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ABSTRACT

Testing large covariance matrices is of fundamental importance in statistical analysis with high-dimensional
data. In the past decade, three types of test statistics have been studied in the literature: quadratic form
statistics, maximum form statistics, and their weighted combination. It is known that quadratic form
statistics would suffer from low power against sparse alternatives and maximum form statistics would
suffer from low power against dense alternatives. The weighted combination methods were introduced
to enhance the power of quadratic form statistics or maximum form statistics when the weights are
appropriately chosen. In this article, we provide a new perspective to exploit the full potential of quadratic
form statistics and maximum form statistics for testing high-dimensional covariance matrices. We propose
a scale-invariant power-enhanced test based on Fisher’s method to combine the p-values of quadratic
form statistics and maximum form statistics. After carefully studying the asymptotic joint distribution
of quadratic form statistics and maximum form statistics, we first prove that the proposed combination
method retains the correct asymptotic size under the Gaussian assumption, and we also derive a new
Lyapunov-type bound for the joint distribution and prove the correct asymptotic size of the proposed
method without requiring the Gaussian assumption. Moreover, we show that the proposed method boosts
the asymptotic power against more general alternatives. Finally, we demonstrate the finite-sample perfor-
mance in simulation studies and a real application. Supplementary materials for this article are available
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1. Introduction

Hypothesis testing on large covariance matrices has received
considerable attention in the past decade. The covariance matri-
ces not only have the fundamental importance in multivariate
statistics such as discriminant analysis, principal component
analysis, and clustering (Anderson 2003), but also play a vital
role in various research topics in biological science, finance,
operations research including portfolio allocation (Goldfarb
and Iyengar 2003), gene-set testing (Chen and Qin 2010), and
gene-set clustering (Chang et al. 2017).

Let X and Y represent two independent p-dimensional ran-
dom vectors with covariance matrices X, and X, respectively.
We are interested in testing whether these two covariance matri-
ces are equal, that is, Hy : £, = X,, which has been exten-
sively explored (Anderson 2003). The likelihood ratio test (LRT)
enjoys the optimality in the classical setting where the dimen-
sion is fixed (Sugiura and Nagao 1968; Perlman 1980). Johnstone
(2008) studied Roy’s largest root test when the sample size grows
in proportion to the dimension. Bai et al. (2009) and Jiang
and Yang (2013) studied the modified LRTs and proved their
asymptotic normality when the dimension grows at a slower rate
than the sample size. However, the likelihood function is not
well-defined due to the singular sample covariance matrix in the

high-dimensional setting where the dimension grows at a faster
rate than the sample size.

Over the past decade, statisticians have made a lot of efforts
to tackle the challenges in the high-dimensional setting that the
dimension can be much larger than the sample size. Three types
of test statistics have been focused for testing large covariance
matrices. First, quadratic form statistics were studied to test
against the dense alternatives, which can be written in terms of
the Frobenius norm of X; — X, with many small differences
between two covariance matrices. When the dimension is on
the same order of the sample size, Schott (2007) proposed a
test statistic based on the sum of squared differences between
two sample covariance matrices, and Srivastava and Yanagi-
hara (2010) used a consistent estimator of tr(X%)/ [tr(£;)]* —
tr(X3)/ [tr(Z2)]? to construct a new fest statistic. Li and Chen
(2012) introduced an unbiased estimator of the Frobenius norm
of £; — X; to allow for the ultra-high dimensionality that the
dimension grows much faster than the sample size. Recently,
He et al. (2021) proposed the adaptive testing to combine the
finite-order U-statistics that includes the variants of quadratic
form statistics. Second, maximum form statistics were explored
to account for the sparse alternatives with only a few large
differences between two covariance matrices, which can be
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written in terms of the entry-wise maximum norm of X; —
¥,. Cai, Liu, and Xia (2013) studied the maximal standard-
ized differences between two sample covariance matrices to test
against the sparse alternative, and Chang et al. (2017) proposed a
perturbed-based maximum test using a data-driven approach to
determine the rejection region. Third, Li and Xue (2015), Yang
and Pan (2017), and Li, Xue, and Zou (2018) used a weighted
combination of quadratic form statistics and maximum form
statistics to test against the dense or sparse alternatives, which
shares the similar philosophy with the power enhancement
method (Fan, Liao, and Yao 2015) for testing cross-sectional
dependence.

Similar to these weighted combination tests, we are moti-
vated by combining the strengths of quadratic form statistics
and maximum form statistics to boost the power against the
dense or sparse alternatives. It is important to combine the
power of these two different statistics in real-world applications
such as financial studies and genetic association studies. For
instance, the anomalies in financial markets may come from the
mispricing of a few assets or a systematic market mispricing
(Fan, Liao, and Yao 2015; Yu, Yao, and Xue 2019), and the
phenotype may be affected by a few causal variants or a large
number of mutants (Liu et al. 2019).

It is worth pointing out that these weighted combination tests
critically depend on the proper choice of weights to combine
two different types of test statistics. There may exist a non-
negligible discrepancy on the different magnitudes between
quadratic form statistics and maximum form statistics in prac-
tice, which makes the choice of weights a very challenging task.
As a promising alternative to Fan, Liao, and Yao (2015), Li
and Xue (2015), Yang and Pan (2017), and Li, Xue, and Zou
(2018), we provide a new perspective to exploit the full potential
of quadratic form statistics and maximum form statistics for
testing high-dimensional covariance matrices.

We propose a scale-invariant power-enhanced test based
on Fisher’s method (Fisher 1925) to combine the p-values
of quadratic form statistics and maximum form statistics. To
study the asymptotic property, we need to solve several non-
trivial challenges in the theoretical analysis and then derive
the asymptotic joint distribution of quadratic form statistics
and maximum form statistics under the null hypothesis. We
prove that the asymptotic null distribution of the proposed
combination test statistic does not depend on the unknown
parameters (see Theorem 2 under the Gaussian assumption and
Theorems 3 and 4 without requiring the Gaussian assumption).
More specifically, the proposed statistic follows a Chi-squared
distribution with 4 degrees of freedom asymptotically under
the null hypothesis. We also show the consistent asymptotic
power against the union of dense alternatives and sparse alter-
natives, which is more general than the designated alternative
in the weighted combination test. It is worth pointing out that
Fisher’s method achieves the asymptotic optimality with respect
to Bahadur relative efficiency. Moreover, we demonstrate the
numerical properties in simulation studies and a real application
o gene-set testing.

In recent literature, Fan, Liao, and Yao (2015), Li and Xue
(2015), Li, Xue, and Zou (2018), and He et al. (2021) studied
the one-sample covariance test of a special covariance structure
such as the identity or bandedness. Specifically, Fan, Liao, and

Yao (2015), Li and Xue (2015), and He et al. (2021) considered
the one-sample test for large covariance matrices that Hy : £ =
I under the restricted Gaussian or weak dependence assumption
among entries of X, and Li, Xue, and Zou (2018) studied the
one-sample test that Hy : X is a banded matrix under the
Gaussian assumption. However, these methods and theories do
not apply to the more challenging setting for two-sample test
of the general covariance structure in large covariance matrices.
It is significantly more challenging to deal with the compli-
cated dependence in the two-sample tests for large covariance
matrices even under the Gaussian assumption. To address this
challenges, we use a decorrelation technique to address the com-
plex nonlinear dependence in high dimensional covariances. Shi
etal. (2019) used the decorrelation to study the linear hypothesis
testing for high-dimensional generalized linear models. But the
nonlinear dependence in the two-sample covariance testing
is much more challenging than the linear hypothesis testing
in Shi et al. (2019). To the best of our knowledge, our work
presents the first proof of the asymptotic independence result of
quadratic form statistics and maximum form statistics for test-
ing two-sample covariance matrices, which provides the essen-
tial theoretical guarantee for Fisher's method to combine their
p-values.

