x 1077
2,20 31.395293 1.870778 0.534537 4x107° 31.393225 1.870355 0.534658 7% 1078 —6.6 x 107°
3,0 1.93432779 0.11526246 8.67585175 5% 1073 1.93436853 0.11524638 8.67706176 5% 1078 —21x107°
3,1 3.695765 0.220223 4.540858 3% 1077 3.695660 0.220181 4.541716 5%x 1078 —2.8x107°
3,2 5.348647 0.318714 3.137605 4%x107° 5.348409 0.318649 3.138248 6x 1078 —45%x107°
3,3 6.941521 0.413630 2.417617 4x107° 6.941161 0.413543 2.418132 6x108 —52%107°
3,4 8.496828 0.506308 1.975083 4x107° 8.496354 0.506198 1.975510 6x 1078 —56x107°
3,5 10.026632 0.597466 1.673737 4x107° 10.026048 0.597335 1.674103 6x 1078 —5.8x107°
3,10 17.477641 1.041455 0.960195 4x107° 17.476538 1.041222 0.96042- 7% 1078 —-63x107°
3,15 24.785387 1.476908 0.677090 4x107° 24.783786 1.476576 0.677243 7x 1078 —6.5x107°
3,20 32.038738 1.909120 0.523802 4x107° 32.036649 1.908689 0.523920 7% 1078 —6.5 x 107°
Note. Both stars are scaled to M = 0.6M, and R = 1.3R.,. All modes use I'; = 5/3. There are no g-modes for this model.
frequencies and GR frequencies for the same star. We find background line element (Equation (18)) into spherical
similar agreement with both sets of numbers, shown in Table 2. coordinates:
The 1PN approximation is not ideal for a highly compact
object such as a neutron star, unless numerical errors as high as ds?— |14 29 " 2(T + 9?) 2di?
5% are acceptable. For a WD, the systemic errors in using the c? ¢t
1PN approximation are orders of magnitude smaller.
2@ 2 2 )
6. Results

However, the radius of an isolated real WD can be indirectly

For the following calculations we model polytropes, scaled estimated from observables such as the surface gravitational
so that the total mass equals a 3?’ pical ﬁeld WD mass of redshift z or the surface gravity g,, determined by spectal line
M=0.6M, (or M=1.1934 x 10" g), with R=13Rs (or shifts and broadening, respectively. For a spherical WD

R = 8282 km). The radius is picked based on models of the ; . .
. ) . . . background, the exterior region, which connects the surface
WD mass—radius relationship. There is an important subtlety . . ] .
properties to a distant observer, is described by the Schwarzs-

here in how we choose background WD models in order to

compare Newtonian and 1PN mode periods. We consider the child solution. In standard Schwarzschild coordinates it has a
mass of the stars first. For a Newtonian polytrope, the meaning line element given by

of mass is clear. When considering GR, the observed mass of a GM

WD is the gravitational mass M, which is a combination of the ds? = _(1 — )c2 dr?

integrated baryon mass, internal energy, and gravitational c’n

WD, we keep the mass M fixed.

For a Newtonian polytrope, the natural second parameter
needed to specify the star is the radius, R, which is
unambiguously defined. Other quantities that are combinations
of M and R might be used in place of R in order to define the

2

binding energy. When we compare a Newtonian WD to a 1PN 2GM
+11 -
(-2

-1
) dry + ry dQ2, (58)

where r, is the areal radial coordinate. Any calculation of the
radius from surface redshift z = GM/ (czR) (or from the surface

polytrope. In GR, there is, however, a coordinate ambiguity in gravity) will give a value for R =R, in this latter coordinate
defining the radius of a star. Our equations for the static system. We make the choice that the radius we specify based
background model are written in terms of an isotropic radial on the mass—radius relation is the areal radius R,. On the other
coordinate r=r;, which appears when we convert the hand, the background star might be described in terms of

