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ABSTRACT

Power-enhanced tests with high-dimensional data have received growing attention in theoretical and
applied statistics in recent years. Existing tests possess their respective high-power regions, andwemay lack
prior knowledge about the alternatives when testing for a problem of interest in practice. There is a critical
need of developing powerful testing procedures against more general alternatives. This article studies the
joint test of two-sample mean vectors and covariance matrices for high-dimensional data. We orst expand
the high-power regions of high-dimensional mean tests or covariance tests to a wider alternative space
and then combine their strengths together in the simultaneous test. We develop a new power-enhanced
simultaneous test that is powerful to detect diferences in eithermean vectors or covariancematrices under
either sparse or dense alternatives. We prove that the proposed testing procedures align with the power
enhancement principles introduced by Fan, Liao, and Yao and achieve the accurate asymptotic size and
consistent asymptotic power. We demonstrate the onite-sample performance using simulation studies and
a real application to ond diferentially expressed gene-sets in cancer studies. Supplementary materials for
this article are available online.
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1. Introduction

Inferences on the equality of two distributions are of signiocant
interest in a wide range of real applications. Genetic studies
use the diferential gene expression analysis to understand how
genes are related to diseases (Wang, Peng, and Li 2015). Medical
image analysis examines the diferential structure of images to
diagnose abnormal tissues (Ginestet et al. 2017). Pharmaceutical
researchers rely on the analysis of comparative clinical trial
outcomes for drug discovery and development (Cummings et al.
2019).

To make inferences on the discrepancies between two distri-
butions, we usually consider their mean vectors and covariance
matrices that characterize commonly used distributions, for
example, the elliptical distributions (Anderson 2003). Over the
past decade, there has been signiocant progress in testing the
equality of two mean vectors (Chen and Qin 2010; Wang, Peng,
and Li 2015; Wang and Yuan 2019; Chen, Li, and Zhong 2019)
or covariance matrices (Li and Chen 2012; Zhu et al. 2017;
Chen, Guo, and Qiu 2019) under the high-dimensional setting.
Yet few works are capable of examining both mean vectors and
covariance matrices simultaneously.

However, in practice, we oven do not know whether the
discrepancies reside in mean vectors or in covariance struc-
ture. It has been recognized that mean tests are powerful to
detect the diferences in mean vectors but cannot detect the
diferent covariance structure. In contrast, covariance tests are
powerful to identify the diferences in covariance structure but
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are incompetent to distinguish the diferential structure of two
mean vectors. Thus, it is crucial to develop a new simultaneous
testing procedure that is powerful to detect diferences in either
mean vectors or covariance matrices.

Let X and Y be two p-dimensional populations with mean
vectors (μ1,μ2) and covariance matrices (�1,�2), respectively.
We consider the simultaneous test on the equality of mean
vectors and covariance matrices of the two populations, that is,

H0 : μ1 = μ2 and �1 = �2. (1.1)

In real-world applications such as genetic studies, the sample
size is oven less than a hundred, but the number of features can
be thousands or even larger (Clarke et al. 2008). Throughout this
article, we assume that the dimension p is much larger than the
sample size n1 or n2. The challenge of high dimensionality leads
to fundamental dioculties in understanding the asymptotic
behavior of test statistics.

Two diferent classes of alternatives (i.e., dense alternatives

and sparse alternatives) have been explored in the high-

dimensional hypothesis testing. For dense alternatives, the

parameter space of interest is deoned using the squared entry-

wise �2 norm, that is, ‖μ1 − μ2‖2 and tr{(�1 − �2)
2}, and

the distributions underH0 andH1 are hard to distinguish when

the nonzero entries of μ1 − μ2 and �1 − �2 are of about the

same size in the absolute value (Chen and Qin 2010; Li and

Chen 2012). For sparse alternatives, the parameter space of

interest is deoned using the entry-wise maximum norm, that
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is, max1≤i≤p (μ1i − μ2i)
2 and max1≤i,j≤p(σ1,ij − σ2,ij)

2, and

the distributions underH0 andH1 are hard to distinguish when

there are only a few large nonzero entries ofμ1−μ2 and�1−�2

(Arias-Castro, Candès, and Plan 2011; Cai, Liu, and Xia 2013).