In the theoretical analysis, we make significant efforts to
effectively relax the Gaussian or weak dependence assumption
when deriving the asymptotic null distribution of the proposed
test statistic. Existing works including Fan, Liao, and Yao (2015),
Li and Xue (2015), Li, Xue, and Zou (2018), and He et al.
(2021) require the restricted Gaussian or weak dependence
assumption when deriving the asymptotic properties. To this
end, we derive a new Lyapunov-type bound for the joint distri-
bution of quadratic form statistics and maximum form statistics
under the high-dimensional setting (see Theorems 4), which
extends the known Lyapunov-type bound for quadratic form
statistics (Bentkus 2005) or for maximum form statistics (Cher-
nozhukov, Chetverikov, and Kato 2013, 2017). To the best of our
knowledge, there does not exist such Lyapunov-type bound for
their joint distribution in the current literature. Our theoretical
result fills this gap and makes a separate contribution to the
literature.

The rest of this article is organized as follows. Section 2
presents the preliminaries, and Section 3 introduces the pro-
posed method for testing large covariance matrices. Section 4
studies the asymptotic properties. Section 5 examines the
numerical properties in simulation studies, and Section 6
explores an empirical study on testing gene-sets. Section 7
includes the concluding remarks. Proofs and additional numer-
ical results are presented in the supplementary materials.

2. Preliminaries

Let X and Y be two independent random vectors in R” with
covariance matrices £; = (oj1) xp and ¥, (042) oxp?
respectively. Without loss of generality, we assume they have
zero means. Let {Xj,...,X,} be iid samples of X, and
{Y1,...,Y,,} be iid samples of Y. The problem of interest is to
test whether two covariance matrices are equal,

Hy:Z,=%;=1Z. (2.1)



We first revisit the quadratic form statistic (Li and Chen
2012) to test against the dense alternative and the maximum
form statistic (Cai, Liu, and Xia 2013) to test against the sparse
alternative. The dense alternative can be written in terms of the
Frobenius norm of £; — X; and the sparse alternative can be
written using the entry-wise maximum norm of £; — X,.

Li and Chen (2012) proposed a quadratic-form test after
reformulating the null hypothesis (2.1) into its equivalent form
based on the squared Frobenius norm of £, — X, that is,

Ho: ||z — Zaf2 =0.

To construct the test statistic, given the simple fact that | X; —
)12 = tr{(E1 — X2)%} = tr(E}) +1tr(E3) —2tr(T, X;), Liand
Chen (2012) proposed a test statistic Ty, ,, in the form of linear
combination of unbiased estimators for each term, namely,

Ty, = Any + Buy — 2Cpy iy (2.2)
where
1 2
Ay =——— Y (XX
= m(ﬂi—l);( X))
4
XXX X,
Cm(ny — 1)(my — 2) Z
l *
+ XXX,
i (my — D1, — 2 —3) },}f‘u e
M= Y @)y
na(ny — 1) "y
.
VYN
oy — 1)(ny — 2) Z
l *
¥ Y Y.V Y
na(nz — 1)(nz — 2)(nz — 3) ugl Btk
and

Coymy = iy ZZ X!
1
Cmyny(ny — 1) ZZX”Y YiXe

1
 miny(ny — 1) Z ZY AR

X Y. X.Y
+H1n2(ﬂ1 - 1)(”2 —-1) ZZ i

Here, }_* denotes summation over mutually distinct indices.
Ap,» Bny, and Cy,, ,, are the unbiased estimators under Hy for
tr(X?), tr(X32) and tr(X, X,), respectively. Then, the expected
value of T, , is zero under the null hypothesis. Li and Chen
(2012) proved that the asymptotic distribution of Ty, ,,, isa nor-
mal distribution. Let z, be the upper & quantile of the standard
normal distribution, and Gy, , = = An, + 7 By, is a consistent
estimator of the leading term o¢ 5, », = (= + 7=)tr(Z?) in the
standard deviation of T}, ,, under Hy. Please re%er to Section 2
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of Liand Chen (2012). The test rejects the null hypothesis at the
significance level « if

Tﬂ 1,12

= (2.3)
O0,n1,12

> Zg-

As an alternative to the quadratic form statistic (Li and Chen
2012), Cai, Liu, and Xia (2013) studied the null hypothesis (2.1)
in terms of the maximal absolute difference of two covariance
matrices, that is,

Hp: max |oj —

Tij2 I =0.
1<i<j=<p

Cai, Liu, and Xia (2013) proposed a maximum test statis-
tic My, », based on the maximum of standardized differences
between &7 ’s and j;s. The maximum form statistic is written
as

o~ I
Jij1 — Ojj2
My, = max 00 0R) 2.4)

1<i<j<p Oy /ny + Oyp /Ny’

where the denominator ajl /1 + a-jl /ny estimates the variance
Bij1/n1 + 631 /n3 of 031 — Ty to account for the heteroscedas-
ticity of 3;’s and oj’s among different entries. Here 6 =
var(X,;X,j) and 8, = var(Y,,;Y,;). The specific forms of 6;;
and é:;;; are

B = ,,—Z (Kui = X)Xy = Xp) 3
1

u=1
7 LS %
F Al ﬂ]_ = ui»

and

-~

fip = — Z [(Yo; — T (Yoy—

?f = n—IZZYv;.

Cai, Liu, and Xia (2013) proved that the asymptotic null dis-
tribution of My, », is a Type I extreme value distribution (also
known as the Gumbel distribution). Thus, the test rejects the
null hypothesis at a significance level « if

) Ji_jz]z ’

—loglogp, (2.5)

where g, is the upper « quantile of the Gumbel distribution.

Mﬂl!"Z Z Qa + 410gp

3. Methodology

Li and Chen (2012) and Cai, Liu, and Xia (2013) have
their respective power for testing high-dimensional covariance
matrices. The quadratic form statistic T}, ,, is powerful against
the dense alternative, where the difference between X, and X,
under the squared Frobenius norm is no smaller than the order
of tr(X£%)/n, +tr(X3)/n;. The maximum form statistic M, , is
powerful against the sparse alternative, where at least one entry
of £, — X, has the magnitude larger than the order of ,/log p/n.
However, Ty, ., performs poorly against the sparse alternative
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and M,,, ., performs poorly against the dense alternative, which
will be further illustrated in Sections 4.4 and 5.

Fan, Liao, and Yao (2015), Li and Xue (2015), Yang and Pan
(2017), Li, Xue, and Zou (2018), and Yu et al. (2022) studied the
weighted combination ] = Jp+/; to achieve the power enhance-
ment, where Jj is built on the extreme value form statistic and
J1 is constructed from the asymptotically pivotal statistic. It is
worth pointing out that, with the proper weighted combination,
J enjoys the power enhancement properties (Fan, Liao, and Yao
2015):

(i) Jis atleast powerful as J;,

(ii) the size distortion due to the addition of ]; is asymptotically
negligible, and

(iii) power is improved under the designated alternatives.

For testing large covariance matrices, Yang and Pan (2017)

1 1
proposed J; = (1 — (sp + £&1)"")M, and J, = nwra TE .
max; <;j<p (051 — E,jg)z, where M,, is a so-called macro-statistic
that performs well against the dense alternative, and s, is the
number of distinct entries in two covariance matrices. Note that
the quantities &; and &; are carefully chosen such that J; — 0in
probability under the null hypothesis Hy.

As a promising alternative, we propose a scale-invariant
combination procedure based on Fisher’s method (Fisher 1925)
to combine both strengths of T, ,, and M,, »,. Let ®(-) be
the cumulative distribution function of N(0,1) and G(y) =

exp (—7;? exp (—%)) be the cumulative distribution function

of the Gumbel distribution. Specifically, we combine the p-
values of T, », and My, ., after the negative natural logarithm
transformation, that is,

Fp iy = —2logpr — 2log pu, (3.1)

where pr = 1 — ® (T, n, /Gonyn,) and pyr = 1 — G(My, 1, —
4logp + loglogp) are the p-values associated with the test
statistics Ty, n, and My, ,,, respectively.