12
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Table 4
Normal Mode Frequencies and Periods for n = 3 Polytrope
Newtonian Polytrope (RMSR = 2 x 107'?) Post-Newtonian Polytrope (RMSR = 2 x 107'?) 2~ 107
I k o f (Hz) II (s) RMSR o f (Hz) II (s) RMSR Rel. Diff.
1, —10 0.343611 0.020475 48.839961 9 x 1072 0.343666 0.020475 48.839927 4x1077 1.6 x 1074
1, =5 0.608215 0.036242 27.592119 3x 10712 0.608315 0.036242 27.592025 4x1077 1.6 x 1074
1, -4 0.719567 0.042877 23.322293 3x 10712 0.719686 0.042878 23.322150 4x1077 17 x 107
1, -3 0.880757 0.052482 19.053998 2x 107" 0.880909 0.052483 19.053777 3% 1077 1.7 x 107*
1, =2 1.133891 0.067566 14.800318 2x 10712 1.134099 0.067568 14.799968 3x 1077 1.8 x 1074
1, -1 1.586168 0.094516 10.580181 1x10712 1.586506 0.094521 10.579625 2x 1077 2.1 x 1074
1,1 3.377036 0.201230 4.969429 1x107" 3.377300 0.201214 4.969838 2% 1077 7.8 x 107°
1,2 4.642432 0.276633 3.614903 2x 10712 4.642751 0.276607 3.615235 2x 1077 6.9 x 107
1,3 5.909240 0.352119 2.839949 2x 10712 5.909632 0.352086 2.840217 2x 1077 6.6 x 1073
1,4 7.176668 0.427642 2.338403 2x 1072 7.177142 0.427602 2.338624 2x 1077 6.6 x 1077
L5 8.443277 0.503117 1.987610 2x 107" 8.443837 0.503069 1.987797 2% 1077 6.6 x 107°
1, 10 14.751133 0.878988 1.137671 1x107" 14.752152 0.878908 1.137775 2x 1077 6.9 x 107
2, —10 0.567887 0.033839 29.551565 2 x 107! 0.567978 0.033839 29.551593 4x1077 1.6 x 107
2, -5 0.967663 0.057661 17.342746 4x107" 0.967817 0.057661 17.342780 4 %1077 1.6 x 107
2, —4 1.127173 0.067166 14.888523 4x 10712 1.127352 0.067166 14.888544 4x 1077 1.6 x 107
2, -3 1.349915 0.080439 12.431848 2x 10712 1.350133 0.080439 12.431843 3x 1077 1.6 x 107*
2, =2 1.681711 0.100210 9.979088 2 x 10712 1.681991 0.100210 9.979029 3x 1077 1.7 x 1074
2, —1 2216884 0.132099 7.570059 2x 10712 2217291 0.132102 7.569883 3% 1077 1.8x 107
2,0 2.859255 0.170377 5.869340 1x 10712 2.859867 0.170386 5.869026 2x 1077 2.1x107*
2,1 3.906874 0.232802 4.295491 1x 10712 3.907499 0.232802 4.295493 2x 1077 1.6 x 1074
2,2 5.169469 0.308038 3.246357 1x 10712 5.170107 0.308026 3.246478 2x 1077 1.2 x 1074
2,3 6.439990 0.383745 2.605895 2x 10712 6.440673 0.383724 2.606037 2x 1077 1.1 x107*
2,4 7.708951 0.459360 2.176942 2x 107" 7.709691 0.459330 2.177083 2% 1077 9.6 x 107°
2,5 8.975891 0.534854 1.869668 2x 10712 8.976697 0.534816 1.869802 2x 1077 9.0 x 1073
2,10 15.284901 0.910795 1.097942 2x 107" 15.286091 0.910719 1.098033 2x 1077 7.8 x 1073
3, —10 0.766497 0.045674 21.894321 2x 107" 0.766618 0.045674 21.894388 4x1077 1.6 x 1074
3, -5 1.259737 0.075065 13.321780 5% 10712 1.259929 0.075064 13.321887 4 %1077 1.5x 1074
3, —4 1.446622 0.086201 11.600779 9x 107" 1.446840 0.086200 11.600890 4% 1077 1.5%x107*
3, -3 1.699020 0.101241 9.877421 4x 10712 1.699274 0.101240 9.877531 3x 1077 15 %1074
3, -2 2.058262 0.122647 8.153451 2x 10712 2.058568 0.122646 8.153550 3% 1077 1.5 x 1074
3, —1 2.601340 0.155008 6.451267 2 x 10712 2.601732 0.155007 6.451330 3x 1077 1.5x 1074
3,0 3.068190 0.182827 5.469654 2 x 10712 3.068607 0.182822 5.469790 3x 1077 14 x 1074
3,1 4.294602 0.255906 3.907682 2 x 10712 4.295218 0.255902 3.907750 2x 1077 14 x 1074
3,2 5.591067 0.333160 3.001563 2x 10712 5.591792 0.333149 3.001656 2% 1077 13%x107*
3,3 6.878680 0.409886 2.439704 2 x 10712 6.879493 0.409869 2.439807 2% 1077 12 x 107
3,4 8.158826 0.486167 2.056906 2x 107" 8.159719 0.486142 2.057011 2% 1077 1.1x107*
3,5 9.433911 0.562147 1.778895 3 x 10712 9.434880 0.562114 1.778998 2x 1077 1.0 x 107
3,10 15.767068 0.939526 1.064367 2x 107! 15.768422 0.939456 1.064446 2x 1077 8.6 x 107°
Note. Both stars are scaled to M = 0.6M, and R = 1.3R,,. All modes use I'; = 5/3.
isotropic coordinates, in which case its radius would be R;, the dimensionless frequency &, the cyclic frequency f (in
differing at 1PN order from R,. These two radii can be related hertz), the period II (in seconds), and the RMSR. In an
by additional column, we specify the relative difference between @
in the Newtonian and 1PN calculations, defined in the sense
2GM O — &
_ p. . 1 wo,
R, =R |l - =—. (59) rel. diff, = — 2% P2 (60)
C Ri o
avg
Given our choice for mass M and radius R,, we might aso that a positive relative difference means the 1PN frequency
alternatively view the surface redshift is blueshifted, while a negative difference means redshifted.
z=GM/ (c*’R)=1.07 x 10™* as the second polytropic para- The differences between periods are similar to those between
meter to hold fixed in comparing Newtonian and 1PN models. @. The RMSR for the stars and modes is as defined in
We adopt these values as parameters in our subsequent Equation (53). Additional tables for several values of n can be
polytrope calculations. found in Boston (2022).
In Tables 3 and 4, we compile eigenfrequencies calculated Note that g-modes are unstable for n < 1.5 and that there is

