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Summary

We consider forecasting a single time series using a large number of predictors in the presence

of a possible nonlinear forecast function.Assuming that the predictors affect the response through

the latent factors, we propose to first conduct factor analysis and then apply sufficient dimension

reduction on the estimated factors to derive the reduced data for subsequent forecasting. Using

directional regression and the inverse third-moment method in the stage of sufficient dimension

reduction, the proposed methods can capture the nonmonotone effect of factors on the response.

We also allow a diverging number of factors and only impose general regularity conditions on the

distribution of factors, avoiding the undesired time reversibility of the factors by the latter. These

make the proposed methods fundamentally more applicable than the sufficient forecasting method

of Fan et al. (2017). The proposed methods are demonstrated both in simulation studies and an

empirical study of forecasting monthly macroeconomic data from 1959 to 2016. Also, our theory

contributes to the literature of sufficient dimension reduction, as it includes an invariance result,

a path to perform sufficient dimension reduction under the high-dimensional setting without

assuming sparsity, and the corresponding order-determination procedure.

Some key words: Factor model; Forecasting; High-dimensional asymptotics; Invariance property; Principal component;

Sufficient dimension reduction.
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474 W. Luo et al.

1. Introduction

Forecasting using high-dimensional predictors is an increasingly important research topic in

statistics, biostatistics, macroeconomics and finance. A large body of literature has contributed to

forecasting in a data-rich environment, with various applications such as the forecasts of market

prices, dividends and bond risks (Sharpe, 1964; Lintner, 1965; Ludvigson & Ng, 2009), macro-

economic outputs (Stock &Watson, 1989; Bernanke et al., 2005), macroeconomic uncertainty and

fluctuations (Ludvigson & Ng, 2007; Jurado et al., 2015) and clinical outcomes based on massive

genetic, genomic and imaging measurements. Motivated by principal component regression,

the pioneering papers by Stock & Watson (2002a, b) systematically introduced the forecasting

procedure using factor models, which has played an important role in macroeconomic analysis.

Recently, Fan et al. (2017) extended Stock & Watson (2002a, b) to allow for a nonlinear forecast

function and multiple nonadditive forecasting indices. Following Fan et al. (2017), we consider

the following factor model with a target variable yt+1 that we aim to forecast:

yt+1 = g(φ′
1 ft , . . . , φ′

L ft , εt+1), (1)

xit = b′
i ft + uit , (2)

where 1 � i � p, 1 � t � T , xit is the ith high-dimensional predictor observed at time t, bi is a

K ×1 vector of factor loadings, ft is a K ×1 vector of common factors driving both predictor and

response, g(·) is an unknown forecast function that is possibly nonadditive and nonseperable, uit

is an idiosyncratic error, and εt+1 is an independent stochastic error. Here, φ1, . . . , φL, b1, . . . , bp

and f1, . . . , fT are unobserved vectors. Model (1) equivalently assumes

yt+1 |= ft | (φ1, . . . , φL)′ft . (3)

The linear space spanned by φ1, . . . , φL, denoted by Sy|f , is the parameter of interest that is

identifiable and known as the central subspace (Cook, 1998). Fan et al. (2017) introduced the

sufficient forecasting scheme that uses factor analysis to estimate ft and then applies sliced inverse

regression (Li, 1991) to Model (1) with the estimated factors as the predictor. Such a combination

provides a promising forecasting technique that not only extracts the underlying commonality of

the high-dimensional predictor, but also models the complex dependence between the predictor

and the forecast target. It allows the dimension of the predictor to diverge and even become much

larger than the number of observations.

The consistency result of Fan et al. (2017) is nontrivial. If we replace the true factors ft

with a consistent estimate f̂t in (3) and define the central subspace Sy|f̂ similarly, then Sy|f̂ may

differ from Sy|f substantially. Thus, the naive method of applying existing dimension reduction

methods to the estimated factors f̂t may not necessarily lead to consistent estimation of Sy|f , even

if it consistently estimates Sy|f̂ . Fan et al. (2017) effectively addressed this issue by developing

an important invariance result between E(ft | yt+1) and E(f̂t | yt+1), see Proposition 2.1 and

Equation (2.9) of Fan et al. (2017). This invariance result provides an essential foundation for

using the sliced inverse regression under Models (1) and (2).

Nonetheless, the applicability of Fan et al. (2017) is restricted by the requirements that the

number of factors K must be fixed as p and T grow, and, for each set of factors, a linearity condi-

tion, see Condition 1 below, must hold. In particular, as Sy|f is unknown, the linearity condition

is commonly strengthened to equivalently require an elliptically distributed ft , which causes the

undesired property of time reversibility (Xia et al., 2002). In addition, the consistency result of

Fan et al. (2017) and Yu et al. (2021) hinges on an exhaustive estimation of Sy|f , i.e., detecting all
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Sufficient forecasting by inverse moment methods 475

the directions, for which φ′
1�f |yφ1, . . . , φ′

L�f |yφL must be positive; see their Assumption (A2).

This condition is violated, i.e., φ′�f |yφ being zero for some φ ∈ Sy|f , if φ′ft | yt+1 has a sym-

metric distribution, which occurs when the forecast target was investigated using squared factors

(Ludvigson & Ng, 2007; Bai & Ng, 2008). These limitations motivate us to construct more

powerful forecasting methods based on the work of Fan et al. (2017).

In this paper we propose to use factor analysis and sufficient dimension reduction sequen-

tially for sufficient forecasting, with second- or higher-order inverse moment methods being the

working sufficient dimension reduction method. In the main text we focus on a commonly used

second-order inverse moment method called directional regression (Li & Wang, 2007), and defer

the development with the third-order inverse moment method to the Supplementary Material.

Based on Models (1) and (2), the proposed method includes the following steps:

Step 1. Estimate the factor loadings B and the factors ft in Model (2).

Step 2. Use the estimates B̂ and f̂t in directional regression to estimate Sy|f .