Let ¢y denote the upper a quantile of a Chi-squared distri-
bution with 4 degrees of freedom (i.e., x7). We reject the null
hypothesis at the significance level « if

Eyiny = Ca. (3.2)

Unlike the weighted statistic ] = Jo + J1, Fy, 0, does not
need to estimate s, or choose &; and &; to construct the proper
weights, which may be nontrivial to deal with in practice. The
inappropriate choice of s,, &, and & may lead to the size distor-
tion or loss of power. In contrast, Fy, ,, is scale-invariant as the
p-values always take values between 0 and 1, and the asymptotic
null distribution of F, ., (ie, xf) does not depend on any
hyper-parameters. As we will show in Sections 4.2 and 4.3, Fy,, .,
achieves the desired nominal significance level asymptotically,
even without requiring the Gaussian assumption. In Section 4.4,
we will show that the proposed method boosts the power against
either sparse or dense alternatives. Moreover, Fisher’s method
achieves the asymptotic optimality with respect to Bahadur
relative efficiency (Littell and Folks 1971, 1973).

Remark 3.1. The idea of combining p-values has been widely
used as an important technique for data fusion or meta analysis

(Hedges and Olkin 2014). Recently, the Cauchy combination of
p-values was used for testing high-dimensional mean vectors
in (Liu and Xie 2020), and the minimum combination of p-
values from the finite-order U-statistics was used for testing
two-sample high-dimensional covariance matrices in (He et al.
2021). However, neither Liu and Xie (2020) nor He et al. (2021)
studied the combination of p-values of Ty, », and M,,, ,,, and it
is fundamentally challenging to study the asymptotic joint dis-
tribution of Ty, », and My, »,. We will solve this open problem
in Sections 4.2 and 4.3.

4. Asymptotic Properties

This section presents the asymptotic properties of our proposed
Fisher’s combined probability test F,, ,,. Section 4.1 defines
useful notations and presents the assumptions. Section 4.2 first
studies the joint limiting distribution of two test statistics M, .,
and T,, », under the null hypothesis and then prove the correct
asymptotic size. Section 4.3 studies the asymptotic joint dis-
tribution of M, », and T, ,, and the asymptotic size without
requiring the Gaussian assumption. Section 4.4 proves the con-
sistent asymptotic power of our proposed method under general
conditions under the alternative hypotheses.

4.1. Assumptions

For any matrix A, let A;(A) be the ith largest eigenvalue of
A. Throughout the rest of Section 4, we need the following
assumptions to carry out the theoretical analysis.

Assumption 1. As ny, ny, p — 00, suppose that

(i) ny/(ny +ny) — y,for some constant y < (0, 1).
(ii) For any j € (1,2} and there exists a constant 1 > §p > 0,

tr (Ef) — oo and

log{p v (n1 + n)}P"Had(x)) < Citr (Efz))'

where A (Z;) denotes the largest eigenvalue of £jand C > 0
is a fixed constant that does not depend on n;, n; and p.

Remark 4.1. Assumption 1 is analogous to (A1) and (A2) in
Li and Chen (2012), where the first condition is standard for
two-sample asymptotic analysis, and the second one describes
the extent of high dimensionality and the dependence which
can be accommodated by the proposed tests. Sharing the spirit,
Assumption 1 does not impose explicit requirements on rela-
tionships between p and nj,n, but rather requires a mild
condition (ii) regarding the covariance matrices, which can be
satisfied if eigenvalues of two covariance matrices are bounded.
The condition (ii) assumes a specific rate to prove Lemma 2 that
is useful for exploring the asymptotic joint distribution, whereas
(A2) in Liand Chen (2012) does not need to assume any specific
rate for studying the quadratic form statistics.

Before proceeding, we define some useful notations. For any
set A, card(A) denotes the cardinality of 4. For0 < r < 1,
let Vi(r) = {l <j<p: J—la%% > ror—laﬂ% > r} be the set
of indices j such that X; (or Y;) is highly correlated (whose
correlation > r) with X; (or Y;) fora giveni € {1,...,p}. And



= card(v,-((logp)_l_a)), = Loanp
be the number of indices j in the set V;((log p)_l_a). Moreover,
define W(r) = {1 <i < p:V(r) # @} such that, Vi € W(r),
X; (or Y;) is highly correlated with some other variable of X
(orY).

for any @ > 0, let s;(r)

Assumption 2. There exists a subset T C {1,2,...,p} with
card (Y) = o(p) and some constant &y > 0, such that for

allk > 0, max s;(ap) = o(p¥). In addition, there exists
1<i<p,igT

aconstant 0 < rp < 1, such that card(W(rp)) = o(p).
Furthermore, we assume that for some constants 0 < 1; < 19,
minj<j<p Min(ojj1, o) > 11 and max; <j<p Max(oj;1, Gip) < T2

Remark 4.2. Assumption 2 was introduced by Cai, Liu, and Xia
(2013) such that max, <j<p igy si(ap) and W(rp) are moderate
forap > 0and 0 < ry < L. It is satisfied if the eigenvalues of
covariance matrices are bounded from above and correlations
are bounded away from +1.

In Section 4.2, we assume that both X and Y are Gaussian
random vectors. The Gaussian assumption facilitates the use of
a new decorrelation technique to address the complex nonlinear
dependence in high dimensional covariance matrices in the
theoretical analysis of the proposed scale-invariant combination
test. Li and Xue (2015), Li, Xue, and Zou (2018), and He et al.
(2021) studied the asymptotic joint distribution of the maxi-
mum test statistic and the quadratic test statistic for one-sample
covariance test of a special covariance structure such as the
identity or bandedness under the Gaussian or weak dependence
assumption. Please see the first paragraph of Section 2 in Li and
Xue (2015), the first paragraph of Section 2 in Li, Xue, and Zou
(2018), and Condition 2.3 in He et al. (2021) for more details.
However, we need to deal with a general covariance structure
in two-sample covariance test, and the nonlinear dependence
is fundamentally more challenging than the dependence in the
one-sample covariance test even under the Gaussian assump-
tion. In Section 4.2, we use a decorrelation technique to address
the complex nonlinear dependence in high dimensional covari-
ance. Further, it will require new ideas to relax the Gaussian
or weak dependence assumption in two-sample covariance test.
In Section 4.3, without requiring the restricted Gaussian or
weak dependence assumption, we derive a new Lyapunov-type
bound for the joint distribution of quadratic form statistics and
maximum form statistics and prove the correct asymptotic size
of the proposed method.

4.2. Asymptotic Size under the Gaussian Assumption

Now, we present the joint limiting law for My, , and T, ,,
under the null hypothesis.

Theorem 1. Suppose that X and Y are Gaussian random vectors,

Assumptions 1-2 hold, and logp = o((n; + ﬂg)%). Under the
null hypothesis Hy, for any x, y € R, we have

Tﬂ n
P (A# <X, Mp,,n, —4logp +loglogp < J’)
O0,n1,1m2
— ®(x) - G(y) (4.1)
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as ny,n3,p — o0, where G(y) = exp (—7:}?&)([) (—%)) (or
®(x)) is the cumulative distribution function of the Gumbel
distribution (or the standard normal distribution).

Given Theorems 1-2 from Li and Chen (2012) and Theo-
rem 1 from Cai, Liu, and Xia (2013), Theorem 1 implies that
My, n, and Ty, ,, are asymptotically independent. To the best
of our knowledge, we present the first proof of the asymptotic
independence between quadratic form statistics and maximum
form statistics for testing two-sample covariance matrices.