on n = 1.5 and n = 3 polytrope backgrounds. The table records no f-mode (k = 0) for /=1.
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Comparison of Newtonian and 1PN Dimensionless Frequencies, Mass = 0.6 Mg, R = 1.3 Rg
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Figure 4. Graph of relative differences in @ between models for several polytrope models. The central red line shows z = 1.07 x 10~*. The dependence on mode type
(g- or p-modes) and the dependence on model is evident from the graph. Of particular interest is n = 2.5, where the difference between Newtonian and 1PN
frequencies becomes much smaller than z, or for n > 3, where the difference becomes much larger than z.

Comparison of Newtonian and 1PN Dimensionless Frequencies, Mass = 0.6 Ms, R = 1.3 Rg

1073 T T
redshift B n=2.0 n=2.5
blueshift o n=2.1 n=2.7
n=2.3 n=2.9
e = %‘:ﬁ?":ﬁ/&\ E
© e oo 58
S D S S S SR S
2
L
&
g 107° L F > 1
3 a
5] N
T;_‘) a
A -
1076 | = N a " E
5]
=
1077 | | |
—10 -5 0 5 10 15

mode order k

Figure 5. Refined graph for many models in the range n € [2, 3], arranged in rough chromatic order with increasing n, with £ = 1 for all modes. Frequencies with a
positive difference (meaning &;p, has been blueshifted) and frequencies with a negative difference (meaning @p, has been redshifted) are marked with different
symbols. The sign shift occurs between n = 2.5 and n = 2.7, suggesting the existence of a polytropic index where the difference will be zero for some modes.

Results for many more polytrope models are graphed in
Figure 4. A careful look at the tables will reveal that between
n = 1.5 and n =3 the frequencies change from redshifted to
blueshifted. In Figure 5 more results are graphed in the range
n =2 to n =3, showing this shift occurs around n = 2.6.

For the CHWD++ models, the choice of y, fixes M and R
according to a mass—radius relation, and therefore it is not
possible to freely scale z to match between the Newtonian and
1PN models. We therefore choose to match them according to
M. In Table 5, we list eigenfrequencies calculated on a CHWD
++ background matched to M =0.607158M. This table
records the dimensionless frequency &, the period II (in
seconds), and the RMSR, along with the relative difference, as
in Equation (60).

