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SUMMARY

We consider forecasting a single time series using a large number of predictors in the presence
of a possible nonlinear forecast function. Assuming that the predictors affect the response through
the latent factors, we propose to first conduct factor analysis and then apply sufficient dimension
reduction on the estimated factors to derive the reduced data for subsequent forecasting. Using
directional regression and the inverse third-moment method in the stage of sufficient dimension
reduction, the proposed methods can capture the nonmonotone effect of factors on the response.
We also allow a diverging number of factors and only impose general regularity conditions on the
distribution of factors, avoiding the undesired time reversibility of the factors by the latter. These
make the proposed methods fundamentally more applicable than the sufficient forecasting method
of Fan et al. (2017). The proposed methods are demonstrated both in simulation studies and an
empirical study of forecasting monthly macroeconomic data from 1959 to 2016. Also, our theory
contributes to the literature of sufficient dimension reduction, as it includes an invariance result,
a path to perform sufficient dimension reduction under the high-dimensional setting without
assuming sparsity, and the corresponding order-determination procedure.

Some key words: Factor model; Forecasting; High-dimensional asymptotics; Invariance property; Principal component;
Sufficient dimension reduction.
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474 W. LUO ET AL.
1. INTRODUCTION

Forecasting using high-dimensional predictors is an increasingly important research topic in
statistics, biostatistics, macroeconomics and finance. A large body of literature has contributed to
forecasting in a data-rich environment, with various applications such as the forecasts of market
prices, dividends and bond risks (Sharpe, 1964; Lintner, 1965; Ludvigson & Ng, 2009), macro-
economic outputs (Stock & Watson, 1989; Bernanke et al., 2005), macroeconomic uncertainty and
fluctuations (Ludvigson & Ng, 2007; Jurado et al., 2015) and clinical outcomes based on massive
genetic, genomic and imaging measurements. Motivated by principal component regression,
the pioneering papers by Stock & Watson (2002a, b) systematically introduced the forecasting
procedure using factor models, which has played an important role in macroeconomic analysis.
Recently, Fan et al. (2017) extended Stock & Watson (2002a, b) to allow for a nonlinear forecast
function and multiple nonadditive forecasting indices. Following Fan et al. (2017), we consider
the following factor model with a target variable y,; that we aim to forecast:

Ye+1 :g(¢iﬁ,"'s¢2ﬁ’€l+l)a (1)
Xit = b} fy + i, (2)
where 1 <7< p, 1<t <T,xp is the ith high-dimensional predictor observed at time ¢, b; is a

K x 1 vector of factor loadings, f; is a K x 1 vector of common factors driving both predictor and
response, g(-) is an unknown forecast function that is possibly nonadditive and nonseperable, u;;

is an idiosyncratic error, and €, is an independent stochastic error. Here, ¢1,...,¢.,b1,...,b),
and f1, . . ., fr are unobserved vectors. Model (1) equivalently assumes

Verr LS | (@150, 00) i 3)

The linear space spanned by ¢1,...,¢;, denoted by S,, is the parameter of interest that is

identifiable and known as the central subspace (Cook, 1998). Fan et al. (2017) introduced the
sufficient forecasting scheme that uses factor analysis to estimate f; and then applies sliced inverse
regression (Li, 1991) to Model (1) with the estimated factors as the predictor. Such a combination
provides a promising forecasting technique that not only extracts the underlying commonality of
the high-dimensional predictor, but also models the complex dependence between the predictor
and the forecast target. It allows the dimension of the predictor to diverge and even become much
larger than the number of observations.

The consistency result of Fan et al. (2017) is nontrivial. If we replace the true factors f;
with a consistent estimate ft in (3) and define the central subspace S,; similarly, then S, ; may
differ from S, ; substantially. Thus, the naive method of applying existing dimension reduction
methods to the estimated factors ft may not necessarily lead to consistent estimation of S, even

if it consistently estimates S,;. Fan et al. (2017) effectively addressed this issue by developing

an important invariance result between E(f; | y;4+1) and £ (ft | ¥++1), see Proposition 2.1 and
Equation (2.9) of Fan et al. (2017). This invariance result provides an essential foundation for
using the sliced inverse regression under Models (1) and (2).

Nonetheless, the applicability of Fan et al. (2017) is restricted by the requirements that the
number of factors K must be fixed as p and T grow, and, for each set of factors, a linearity condi-
tion, see Condition 1 below, must hold. In particular, as S, is unknown, the linearity condition
is commonly strengthened to equivalently require an elliptically distributed f;, which causes the
undesired property of time reversibility (Xia et al., 2002). In addition, the consistency result of
Fanetal. (2017) and Yu et al. (2021) hinges on an exhaustive estimation of S, i.e., detecting all
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the directions, for which ¢} Xr|,¢1,. .., ¢; Xr|,¢1 must be positive; see their Assumption (A2).
This condition is violated, i.e., ¢’ X, ¢ being zero for some ¢ € S, if ¢'f; | y141 has a sym-
metric distribution, which occurs when the forecast target was investigated using squared factors
(Ludvigson & Ng, 2007; Bai & Ng, 2008). These limitations motivate us to construct more
powerful forecasting methods based on the work of Fan et al. (2017).

In this paper we propose to use factor analysis and sufficient dimension reduction sequen-
tially for sufficient forecasting, with second- or higher-order inverse moment methods being the
working sufficient dimension reduction method. In the main text we focus on a commonly used
second-order inverse moment method called directional regression (Li & Wang, 2007), and defer
the development with the third-order inverse moment method to the Supplementary Material.
Based on Models (1) and (2), the proposed method includes the following steps:

Step 1. Estimate the factor loadlngs B and the factors f; in Model (2).