In the sequel, we provide a high-level intuition to prove the
asymptotic independence result (4.1). First of all, it is worth
mentioning that under Assumption 1, all the third-moment
and fourth-moment terms in A, By,, and C,, ,, are of small
order than the leading second-moment terms, which may be
neglected when deriving the asymptotic normality. Hence, in

theoretical analysis, we may consider the simplified statistic of
Ty, defined by

~ 1 o
Toymy = m Z (X.Xy)" +

~ ZZ (6.4 &)

As pointed out by Li and Chen (2012), T‘m np and Ty, , shares
the same asymptotic behavior.

Compared with the one-sample covariance tests in Li and
Xue (2015), Li, Xue, and Zou (2018), and He et al. (2021), it is
significantly more difficult to analyze the asymptotic joint dis-
tribution given the complicated dependence in the two-sample
tests for large covariance matrices. To address this challenge, we
use a decorrelation technique to address the complex nonlinear
dependence in high dimensional covariance matrices. Specifi-
cally, we introduce a decorrelated statistic T, , . Under Hp :
¥, = X; = X, we may partition X and Y as

x(D
Y® 0,_
Ypx1 = (Y(Z) - Np( ‘aqq :
In X
X = ;
(sz Ezz))
where X(U, Y(1) ¢ R4, X(2), Y(2) ¢ R4 for integer g satisfying
g = O(logp). Let Z; = XV — 2,3 'X@, 7, = XO,
W =YD — 2,3 2'Y®, W, = YO, It's easy to see that Z,
is independent of Z;, and the same results hold for W; and Wz
Back to the sample level, we have that {Z,},., and {Wy,},2

iid follow Np_4(0, X1, — X 12):22 X7). Following the pattern of
,T"i‘“2 in (4.2), we define

— ; ! 2 ; ' 2
~ D Z(Z“‘Z“’) T ;#(wl“wlv)

—— ZZ

{Z1,},L, and {W;,,}"2 , are regarded as a decorrelated version
of {X,},., and {Y,}2,, respectively. Ty , is regarded as the

- Y )

ny(ny — 1) ity

(4.2)

LU BLi]

wn, (4.3)
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~

T'n, n, statistic derived from the decorrelated samples. The above
decorrelation shares a similar philosophy with Shi et al. (2019).
We should point out that Shi et al. (2019) used the decorrela-
tion to study the linear hypothesis testing for high-dimensional
generalized linear models, but the nonlinear dependence in the
two-sample covariance testing is much more challenging than
the linear hypothesis testing. ~

Next, we study the joint distribution of My, ,,, and T}, ,. Let
A be the event associated with the maximum statistic M, ., and
B be the event associated with the quadratic statistic T, ,,,. We
use the simple fact that A = U;A;. Then, we may rewrite the joint
probability P (A N B) into the probability for a union of events,
that is, P(ANB) = P((U;A;) N B). Then, we give the proof
sketch to derive the upper bound P(A N B) — P(A)P(B) < o(1).
We begin with a union bound to obtain that P (U;(4; N B)) <
> ; P(A;NB). In order to deal with the joint probability of A;NB,
we further decompose the quadratic statistic into two parts:
Tk . is independent of A;, and the remaining term Ty, ,, —

1,3

Ty, is associated with A;. Consequently, B can be written as
B = B{ U B, in which B{ represents to the event corresponding
to Ty;, . Therefore, ) . P(A;NB) < } . P(A;NB))+) ; P(A;N
B;) < Y ;P(A)P(BY) + } ;P(B;). Lemma 2 suggests T:mz
is sufficiently close to ".1:,,1,,,2 so that we have P(B) =~ P(B),
> ;P(A)) — P(A) and ) ;P(B;) = o(1). The lower bound
o(1) < P(AN B) — P(A)P(B) can be similarly derived from the
Bonferroni inequality. Therefore, we can prove the asymptotic
independence given that |[P(A N B) — P(A)P(B)| = o(1).

In what follows, we present three useful lemmas to prove
(4.1) in Theorem 1.

Lemma 1 (Asymptotic Normality). Suppose that X and Y are
Gaussian random vectors and Assumption 1 holds, and q =
O(logp). Under the null hypothesis Hy, as ny,n2,p — oo, we
have

T

L L

2(n" +ny')tr (X?)

4 N, D). (4.4)

Lemma 2 (Exponential Decay). Suppose that X and Y are Gaus-
sian random vectors and Assumption 1 holds. Under the null
hypothesis Hy, for any 0 < € < 1, there exist positive constants
¢, C that do not depend on p, n;, n3, such that

_Tti

P |’T”Iv”2 H1,H2 .
= = o = €
2(ny +ny ) tr(x?)
< Cexp[ — cellog{p v (n, + ﬂz)]]l+6°]-
where 1 > §p > 0 is defined in Assumption 1(ii).

(4.5)

Remark 4.3. Lemma 2 presents the concentration inequality for
the two-sample degenerate U-statistic Ty, ., — Ty, n,- The clas-
sical concentration inequality for degenerate U-statistics Uy, (f)
in Proposition 2.3(c) of Arcones and Gine (1993) requires that
[flloc < ¢, wheref is areal-valued function of m variables. How-
ever, ||f[loc < ¢ does not hold for the U-statistic Ty, n, — T}, ,,-
Thus, we use the truncation technique and the concentration

inequality of Arcones and Gine (1993) to prove Lemma 2.

As a final step, Lemma 3 derives the joint limiting distribu-
tion of the test statistic M,,, ,, and the simplified statistic T,
which directly implies Theorem 1.
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Lemma 3. Under the assumptions of Theorem 1, Vx,y € R, as
#1, n2, p — 00, we have

& (E“;"Z < X, My, n, —4logp +loglogp < y)
00,m1,n2

—®(x) - G(y). (4.6)

Lemma 1 shows that such decorrelation procedure does not
affect the asymptotic behavior of the quadratic test statistic.
Lemma 2 depicts the tail behavior of the difference between
Tyym, and Ty, with explicit decaying rate. Lemmas 1 and 2 lay
the foundation of replacing T, ,,, with Ty, n, in the theoretical
analysis.

Given the explicit joint distribution of M,,, , and T}, ,,, we
proceed to present the asymptotic properties of our proposed
Fisher’s test F,,, ,,,. Recall that ¢, is the upper a-quantile of x?
distribution and F, ., = —2log(pm) — 2log(pr) rejects Hy
if F,, ., is as extreme as ¢,. On top of the asymptotic inde-
pendence established in Section 4.2 and by simple probability
transformation, it’s easy to obtain the null distribution of F, ,,,,
and therefore, the asymptotic size of the test. The results are
formally presented in Theorem 2.

Theorem 2 (Asymptotic Size). Under the same assumptions as in
Theorem 1, the Fisher’s test achieves accurate asymptotic size,
that is, under the null hypothesis,

P(Fpm =€) > @ asny,hy,p— 00.

Remark 4.4. Besides Fisher’s method, the asymptotic indepen-
dence result makes it feasible to combine p-values using other
approaches such as Tippett’s method (Tippett 1931), Stouffer’s
method (Stouffer et al. 1949), and Cauchy combination (Liu and
Xie 2020).

4.3. Asymptotic Size without Requiring the Gaussian
Assumption

The Gaussian assumption is essential to prove the asymptotic
independence result in Theorem 1 and the correct asymptotic
size property in Theorem 2. However, the Gaussian assumption
can be violated in real applications. In the sequel, we study the
asymptotic joint distribution of quadratic form statistics and
maximum form statistics and prove the accurate asymptotic
size of the proposed method without requiring the Gaussian
assumption.

To study the asymptotic size without the normality, we
assume the following condition:

Assumption 3. Let X, = I'i¢&;, and Y, = Iy, foru =
1,...,n,v = 1,..., 1y, where I‘ll"'f = Ei; I‘zl‘g = X,. For
anyi=1or2, {z;,.j}’.’;l are iidrandom vectors with E¢ ij=0 and
cov((;,j) = I, with m; > p. Furthermore, forany 1 < k < p,
Eggk = 3and Eg}?k < o0. Further for all integers s and p, > 0
such that 37}, py < 8 and Eggy ... & = B(g) - E(Gfy)
fOI’kl #kg;é-‘,éks

Remark 4.5. Assumption 3 is analogous to the assumption (A3)
in Li and Chen (2012) or (C3) in Cai, Liu, and Xia (2013).