Step 3. Use the nonparametric methods (Fan & Gijbels, 1996; Matzkin, 2002; Yu et al., 2021)

to estimate g(·) in Model (1) and forecast yt+1, based on the estimate of (φ′
1 ft , . . . , φ′

L ft).

By studying both E(ft | yt+1) and E(ft f
′

t | yt+1) in Step 2, we explore the full power of the

factor space. To this end, we first provide an important invariance result, Lemma 1, for directional

regression. With the help of this invariance result, we do not require the coincidence or closeness

of two central subspaces Sy|f and Sy|f̂ , so the proposed method can be applied to more general

data, such as nonnormally distributed factors.

Our work extends the method, theory and applicability of the forecasting using factor models.

Compared with Fan et al. (2017), we relax the linearity condition to the general moment conditions

on ft . From the discussion above, the proposed method does not require time reversibility of the

factors, so it can be applied to the generalized forecasting model

yt+1 = g(φ′
1 ft + ψ ′

1ωt , . . . , φ′
L ft + ψ ′

Lωt , εt+1), (4)

where ωt is an m × 1 vector of the observed variables, e.g., lags of yt+1. In addition, by using

the higher-order inverse moments, the proposed method requires a weaker condition than Fan

et al. (2017) and Yu et al. (2021) for exhaustive estimation of Sy|f . In particular, it can detect

nonmonotone effects of the factors on the response. Furthermore, we allow the number of under-

lying factors K to diverge as p, T → ∞. By Lam & Yao (2012), Jurado et al. (2015) and Li et al.

(2017), our method will deliver a more powerful forecast than Stock & Watson (2002a, b) and

Fan et al. (2017).

Using directional regression as an illustration, the proposed method also provides a novel

framework of performing sufficient dimension reduction with large-panel data under the

high-dimensional setting, without the commonly adopted sparsity assumption, but with the

assumption that the predictor affects the response only through the latent factors. The origi-

nal direction regression (Li & Wang, 2007) can only deal with independently and identically

distributed data under the low-dimensional setting. This enhances the applicability of model-free

dimension reduction for high-dimensional data, when the sparsity assumption is not suitable.

The consistency of the proposed method hinges on the consistency of both factor analysis

and directional regression based on the estimated factors, which we study next. For ease of

presentation, we assume that both the number of factors K and the dimension L of Sy|f are known

a priori. This does not affect the asymptotic development of the resulting estimator, as long as K

and L can be consistently estimated; see the Supplementary Material for details. The consistent

estimation of K and L is deferred to § 5. Throughout the article, we assume L to be fixed as K

diverges.
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476 W. Luo et al.

2. Consistency of factor analysis

To make a forecast, we need to estimate the factor loadings B and the error covariance matrix

�u. Consider the following constrained least squares problem:

(B̂K , F̂K ) = arg min
(B,F)

‖X − BF ′‖2
F, subject to T−1F ′F = IK , B′B diagonal, (5)

where X = (x1, . . . , xT ), F ′ = (f1, . . . , fT ) and ‖ ·‖F denotes the Frobenius norm of a matrix. The

constraints T−1F ′F = IK and that B′B is diagonal address the issue of identifiability during the

minimization. As these conditions can always be satisfied for any BF ′ after appropriate matrix

operations on B and F , they impose no additional restrictions on the factor model (2). It is known

that the minimizers F̂K and B̂K of (5) are such that the columns of F̂K/
√

T are the eigenvectors

corresponding to the K largest eigenvalues of the T × T matrix X ′X and B̂K = T−1X F̂K . To

simplify the notation, let B̂ = B̂K and F̂ = F̂K .

As both the dimension p of the predictor xt and the number of factors K are diverging, it is

necessary to regulate the magnitude of the factor loadings B and the idiosyncratic error ut , so

that the latter is negligible with respect to the former. We should also regulate the stationarity of

the time series. In this paper we adopt the following assumptions. For simplicity in notation, we

let U = (uit)p×T , B = (b1, . . . , bp)
′ and ‖B‖max be the maximum of the absolute values of all

the entries in B. Let F0
∞ and F

∞
T denote the σ -algebras generated by {(ft , ut , εt+1) : t � 0} and

{(ft , ut , εt+1) : t � T }, respectively. Let α(T ) = supA∈F0∞,B∈F
∞
T

|P(A)P(B) − P(AB)|.

Assumption 1 (Factors and loadings).

(i) There exists b > 0 such that ‖bi‖ � b for i = 1, . . . , p, and there exist two positive constants

c1 and c2 such that c1 < p−1λmin(B
′B) < p−1λmax(B

′B) < c2.

(ii) Identification: T−1F ′F = IK , and B′B is a diagonal matrix with distinct entries.

Assumption 2 (Data-generating process). There are three independent groups, {ft}t�1, {ut}t�1

and {εt+1}t�1, and they are strictly stationary, {K−2E‖ft‖4 : K ∈ N} and {K−1E(‖ft‖2 | yt+1) :

K ∈ N} are bounded sequences, and α(T ) < cρT for T ∈ Z
+ and some ρ ∈ (0, 1).

Assumption 3 (Residuals and dependence). There is a constant M > 0 such that

(i) E|uit|8 � M ;

(ii) ‖�u‖1 � M ;

(iii) for every (t, s), E|p−1/2{u′
sut − E(u′

sut)}|4 � M ;

(iv) U = LER, where L ∈ R
p×p and R ∈ R

T×T are nonrandom positive definite matrices and

E = (eit)p×T includes independent elements with E(eti) = 0 and E|eit|7 � M .

Assumptions 1 and 3 ensure that signals dominate errors in the population level as p grows.