Step 2. Use the estimates B and f, in directional regression to estimate S,

Step 3. Use the nonparametric methods (Fan & Gijbels, 1996; Matzkin, 2002; Yu et al., 2021)
to estimate g(-) in Model (1) and forecast y;1, based on the estimate of (¢{ Jtoenns ¢2 1o-

By studying both E(f; | yr+1) and E(fif; | y++1) in Step 2, we explore the full power of the
factor space. To this end, we first provide an important invariance result, Lemma 1, for directional
regression. With the help of this invariance result, we do not require the coincidence or closeness
of two central subspaces S,; and S, so the proposed method can be applied to more general
data, such as nonnormally distributed factors.

Our work extends the method, theory and applicability of the forecasting using factor models.
Compared with Fan etal. (2017), we relax the linearity condition to the general moment conditions
on f;. From the discussion above, the proposed method does not require time reversibility of the
factors, so it can be applied to the generalized forecasting model

Y41 = g(¢ift + ‘ﬁ{wt, e Jﬁift + w[/,wtaét—i-l)a 4

where w; is an m x 1 vector of the observed variables, e.g., lags of y;11. In addition, by using
the higher-order inverse moments, the proposed method requires a weaker condition than Fan
et al. (2017) and Yu et al. (2021) for exhaustive estimation of S,,. In particular, it can detect
nonmonotone effects of the factors on the response. Furthermore, we allow the number of under-
lying factors K to diverge as p, T — oo. By Lam & Yao (2012), Jurado et al. (2015) and Li et al.
(2017), our method will deliver a more powerful forecast than Stock & Watson (2002a, b) and
Fan et al. (2017).

Using directional regression as an illustration, the proposed method also provides a novel
framework of performing sufficient dimension reduction with large-panel data under the
high-dimensional setting, without the commonly adopted sparsity assumption, but with the
assumption that the predictor affects the response only through the latent factors. The origi-
nal direction regression (Li & Wang, 2007) can only deal with independently and identically
distributed data under the low-dimensional setting. This enhances the applicability of model-free
dimension reduction for high-dimensional data, when the sparsity assumption is not suitable.

The consistency of the proposed method hinges on the consistency of both factor analysis
and directional regression based on the estimated factors, which we study next. For ease of
presentation, we assume that both the number of factors K and the dimension L of S, are known
a priori. This does not affect the asymptotic development of the resulting estimator, as long as K
and L can be consistently estimated; see the Supplementary Material for details. The consistent
estimation of K and L is deferred to § 5. Throughout the article, we assume L to be fixed as K
diverges.
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2. CONSISTENCY OF FACTOR ANALYSIS

To make a forecast, we need to estimate the factor loadings B and the error covariance matrix
¥,. Consider the following constrained least squares problem:

(Bk,Fx) = arg (I}gliFIl)HX — BF'||2,  subjectto T~'F'F = Ix, B'B diagonal, )

where X = (x1,...,x7),F' = (f1,...,f7) and || - || denotes the Frobenius norm of a matrix. The
constraints 7' F'F = Ix and that B'B is diagonal address the issue of identifiability during the
minimization. As these conditions can always be satisfied for any BF’ after appropriate matrix
operations on B and £, they impose no additional restrictions on the factor model (2). It is known
that the minimizers Fx and Bx of (5) are such that the columns of Fx /+/T are the eigenvectors
corresponding to the K largest eigenvalues of the 7 x T matrix X’X and Bx = T7'XFk. To
simplify the notation, let B= Z§K and F = F K.

As both the dimension p of the predictor x; and the number of factors K are diverging, it is
necessary to regulate the magnitude of the factor loadings B and the idiosyncratic error u;, so
that the latter is negligible with respect to the former. We should also regulate the stationarity of
the time series. In this paper we adopt the following assumptions. For simplicity in notation, we
let U = (uit)px1, B = (b1,..., bp)’ and || B|lmax be the maximum of the absolute values of all
the entries in B. Let 5’-"20 and F7° denote the o -algebras generated by {(f;, us,€,41) : t < 0} and
{(fr, us, €141) 1 t = T}, respectively. Let a(T) = SUP 4 70 BeF® |[P(A)P(B) — P(AB)]|.

Assumption 1 (Factors and loadings).

(i) There exists b > O such that ||b;|| < bfori = 1,...,p, and there exist two positive constants
c1 and ¢; such that ¢; < p~"Amin(B'B) < p~'Amax(B'B) < c».

(ii) Identification: T~!F'F = Ix, and BB is a diagonal matrix with distinct entries.

Assumption 2 (Data-generating process). There are three independent groups, {f;};>1, {u:}r>1
and {€;41}/>1, and they are strictly stationary, (K2E|fi1* - K € Ny and (K'E(Ifi 1% | vis1) -
K € N} are bounded sequences, and «(T) < cp" for T € Z™* and some p € (0, 1).

Assumption 3 (Residuals and dependence). There is a constant M > 0 such that

(i) Eluy|® < M;

(D) [ Zulll < M;

(iii) for every (¢,5), E|p~"?{ulu, — Elup)}|* < M;

(iv) U = LER, where L € R?*? and R € R”*T are nonrandom positive definite matrices and
E = (eir)px 1 includes independent elements with £(e;) = 0 and E lei]” < M.