The mathematical deonitions of dense alternatives and sparse

alternatives will be presented in Section 3.
In the literature, there only exist a fewworks on jointly testing

means and covariances. In the classical setting with a oxed
dimension p, the likelihood ratio test (LRT) was extensively
studied in the multivariate analysis (Anderson 2003) when the
samples come from normal distributions. When p diverges
proportionally as the sample size tends to inonity such that
p/min{n1, n2} → c for some 0 < c ≤ 1, Jiang and Yang (2013)
studied the modioed LRTs under the normal assumption and
derived central limit theorems. The normal assumption was
recently relaxed by Niu et al. (2019). To allow p to diverge at
a comparable rate as the sample size tends to inonity, that is,
0 < c < ∞, Liu et al. (2017) proposed a new approach by
replacing the entropy loss with the quadratic loss for covariance
matrix estimation. Hyodo and Nishiyama (2018) proposed a
new joint test using a weighted sum of multiple U-statistics to
allow p to diverge faster than the sample size.

However, most existing testing procedures only allow for
a moderately high dimension in the asymptotic regime such
that the dimension diverges at a slower rate than the sample
size. Also, these existing testing procedures are mainly based on
the modioed LRTs or the L2-norm-based test. Like quadratic-
form tests, they perform well against dense alternatives but
perform poorly against sparse alternatives (Fan, Liao, and Yao
2015; Li and Xue 2015; Yu, Yao, and Xue 2019; Yu, Li, and Xue
2020). These tests sufer from power loss in detecting sparse
signals, as the errors in estimating high-dimensional parameters
accumulate (Fan, Liao, and Yao 2015). Moreover, these joint
testing procedures are essentially based on a weighted sum of
one test statistic related to the mean diference and another test
statistic related to the covariance diference. The weighted sum
is not an ideal combination due to potentially diferent scales
of two test statistics. These tests could be driven by the test
statistic of a larger scale, leading to undesired power loss in the
corresponding alternative space (Xie, Singh, and Strawderman
2011).

This article aims to develop a new power-enhanced simulta-
neous testing procedure that is powerful to detect diferences in
eithermean vectors or covariance structure against either sparse
alternatives or dense alternatives under a high-dimensional
setting. Fan, Liao, and Yao (2015) introduced the power
enhancement framework for high-dimensional hypothesis
testing, which consists of the following power enhancement
(PE) principles: (a) no size distortion; (b) the power-enhanced
test is at least as powerful as the original test; (c) the power
is substantially enhanced under a more general alternative. In
this work, we interpret the more general alternatives from the
following two perspectives:

(a) expanding the high-power regions of mean tests or covari-
ance tests to a wider alternative space, respectively. We aim
to develop the power-enhanced tests against the union of
their corresponding dense and sparse alternatives.

(b) extending the test capability to alternative spaces with
respect to both mean vectors and covariance matrices. We
aim to combine strengths of two power-enhanced tests and
develop a joint test that is capable of detecting the diference
from either mean vectors or covariance matrices.

To expand the high-power regions, we construct power-
enhanced tests for mean vectors and covariance matrices sep-
arately. We revisit the test statistics of Chen and Qin (2010) and
Li and Chen (2012) that are constructed based on the estimators
of the squared Euclidean distance of two sample mean vectors
and the squared Frobenius distance of two sample covariance
matrices, respectively. It is known that they are powerful to
detect dense signals but unable to detect sparse signals (Chen,
Li, and Zhong 2019). We introduce their respective PE compo-
nents to efectively enlarge the high-power regions to the union
of sparse and dense alternatives. We show that the proposed
power-enhanced tests satisfy three desired PE principles. It is
worth pointing out that we need new ideas to deal with a
more challenging setting than that in Fan, Liao, and Yao (2015).
The mechanism of enhancing test power via PE components is
to add a constructed component to an asymptotically pivotal
statistic, so that the resultant testing power is strengthened
upon the original test. The construction of PE components
relies on a screening over the marginal test statistics. Fan, Liao,
and Yao (2015) employs a quadratic-form OLS-based statis-
tic, whose marginal distributions are asymptotically normal.
However, Chen and Qin (2010) and Li and Chen (2012) use
degenerate U-statistics, and the distributions of their marginal
test statistics are no longer asymptotically normal but rather a
χ2 distribution under the null hypothesis. The asymmetrically
distributed marginal statistics require additional attention in
the design of PE components. To the best of our knowledge,
this is the orst work that constructs PE components based on
degenerate U-statistics.