Assumption 1 regulates the signal strength of factors contained in the predictor through the

convergence rate of estimated factor loadings, and Assumption 3 regulates the idiosyncratic

errors. Assumption 3(iv) regulates weak autocorrelation and cross-sectional correlation as in Li

et al. (2017). Assumption 2 imposes independence between factors and idiosyncratic errors as in

Lam &Yao (2012).Assumption 2 implies that the observations are only weakly dependent, so that

the estimation accuracy grows with T . Assumptions 2 and 3(ii) imply that for every i, j, t, s > 0,

maxt�T p−1
∑

i,j |E(uitujt)| = O(1) and (pT )−1
∑

i,j,t,s |E(uitujs)| = O(1); see Lemma 6 of Fan

et al. (2013).

Under these assumptions, we have the following consistency result for estimating the factor

loadings. Instead of the Frobenius norm used in (5), we use the spectral norm to measure the
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Sufficient forecasting by inverse moment methods 477

magnitude of a matrix, defined as ‖A‖ = λ
1/2
max(A

′A), the square root of the largest eigenvalue of

the symmetric matrix A′A, for any matrix A.

Theorem 1. Let �b = (B′B)−1B′ and �̂b = (B̂′B̂)−1B̂′. Given K = o(min{p1/3, T }) and

Assumptions 1, 2 and 3(i)–(iii), we have

(a) ‖B̂ − B‖ = Op{p1/2(K3/2p−1/2 + K1/2T−1/2)},
(b) ‖�̂b − �b‖ = Op{p−1/2(K3/2p−1/2 + K1/2T−1/2)}.

Theorem 1 extends the existing consistency result for estimating the factor loadings (Lam et al.,

2011; Fan et al., 2013, 2017) by pinpointing the effect of diverging K . Because the dimension

p of factor loadings B is diverging, the estimation error B̂ − B accumulates as p grows. For a

p-dimensional vector whose entries are constantly 1, its spectral norm is p1/2, which diverges to

infinity. Thus, we should treat p1/2 as the unit magnitude of the spectral norm of matrices with p

rows, in which sense statement (a) of Theorem 1 justifies the estimation consistency of the factor

loadings B. As the error term ut shrinks as p grows under Assumption 3, the convergence rate of

the factor loading estimation largely depends on p; a higher-dimensional predictor means a more

accurate estimation. The convergence rate in this theorem can be further improved if we impose

stronger assumptions on the negligibility of the error terms in the factor model (2).

Given B̂, it is easy to see that f̂t = �̂bBft + �̂but . Thus, together with the negligibility of the

error term ut , the consistency of B̂ and �̂b indicates the closeness between the true factors ft and

the estimated factors f̂t , of which the latter will be used in the subsequent sufficient dimension

reduction. The error covariance matrix �u can be estimated by thresholding the sample covariance

matrix of the estimated residual xt − B̂f̂t , denoted by �̂u = (σ̂ u
ij )p×p, as in Cai & Liu (2011), Xue

et al. (2012) and Fan et al. (2013, 2016).

3. Directional regression based on an invariance result

3.1. An invariance result

Had the true factors ft been observed, directional regression would estimate the central subspace

Sy|f as the column space of

Mdr = E{2var(ft) − E[(ft − gs)(ft − gs)
′ | yt+1, ηs+1]}2, (6)

where (gs, ηs+1) is a hypothetical independent copy of (ft , yt+1). The term var(ft) can be replaced

with the identity matrix as in Li & Wang (2007), but we keep it in this form for convenience in

the theoretical work developed later. For the resulting directions being included in Sy|f , ft needs

to satisfy the following conditions:

Condition 1 (Linearity). E(b′ft | φ′
1 ft , . . . , φ′

L ft) is a linear function of (φ′
1ft , . . . , φ′

Lft) for any

b ∈ R
K ;

Condition 2 (Constant variance). var(ft | φ′
1 ft , . . . , φ′

L ft) is degenerate.

Since Sy|f is unknown, Conditions 1 and 2 are commonly strengthened such that they are

satisfied for basis matrices of any L-dimensional subspace of R
K . The strengthened conditions

equivalently require the factors to be jointly normally distributed. To assess these conditions, one

can treat ft as the response and (φ′
1ft , . . . , φ′

L ft) as the predictor in regression; then, Condition 1 is
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478 W. Luo et al.

the linearity assumption on the regression function and Condition 2 is the homoscedasticity

assumption on the error term. In this sense, we follow the convention in the literature of regression

to treat Condition 2 as less worrisome than Condition 1 in practice. We tentatively assume

Condition 1 and relax it in § 4.

Under general conditions, the column space of Mdr is L-dimensional, which, together with

Conditions 1 and 2, means the exhaustive recovery of Sy|f . These conditions are proposed in Li &

Wang (2007) and reviewed in the Supplementary Material. They are weaker than those required

for the exhaustiveness of sliced inverse regression, as more information about ft | yt+1, i.e., the

second moment, is used. We assume these conditions throughout the paper, including § 4 where

Condition 1 is violated.

To pinpoint the effect of using the estimated factors in directional regression, we next propose

an invariance result for Mdr. As mentioned in § 1, a similar invariance result for sliced inverse

regression can be found in Fan et al. (2017) where only the inverse first moment is involved; see

their equation (2.6). To simplify the discussion, in the rest of the subsection we assume an oracle

scenario where B is known a priori, which gives

f̂t = ft + u∗
t , (7)

where u∗
t = �but is independent of ft . Let u∗

s be an independent copy of u∗
t in (7) and let

ĝs = gs + u∗
s . Since B is known, ĝs is an independent copy of f̂t .

Lemma 1 (The invariance result). Under Model (2), Mdr defined in (6) is invariant if the

true factors ft and gs are replaced with the estimated factors f̂t and ĝs.

Using the estimated factors, one would naturally treat Sy|f̂ as the working parameter in the

stage of sufficient dimension reduction. However, as no distributional assumptions are imposed

on u∗
t , both Conditions 1 and 2 can be violated for f̂t , which causes inconsistency of directional

regression for recovering Sy|f̂ . In addition, Sy|f̂ itself may deviate from the parameter of interest

Sy|f , as the identity between the two essentially requires the normality of both ft and u∗
t (Li &Yin,

2007). The invariance result provides the key to address these issues; that is, we can bypass Sy|f̂

and directly estimate Sy|f using the estimated factors, as if the true factors were used. As var(f̂t) is

no longer the identity matrix, Mdr adopted here modifies its original form in Li & Wang (2007).