Assumptions 1 and 3 ensure that signals dominate errors in the population level as p grows.
Assumption 1 regulates the signal strength of factors contained in the predictor through the
convergence rate of estimated factor loadings, and Assumption 3 regulates the idiosyncratic
errors. Assumption 3(iv) regulates weak autocorrelation and cross-sectional correlation as in Li
et al. (2017). Assumption 2 imposes independence between factors and idiosyncratic errors as in
Lam & Yao (2012). Assumption 2 implies that the observations are only weakly dependent, so that
the estimation accuracy grows with 7. Assumptions 2 and 3(ii) imply that for every i,j,¢,s > 0,
max;<rp~' Y, |Ei)| = O(1) and (pT)~' Y, Jus VE@irus)| = O(1); see Lemma 6 of Fan
et al. (2013).

Under these assumptions, we have the following consistency result for estimating the factor
loadings. Instead of the Frobenius norm used in (5), we use the spectral norm to measure the
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magnitude of a matrix, defined as ||4|| = )»rln/azx (4’A), the square root of the largest eigenvalue of

the symmetric matrix 4’4, for any matrix A.

THEOREM 1. Let Ay = (B'B)"'B and Ay, = (B'B)"'B'. Given K = o(min{p'/3,T}) and
Assumptions 1, 2 and 3(i)—(iii), we have

(@) 1B — Bl = Opp (K322 + K12T-1/2)),
(b) 1Ay — Apll = Opfp~V2(K32p~1/2 4 K12T-1/2)),

Theorem 1 extends the existing consistency result for estimating the factor loadings (Lam et al.,
2011; Fan et al., 2013, 2017) by pinpointing the effect of diverging K. Because the dimension
p of factor loadings B is diverging, the estimation error B — B accumulates as p grows. For a
p-dimensional vector whose entries are constantly 1, its spectral norm is p!/?, which diverges to
infinity. Thus, we should treat p!/? as the unit magnitude of the spectral norm of matrices with p
rows, in which sense statement (a) of Theorem 1 justifies the estimation consistency of the factor
loadings B. As the error term u; shrinks as p grows under Assumption 3, the convergence rate of
the factor loading estimation largely depends on p; a higher-dimensional predictor means a more
accurate estimation. The convergence rate in this theorem can be further improved if we impose
stronger assumptlons on the neghglblhty of the error terms in the factor model (2).

Given B, it is easy to see that ﬁ AbBﬁ + Apuy. Thus, together with the negligibility of the
error term u,, the consistency of Band A p indicates the closeness between the true factors f; and
the estimated factors ft, of which the latter will be used in the subsequent sufficient dimension
reduction. The error covariance matrix X, can be estimated by thresholding the sample covariance
matrix of the estimated residual x; — f?ﬁ, denoted by S, = (65-’)1, xp> asin Cai & Liu (2011), Xue
et al. (2012) and Fan et al. (2013, 2016).

3. DIRECTIONAL REGRESSION BASED ON AN INVARIANCE RESULT

3.1. An invariance result

Had the true factors f; been observed, directional regression would estimate the central subspace

S,r as the column space of

Y
Mg = EQvar(fy) — E[(f; — g)(f; — &) | v 1, ns1 1}, (6)

where (g;, n5+1) 1S a hypothetical independent copy of (f;, y:+1). The term var (f;) can be replaced
with the identity matrix as in Li & Wang (2007), but we keep it in this form for convenience in
the theoretical work developed later. For the resulting directions being included in S,;, f; needs
to satisfy the following conditions:

Condition 1 (Linearity). E(b'f; | ¢ fi,...,¢; f7) is alinear function of (¢ f;, . .., ¢; /1) for any
b € RX;

Condition 2 (Constant variance). var(f; | ¢\ fi, ..., fr) is degenerate.

Since S,; is unknown, Conditions 1 and 2 are commonly strengthened such that they are
satisfied for basis matrices of any L-dimensional subspace of RX. The strengthened conditions

equivalently require the factors to be jointly normally distributed. To assess these conditions, one
can treat f; as the response and (¢1f;, . . . , ¢} f;) as the predictor in regression; then, Condition 1 is
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478 W. LUO ET AL.

the linearity assumption on the regression function and Condition 2 is the homoscedasticity
assumption on the error term. In this sense, we follow the convention in the literature of regression
to treat Condition 2 as less worrisome than Condition 1 in practice. We tentatively assume
Condition 1 and relax it in § 4.

Under general conditions, the column space of My, is L-dimensional, which, together with
Conditions 1 and 2, means the exhaustive recovery of S,;,. These conditions are proposed in Li &
Wang (2007) and reviewed in the Supplementary Material. They are weaker than those required
for the exhaustiveness of sliced inverse regression, as more information about f; | y;+1, i.e., the
second moment, is used. We assume these conditions throughout the paper, including § 4 where
Condition 1 is violated.

To pinpoint the effect of using the estimated factors in directional regression, we next propose
an invariance result for My,. As mentioned in § 1, a similar invariance result for sliced inverse
regression can be found in Fan et al. (2017) where only the inverse first moment is involved; see
their equation (2.6). To simplify the discussion, in the rest of the subsection we assume an oracle
scenario where B is known a priori, which gives

fi=fi+ul, (7)

where u; = Apu; is independent of f;. Let u} be an independent copy of u; in (7) and let
&s = gs +u}. Since B is known, g, is an independent copy of f;.

LEMMA 1 (THE INVARIANCE RESULT). Under Model (2), My defined in (6) is invariant if the
true factors f; and g are replaced with the estimated factors f; and g;.