Assumption 3 includes the Gaussian assumption as the special
example, and it also holds for the elliptically contoured distribu-
tions (Anderson 2003).

Theorem 3 presents the asymptotic independence result and
the accurate asymptotic size property when the dimension p
grows at a slower rate than the sample size n; or n;.

Theorem 3. Suppose that Assumptions 1-3 hold. Under the null
hypothesis Hy, for any x, y € R, when p = o((n; + n)"/7) and
X is invertible, we have

Tﬂ H
p (A# <X, My,,n, —4logp+loglogp < J’)
T0,n1,m2

— ®(x) - G(y) (4.7)
as ny, n,p — 00, where G(y) = exp (—‘/%EXP (_%)) (or

@(x)) is the cumulative distribution function of the Gumbel
distribution (or the standard normal distribution). Moreover,

P(Fum > Ca) = @ as ny,ny,p — 00.

The Lyapunov-type bound from Bentkus (2005) provides
the essential tool to prove Theorem 3. The conditions, p =
o((n; + n2)"7) and ¥ is invertible, are necessary conditions
to apply the Lyapunov-type bound from Bentkus (2005). Let
Zi = Vec(Zji,...,2Zi4) be a d-dimensional vector of interest
in R? with mean 0 and covariance @ = (wj)axaforl <k <m.
Let 3y, ...,1,, be independent Gaussian random vectors in R4
with mean 0 and covariance cov(y,) = . By definition, 5;’s
have the same covariance matrix as Z;’s. If A is the set of all
measurable convex sets in R?, Bentkus (2005) proved that

sup

L ey
p(zt—l 1 GA) _P(Zl—l H( EA)
AcA i

Jm Jm

m
< Cdl/4m—3f2 Z El[ﬂ—l;";’.zing’

i=1

where C does not depend on d and m. After carefully con-
structing the random vector Z; and the convex set A, we can
combine the above Lyapunov-type bound and simplified proofs
of Theorem 1 under the Gaussian assumption to obtain the
asymptotic independence result and the accurate asymptotic
size property without requiring the Gaussian assumption.

In the sequel, we study the asymptotic size of the proposed
method without requiring the Gaussian assumption when p is
larger than #1; or n;. We assume the following condition:

Assumption 4. Suppose that
2
(i) there is a fixed constant fy > 0 such that E[et'}X‘J'] < oo and

El*Y9] < coforall 1 < i<y, 1 <k<ml =j=p
(ii) (logp)'® = o((ny + ny)).

Theorem 4. Given Assumptions 1-4, under Hy, we have

Tﬂl >

P (A— <X, My;,n, —4logp +loglogp < J’)
JO,nl,ﬂz

— ®(x) - G(y) as nj,ny,p— 09,
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where G(y) = exp (—7:3? exp (—%)) (or ®(x)) is the cumu-
lative distribution function of the Gumbel distribution (or the
standard normal distribution). Moreover, we have

P(Fuymy > Ca) — @ as 13,03, p — 00.

Theorem 4 presents the asymptotic independence result and
the accurate asymptotic size property when p is larger than
ny or my as ny,nz,p — oo. Note that the Lyapunov-type
bound from Bentkus (2005) no longer works under such a
high-dimensional setting. To prove Theorem 4, we follow Cher-
nozhukov, Chetverikov, and Kato (2013) to prove a Lyapunov-
type bound for the joint distribution of quadratic form statistics
and maximum form statistics. Given this bound, we can com-
bine it and simplified proofs of Theorem 1 to obtain the desired
result without requiring the Gaussian assumption.

In the current literature, Bentkus (2005) derived the
Lyapunov-type bound for quadratic form statistics, and Cher-
nozhukov, Chetverikov, and Kato (2013, 2017) derived the
Lyapunov-type bound for maximum form statistics. There is
no existing Lyapunov-type bound for the joint distribution of
quadratic form statistics and maximum form statistics under
the high-dimensional setting. Thus, our result fills this gap and
makes a separate contribution to the literature.

4.4. Asymptotic Power

Two classes of alternative hypotheses (i.e., dense alternatives
and sparse alternatives) have received a lot of attention when
testing the high-dimensional covariance matrices. For dense
alternatives, as shown in Li and Chen (2012), the parameter
space of interest is defined using the squared Frobenius norm
12, — X212 = tr{(E1 — X3)?), that s,

1 1
Gi={(Z1, %) : n—ltr(zf) + ﬂ—;r():%) =0 (tr{(zl—zz)z})].
(4.8)

The distributions under H; : (X1, £2) € G4 may include many
small nonzero entries of about the same size in £; — X5, whichis
why we called G, the “dense alternatives”” For sparse alternatives,
as shown in Cai, Liu, and Xia (2013), the parameter space of
interest is defined using the entry-wise maximum norm || X; —
23 |lmax = maXj<i<j<p [61,;} = Gg,,'j|, that is,

loij1 — oijal
max
1<i<j<p /1 /n1 + Bia/ma

G = {(El,zz) :

> 4,xlogp] :
(4.9)

The distributions under H, : (21, ;) € G, may include only a
few large nonzero entries in X — X5, which is why we called G
the “sparse alternatives.”

Li and Chen (2012) and Cai, Liu, and Xia (2013) provided
power analysis of tests Ty, ,, and My, ,, over the dense alter-
native G4 and the sparse alternative Gs, respectively. However,
Ty, performs poorly under the sparse alternative G, and
My, n, performs poorly under the dense alternative Gj. In
addition to the numerical demonstration in simulation studies
(Section 5), we provide the following theoretical examples to
demonstrate this fact. On the one hand, we assume that o —
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oijz = \/+TP forl1 <i<j<pfor (X, X;). When 1;(X;) and
A1(X7) are finite, it is easy to show that (£, X;) € G4 and also

lo —oip| JI
that —W < C 3 and (X£,%;) ¢ G;. By Lemma 4

from Cai, Liu, and Xia (2013), as ny, 12, p — 00, we have

. N3
ip) —4logp +loglogp = qﬂ,)

(0'1}1
1<i<j<p O /1 + B2/ M2
o= 2
—Gip — (031 — O42))
Bij1/m + Oijz /N2

< P( max (diﬂ
1<i<j<p
C?  Clogp
—4logp + loglogp + — + aak qa)
PSP

— B — (o1 — o)’
T P( max i Y b
I=<i<j<p

Bi1/ny + Bip/my
1
> 4logp — Elogiogp) —a < 1l

(Etjl

Thus, My, », has the low asymptotic power under this dense
alternative in G .

On the other hand, we assume that o121 — 0122 = 5
for (£1,X7). When A,1(X;) and A;,(X;) are finite, it is easy
to show that (£;,X;) € G, and (£1,Z;) & G, Under
Assumption 5(iii), by Theorem 1 from Li and Chen (2012), as
1, Ha, p — 00, we have

T
T0,n1,m2

—p (Tﬂl,ﬂg i tr(El —r 22)1 L O00,n1,1m2 Ze

logp
n

tr(E — ):2)2)

Onyny T Omm Ony,my
—a<l,
where
2
B =5 4tr’(x?) ) 8tr{(Z? — X,X,)%)
Hultle ™ n? n;
1

i=1

5 AA(TT(Z) — Z)T) o TI(Z, — zz)rf)]

ni

8
+ —trA (2, 2)).
niny

The above inequality holds by using the fact that r(zl L)

-"1 a1
ap,
0and —=2 — 1asny,ny — oo. Thus, Ty, ,, has the low
Tny.ny

asymptotic power under this sparse alternative in G;.