Aver expanding the high-power regions, we aim to combine
their strengths to develop the power-enhanced simultaneous
test to further enhance the test capability for jointly testing
mean vectors and covariance matrices. We prove the asymp-
totic independence of two PE test statistics and then aggregate
information from the two aspects via the combination of their
respective p-values using Fisher’s method (Fisher 1925). We
also show that the proposed power-enhanced simultaneous test
satisoes three PE principles. It is important to note that, unlike
Fan, Liao, and Yao (2015), Li and Xue (2015); Yu, Yao, and
Xue (2019), and Yu, Li, and Xue (2020), we do not require the
stringent normal assumption or independent assumption when
deriving the asymptotic independence result. Compared with
Fan, Liao, and Yao (2015) and Li and Xue (2015), our proposed
test is scale-invariant and computationally eocient.

We study the theoretical properties under an ultra-high
dimensional setting where the dimension may grow at a nearly
exponential rate of the sample size. Moreover, we conduct
simulation studies to compare the proposed test’s numerical
performance against several benchmark tests under various
alternatives. In a real application, we further demonstrate the
power of the proposed test to ond diferentially expressed gene-
sets using an acute lymphoblastic leukemia dataset.Our ondings
are supported by the biological literature.
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The rest of this article is organized as follows. Section 2
presents the preliminaries, and Sections 3 and 4 include
the complete methodological details. Theoretical properties,
including the power enhancement properties, the asymptotic
size and power analysis as well as the asymptotic optimality,
are also established in these two sections. Section 5 conducts
simulation studies to demonstrate the onite-sample properties
under diferent alternative hypotheses. Section 6 presents an
empirical study on identifying diferentially expressed gene-
sets among various types of cancers. Section 7 includes a few
concluding remarks. All technical details are presented in the
supplementary materials.

2. Preliminaries

Let X be a p-dimensional random vector with mean μ1 =
(μ11, . . . ,μ1p)

′ and covariance �1 =
(
σ1,ij

)
p×p

, and Y be a p-

dimensional random vector with mean μ2 = (μ21, . . . ,μ2p)
′

and covariance �2 =
(
σ2,ij

)
p×p

. Suppose that {X1, . . . ,Xn1}
are iid copies of X, and {Y1, . . . ,Yn2} are iid copies of Y that
are independent of {X1, . . . ,Xn1}. Now, we consider the high-
dimensional mean test

H0m : μ1 = μ2, (2.1)

and the high-dimensional covariance test

H0c : �1 = �2, (2.2)

respectively. Chen and Qin (2010) proposed the following
quadratic-form statistic Mn1,n2 for testing if the two high-
dimensional populations share the same mean vector in (2.1):

Mn1,n2 =
1

n1(n1 − 1)

n1∑

u�=v

(
X

′
uXv

)
+

1

n2(n2 − 1)

n2∑

u�=v

(
Y

′
uYv

)

−
2

n1n2

n1∑

u

n2∑

v

(
X

′
uYv

)
. (2.3)

To test the equality of two covariance matrices in (2.2), Li
and Chen (2012) constructed their test statistic based on the
squared Frobenius norm of �1 − �2. Since ‖�1 − �2‖2F =
tr

(
(�1 − �2)

2
)

= tr(�2
1) + tr(�2

2) − 2tr(�1�2), they pro-
posed a test statistic Tn1,n2 in the form of linear combination of
unbiased estimators for each term, that is,

Tn1,n2 = An1 + Bn2 − 2Cn1,n2 , (2.4)

where An1 , Bn2 , and Cn1,n2 are the unbiased estimators for
tr(�2

1), tr(�2
2), and tr(�1�2), respectively. The following

assumptions are discussed in Chen and Qin (2010) and Li and
Chen (2012) to establish the asymptotic properties of two test
statisticsMn1,n2 and Tn1,n2 .