This modification is crucial as it averages out the effect of the estimation error u∗
t . It also means

that the column space of the working Mdr does differ from Sy|f̂ .

3.2. Consistency of directional regression

In reality, the hypothetical independent copies (gs, ηs+1) and (ft , yt+1) do not exist in the

observed data, so we expand (6) and estimate an equivalent form of Mdr,

Mdr = 2E[{var(ft) − E(ft f
′

t | yt+1)}2] + 2E2{E(ft | yt+1)E
′(ft | yt+1)}

+ 2E{E′(ft | yt+1)E(ft | yt+1)} · E{E(ft | yt+1)E
′(ft | yt+1)}. (8)

By Lemma 1, we can replace ft with f̂t , in which B is replaced with B̂. For ease of estimation,

in the sufficient dimension reduction literature it has been a common practice to employ the

slicing technique: we partition the sample of yt+1 into H slices with equal sample proportion. In

the population level, it corresponds to partitioning the support of yt+1 into H slices with equal

probability, and using the corresponding indicator, denoted by yD
t+1, as the new working response

variable.
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Sufficient forecasting by inverse moment methods 479

Because the slice indicator yD
t+1 is a measurable function of the original response yt+1, ft

must affect yD
t+1 through yt+1. Thus, the working central subspace SyD|f is always a subspace of

the central subspace of interest Sy|f . The two spaces further coincide for large H . Because the

dimension L of Sy|f is fixed as K grows, without loss of generality we fix H as K grows and

assume the identity between SyD|f and Sy|f . Such identity is confirmed by an omitted simulation

study that shows the robustness of the proposed method to the choice of H , for a reasonable range

of H , e.g., from three to ten. The same phenomenon has also been commonly observed in the

literature (Li, 1991; Li & Wang, 2007).

Using yD
t+1, the inverse moments E(f̂t | yt+1) and E(f̂t f̂

′
t | yt+1) in Mdr become the marginal

moments of f̂t within each slice, and can be estimated by the usual sample moments. Hence, the

slicing technique simplifies the estimation. In detail, the implementation of Step 2 is as follows:

Let y(0)/H = −∞, and, for i = 1, . . . , H , let y(i)/H be the (i/H )th quantile of {y1, . . . , yT }. Let

yD
t+1 = i if yt+1 ∈ (y(i)/H , y(i+1)/H ]. Estimate E(f̂t | yD

t+1 = i) by
∑T

t=1 f̂tI (y
D
t+1 = i)/(T/H ) and

E(f̂t f̂
′

t | yD
t+1 = i) by

∑T
t=1 f̂t f̂

′
t I (yD

t+1 = i)/(T/H ). Estimate var(f̂t) by IK . Plug these into (8)

to derive M̂dr. Estimate Sy|f by the space spanned by (φ̂1, . . . , φ̂L), the leading L eigenvectors of

M̂dr.

To estimate var(f̂t) in (8), one can alternatively use IK + �̂u∗ by the restriction var(ft) = IK ,

where �̂u∗ is the thresholding covariance estimator. An omitted simulation study shows that the

resulting estimator of Mdr performs similarly.

Theorem 2. Suppose K = o{min(p1/3, T 1/2)}. Under Assumptions 1, 2 and 3(i)–(iii), and

Conditions 1 and 2, (φ̂1, . . . , φ̂L) span a consistent estimator of Sy|f in the sense that

‖(φ̂1, . . . , φ̂L)(φ̂1, . . . , φ̂L)′ − (φ1, . . . , φL)(φ1, . . . , φL)′‖F = OP(K3/2p−1/2 + KT−1/2).

In connection with Theorem 1, this theorem justifies that the estimation error of Sy|f comes

from two parts. The first part, which is of order OP(K3/2p−1/2), is inherited from factor analysis.

This part represents the price we pay for estimating the factor loadings B, and it depends on the

dimension p of the original predictor. By contrast, the second part, which is of order OP(KT−1/2),

does not depend on p and is newly generated in the sufficient dimension reduction stage. From

the proof of Theorem 2, it represents the price we pay for estimating the unknown inverse second

moment involved in the kernel matrix. Therefore, this part would persist even if no error were

generated in factor analysis.

4. Relaxing the linearity condition

As mentioned in § 3, Condition 1 can be regarded as a parametric assumption and can be

violated in real applications. For example, this occurs when one incorporates the lag variables of

yt+1 in forecasting and considers Model (4). In this section we address this issue in two ways:

first, we justify the consistency of the proposed method without Condition 1 under the setting

that the number of factors K must diverge; second, we weaken Condition 1 and generalize the

proposed method accordingly following the spirit of Dong & Li (2010) under the setting that K

is fixed.

When Condition 1 is violated, Theorem 2 still holds if we treat (φ1, . . . , φL) as the L leading

eigenvectors of Mdr. Thus, the consistency of the proposed methodology depends on the closeness

between the column space of Mdr and the central subspace Sy|f , which hinges on the approximation

of Condition 1. Fortunately, the latter has been justified in Hall & Li (1993) for all large K .
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480 W. Luo et al.

Theorem 3. Suppose K → ∞ and K = o{min(p1/3, T 1/2)}. Under Assumptions 1, 2

and 3(i)–(iii), Condition 2, and other regularity conditions in the Supplementary Material,

φ̂1, . . . , φ̂L span a consistent estimator of Sy|f in the sense that

‖(φ̂1, . . . , φ̂L)(φ̂1, . . . , φ̂L)′ − (φ1, . . . , φL)(φ1, . . . , φL)′‖F = oP(1).

In the literature, the Hall & Li (1993) result on the approximation of Condition 1 was used

heuristically to support the effectiveness of inverse moment methods when Condition 1 is violated;

see, for example, Cook & Weisberg (1991) and Li & Wang (2007). As far as we are aware, this

is the first attempt to rigorously build the consistency of inverse moment methods using the

Hall & Li (1993) result.