As an effective combination test, our proposed method F,, ,,,
exploits the full potential of M,, ,, and T, ,, to boost their
respective power against more general alternatives. To establish
the power enhancement, we consider the following conditions
in Assumption 5:

Assumption 5. As ny, na,p — 00, suppose that

(i) ny/(n + ny) — y, for some constant y < (0, 1).

(i) For any ij,k,l e (L2} tr(ZxZ) — oo and
tr {558} = oftr(T,Z))tr (X} as ny, ny,
p — oo.

(iii) Let X, = I'1 ¢, and Y,, =TI, foru=1,...,m,v=
1,...,n2, where l‘il“1 EI,FZFZ Xy . Foranyi =
lor2, {g; }"”1 are iid random vectors with EJ; = 0 and

cov(¢;) = Ly, withm; > p. Forany 1 < k < p, Eg; =
3+ A;and Eg}?k < 00, where A; is a constant that describes
the difference between the fourth moment of £ and that

of the standard normal distribution. Further for all integers
sand p, > Osuch that };_, p, < 8 and E¢%}

ijle gi}ks
E@g) .- E@g) forky #ky # -+ £ ke
(iv) Suppose that X;,J, and Yy (1 <k<mnm, <1< nyand
1 < j < p) satisfy sub-Gaussian tail conditions with logp =
o(n'/®) or polynomial-type tail conditions with p = o(n")
for some constant yp > 1.

Remark 4.6. Assumption 5 is similar to (A1), (A2), and (A3)
in Li and Chen (2012) and (C2) or (C2*) in Cai, Liu, and
Xia (2013). The condition (i) is standard in the literature. The
conditions (ii) and (iii) assume a general multivariate model
as in Li and Chen (2012), The condition (iv) is similar to the
moment condition (C2) or (C2*) in Cai, Liu, and Xia (2013),
and it is weaker than the Gaussian assumption.

Theorem 5 presents the enhanced power of the proposed
method uniformly over G4 U G;.

Theorem 5 (Asymptotic Power). Suppose that Assumption 5
holds. The proposed Fisher’s method achieves the consistent
asymptotic power, that is, under the alternative hypothesis,

inf P(F >cy) — 1 asny,na,p— 00.
e g, ” s = ) R

Remark 4.7. (Bahadur Efficiency) Littell and Folks (1971, 1973)
studied the asymptotic optimality of using Fisher’s method to
combine independent tests. They proved for the two asymp-
totically independent tests pr = 1 — @ (T, ,,/C0,m,n,) and
pPm = 1 — G(My, n, — 4log p + loglog p), the Fisher’s method
delivers the largest exact Bahadur slope among all reasonable
combination approaches, indicating the fastest decay rate for
the p-values under the alternatives. Fisher’s combined test is
asymptotically optimal in terms of Bahadur relative efficiency.

5. Simulation Studies

This section examines the finite-sample performance of our
Fisher’s combined probability test, compared to the tests pro-
posed by Cai, Liu, and Xia (2013) (referred to as the CLX test
in the following context) and Li and Chen (2012) (referred to
as the LC test). To demonstrate the advantage of using Fisher’s
combination, we also compare with an equally weighted combi-
nation test (referred to as the Weighted test in later discussion).
More specifically, the test statistic is defined as ] = &, fnz Ty +
(M, n, — 4log p +loglog p). The distribution of ] is calculated
by the convolution of ®'(-) and G'(-).

In the simulation studies, we generated two random samples
{X1,..., Xy} iid from N, (0,X;) and {Yy,...,Y,,} iid from
N, (0, Z;). The sample sizes are taken to be n; = n; = N with
N = 100 and 200, while the dimension p varies over the values
100, 200, 500, 800, and 1000. The significance level is set to be



0.05 for all the tests. For each simulation setting, the average
number of rejections is reported over 1000 replications.

We also conducted simulation studies to demonstrate the
numerical performance with respect to non-Gaussian data. We
consider several non-Gaussian distributions in the data gener-
ating process, including the gamma distribution, f distribution,
uniform distribution, contaminated normal distribution, and so
on. For space consideration, we present these results in Section
S.4 of the supplementary materials.

Under the null hypothesis Hy, weset £; = X, = ) R VN
1,...,7,and consider the following seven models to evaluate the
testing size.

Q) W=7,

(i) £*@ = (@*@)~!, where w;.;(z) — 0.5/,

(iii) *® is a block diagonal matrix given by each block being
0.515 + 0.5]15]'1{5.

) T*® = (@ 4+ 51,)/(1 + ), where 5\ =
0.5 x Bernoulli(1,0.05) for i < jand aé‘}-} —o® 5 =
Amin(E@)] 4-0.05.

W) T*(5) — {61;‘(5)}1”(;” O,i;‘(S) — (_1)i+j0_4|f—j|

W) O = {095, 070 = 091,

(vii) *? = 0.51, +0.51, 1),

1/10

Model (i) is the most commonly used multivariate standard
normal distribution. Model (ii) and Model (iii) are the cases
when the true covariance matrices have certain banded-type
and block-type sparsity. Model (iv) is also a sparse matrix yet
without any specific sparsity pattern. Model (v) was first pro-
posed by Srivastava and Yanagihara (2010) and further studied
in Cai, Liu, and Xia (2013). Model (vi) is the autoregressive
matrix with strong positive autocorrelation, and Model (vii) is
the compound symmetry matrix.

To evaluate the power of the tests, we consider the scenarios
when the differences of the two covariance matrices satisfy
certain structure. There are two types of alternatives we desire
to look into: the sparse alternative H; and the dense alternative
H,.

Generally speaking, the sparse alternative shares commonal-
ity among different models. Let U denote the difference between
¥, and X, thatis, U = X,; — X,. As in Cai, Liu, and Xia
(2013), we consider the situation when U is a symmetric sparse
matrix with eight random nonzero entries. The locations of four
nonzero entries are randomly selected from the upper triangle of
U, each with a magnitude of Unif(0,4) x max; <j<, 0’5. The other
four are determined by symmetry. Then we generate samples
from these covariance pairs (Eg}, Eg’j), i=1,...,7, in order
to evaluate the power of the tests against sparse alternative,
where X = ¥*@ 4 r1and X = ¥*@ 4 71 + U, with
7 = | minfAmin(E*? + U), Amin (2*P)}| + 0.05.

In terms of the dense alternative setting, since the seven
models differ a lot from each other, we shall discuss their cor-
responding alternative settings separately afterwards. To begin
with, we shall take a look at the simplest case in Model (i).
We consider its dense alternative to be the AR(1) model with
parameter p = 0.1 and 0.2, denoted by X 211. In another word,
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we generate the copies of X from the p-dimensional standard
normal while copies of Y from N, (0, Z QR) For Models (ii),
(iii), and (iv), we set the covariance pairs to be ng) = ¥*0
and Egﬂ = 2*D 4 n(1, — *D), where 7 is used to weaken the
signals in an effort to avoid trivial power in all tests. We follow
the same alternative hypothesis as in Srivastava and Yanagihara
(2010) for Model (v) by letting ):(15) »*5) and Egs)
{crg(,s)}PxP with crés) = (=1)"*0.6"7"". We use the AR(1)
matrix with p = 0.85 as the dense alternative for Model (vi) and
the compound symmetry matrix with correlation 0.4 for Model
(vii).

For each covariance model, we generate samples indepen-
dently from N, (0, »*1) to evaluate the size, and use different
covariance pairs described above to examine the power against
sparse and dense alternatives. The empirical size and power are
calculated based on 1000 replications at significance level of 5%
and the results are reported in Tables 1-3.

We have the following findings from the size and power
comparisons in Tables 1-3:

1. Under Hy, the sizes of all four tests are well retained close to
the nominal level 0.05 for Models (i)—(iv). The LC test suffers
from the size distortion in Models (v) and (vii) while the CLX
test is overly conservative in Models (vi) and (vii), because of
the violations of the test assumptions on covariance matrices.
This leads to the unsatisfactory size approximations using
our proposed test and the Weighted test in Models (v)—(vii)
as both of them rely on the performance of the LC and CLX
tests.