Assumption 1. For any i, j, k, l ∈ {1, 2}, as n1, n2, p → ∞,

tr (�k�l) → ∞, tr
{
�i�j�k�l

}
= o

{
tr

(
�i�j

)
tr (�k�l)

}
.

(2.5)

Theoretically, if we consider a simple case that �1 = �2 =
�, the condition (2.5) reduces to tr(�4) = o(tr2(�2)), which
holds when λ2max = o(tr(�2)). When the smallest eigenvalue
is larger than 0, the condition allows λmax to diverge as long as
λ2max = o(p).

Assumption 2. The random vectors {Xu}n1u=1, {Yv}n2v=1 satisfy

Xu = �1Z1u+μ1, Yv = �2Z2v+μ2 1 ≤ u ≤ n1, 1 ≤ v ≤ n2,
(2.6)

where �i = (γ i1, . . . , γ ip)
′ is a p × mi matrix for some

mi ≥ p such that �i�
′
i = �i for i = 1, 2, and {Zij}nij=1 =

{(zij1, . . . , zijmi)
′ }nij=1 ∈ R

mi are iid random vectors such that for

any positive integers q and αl such that
∑q

l=1 αl ≤ 8, and for
any 1 ≤ k1 �= k2 �= · · · �= kq ≤ mi,

E(zijk) = 0, var(zijk) = 1, cov(zijk1 , zijk2) = 0,

E(z4ijk) = 3 + �i, E(z8ijk) < ∞,
(2.7)

and

E(zα1ijk1z
α2
ijk2

. . . z
αq

ijkq
) = E(zα1ijk1)E(zα2ijk2) . . . E(z

αq

ijkq
). (2.8)

Note that (2.6) expresses the samples using a factor-model
structure, and (2.7) spells themoment conditions needed for the
factors zijk, in which the�i measures the fourth-moment difer-
ence compared to a standard normal distribution. (2.8) depicts a
pseudo-independent pattern among its components for eachZij.
The condition is satisoed ifZij does have independent structure.

Under the null hypothesisH0m, Chen andQin (2010) consid-
ered the standardized test statisticMn1,n2/σ̂01 and proved that,

under H0m :
Mn1,n2

σ̂01

d→ N(0, 1) as n1, n2, p → ∞, (2.9)

where σ̂01 is a consistent estimator of σ01 = ( 2
n1(n1−1) tr(�

2
1) +

2
n2(n2−1) tr(�

2
2) + 4

n1n2
tr(�1�2))

1
2 , which is the standard devia-

tion ofMn1,n2 underH0m. The test rejectsH0m with signiocance
level α if Mn1,n2 ≥ σ̂01zα , where zα is the upper α-quantile of
standard normal distribution.

Under the null hypothesisH0c, we note that the leading vari-

ance of Tn1,n2 is σ 2
02 = 4

(
1
n1

+ 1
n2

)2
tr2

(
�2

)
. With σ̂02 being a

consistent estimator of σ02, Li and Chen (2012) conducted the
test forH0c on the basis of the test statisticTn1,n2/σ̂02 and proved
that,

under H0c :
Tn1,n2

σ̂02

d→ N(0, 1) as n1, n2, p → ∞. (2.10)

The test rejects H0c with a nominal signiocance level α if
Tn1,n2 ≥ σ̂02zα .

In the sequel, we will present our proposed power-enhanced
simultaneous test on jointly testing means and covariances in
high dimensions. In Section 3, we propose power-enhanced
tests for the mean test and the covariance test, respectively, to
boost their respective power. In Section 4, anchored in these two
power-enhanced test statistics, we study their asymptotic joint
distribution and subsequently introduce our simultaneous test
to expand the test capability for jointly testing high-dimensional
mean vectors and covariance matrices.