When K is small and the factors clearly violate Condition 1, the approximation result in

Hall & Li (1993) no longer applies. In this case, we treat K as fixed, and relax Condition 1 to:

Condition 1′ E(ft | φ′
1 ft , . . . , φ′

L ft) is a linear combination of {hi(φ
′
1 ft , . . . , φ′

L ft) : i =
1, . . . , q}.

One can set the basis functions in Condition 1′ to be power functions, trigonometric functions,

etc. In addition to Condition 1′ we require Condition 2, which, as mentioned in § 1, is quite

mild. These conditions closely resemble those in Dong & Li (2010). We generalize directional

regression from the eigendecomposition of Mdr to minimizing

κ(ψ1, . . . , ψL) = E(2Ip − E{(ft − gs)
⊗2 | yt+1, ηs+1} − 2E{E⊗2(ft | ψ ′

1ft , . . . , ψ ′
L ft)}

+ E[{E(ft | ψ ′
1ft , . . . , ψ ′

L ft) − E(gs | ψ ′
1gs, . . . , ψ ′

Lgs)}⊗2 | yt+1, ηs+1])⊗2

over all the semiorthogonal matrices (ψ1, . . . , ψL), where v⊗2 denotes vv′ for any real vector v

and E(ft | ψ ′
1ft , . . . , ψ ′

L ft) is modelled parametrically as if Condition 1′ held for (ψ1, . . . , ψL).

Using the estimated factors f̂t and ĝs and the slicing strategy, we can similarly construct κ̂(·).
Under fairly general assumptions (Dong & Li, 2010), there exists the unique minimizer of κ(·)

up to orthogonal column transformations, which spans the central subspace Sy|f ; we omit these

assumptions here. Intuitively, a minimizer of κ̂(·) spans a consistent estimator of Sy|f .

Theorem 4. Let (φ̂1, . . . , φ̂L) denote any minimizer of κ̂(ψ1, . . . , ψL). UnderAssumptions 1–3

and Conditions 1′ and 2, we have

‖(φ̂1, . . . , φ̂L)(φ̂1, . . . , φ̂L)′ − (φ1, . . . , φL)(φ1, . . . , φL)′‖F = OP(p−1/2 + T−1/2).

By Theorems 3 and 4, we can apply the proposed forecasting method or its generalization

without concerning Condition 1, for both fixed and diverging K . For example, we now allow the

predictor xt , as well as the factors ft , to contain discrete components.

5. Determining K and L

We now discuss how to determine the number of factors K and the dimension L of the central

subspace Sy|f . The problem is commonly called order determination in the literature of dimension

reduction (Luo & Li, 2016).

In the literature, various order-determination methods have been proposed to esti-

mate K , including Bai & Ng (2002, 2008), Ludvigson & Ng (2009), Onatski (2010),
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Sufficient forecasting by inverse moment methods 481

Ahn & Horenstein (2013), and Jurado et al. (2015). Recently, Li et al. (2017) extended

Bai & Ng’s approach to the case of diverging K , and estimated K by

K̂ = arg min
0�k�Kmax

log(p−1T−1‖X − T−1X F̂k F̂ ′
k‖2

F) + k · q(p, T ),

where Kmax is a prescribed upper bound that possibly increases with p and T , and F̂k denotes the

solution to (5) with k being the working number of factors; q(p, T ) is a penalty function such that

q(p, T ) = o(1) and (K6
max/p+K4

max/T )−1q(p, T ) → ∞. We adopt the Li et al. (2017) approach,

and follow their suggestion to take q(p, T ) = (p + T )(pT )−1 log{pT (p + T )−1}.
To estimate the dimension L of the central subspace Sy|f , multiple methods have been proposed,

including sequential tests (Li, 1991; Li & Wang, 2007), the bootstrap procedure (Ye & Weiss,

2003), the cross-validation method (Xia et al., 2002; Wang & Xia, 2008), the bic-type procedure

(Zhu et al., 2006) and the ladle estimator (Luo & Li, 2016), among which we adopt the bic-type

procedure and extend it to the high-dimensional case. For a positive semidefinite matrix parameter

M whose columns span Sy|f and its sample estimator M̂ , let {λ1, . . . , λK } and {λ̂1, . . . , λ̂K } be their

respective eigenvalues in descending order. By definition, λL must be positive. We introduce a

constant c ∈ (0, 1) and set Kc, the nearest integer to cK , as an upper bound of L. This is reasonable

because L is fixed and usually small in practice. We modify the objective function in Zhu et al.

(2006) to G : {1, . . . , Kc} → R with

G(l) = (T/2)
∑Kc

i=1+min(τ ,l)
{log(λ̂i + 1) − λ̂i} − CT l(2K − l + 1)/2, (9)

where τ is the number of positive λ̂i. We then estimate L as the maximizer L̂ of G(·). Due to the

introduction of the nontrivial upper bound Kc, we do not need to impose additional constraints

on K or ‖M̂ − M‖ for the consistency of L̂. This improves the result in Zhu et al. (2006).

Theorem 5. Suppose ‖M̂ − M‖ = oP(1). If CT satisfies CT KT−1 → 0 and ‖M̂ − M‖2 =
oP(CT KT−1), then L̂ converges to L in probability.

A candidate for CT is K−1T‖M̂ − M‖. Referring to Theorem 2, if we apply the bic-type

procedure to directional regression, then we can choose CT to be K1/2p−1/2T + T 1/2.

6. Simulation studies

We now present a numerical example to illustrate the performance of the proposed fore-

casting method that uses directional regression in the sufficient dimension reduction stage. The

data-generating process is specified as the following:

yt+1 = g(φ′
1 ft , φ

′
2 ft) + σεt+1, xit = b′

i ft + uit .