2. The CLX test is demonstrated to be powerful under the
sparse alternative H,, however, its performance is not satis-
factory under the dense alternative. In the meantime, the LC
test remains a high power under the dense alternative Hy,
whereas performs poorly against the sparse alternative with
a tendency of decaying as dimension p grows large.

3. The Weighted test is able to maintain a relatively high
power under either sparse or dense alternatives. However,
we observe that the Weighted test behaves more in tandem
with the CLX test compared to the LC test. This is because
the CLX test statistic spreads more widely than the LC test
statistic, see Figure 1 for a graphical illustration. By taking
sum of the two statistics with equal weights, the Weighted
test statistic is mostly driven by the CLX statistic. As a result,
the Weighted test is more prone to boosting the power under
the sparse alternative H; but less effective in enhancing test
power under the dense alternative Hy.

4. In comparison, our proposed Fisher’s combined test exhibits
competent results. Our proposed test performs as good as
the CLX test under the sparse alternative and remains com-
petitive power with the LC test when against the dense
alternative. What’s more, our proposed test outperforms
the Weighted test under the dense alternative, together
with comparable performance when against the sparse
alternative.

In a summary, based on these simulation results, we find that
the proposed method boosts the power against more general
alternatives while retaining the desired significance level, which
is consistent with our theoretical results in Section 4.
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Table 1. Comparison of empirical size and power (%) for model (i) with Gaussian data.

N P 100 200 500 800 1000 100 200 500 800 1000
Size Power under sparse alternative
100 Proposed 57 5.2 46 47 5.0 99.4 95.0 91.7 859 726
CLX 4.1 44 39 44 46 999 96.6 95.2 89.8 795
LC 53 49 53 45 52 301 134 79 58 55
Weighted 50 5.2 47 40 47 99.8 97.2 949 896 78.1
200 Proposed 6.0 49 48 47 42 100.0 100.0 99.9 99.9 99.9
CLX 51 46 43 44 42 100.0 100.0 999 999 100.0
LC 56 5.0 52 46 43 70.7 38.1 83 73 5.6
Weighted 56 48 48 44 4.1 100.0 100.0 99.9 99.9 100.0
Power under dense alternative
p =01 p=102
100 Proposed 12.7 99 11.7 114 11.6 56.3 570 541 53.2 539
CLX 5.1 42 5.1 50 54 12.2 9.8 77 6.9 7.1
LC 14.2 15 13.0 145 123 639 629 63.4 64.3 64.1
Weighted 6.6 7.0 6.7 6.9 74 279 223 205 17.1 170
200 Proposed 226 224 18.8 19.6 18.0 99.0 99.8 993 99.3 99.1
CLX 54 6.5 44 47 42 45.0 427 33.0 26.4 274
LC 246 249 26.8 249 255 98.2 99.0 993 99.5 993
Weighted 10.7 111 74 7.1 7.0 86.7 859 794 754 757

NOTE: This table reports the frequencies of rejection by each method under the null and alternative hypotheses based on 1000 independent replications at the significance

level 5%.

Table 2. Comparison of empirical size and power (%) for models (ii), {iii), and (iv) with Gaussian data.

Model (ii) Model (iii) Model (iv)
N P 100 200 500 800 1000 100 200 500 800 1000 100 200 500 800 1000
Size
100 Proposed 47 46 6.0 55 54 6.6 6.1 46 43 49 54 55 5.6 44 6.2
CLX 41 45 57 55 53 47 5.6 42 36 45 42 5.0 55 43 53
LC 55 4.0 54 52 48 5.6 58 49 4.4 48 6.1 5.7 5.6 5.0 57
Weighted 43 47 5.1 5.6 48 54 59 47 37 49 47 53 6.2 5.1 5.2
200 Proposed 6.0 5.1 43 44 49 6.4 6.0 59 5.1 42 5.6 5.7 6.4 41 5.0
CLX 4.0 5.0 4.0 35 41 49 49 46 34 33 45 47 44 35 4.0
LC 5.8 5.6 42 47 46 58 5.1 52 5.7 45 5.1 53 6.4 6.3 45
Weighted 5.0 5.2 4.4 42 44 53 5.6 57 42 31 5.1 44 53 43 47
Power under sparse alternative
100 Proposed 99.1 B804 796 76 836 943 87.1 78.2 732 791 94.0 944 922 744 90.8
CLX 99.7 836 859 774 90.2 96.7 90.6 827 795 B86.6 95.2 96.5 954 815 938
LC 327 9.5 6.7 6.7 56 186 17 53 48 6.5 17.7 1.7 6.7 58 59
Weighted 993 833 842 772 894 96.9 89.9 822 784 85.0 958 96.8 948 819 93.2
200 Proposed 100.0 100.0 100.0 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 999
CLX 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
LC 422 19.6 79 6.4 8.0 59.7 134 12.0 8.7 6.0 30.2 228 9.7 7.1 74
Weighted 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Power under dense alternative
100 Proposed 846 843 853 83.1 843 97.0 98.2 98.2 979 979 754 833 823 835 844
CLX 143 19 10.0 7.1 6.2 36.7 284 201 17.7 166 104 77 58 6.4 6.7
LC 873 893 90.5 90.3 91.1 97.0 97.8 989 98.5 98.6 813 88.7 B88.8 90.6 90.5
Weighted 448 337 302 274 231 765 726 64.3 596 558 33a 29.1 224 268 256
200 Proposed 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0
CLX 57.1 494 379 320 282 90.6 20.8 89.0 B4.4 85.0 454 356 222 219 201
LC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 999 100.0 100.0 100.0
Weighted 98.0 98.2 97.1 929 921 100.0 100.0 100.0 100.0 100.0 95.0 920 88.4 875 878

NOTE: This table reports the frequencies of rejection by each method under the null and alternative hypotheses based on 1000 independent replications at the significance

level 5%.

6. Application to Gene-Set Testing

We demonstrate the power of our proposed test by identifying
those sets of genes which potentially have significant differences
in covariance matrices across different types of tumors. In biol-
ogy, each gene does not work individually, but rather tends to
function as groups to achieve complex biological tasks. Sets of

genes are interpreted by Gene Ontology (GO) terms making use
of the Gene Ontology system, in which genes are assigned to
a set of predefined bins depending on their functional charac-
teristics. The Gene Ontology covers three domains: biological
process (BP), cellular component (CC) and molecular function
(MF).



Table 3. Comparison of empirical size and power (%) for models (v), (vi), and (vii) with Gaussian data.
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Model (v) Model (vi) Model (vii)
N P 100 200 500 800 1000 100 200 500 800 1000 100 200 500 800 1000
Size
100 Proposed 96 8.9 10.8 59 94 6.9 5.1 42 49 36 8.6 89 6.8 B89 6.2
CLX 41 29 44 37 33 1.7 2.0 27 26 28 23 14 1.2 1.8 0.9
LC 96 87 117 104 96 84 7.7 58 54 51 105 109 91 108 8.7
Weighted 6.7 6.5 82 6.7 58 36 23 32 34 28 1.7 34 17 8.0 9.0
200 Proposed 93 10.7 8.8 9.0 113 6.8 59 432 34 47 103 86 6.7 75 73
CLX 44 43 37 35 5.1 1.7 27 1.7 23 35 23 18 1.6 0.7 0.7
LC 97 101 89 86 13 85 6.5 58 45 53 120 11.0 83 106 103
Weighted 6.4 79 6.4 6.9 76 4.0 37 24 25 39 2.0 1.6 20 22 53
Power under sparse alternative
100 Proposed 93.7 97.2 835 975 798 937 97.8 96.8 86.4 742 98.2 95.1 789 753 708
CLX 955 977 873 99.0 843 958 99.0 98.8 899 B80.0 98.9 96.7 84.1 BO.S 769
LC 131 97 6.7 86 6.1 135 141 101 5.8 6.2 203 12.7 6.9 73 59
Weighted 955 98.0 86.3 98.7 848 955 98.7 98.2 88.1 78.2 98.9 96.2 B45 793 768
200 Proposed 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
CLX 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
LC 93.7 246 9.5 8.8 7.8 86.3 231 1.1 1.7 9.2 270 215 113 17 6.5
Weighted 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Power under dense alternative
100 Proposed 855 BB.O 94.7 94.4 96.8 506 517 56.1 603 584 272 243 270 274 254
CLX 575 615 722 725 78.1 10.2 12.0 73 6.9 6.9 101 9.1 86 93 94
LC 855 878 948 948 97.0 55.2 63.8 67.2 719 718 296 269 303 294 268
Weighted 7718 825 90.4 91.2 936 269 273 189 188 185 19.2 17.0 185 18.7 176
200 Proposed 98.6 99.5 99.7 100.0 999 853 927 96.9 98.7 97.7 441 438 444 431 456
CLX 874 922 96.3 979 97.7 269 283 215 204 185 18.7 16.7 171 180 180
LC 98.5 99.4 99.8 999 100.0 895 95.0 98.2 98.8 98.8 451 473 484 46.3 493
Weighted 96.9 98.7 99.5 100.0 99.9 586 65.4 64.7 64.3 61.7 358 325 335 317 335