3. Power-Enhanced Tests

BothMn1,n2 and Tn1,n2 are quadratic-form statistics. It has been
known that such type of statistics sufer from low power against
sparse alternatives where the parameter of interest difers only in
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a small proportion of coordinates. One predominant approach
to achieve high testing power against sparse alternatives is to
use extreme values to construct test statistics (Cai, Liu, and
Xia 2013; Chernozhukov, Chetverikov, and Kato 2019), whereas
another way continues with the quadratic-form statistics but
rules out nonsignal bearing dimensions via thresholding (Fan
1996; Chen, Li, and Zhong 2019; Chen, Guo, and Qiu 2019).
However, these tests generally require either stringent condi-
tions or bootstrap to derive the limiting null distribution and are
likely to sufer from size distortions due to slow convergence.
Also, even though the extreme value tests and thresholding
tests retain high power against sparse alternatives, they tend
to lack the ability to detect dense and faint signals, in which
circumstances the quadratic-form tests are favored.

To deal with the challenge mentioned above, we orst explore
power enhancement for testing high-dimensional mean vectors
and covariancematrices based onMn1n2 andTn1,n2 , respectively.
Fan, Liao, and Yao (2015) provides a helpful insight for us to
enhance testing power against sparse alternatives and preserve
the merits of existing quadratic-form tests at the same time. We
construct two PE components Jm and Jc, which are designed to
take zero values under the null hypothesis but diverge quickly
under sparse alternatives. The PE components are designed
delicately following the guidance of the three PE principles. By
adding the PE components to the original statistics, the resultant
tests σ̂−1

01 Mn1,n2 + Jm and σ̂−1
02 Tn1,n2 + Jc acquire substantially

enhanced power under sparse alternatives with little size distor-
tion under the null hypothesis.

Diferent from Fan, Liao, and Yao (2015), the distributions of
our marginal test statistics are no longer asymptotically normal
under H0. To be more specioc, Fan, Liao, and Yao (2015) uses a
quadratic-formOLS-based statistic to test the signiocance of the
intercept in multi-factor pricing models. For each coordinate,
the marginal test statistic asymptotically follows a standard nor-
mal distribution. Yet here, Mn1,n2 and Tn1,n2 are degenerate U-
statistics. Under the null hypothesis, their marginal statistics are
no longer asymptotically normal, causing dioculties in design-
ing the PE components. In specioc, the PE component is usually
constructed using a screening technique. A properly chosen
threshold is critical to capture the signal-bearing dimensions
while exclude nonsignal-bearing dimensions efected by esti-
mation noise. The choice of such threshold is straightforward
for the well-known normal distribution but requires additional
eforts for nonnormal distributions. Aver careful investigation,
we prove that the marginal standardized statistics follow Chi-
squared distributions. To overcome the challenge brought by
these asymmetrically distributed marginal statistics, we control
the tail probabilities using a generalized result (Petrov 1954) of
Cramér’s limiting theorem, and choose the thresholds accord-
ingly.

Let n = n1 + n2 and δp and ηp be the thresholds chosen
for the mean statistics and covariances statistics, respectively.
We choose Jm and Jc to be the sum of marginal standardized
statistics whose values exceed δp and ηp. By construction, the
screening procedure rules out all the noises under the null
hypothesis. Still, it makes it capable of capturing nonzero signals
under sparse alternatives, implying that Jm and Jc equal to zero
under the null hypothesis but diverge quickly under the sparse
alternatives.

3.1. Power-EnhancedMean Tests

We use X = (X1, . . . ,Xp)
′ and Y = (Y1, . . . ,Yp)

′ to denote
the random vectors of interest. Let Xu = (Xu1, . . . ,Xup)

′ and
Yv = (Yv1, . . . ,Yvp)

′ be the corresponding random samples.We

rewrite the statisticMn1,n2 intoMn1,n2 =
∑p

i=1Mi, where

Mi =
1

n1(n1 − 1)

n1∑

u�=v

(XuiXvi) +
1

n2(n2 − 1)

n2∑

u�=v

(YuiYvi)

−
2

n1n2

n1∑

u

n2∑

v

(XuiYvi) .