14

7. Discussion

The results presented in Section 6 generally confirm that GR
will lead to measurable changes at the 1PN level in periods
derived from space-based photometry for compact stellar
objects of similar mass and radius as WDs. This change,
represented by the relative difference, is roughly of the same
order of magnitude as the gravitational surface redshift z.
Because the effect is measurable, the full precision of the
photometric data from K2 and TESS cannot be used to fit
asteroseismic models of stars unless GR is first included in both
the model and perturbation equations. We recommend the 1PN
formalism as the simplest way to do this, and our set of
Equations (49a)—(49h) might conveniently be added to existing
asteroseismology codes.
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Table 5
Normal Mode Frequencies and Periods for a CHWD++ with M = 0.60716M,
Newtonian CHWD++ (RMSR = 1 x 107'°) Post-Newtonian CHWD++ (RMSR = 3 x 10~ '%)
yo = 1.57991, z = 1.0301 x 10™* yo=1.581,z=1.0317 x 10™*

Ik o I (s) RMSR o I (s) RMSR Rel. Diff.

1, -8 0.0104963 1711.4055481 6 x 10°° 0.0105004 1708.4024156 3%x107° 3.87 x 1074
1, =7 0.0119985 1497.1386391 6 x 1077 0.0120032 1494.5113986 5% 1077 3.87 x 107
1, -6 0.0140044 1282.7042090 6 x 1077 0.0140098 1280.4531595 3%x10°° 3.87 x 1074
1, -5 0.0168196 1068.0042846 2% 1077 0.0168261 1066.1299007 2% 1077 3.87 x 107
1, —4 0.0210630 852.8448434 1x1077 0.0210711 851.3479456 1x1077 3.87 x 107*
1, -3 0.0282100 636.7745033 4%x10°8 0.0282210 635.6567139 9x 1078 3.88 x 107
1, =2 0.0429319 418.4169279 1x10°8 0.0429486 417.6823108 7% 1078 3.88 x 1074
1, -1 0.0945682 189.9521474 1x10°8 0.0946049 189.6186247 7% 1078 3.88 x 107
2, -8 0.0181734 088.4458576 2x107° 0.0181804 986.7117546 2% 107 3.87 x 107
2, -7 0.0207742 864.6997279 6 x 1077 0.0207822 863.1826760 5% 1077 3.87 x 107*
2, —6 0.0242469 740.8560180 6 x 1077 0.0242562 739.5561899 5% 107° 3.87 x 107
2, -5 0.0291209 616.8580678 2% 1077 0.0291321 615.7757375 2% 1077 3.87 x 107*
2, —4 0.0364670 492.5937394 2% 1077 0.0364812 491.7293805 1x 1077 3.87 x 107
2, -3 0.0488399 367.8022592 4x10°8 0.0488588 367.1568083 9x 1078 3.87 x 107*
2, -2 0.0743247 241.6886386 2% 1078 0.0743535 241.2644417 7% 1078 3.87 x 107
2, -1 0.1637001 109.7338397 1x10°8 0.1637635 109.5412449 7% 1078 3.87 x 107*
3, -8 0.0256886 699.2757612 1x10°° 0.0256986 698.0493223 6 x 107° 3.86 x 107*
3, =7 0.0293645 611.7396636 8 x 1077 0.0293759 610.6667318 5% 1077 3.86 x 1074
3, -6 0.0342726 524.1335104 5% 1077 0.0342859 523.2142080 2% 107° 3.86 x 107
3, -5 0.0411612 436.4171049 2x 1077 0.0411771 435.6516259 2x 1077 3.86 x 107*
3, —4 0.0515434 348.5109838 3% 1077 0.0515633 347.8996633 1x 1077 3.86 x 107*
3, -3 0.0690290 260.2305123 4x10°% 0.0690556 259.7740126 8x 1078 3.86 x 107*
3, -2 0.1050413 171.0130636 2% 1078 0.1050819 170.7130437 7 %1078 3.87 x 107*
3, -1 0.2313130 77.6585806 1x10°8 0.2314024 77.5223589 7x 1078 3.86 x 107*

Note. All modes use I'; calculated from the background equation of state.

The neglect of GR is not the largest source of error in normal becomes the more important effect.’ Whether this same
mode calculations for WDs. Other factors besides 1PN balancing act occurs in a real WD is a subject for future study,
gravitational fields, such as differences in the equation of but the present work indicates that the GR correction in a real
state, composition, opacity, or treatment of convection, will WD will not be as simple as merely gravitationally redshifting
have larger numerical impacts. Using the 1PN equations does the frequencies.
not guarantee a full fit to the K2 and TESS data. However, our
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