Using the estimated factors, one would naturally treat S, ; as the working parameter in the
stage of sufficient dimension reduction. However, as no distributional assumptions are imposed
on u}, both Conditions 1 and 2 can be violated for ft, which causes inconsistency of directional
regression for recovering S, ;. In addition, S, itself may deviate from the parameter of interest
S, 7, as the identity between the two essentially requires the normality of both f; and ; (Li & Yin,
2007). The invariance result provides the key to address these issues; that is, we can bypass S,;
and directly estimate S, using the estimated factors, as if the true factors were used. As var(f;) is
no longer the identity matrix, My, adopted here modifies its original form in Li & Wang (2007).
This modification is crucial as it averages out the effect of the estimation error u;". It also means
that the column space of the working My, does differ from S,,;.

3.2. Consistency of directional regression

In reality, the hypothetical independent copies (gs, ns+1) and (f;, ;1) do not exist in the
observed data, so we expand (6) and estimate an equivalent form of My,

My = 2E[{var(fy) — E(fif) | yex D1+ 2EXE(f; | v DE'(fi | ye41))
+ 2E{E'(f; | v DE(fy | yer )} - EXE( | yer DE (Fr | yes1) ) 8)

By Lemma 1, we can replace f; with ﬁ, in which B is replaced with B. For ease of estimation,
in the sufficient dimension reduction literature it has been a common practice to employ the
slicing technique: we partition the sample of y,11 into H slices with equal sample proportion. In
the population level, it corresponds to partitioning the support of y,41 into H slices with equal
probability, and using the corresponding indicator, denoted by yﬂ_l , as the new working response
variable.
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Because the slice indicator yﬂ | 18 a measurable function of the original response y;11, f;
must affect yz_l through y;+1. Thus, the working central subspace S,p|, is always a subspace of
the central subspace of interest S,;. The two spaces further coincide for large /7. Because the
dimension L of S, is fixed as K grows, without loss of generality we fix H as K grows and
assume the identity between S,p|r and S,,. Such identity is confirmed by an omitted simulation
study that shows the robustness of the proposed method to the choice of H, for a reasonable range
of H, e.g., from three to ten. The same phenomenon has also been commonly observed in the
literature (Li, 1991; Li & Wang, 2007).

Using yﬁ_l, the inverse moments £ (ﬁ | ¥+4+1) and E (/}f/ | ¥¢+1) in Mg become the marginal

moments of ft within each slice, and can be estimated by the usual sample moments. Hence, the
slicing technique simplifies the estimation. In detail, the implementation of Step 2 is as follows:
Let y(o)yyn = —o0, and, fori = 1,..., H, let y;),/y be the (i/H)th quantile of {y1,...,yr}. Let
y2 . =iifyi1 € Oay/m. ity ). Estimate E(f; | y2 | = i) by Zleﬁl(ygl =1i)/(T/H) and
E(f | y@l = i) by X ATOP, = i/ (T/H). Eftimate Yar(ft) by Ix. Plug these into (8)
to derive My,. Estimate S,; by the space spanned by (¢1, ..., ¢.), the leading L eigenvectors of
My;. R .

To estimate var(f;) in (8), one can alternatively use /g + X, by the restriction var(f;) = Ik,

where X, is the thresholding covariance estimator. An omitted simulation study shows that the
resulting estimator of My, performs similarly.

THEOREM 2. Suppose K = o{min(p'/3, TV2)\. Under Assumptions 1, 2 and 3(i)—(iii), and
Conditions 1 and 2, (¢1, ..., ¢L) span a consistent estimator of S, in the sense that

1@1s s )Pl s Pr) — (D1 s L) (D1 1) I = Op(K32p~ 12 L KT™1/2),

In connection with Theorem 1, this theorem justifies that the estimation error of S, ; comes
from two parts. The first part, which is of order Op(K>/?p~!/2), is inherited from factor analysis.
This part represents the price we pay for estimating the factor loadings B, and it depends on the
dimension p of the original predictor. By contrast, the second part, which is of order Op (KT ~1/?),
does not depend on p and is newly generated in the sufficient dimension reduction stage. From
the proof of Theorem 2, it represents the price we pay for estimating the unknown inverse second
moment involved in the kernel matrix. Therefore, this part would persist even if no error were
generated in factor analysis.

4. RELAXING THE LINEARITY CONDITION

As mentioned in § 3, Condition 1 can be regarded as a parametric assumption and can be
violated in real applications. For example, this occurs when one incorporates the lag variables of
vr41 in forecasting and considers Model (4). In this section we address this issue in two ways:
first, we justify the consistency of the proposed method without Condition 1 under the setting
that the number of factors K must diverge; second, we weaken Condition 1 and generalize the
proposed method accordingly following the spirit of Dong & Li (2010) under the setting that K
is fixed.

When Condition 1 is violated, Theorem 2 still holds if we treat (¢, ..., ¢.) as the L leading
eigenvectors of My;. Thus, the consistency of the proposed methodology depends on the closeness
between the column space of My, and the central subspace S, -, which hinges on the approximation
of Condition 1. Fortunately, the latter has been justified in Hall & Li (1993) for all large K.
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480 W. LUO ET AL.

THEOREM 3. Suppose K — oo and K = o{min(p'/3,T'/?)}. Under Assumptions 1, 2
and 3(i)—(iii), Condition 2, and other regularity conditions in the Supplementary Material,
@1,...,¢L span a consistent estimator of S, in the sense that

11, s @) B1s s PL) — D1y s L) (D1, -+ b1) IIF = 0p(1).