We fix φ1 = (1, 1, 1, 0′
K−3)/

√
3, φ2 = (1, 0′

K−3, 1, 3)/
√

11. Following Li et al. (2017), we set the

number of factors K to increase with p in the form K = [1.5 log(p)], where [x] denotes the integer

part of a real number x. The factor loadings bi are independently sampled from U [−1, 2]. We

generate the latent factors fj,t and the error terms uit from two ar(1) processes, fj,t = αjfj,t−1 +ejt

and uit = ρiui,t−1 + νit , with αj, ρi drawn from U [0.2, 0.8] and fixed during the simulation; the

noises ejt , νit , are N (0, 1). We set εt+1 ∼ N (0, 1) and σ = 0.2.

We consider four different choices of the link function g(·):
Model I: yt+1 = 0.4(φ′

1 ft)
2 + 3 sin(φ′

2 ft/4) + σεt+1;
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482 W. Luo et al.

Table 1. Performance of estimated φ̂ using median R2(φ̂) (%) with standard deviations in

parentheses over 1000 replications

SIR DR SEE

p T R2(φ̂1) R2(φ̂2) R2(φ̂1) R2(φ̂2) R2(φ̂1) R2(φ̂2)

Model I

100 100 75.0 (21.3) 28.4 (27.4) 82.9 (14.8) 79.9 (21.9) 80.4 (26.8) 27.0 (23.5)

100 200 88.7 (10.4) 17.7 (27.6) 94.5 ( 5.4) 91.5 ( 8.5) 83.4 (26.6) 21.7 (20.7)

100 500 95.9 ( 3.6) 14.4 (28.2) 98.4 ( 1.4) 96.0 ( 3.4) 87.6 (26.9) 30.8 (20.7)

200 100 63.2 (24.5) 26.6 (24.8) 74.6 (20.3) 67.9 (24.4) 40.9 (23.4) 13.0 (18.5)

500 200 76.6 (16.1) 16.1 (23.2) 86.8 (20.1) 80.2 (22.1) 26.6 (15.4) 9.4 (15.8)

500 500 90.5 ( 5.5) 9.2 (22.4) 96.0 (29.9) 87.7 (26.0) 24.2 (13.4) 7.6 (13.5)

Model II

100 100 95.8 (3.5) 21.0 (25.7) 95.8 ( 3.5) 26.4 (26.6) 89.7 (22.5) 33.0 (20.1)

100 200 97.8 (1.8) 32.4 (27.7) 97.9 ( 1.8) 43.4 (28.7) 90.4 (15.0) 30.2 (19.5)

100 500 99.1 (0.7) 63.8 (27.0) 99.1 ( 0.7) 74.8 (23.8) 91.9 (20.5) 48.7 (20.9)

200 100 94.6 (3.6) 17.6 (22.4) 94.2 (10.6) 21.4 (23.4) 81.6 (26.8) 21.2 (18.7)

500 200 95.9 (2.1) 18.2 (22.6) 95.5 (11.9) 24.7 (23.4) 37.8 (26.5) 13.9 (17.4)

500 500 98.4 (0.9) 41.1 (25.6) 97.9 (15.2) 48.3 (26.3) 30.7 (24.9) 13.1 (17.1)

Model III

100 100 33.4 (26.7) 26.1 (23.4) 83.0 (19.7) 47.6 (28.2) 40.1 (30.7) 29.9 (18.4)

100 200 34.8 (27.3) 23.8 (22.7) 94.9 ( 4.1) 83.2 (22.9) 68.4 (35.1) 20.2 (18.1)

100 500 33.0 (28.1) 24.2 (23.4) 98.4 ( 1.4) 97.6 ( 2.1) 77.2 (34.6) 21.5 (16.7)

200 100 29.5 (25.9) 19.8 (20.4) 75.0 (23.3) 36.5 (25.7) 37.9 (26.8) 12.9 (17.9)

500 200 20.3 (23.7) 15.2 (10.1) 88.9 (22.2) 48.8 (27.8) 20.5 (16.1) 8.6 (14.5)

500 500 21.3 (23.1) 14.5 (18.1) 95.6 (29.6) 92.9 (28.0) 14.0 (13.5) 6.6 (13.7)

Model IV

100 100 61.8 (29.1) 31.3 (26.0) 85.6 (14.2) 79.1 (23.5) 64.4 (27.8) 43.9 (18.4)

100 200 75.1 (26.4) 41.6 (27.9) 94.5 ( 4.9) 93.5 ( 5.2) 71.7 (34.1) 51.1 (19.4)

100 500 89.4 (15.0) 67.8 (27.4) 98.1 ( 1.7) 97.7 ( 1.9) 88.2 (37.7) 66.6 (17.0)

200 100 51.9 (28.6) 29.0 (24.8) 79.6 (19.7) 71.0 (24.3) 41.5 (25.9) 12.2 (18.2)

500 200 59.4 (27.9) 30.2 (24.4) 87.5 (21.7) 86.2 (20.2) 19.5 (15.4) 7.4 (13.5)

500 500 83.3 (17.8) 54.9 (26.9) 95.1 (28.3) 94.6 (26.4) 10.2 (13.3) 4.8 (13.1)

SIR, sliced inverse regression; DR, directional regression; SEE, semiparametric efficient estimator.

Model II: yt+1 = 3 sin(φ′
1 ft/4) + 3 sin(φ′

2 ft/4) + σεt+1;

Model III: yt+1 = 0.4(φ′
1 ft)

2 + |φ′
2 ft|1/2 + σεt+1;

Model IV: yt+1 = (φ′
1 ft)(φ

′
2 ft + 1) + σεt+1.

The proposed forecasting by directional regression is compared with the forecasting by sliced

inverse regression (Fan et al., 2017), the linear principal components estimator, and the semipara-

metric efficient estimator proposed by Ma & Zhu (2013). Models I and III include at least one

symmetric component, which cannot be estimated well by sliced inverse regression. Model II is

favourable to sliced inverse regression. Model IV contains the interaction component to examine

the ability of each method to detect such nonlinear effects.