For each i = 1, . . . , p,Mi consistently estimates (μ1i − μ2i)
2 as

n1, n2 → ∞. Under the null hypothesis H0m : μ1 = μ2, the
variance ofMi is

νi :=
2

n1(n1 − 1)
σ 2
1,ii +

2

n2(n2 − 1)
σ 2
2,ii +

4

n1n2
σ1,iiσ2,ii,

which can be consistently estimated by ν̂i := 2
n1(n1−1) σ̂

2
1,ii +

2
n2(n2−1) σ̂

2
2,ii + 4

n1n2
σ̂1,iiσ̂2,ii, with σ̂1,ii and σ̂2,ii being sample

variances of Xi and Yi, respectively. Deone

Jm =
√
p

p∑

i=1

Mîν
−1/2
i I{

√
2Mîν

−1/2
i + 1 > δp} (3.1)

with δp = 2 log p as the power enhancement component for the
mean test. The theoretical analysis regarding Jm is established
upon δp = 2 log p. In practical implementations, we follow Fan,
Liao, and Yao (2015) to choose a slightly larger thresholding
value, speciocally δp,n = 2 log p log log n, to mitigate onite-
sample biases.

In what follows, we present some theoretical properties of the
constructed PE component Jm as well as the proposed power-
enhanced mean test. To ensure that adding the PE component
does not bring in size distortion, Fan, Liao, and Yao (2015)
assumes the errors in a regression model follow a normal distri-
bution. Beneoting from the usage of concentration inequalities
to analyze the tail probabilities for degenerate U-statistics, we
only assume the distributions of both populations are sub-
Gaussian.

Assumption 3. There exists a positive constant H such that for
all h ∈ [−H,H],

Eeh(Xui−μ1i)
2
< ∞, Eeh(Yvi−μ2i)

2
< ∞ for i = 1, . . . , p.

(3.2)

The sub-Gaussianity assumption is imposed to control the
tail probability of marginal statistics, ensuring the PE compo-
nents equal to zero under the null hypothesis. This condition
has also been assumed in relevant literature such as Chen, Guo,
and Qiu (2019) and Chen, Li, and Zhong (2019).

Theorem 1. Suppose n1/ (n1 + n2) → γ for some constant
γ ∈ (0, 1) as min{n1, n2} → ∞ and log p = o(n1/3). Given
Assumptions 1–3, under the null hypothesis H0m : μ1 = μ2, as
n1, n2, p → ∞,

P (Jm = 0|H0m) → 1, MPE =
1

σ̂01

p∑

i=1

Mi + Jm
d→ N(0, 1).

(3.3)
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Theorem 1 proves that Jm = 0 holds under H0m with
probability tending to 1. Thus, adding Jm to the mean statistic
σ̂−1
01 Mn1,n2 will not afect its limiting null distribution. The

proposed power-enhanced mean test rejects H0m with the sig-
niocance level α ifMPE ≥ zα .

3.2. Power-Enhanced Covariance Tests

As for the covariance test statistic Tn1,n2 , we orst decompose
Tn1,n2 into

Tn1,n2 =
p∑

i=1

p∑

j=1

Tij =
p∑

i=1

p∑

j=1

(Aij + Bij − 2Cij),

where

Aij =
1

n1(n1 − 1)

n1∑

u�=v

XuiXviXujXvj

−
2

n1(n1 − 1)(n1 − 2)

n1∑

u�=v �=k

XuiXviXvjXkj

+
1

n1(n1 − 1)(n1 − 2)(n1 − 3)

n1∑

u�=v �=k�=l

XuiXviXkjXlj,

Bij =
1

n2(n2 − 1)

n2∑

u�=v

YuiYviYujYvj

−
2

n2(n2 − 1)(n2 − 2)

n2∑

u�=v �=k

YuiYviYvjYkj

+
1

n2(n2 − 1)(n2 − 2)(n2 − 3)

n2∑

u�=v �=k�=l

YuiYviYkjYlj,

Cij =
1

n1n2

n1∑

u

n2∑

v

XuiYviXujYvj

−
1

n1n2(n1 − 1)

n1∑

u�=k

n2∑

v

XuiYviYvjXkj

−
1

n1n2(n2 − 1)

n2∑

u�=k

n1∑

v

YuiXviXvjYkj

+
1

n1n2(n1 − 1)(n2 − 1)

n1∑

u�=k

n2∑

v �=l

XuiYviXkjYlj.