In the literature, the Hall & Li (1993) result on the approximation of Condition 1 was used
heuristically to support the effectiveness of inverse moment methods when Condition 1 is violated,
see, for example, Cook & Weisberg (1991) and Li & Wang (2007). As far as we are aware, this
is the first attempt to rigorously build the consistency of inverse moment methods using the
Hall & Li (1993) result.

When K is small and the factors clearly violate Condition 1, the approximation result in
Hall & Li (1993) no longer applies. In this case, we treat K as fixed, and relax Condition 1 to:

Condition 1" E(f; | @1 fi,...,#; f;) is a linear combination of {h;(¢|f;,.... ¢ f1) : i =
L...,q}.

One can set the basis functions in Condition 1’ to be power functions, trigonometric functions,
etc. In addition to Condition 1’ we require Condition 2, which, as mentioned in § 1, is quite
mild. These conditions closely resemble those in Dong & Li (2010). We generalize directional
regression from the eigendecomposition of My, to minimizing

KW, 0) = EQL, — E{(fi — 20 | i1 511} — 2ELES*(fi | Yifes - WL S0}
FEUE N Yoo LS — E(Es | Wi8ss - s W18V | pet, 151 DS

over all the semiorthogonal matrices (Y, ..., ¥), where v®2 denotes ' for any real vector v
and E(f; | ¥1fi, ..., ¥, f;) is modelled parametrically as if Condition 1’ held for (y1,. .., ¥y).

Using the estimated factors f, and g, and the slicing strategy, we can similarly construct < (-).
Under fairly general assumptions (Dong & Li, 2010), there exists the unique minimizer of « (-)

up to orthogonal column transformations, which spans the central subspace S|r; we omit these

assumptions here. Intuitively, a minimizer of k (-) spans a consistent estimator of S,

THEOREM 4. Let (qAbl e <]3L) denote any minimizer of K (Y1, . . ., ). Under Assumptions 1-3
and Conditions 1" and 2, we have

11, s BBy BL) — (D15 s L) (P15, d1) IF = Op(p™ /2 + T71/2).

By Theorems 3 and 4, we can apply the proposed forecasting method or its generalization
without concerning Condition 1, for both fixed and diverging K. For example, we now allow the
predictor x;, as well as the factors f;, to contain discrete components.

5. DETERMINING K AND L

We now discuss how to determine the number of factors K and the dimension L of the central
subspace S,;;. The problem is commonly called order determination in the literature of dimension
reduction (Luo & Li, 2016).

In the literature, various order-determination methods have been proposed to esti-
mate K, including Bai & Ng (2002, 2008), Ludvigson & Ng (2009), Onatski (2010),
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Ahn & Horenstein (2013), and Jurado et al. (2015). Recently, Li et al. (2017) extended
Bai & Ng’s approach to the case of diverging K, and estimated K by

K_argo ]1;1’1111 log(p™ Ir- ||X T~ 1XFkaHF)—i—k q(p,T),
< < max

where Kpax is a prescribed upper bound that possibly increases with p and 7', and F}. denotes the
solution to (5) with £ being the working number of factors; g(p, T') is a penalty function such that
q(p,T) = o(1) and (Kr?lax/p +K§'lax/T)_1q(p, T) — oo. We adopt the Li et al. (2017) approach,
and follow their suggestion to take ¢(p, T) = (p + T)(pT) "' log{pT ( + T)~'}.

To estimate the dimension L of the central subspace S, multiple methods have been proposed,
including sequential tests (Li, 1991; Li & Wang, 2007), the bootstrap procedure (Ye & Weiss,
2003), the cross-validation method (Xia et al., 2002; Wang & Xia, 2008), the BiC-type procedure
(Zhu et al., 2006) and the ladle estimator (Luo & Li, 2016), among which we adopt the BiC-type
procedure and extend it to the high-dimensional case. For a positive semidefinite matrix parameter
M whose columns span S, and its sample estimator M,let{r1, ..., Ax}land {1, ..., Ax) be their
respective eigenvalues in descending order. By definition, A7 must be positive. We introduce a
constant ¢ € (0, 1) and set K., the nearest integer to cK, as an upper bound of L. This is reasonable
because L is fixed and usually small in practice. We modify the objective function in Zhu et al.
(2006)to G : {1,...,K.} — R with

G() = (T/2) s inceny o8 + 1) — &} — CriQK — 1+ 1)/2, )

where 7 is the number of positive )AL We then estimate L as the maximizer L of G(-). Due to the
introduction of the nontrivial upper bound K., we do not need to impose additional constraints
on K or ||M M| for the consistency of L. This i improves the result in Zhu et al. (2006).

THEOREM 5. Suppose ||M M| = op(1). If Cr satisfies C7KT™' — 0 and ||M M|? =
op(CrKT™Y), then L converges to L in probability.

A candidate for C7 is K~!'T ||M — M||. Referring to Theorem 2, if we apply the BiC-type
procedure to directional regression, then we can choose Cr to be K'/2p~1/21 4 11/

6. SIMULATION STUDIES

We now present a numerical example to illustrate the performance of the proposed fore-
casting method that uses directional regression in the sufficient dimension reduction stage. The
data-generating process is specified as the following:

Vit = g(¢ift,¢éft) + o€r41, Xit = b;ft + ujy.

We fix ¢1 = (1, 1, 1,0}< /3,2 = (1,0, _4,1,3)//11. Following Li et al. (2017), we set the
number of factors K to increase with p in the form K = [1.5log(p)], where [x] denotes the integer
part of a real number x. The factor loadings b; are independently sampled from U[—1,2]. We
generate the latent factors f; ; and the error terms u;, from two AR(1) processes, f;; = a;f;—1 +ej
and u;; = pju;;—1 + vi, with a;, po; drawn from U[0.2,0.8] and fixed during the simulation; the
noises ej;, Vi, are N(0,1). We set €,4.1 ~ N(0,1) and o = 0.2.