NOTE: This table reports the frequencies of rejection by each method under the null and alternative hypotheses based on 1000 independent replications at the significance

level 5%.
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Figure 1. Boxplots of the LC, CLX, and Weighted test statistics. The statistics come from the simulation studies for Model (i) with N = 100 and p = 500 based on 1000

replications.

We consider the Acute Lymphoblastic Leukemia (ALL) data
from the Ritz Laboratory at the Dana-Farber Cancer Insti-
tute (DFCI). The latest data is accessible at the ALL pack-
age (version 1.24.0) on the Bioconductor website, includ-
ing the original version published by Chiaretti et al. (2004).
The ALL dataset consists of microarrays expression measures
of 12,625 probes on Affymetrix chip series HG-U95Av2 for
128 different individuals with acute lymphoblastic leukemia,

which is a type of blood cancer in that bone marrow affects
white blood cells. Based on the type of lymphocyte that the
leukemia cells come from, the disease is classified into sub-
groups of T-cell ALL and B-cell ALL. In our study, we focus
on a subset of the ALL data of 79 patients with the B-
cell ALL. We are interested in two types of B-cell tumors:
BCR/ABL and NEG, with sample sizes being 37 and 42,
respectively.
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Table 4. Summary of the dimension of gene-sets for three GO categories.

GO category Total number Min First-Quantile Median Third-Quantile Max
BP 1849 10 15 27 62 2153
cC 306 10 i ¥ 32 85 2181
MF 324 10 14 26 68 2148
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Figure 2. Histograms of the dimension of gene-sets for three GO categories.
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Figure 3. Boxplots of the LC and CLX test statistics for three GO categories.

Let us consider K gene sets Sy, .. ., Sk, and X5, and X g, be
the covariance matrices of two types of tumors, respectively. The
null hypotheses we are interested are

HO,categury : ElSk = EZS;;; 3 (R

where category € {BP, CC, MF} because we classify the gene
sets into three different GO categories and shall test each GO
category separately.

To control the computational costs, we first perform a pre-
screening procedure following the same criteria as in Dudoit,
Keles, and van der Laan (2008) by choosing those probes that
satisfy (i) the fluorescence intensities greater than 100 (absolute

scale) for at least 25% of the 79 cell samples; (ii) the interquartile
range (IQR) of the fluorescence intensities for the 79 cell sam-
ples greater than 0.5 (log base 2 scale). The preliminary gene-
filtering retains 2391 probes. After that we then identify those
GO terms annotating at least 10 of the 2391 filtered probes,
which gives us 1849 unique GO terms in BP category, 306
in CC and 324 in MF for further analysis. Table 4 and Fig-
ure 2 summarize the dimension of gene-sets contained in each
category.

We first take a look at the performance of the CLX test and the
LC test in the boxplots of Figure 3. It can be observed that test
statistics have quite different magnitudes, indicating difficulty



Table 5. Gene-set testing results at the nominal level & = 0.05.
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GO category Total number Number of significant gene-sets

of gene-sets CLX Bonferroni Weighted Proposed
BP 1849 297 505 451 485 615
CC 306 52 m 96 80 116
MF 324 38 61 78 96
Table 6. Gene-set testing results with the FDR control at & = 0.05.
GO category Total number Number of significant gene-sets

of gene-sets CLX LC Bonferroni Weighted Proposed
BP 1849 0 126 81 7 254
CcC 306 0 24 0 68
MF 324 0 4 0 26

in the approach of weighted summation combination of the two
statistics.

We then apply our proposed Fisher’s method to test the
hypothesis, together with comparisons to the CLX and LC tests.
We also compare our test with the natural Bonferroni combi-
nation. The test outcomes are reported in Table 5, with nominal
level @ = 0.05 for each test. Furthermore, in order to control the
false discovery rate (FDR), we apply the Benjamini-Hochberg
(BH) procedure (Benjamini and Hochberg 1995) to each GO
category, and the results are listed in Table 6, with nominal level
a = 0.05 for every category.

As shown in Table 6, our proposed test identifies much more
significant gene-sets than the other methods. The LC identifies
a few while the Bonferroni test identifies fewer significant gene-
sets than the LC test does. This illustrates that the Bonferroni
test is relatively conservative, which is consistent with what we
expect. Unfortunately, the CLX test fails to declare any signif-
icance after we control the FDR using BH procedure. This is
possibly because the signals in the differences are not strong
enough for the CLX test to detect.

Further, we investigate the potential importance of those
gene-sets that are not declared significant by the CLX and LC
tests but are identified by our proposed Fisher test. Taking
the GO term “GO:0005905” as an example, it refers to the
clathrin-coated pit which functions in the cellular component
(CC) gene ontology category. Protein evidence by Ezkurdia
et al. (2014) confirms that the clathrin-coated pit works with
several protein-coding genes, such as CLTCL1, PICALM, etc.,
that are closely related to human cancers. We also take a deep
look at “G0:0035259;” the glucocorticoid receptor binding, in
the molecular function (MF) gene ontology category. Many
genes contribute to this gene-set, among them, we pay spe-
cial attention to STAT3, a protein-coding gene which plays
an important role in the immune system by transmitting sig-
nals for the maturation of immune system cells, especially T-
cells and B-cells. Researchers have observed that STAT3 gene
mutations are highly correlated with cancers, especially blood
cancers (Hodge, Hurt, and Farrar 2005; Jerez et al. 2012; Haa-
paniemi et al. 2015; Milner et al. 2015). In a short sum-
mary, our proposed test incorporates the information from the
CLX statistic, which successfully enhances the power over the
LC test, even though the LC test itself may not declare any
significance.

7. Conclusion

This article studies the fundamental problem of testing high-
dimensional covariance matrices. Unlike the existing quadratic
form statistics, maximum form statistics, and their weighted
combination, we provide a new perspective to exploit the full
potential of quadratic form statistics and maximum form statis-
tics. We propose a scale-invariant and computationally efficient
power-enhanced test based on Fisher’s method to combine their
respective p-values. Theoretically, after deriving their joint lim-
iting null distribution, we prove that the proposed combination
method retains the correct asymptotic size and boosts the power
against more general alternatives. In particular, we derive a new
Lyapunov-type bound for the joint distribution and prove the
correct asymptotic size of the proposed method without requir-
ing the Gaussian assumption. Numerically, we demonstrate the
finite-sample properties in simulation studies and the practical
relevance in an application to gene-set testing.

Supplementary Materials
The supplementary materials provide technical lemmas, the complete

proofs of lemmas and theorems, and additional numerical results for non-
Gaussian data.
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