To gauge the quality of the estimated directions, we adopt the squared multiple correlation

coefficient R2(φ̂) = maxφ∈Sy|f ,‖φ‖=1(φ
′φ̂)2, where Sy|f is spanned by φ1 and φ2. We ensure

that the true factors and loadings meet the identifiability conditions by calculating H such that

T−1HF ′FH ′ = IK and H−1B′BH−1 is diagonal. The rotated central subspace is then understood

as H−1Sy|f , which is still denoted as Sy|f , see Fan et al. (2017).
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Sufficient forecasting by inverse moment methods 483

Table 2. Comparison of out-of-sample median R2 in percentage (%) over 1000 replications

p T SIR DR PC SEE SIR DR PC SEE

Model I Model II

100 100 −11.7 28.8 −0.4 1.4 94.6 94.8 93.3 78.0

100 200 −3.9 72.1 18.0 9.9 95.7 95.8 94.6 79.4

100 500 0.4 92.2 27.4 11.4 96.1 96.2 94.9 79.3

200 100 −11.4 18.6 −6.9 −4.0 95.3 95.6 94.2 61.8

500 200 −5.3 57.5 −1.1 −0.7 96.2 96.5 94.8 45.9

500 500 −0.9 91.4 13.8 1.7 97.1 97.1 95.8 45.4

Model III Model IV

100 100 −9.4 34.8 17.8 17.2 −0.2 23.6 21.2 18.4

100 200 1.0 77.1 30.8 22.7 13.5 53.7 35.8 28.4

100 500 5.2 90.5 38.0 25.5 29.6 57.3 43.2 30.8

200 100 −9.7 21.5 3.8 6.3 −2.3 16.9 6.8 7.6

500 200 −4.4 62.5 6.6 2.6 5.6 46.0 9.7 5.3

500 500 −1.3 89.5 19.1 5.2 22.4 58.3 21.6 48.5

SIR, sliced inverse regression; DR, directional regression; PC, principal components; SEE, semiparametric efficient

estimator.

Table 1 compares the estimation of sliced inverse regression and directional regression in

simulation studies, where the linear principal components estimator is omitted, as it produces

only one directional estimate. It is evident that directional regression has substantial improvement

over sliced inverse regression in Models I, III and IV, with higher R2(φ̂) and lower variance.

This is not surprising as directional regression explores higher conditional moments, and hence

incorporates more information. The semiparametric efficient estimator is slightly better than

sliced inverse regression in these cases, but it also fails to capture φ2 accurately, partially due

to its semiparametric nature, which typically requires lengthy steps to converge. In Model II,

sliced inverse regression, directional regression and the semiparametric efficient estimator yield

comparable results. We also observe that directional regression has outstanding performance in

small samples, which makes it favourable in practice.

We next investigate the predictive power of directional regression through the out-of-sample

R2, i.e., R2 = 1 −
∑T+nT

t=T+1(yt − ŷt)
2/

∑T+nT

t=T+1(yt − ȳt)
2, where we use a fixed length nT = 50

of testing samples to evaluate the out-of-sample performance, and ŷt is the predicted value

using all information prior to t. The fitting is done by building an additive model in Step 3 of

the proposed estimator. In the case of the principal components estimator, K̂ smooth functions

are constructed for the estimated factors. In contrast, only L̂ smooth functions are applied in

the cases of sliced inverse regression, directional regression and the semiparametric efficient

estimator. K̂ and L̂ are obtained using the procedures introduced in § 5. It is clear from Table 2

that directional regression enjoys great performance in almost all the cases. Similar to directional

regression, the semiparametric efficient estimator is better than sliced inverse regression, as it

explores the structural dimension more thoroughly with different forms of the target. However,

the semiparametric efficient estimator is often limited to a large sample size to produce accurate

estimation. The principal components estimator is more robust in the presence of symmetric

components, but fails to capture the interaction effect in general. To investigate the accuracy of

K̂ and L̂ used above, which are obtained from § 5, we carry out simulations to investigate the

accuracy of the estimation procedures, and examine the sensitivity of forecasting performance

with respect to K̂ and L̂. In addition, we conduct experiments to show the effectiveness of the

proposed method when the linearity condition is violated for factors ft . Due to space limitations,

these numerical results are presented in the Supplementary Material.
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484 W. Luo et al.

Table 3. Root mean squared error in out-of-sample forecast (median/max/min) relative to the

linear diffusion index. In each group, the median, maximum and minimum of the root mean

squared error is reported

SIR(1) SIR(2) DR(1) DR(2) NL-PC

Group (h = 1)

Output and income 1.03/1.61/0.96 1.02/1.13/0.94 0.99/1.19/0.92 1.02/1.14/0.90 1.21/1.38/1.05

Consumption 1.00/2.10/0.80 0.95/1.05/0.74 0.92/1.02/0.86 1.00/1.05/0.81 1.16/1.44/1.04

Labour market 1.02/2.27/0.71 1.00/1.21/0.42 0.97/1.13/0.52 0.98/1.16/0.42 1.21/1.53/0.46

Housing 1.04/1.32/0.64 0.92/1.08/0.52 0.83/1.04/0.50 0.79/0.94/0.44 0.83/0.97/0.49

Money and credit 0.94/1.04/0.86 0.97/1.05/0.90 0.96/1.10/0.86 1.04/1.24/0.92 1.14/1.41/1.07

Stock market 0.99/1.39/0.90 1.02/1.12/0.83 0.92/1.08/0.88 1.04/1.07/0.91 1.36/1.39/1.14

Interest rates 1.04/1.79/0.79 0.93/1.17/0.61 0.90/1.04/0.59 0.92/1.15/0.62 1.12/1.32/0.73

Prices 0.97/1.42/0.80 0.99/1.05/0.83 0.95/1.12/0.81 0.97/1.12/0.88 1.12/1.47/0.92

Group (h = 6)

Output and income 1.07/1.47/0.93 0.97/1.23/0.81 0.99/1.18/0.89 1.05/1.27/0.95 1.28/1.52/0.97