We consider four different choices of the link function g(-):

Model I: y,41 = 0.4(¢] f)* + 3sin(@} /;/4) + o €115
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Table 1. Performance of estimated qAS using median R* (43) (%) with standard deviations in
parentheses over 1000 replications

p T
Model 1
100 100
100 200
100 500
200 100
500 200
500 500
Model 11
100 100
100 200
100 500
200 100
500 200
500 500
Model 111
100 100
100 200
100 500
200 100
500 200
500 500

Model IV
100 100
100 200
100 500
200 100
500 200
500 500

R (1)

75.0 (21.3)
88.7 (10.4)
95.9 ( 3.6)
63.2 (24.5)
76.6 (16.1)
90.5 ( 5.5)

958 (3.5)
97.8 (1.8)
99.1 (0.7)
94.6 (3.6)
959 (2.1)
98.4 (0.9)

33.4(26.7)
34.8 (27.3)
33.0 (28.1)
29.5 (25.9)
20.3 (23.7)
21.3(23.1)

61.8(29.1)
75.1 (26.4)
89.4 (15.0)
51.9 (28.6)
59.4 (27.9)
83.3(17.8)

SIR

R*($2)

28.4 (27.4)
17.7 (27.6)
14.4 (28.2)
26.6 (24.8)
16.1 (23.2)

9.2 (22.4)

21.0 (25.7)
324 (27.7)
63.8 (27.0)
17.6 (22.4)
18.2 (22.6)
41.1 (25.6)

26.1 (23.4)
23.8(22.7)
24.2 (23.4)
19.8 (20.4)
15.2 (10.1)
14.5 (18.1)

31.3 (26.0)
41.6 (27.9)
67.8 (27.4)
29.0 (24.8)
30.2 (24.4)
54.9 (26.9)

R (1)

82.9 (14.8)
94.5 ( 5.4)
98.4( 1.4)
74.6 (20.3)
86.8 (20.1)
96.0 (29.9)

95.8 ( 3.5)
97.9 ( 1.8)
99.1( 0.7)
94.2 (10.6)
95.5(11.9)
97.9 (15.2)

83.0 (19.7)
94.9 ( 4.1)
98.4( 1.4)
75.0 (23.3)
88.9 (22.2)
95.6 (29.6)

85.6 (14.2)
94.5 ( 4.9)
98.1( 1.7)
79.6 (19.7)
87.5(21.7)
95.1(28.3)

DR

R*($2)

79.9 (21.9)
91.5( 8.5)
96.0 ( 3.4)
67.9 (24.4)
80.2 (22.1)
87.7 (26.0)

26.4 (26.6)
43.4 (28.7)
74.8 (23.8)
21.4 (23.4)
24.7 (23.4)
48.3 (26.3)

47.6 (28.2)
83.2(22.9)
97.6 ( 2.1)
36.5(25.7)
48.8 (27.8)
92.9 (28.0)

79.1 (23.5)
93.5( 5.2)
97.7( 1.9)
71.0 (24.3)
86.2(20.2)
94.6 (26.4)

SEE
R (1)

80.4 (26.8)
83.4 (26.6)
87.6 (26.9)
40.9 (23.4)
26.6 (15.4)
24.2 (13.4)

89.7 (22.5)
90.4 (15.0)
91.9 (20.5)
81.6 (26.8)
37.8(26.5)
30.7 (24.9)

40.1 (30.7)
68.4 (35.1)
77.2 (34.6)
37.9 (26.8)
20.5 (16.1)
14.0 (13.5)

64.4 (27.8)
71.7 (34.1)
88.2(37.7)
41.5 (25.9)
19.5 (15.4)
10.2 (13.3)

SIR, sliced inverse regression; DR, directional regression; SEE, semiparametric efficient estimator.

Model II: y;41 = 3sin(¢] fi/4) + 3 sin( f;/4) + o€r41;
Model I1L: yy1 = 0.4(¢1 /) + |9 /il '/> + o€rr1;
Model IV: y, 1 = (91 /) (93 fi + 1) + o€y

The proposed forecasting by directional regression is compared with the forecasting by sliced
inverse regression (Fanet al., 2017), the linear principal components estimator, and the semipara-
metric efficient estimator proposed by Ma & Zhu (2013). Models I and III include at least one
symmetric component, which cannot be estimated well by sliced inverse regression. Model 1I is
favourable to sliced inverse regression. Model IV contains the interaction component to examine

the ability of each method to detect such nonlinear effects.

To gauge the quality of the estimated directions, we adopt the squared multiple correlation
coefficient R2(<]3) = max¢€3yy,||¢||:1(¢/ q3)2, where S, is spanned by ¢ and ¢,. We ensure
that the true factors and loadings meet the identifiability conditions by calculating H such that
T~-'HF'FH' = Iy and H~'B'BH ! is diagonal. The rotated central subspace is then understood

as H~'S,;, which is still denoted as S,;, see Fan et al. (2017).