The decomposition is essential to derive the PE component.
For each i, j = 1, . . . , p, Tij consistently estimates the element-

wise diference in covariances, that is, Tij
p

→ (σ1,ij − σ2,ij)
2 as

n1, n2 → ∞. Under the null hypothesis H0c : �1 = �2, the
variance of Tij is

ξij := 2

(
1

n1

(
σ 2
1,ij + σ1,iiσ1,jj + �1tr(γ 1iγ

T
1j ◦ γ 1iγ

T
1j)

)

+
1

n2

(
σ 2
2,ij + σ2,iiσ2,jj + �2tr(γ 2iγ

T
2j ◦ γ 2iγ

T
2j)

))2

(1 + o(1)),

where γ ki and �k, k = 1, 2 are deoned by (2.6) and (2.7) in
Assumption 2. In addition, we know that var((Xi − μ1i)(Xj −

μ1j)) = σ 2
1,ij+σ1,iiσ1,jj+�1tr(γ 1iγ

T
1j◦γ 1iγ

T
1j), and analogously,

var((Yi − μ2i)(Yj − μ2j)) = σ 2
2,ij + σ2,iiσ2,jj + �2tr(γ 2iγ

T
2j ◦

γ 2iγ
T
2j). Therefore, ξij can be consistently estimated by

ξ̂ij := 2

(
1

n21

n1∑

u=1

{(Xui − X̄i)(Xuj − X̄j) − σ̂1,ij}2

+
1

n22

n2∑

v=1

{(Yvi − Ȳi)(Yvj − Ȳj) − σ̂2,ij}2
)2

,

where X̄j and Ȳj are the sample mean of Xj and Yj, σ̂1,ij and
σ̂2,ij are sample covariances of (Xi,Xj) and (Yi,Yj), respectively.
Deone

Jc =
√
p

p∑

i=1

p∑

j=1

Tiĵξ
−1/2
ij I{

√
2Tiĵξ

−1/2
ij + 1 > ηp} (3.4)

as the power enhancement component for the covariance test,
with ηp = 4 log p. Similar to the previous section, the theoretical
analysis regarding Jc is established upon ηp = 4 log p. In practi-
cal implementations, we use a slightly larger thresholding value,
speciocally ηp,n = 4 log p log log n, for the purpose ofmitigating
onite-sample biases.

Theorem 2. Suppose n1/ (n1 + n2) → γ for some constant
γ ∈ (0, 1) as min{n1, n2} → ∞ and log p = o(n1/5). Given
Assumptions 1–3, under the null hypothesis H0c : �1 = �2, as
n1, n2, p → ∞,

P (Jc = 0|H0c) → 1, TPE =
1

σ̂02

p∑

i=1

p∑

j=1

Tij + Jc
d→ N(0, 1).

(3.5)

Theorem 2 proves that under the null hypothesisH0c, Jc = 0
with probability approaching 1. The power-enhanced covari-
ance test rejects H0m with signiocance level α if TPE ≥ zα .

Remark 3.1. The thresholding values δp and ηp are chosen such
that the power enhancement principles (Fan, Liao, and Yao
2015) are guaranteed. Please see the theoretical analyses that
are presented in Sections S.2.4 and S.2.5 of the supplement for
the details. Intuitively, δp can be regarded as a threshold chosen
to control the tail behavior of p marginal χ2

1 random variables,
whereas ηp is used to control the tail behavior of p

2 marginal χ2
1

random variables. Given the fact that log p2 = 2 log p, we can
specify ηp = 4 log p and δp = 2 log p.

3.3. Power Enhancement Properties

In this section, we study the power enhancement properties of
our proposed power-enhanced tests MPE and TPE. Chen and
Qin (2010) and Li and Chen (2012) provided power analysis
of the mean test statisticMn1,n2 and the covariance test statistic
Tn1,n2 , respectively. Consider the following parameter spacesGd

m

and Gd
c for their alternative hypotheses:

G
d
m =

{
(μ1,μ2) : min{n1, n2}‖μ1 − μ2‖2

/

√
max{tr(�2

1), tr(�
2
2)} → ∞

}
,
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G
d
c =

{
(�1,�2) : �1 > 0,�2 > 0,

1

n1
tr(�2

1)

+
1

n2
tr(�2

2) = o
(
tr{(�1 − �2)

2}
)}

.