Consumption 1.16/1.73/0.90 0.90/1.12/0.67 0.94/1.16/0.71 1.03/1.14/0.73 1.28/1.66/0.77

Labour market 1.15/2.02/0.68 0.89/1.22/0.39 0.90/1.26/0.48 0.98/1.39/0.43 1.24/1.42/0.45

Housing 0.96/1.29/0.66 0.85/0.95/0.51 0.73/0.89/0.50 0.69/0.86/0.47 0.78/1.02/0.55

Money and credit 0.95/3.51/0.76 1.01/3.65/0.83 0.99/1.52/0.76 1.02/1.74/0.78 1.23/2.90/0.92

Stock market 0.91/1.20/0.83 0.94/1.05/0.89 0.89/1.08/0.84 1.00/1.03/0.94 1.23/1.27/0.83

Interest rates 1.01/1.61/0.75 0.90/1.12/0.64 0.84/1.13/0.50 0.88/1.18/0.58 1.11/1.46/0.70

Prices 1.16/1.37/0.51 1.03/1.12/0.82 1.11/1.37/0.94 1.14/1.36/0.95 1.17/1.35/1.11

Group (h = 12)

Output and income 1.24/1.67/0.79 1.01/1.45/0.76 0.99/1.22/0.76 1.01/1.36/0.86 1.17/1.34/0.92

Consumption 1.27/1.60/0.83 1.08/1.44/0.62 1.09/1.32/0.65 1.06/1.38/0.66 1.16/1.38/0.87

Labour market 1.07/1.76/0.67 0.83/1.40/0.41 0.91/1.44/0.54 0.89/1.41/0.46 1.13/1.39/0.56

Housing 0.85/1.35/0.59 0.69/0.93/0.46 0.67/0.91/0.40 0.68/0.83/0.36 0.89/1.16/0.54

Money and credit 1.14/2.03/0.41 1.03/2.16/0.80 1.05/1.52/0.85 1.00/1.40/0.82 1.20/1.69/0.87

Stock market 1.09/1.20/0.89 1.01/1.13/0.84 0.96/1.17/0.94 1.08/1.16/0.75 1.06/1.14/0.89

Interest rates 1.00/1.31/0.75 0.82/1.22/0.59 0.80/1.27/0.53 0.85/1.18/0.51 1.07/1.62/0.70

Prices 1.18/1.40/0.53 1.21/1.40/0.66 1.19/1.31/0.71 1.21/1.33/0.77 1.25/1.52/0.94

SIR(i), sufficient forecasting using i indices; DR, sufficient directional forecasting; NL-PC, a nonlinear additive

model on all the estimated factors.

7. Macro index forecast

We now analyse how the diffusion indices constructed by the proposed directional regression

affect real-data forecasts. We use a monthly macro dataset consisting of 134 macroeconomic

time series recently composed by McCracken & Ng (2016), which are classified into eight

groups: (i) output and income, (ii) labour market, (iii) housing, (iv) consumption, orders and

inventories, (v) money and credit, (vi) bond and exchange rates, (vii) prices, and (viii) stock

market. The dataset spans from 1959 to 2016. For a given target time series, we model the multi-

step-ahead variable as yh
t+h

= g(φ′
1 ft , . . . , φ′

L ft) + εh
t+h

, where yh
t+h

= h−1
∑h

i=1 yt+i is the

variable to forecast, as in Stock & Watson (2002a).

We follow McCracken & Ng (2016) to pre-process the data. We also employ the Ljung–Box

test with various lags to test for uncorrelatedness in residuals, which suggests the appropriateness

of using our proposed methods. Forecasts of yh
t+h

are constructed based on a moving window with

fixed length (T = 120) to account for timeliness. For each fixed window, the factors in the forecast-

ing equation are estimated by the method of principal components using all time series except the

target.As noted by McCracken & Ng (2016), eight factors have good explanatory power in various
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Consumption, orders

and inventories

Housing Interest and exchange

rates

Interest and exchange

rates

Labor market Labor market Money and credit Output and Income Prices Stock market

Out-of-Sample R Squared

DR(1) PC

 and inventories

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Housing Interest and exchange

rates

Labor market Money and 
credit

Output and income Prices Stock marketConsumption, orders

Fig. 1. Six-month-ahead forecasting out-of-sample R2 for the 134 macroeconomic series organized into eight groups.

cases, so we set K = 8 throughout the exercise. For each method M , we compare out-of-sample

forecasting performances using the relative mean squared error to the principal components esti-

mator method, rmse(M ) = mse(M ) / mse(pc), where mse(M ) = m−1
∑T+m

t=T+1(yt − ŷt)
2, which

we evaluate on the last m = 240 months (20 years). The methods we consider here include sliced

inverse regression and directional regression with sufficient forecasting with L = i. Both methods

use an additive model in specifying the forecasting equation. We also impose an additive model

to the estimated factors, denoted by NL-PC, to see how much we can leverage on the nonlinearity

without projecting principal components.

We report the results in Table 3 for h = 1, 6, 12 on the maximum, minimum and median of the

root mean squared error in each broad sector. Several features are noteworthy. First, a nonlinear

additive model built on estimated factors does not buy us more predictive power, except in

the housing sector, where most of the nonlinear methods improve prediction accuracy. Second,

the one-step-ahead out-of-sample forecast favours DR(1), as we observe the median root mean

squared errors are uniformly less than 1 and some of the reductions in the root mean squared

error are substantial. Moving from short horizon to long horizon changes the predictability of the

targets, but DR(1) manages to improve the forecast over the principal components method in many

instances. Finally, as an illustration, we plot the out-of-sample R2 for the six-month-ahead forecast

using DR(1) and principal components in Fig. 1. Notably, macro time series in the housing and

labour market sectors have higher predictability than in the rates and stock market sectors.
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Supplementary material

Supplementary Material available at Biometrika online includes proofs of the theoretical

results.
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