R*($2)

27.0 (23.5)
21.7 (20.7)
30.8 (20.7)
13.0 (18.5)
9.4 (15.8)
7.6 (13.5)

33.0 (20.1)
30.2 (19.5)
48.7 (20.9)
21.2(18.7)
13.9 (17.4)
13.1 (17.1)

29.9 (18.4)
20.2 (18.1)
21.5 (16.7)
12.9 (17.9)
8.6 (14.5)
6.6 (13.7)

43.9 (18.4)
51.1(19.4)
66.6 (17.0)
12.2 (18.2)
7.4 (13.5)
4.8 (13.1)
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Table 2. Comparison of out-of-sample median R* in percentage (%) over 1000 replications

p T SIR DR PC SEE SIR DR PC SEE
Model 1 Model 11
100 100 —11.7 28.8 —-04 1.4 94.6 94.8 93.3 78.0
100 200 -39 72.1 18.0 9.9 95.7 95.8 94.6 79.4
100 500 04 92.2 274 11.4 96.1 96.2 94.9 79.3
200 100 —114 18.6 —6.9 —4.0 95.3 95.6 942 61.8
500 200 -53 57.5 —1.1 —-0.7 96.2 96.5 94.8 45.9
500 500 —-0.9 91.4 13.8 1.7 97.1 97.1 95.8 454
Model III Model IV
100 100 -94 348 17.8 17.2 —0.2 23.6 21.2 18.4
100 200 1.0 77.1 30.8 22.7 13.5 53.7 358 28.4
100 500 5.2 90.5 38.0 255 29.6 57.3 43.2 30.8
200 100 -9.7 21.5 3.8 6.3 2.3 16.9 6.8 7.6
500 200 —44 62.5 6.6 2.6 5.6 46.0 9.7 53
500 500 —-1.3 89.5 19.1 52 22.4 583 21.6 48.5

SIR, sliced inverse regression; DR, directional regression; PC, principal components; SEE, semiparametric efficient
estimator.

Table 1 compares the estimation of sliced inverse regression and directional regression in
simulation studies, where the linear principal components estimator is omitted, as it produces
only one directional estimate. It is evident that directional regression has substantial improvement
over sliced inverse regression in Models I, III and IV, with higher R? (<13) and lower variance.
This is not surprising as directional regression explores higher conditional moments, and hence
incorporates more information. The semiparametric efficient estimator is slightly better than
sliced inverse regression in these cases, but it also fails to capture ¢, accurately, partially due
to its semiparametric nature, which typically requires lengthy steps to converge. In Model 1I,
sliced inverse regression, directional regression and the semiparametric efficient estimator yield
comparable results. We also observe that directional regression has outstanding performance in
small samples, which makes it favourable in practice.

We next investigate the predictive power of directional regression through the out-of-sample
R%ie,RP=1-— Z,TJ}{’L —0)? /Zz i — 7,)2, where we use a fixed length ny = 50
of testlng samples to evaluate the out- of-sample performance, and j; is the predicted value
using all information prior to ¢. The fitting is done by building an additive model in Step 3 of
the proposed estimator. In the case of the principal components estimator, K smooth functions
are constructed for the estimated factors. In contrast, only L smooth functions are applied in
the cases of sliced inverse regression, directional regression and the semiparametric efficient
estimator. K and L are obtained using the procedures introduced in § 5. It is clear from Table 2
that directional regression enjoys great performance in almost all the cases. Similar to directional
regression, the semiparametric efficient estimator is better than sliced inverse regression, as it
explores the structural dimension more thoroughly with different forms of the target. However,
the semiparametric efficient estimator is often limited to a large sample size to produce accurate
estimation. The principal components estimator is more robust in the presence of symmetric
components, but fails to capture the interaction effect in general. To investigate the accuracy of
K and L used above, which are obtained from § 5, we carry out simulations to investigate the
accuracy of the estimation procedures, and examine the sensitivity of forecasting performance
with respect to K and L. In addition, we conduct experiments to show the effectiveness of the
proposed method when the linearity condition is violated for factors f;. Due to space limitations,
these numerical results are presented in the Supplementary Material.
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Table 3. Root mean squared error in out-of-sample forecast (median/max/min) relative to the
linear diffusion index. In each group, the median, maximum and minimum of the root mean

squared error is reported

SIR(1) SIR(2) DR(1) DR(2) NL-PC

Group (h =1)

Output and income 1.03/1.61/0.96 1.02/1.13/0.94  0.99/1.19/0.92 1.02/1.14/0.90 1.21/1.38/1.05
Consumption 1.00/2.10/0.80  0.95/1.05/0.74  0.92/1.02/0.86 1.00/1.05/0.81 1.16/1.44/1.04
Labour market 1.02/2.27/0.71 1.00/1.21/0.42 0.97/1.13/0.52  0.98/1.16/0.42 1.21/1.53/0.46
Housing 1.04/1.32/0.64  0.92/1.08/0.52 0.83/1.04/0.50  0.79/0.94/0.44  0.83/0.97/0.49
Money and credit 0.94/1.04/0.86 0.97/1.05/0.90  0.96/1.10/0.86 1.04/1.24/0.92 1.14/1.41/1.07
Stock market 0.99/1.39/0.90 1.02/1.12/0.83 0.92/1.08/0.88 1.04/1.07/0.91 1.36/1.39/1.14
Interest rates 1.04/1.79/0.79 0.93/1.17/0.61 0.90/1.04/0.59  0.92/1.15/0.62 1.12/1.32/0.73
Prices 0.97/1.42/0.80  0.99/1.05/0.83 0.95/1.12/0.81 0.97/1.12/0.88 1.12/1.47/0.92
Group (h = 6)

Output and income 1.07/1.47/0.93 0.97/1.23/0.81 0.99/1.18/0.89 1.05/1.27/0.95 1.28/1.52/0.97
Consumption 1.16/1.73/0.90  0.90/1.12/0.67  0.94/1.16/0.71 1.03/1.14/0.73 1.28/1.66/0.77
Labour market 1.15/2.02/0.68 0.89/1.22/0.39  0.90/1.26/0.48 0.98/1.39/0.43 1.24/1.42/0.45
Housing 0.96/1.29/0.66 0.85/0.95/0.51 0.73/0.89/0.50  0.69/0.86/0.47 0.78/1.02/0.55

Money and credit
Stock market
Interest rates
Prices

Group (h = 12)
Output and income

0.95/3.51/0.76
0.91/1.20/0.83
1.01/1.61/0.75
1.16/1.37/0.51

1.24/1.67/0.79

1.01/3.65/0.83
0.94/1.05/0.89
0.90/1.12/0.64
1.03/1.12/0.82

1.01/1.45/0.76

0.99/1.52/0.76
0.89/1.08/0.84
0.84/1.13/0.50
1.11/1.37/0.94

0.99/1.22/0.76

1.02/1.74/0.78
1.00/1.03/0.94
0.88/1.18/0.58
1.14/1.36/0.95

1.01/1.36/0.86

1.23/2.90/0.92
1.23/1.27/0.83
1.11/1.46/0.70
1.17/1.35/1.11

1.17/1.34/0.92

Consumption 1.27/1.60/0.83 1.08/1.44/0.62 1.09/1.32/0.65 1.06/1.38/0.66 1.16/1.38/0.87
Labour market 1.07/1.76/0.67  0.83/1.40/0.41 0.91/1.44/0.54  0.89/1.41/0.46 1.13/1.39/0.56
Housing 0.85/1.35/0.59  0.69/0.93/0.46  0.67/0.91/0.40  0.68/0.83/0.36  0.89/1.16/0.54
Money and credit 1.14/2.03/0.41 1.03/2.16/0.80 1.05/1.52/0.85 1.00/1.40/0.82 1.20/1.69/0.87
Stock market 1.09/1.20/0.89 1.01/1.13/0.84  0.96/1.17/0.94 1.08/1.16/0.75 1.06/1.14/0.89
Interest rates 1.00/1.31/0.75 0.82/1.22/0.59  0.80/1.27/0.53 0.85/1.18/0.51 1.07/1.62/0.70
Prices 1.18/1.40/0.53 1.21/1.40/0.66 1.19/1.31/0.71 1.21/1.33/0.77 1.25/1.52/0.94

SIR(7), sufficient forecasting using i indices; DR, sufficient directional forecasting; NL-PC, a nonlinear additive
model on all the estimated factors.

7. MACRO INDEX FORECAST

We now analyse how the diffusion indices constructed by the proposed directional regression
affect real-data forecasts. We use a monthly macro dataset consisting of 134 macroeconomic
time series recently composed by McCracken & Ng (2016), which are classified into eight
groups: (i) output and income, (ii) labour market, (iii) housing, (iv) consumption, orders and
inventories, (v) money and credit, (vi) bond and exchange rates, (vii) prices, and (viii) stock
market. The dataset spans from 1959 to 2016. For a given target time series, we model the multi-
step-ahead variable as yf’+h = g@ frs- . 0L f) + ef’+h, where yf’+h = p! Zf-;l Vet is the
variable to forecast, as in Stock & Watson (2002a).

We follow McCracken & Ng (2016) to pre-process the data. We also employ the Ljung—Box
test with various lags to test for uncorrelatedness in residuals, which suggests the appropriateness
of'using our proposed methods. Forecasts of yf’ ', ,, are constructed based on a moving window with
fixed length (7 = 120) to account for timeliness. For each fixed window, the factors in the forecast-
ing equation are estimated by the method of principal components using all time series except the
target. As noted by McCracken & Ng (2016), eight factors have good explanatory power in various
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Fig. 1. Six-month-ahead forecasting out-of-sample R? for the 134 macroeconomic series organized into eight groups.

cases, so we set K = 8 throughout the exercise. For each method M, we compare out-of-sample
forecasting performances using the relative mean squared error to the principal components esti-
mator method, RMSE(M) = MSE(M) / MSE(PC), where MSE(M) = m~" "% (v, — )2, which
we evaluate on the last m = 240 months (20 years). The methods we consider here include sliced
inverse regression and directional regression with sufficient forecasting with L = i. Both methods
use an additive model in specifying the forecasting equation. We also impose an additive model
to the estimated factors, denoted by NL-PC, to see how much we can leverage on the nonlinearity
without projecting principal components.

We report the results in Table 3 for 4 = 1, 6, 12 on the maximum, minimum and median of the
root mean squared error in each broad sector. Several features are noteworthy. First, a nonlinear
additive model built on estimated factors does not buy us more predictive power, except in
the housing sector, where most of the nonlinear methods improve prediction accuracy. Second,
the one-step-ahead out-of-sample forecast favours DR(1), as we observe the median root mean
squared errors are uniformly less than 1 and some of the reductions in the root mean squared
error are substantial. Moving from short horizon to long horizon changes the predictability of the
targets, but DR(1) manages to improve the forecast over the principal components method in many
instances. Finally, as an illustration, we plot the out-of-sample R? for the six-month-ahead forecast
using DR(1) and principal components in Fig. 1. Notably, macro time series in the housing and
labour market sectors have higher predictability than in the rates and stock market sectors.
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SUPPLEMENTARY MATERIAL

Supplementary Material available at Biometrika online includes proofs of the theoretical
results.
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