Chen and Qin (2010) pointed out that as n1, n2, p → ∞,
the mean test statistic Mn1,n2 would correctly reject the null
hypothesis H0m with probability approaching 1 if the mean
diferences μ1 − μ2 fall into the subspace Gd

m. Li and Chen
(2012) drew analogous conclusions in regard to the covariance
alternative space Gd

c corresponding to the covariance test Tn1,n2 .
More speciocally, as n1, n2, p → ∞,

inf
(μ1,μ2)∈Gd

m

P
(
Mn1,n2 ≥ σ̂01zα

)
→ 1 and

inf
(�1,�2)∈Gd

c

P
(
Tn1,n2 ≥ σ̂02zα

)
→ 1. (3.6)

Note that Gd
m and Gd

c use the squared Euclidean-norm ‖μ1 −
μ2‖2 and the squared Frobenius-norm ‖�1 −�2‖2F to specify a
large magnitude of diferences in mean vectors and covariance
matrices in order for the tests to be powerful in detecting the
discrepancies.

In what follows, we present the power enhancement proper-
ties of our proposed tests. We will show that adding the power
enhancement components Jm and Jc enables the tests to observe
sparse signals which only difer in a few coordinates.

Theorem 3. Suppose n1/ (n1 + n2) → γ for some constant
γ ∈ (0, 1) as min{n1, n2} → ∞ and log p = o(n1/5). Given
Assumptions 1–3, as n1, n2, p → ∞, we have

inf
(μ1,μ2)∈Gd

m∪Gs
m

P (MPE ≥ zα) → 1, and

inf
(�1,�2)∈Gd

c ∪Gs
c

P (TPE ≥ zα) → 1,

with

G
s
m =

{
(μ1,μ2) : max

1≤i≤p

(μ1i − μ2i)
2

ν
1/2
i

≥ Cδp
}

G
s
c =

{
(�1,�2) : �1 > 0,�2 > 0,

max
1≤i,j≤p

(σ1,ij − σ2,ij)
2

ξ
1/2
ij

≥ Cηp
}

where C is an absolute constant that does not depend on n1, n2
and p.

Theorem 3 shows that the power-enhanced tests have the
same rejection regions as those of the original tests, but the high
power regions are substantially expanded from Gd

m and Gd
s to

Gd
m ∪ Gs

m and Gd
c ∪ Gs

c , respectively.

Remark 3.2. Theorems 1–3 demonstrate that δp and ηp dom-
inate the maximum noise level under the null hypothesis, and
select signals under the designated alternatives. As long as n and
p are not too small such that δp, ηp > 1, which coincides with
the high-dimensional framework, the theorems conorms the
resultant power-enhanced mean testMPE and power-enhanced
covariance test MPE satisfy the three PE principles introduced
by Fan, Liao, and Yao (2015).

4. Power-Enhanced Simultaneous Test

Given twopower-enhanced tests, we have boosted the respective
power of testing mean vectors and covariance matrices. Before
heading to the aggregation of information from the two aspects,
we study the joint limiting distribution of the two statisticsMPE

and TPE.
We begin with some insights on the joint distributions for

statistics of the two aspects. Suppose we have a random sample
iid drawn from a univariate normal distribution, then it is well-
known that the sample mean and sample variance are indepen-
dent. To a slightly more complex case, suppose we have a ran-
dom sample iid drawn from a multivariate normal distribution
Np(μ,�) in the traditional statistical settings when p is oxed.
We look into two likelihood ratio test (LRT) statistics. Let 
1

be the LRT statistic for testing H0 : {μ = 0,� = Ip} versus
Ha : {μ ∈ R

p,� = Ip}, and let 
2 be the LRT statistic for
testing H0 : {μ ∈ R

p,� = Ip} versus Ha : {μ ∈ R
p,� > 0}. In

multivariate statistics, we know that
1 and
2 are independent
(Anderson 2003, Lemma 10.3.1).

The above discussion inspires us to conjecture on analogous
propositions regarding the joint distribution ofMPE andTPE. As
a matter of fact, in the following theorem, we prove that the two
statistics are indeed asymptotically independent.

Theorem 4. Suppose n1/ (n1 + n2) → γ for some constant
γ ∈ (0, 1) as min{n1, n2} → ∞ and log p = o(n1/5). Given
Assumptions 1–3, under H0, for any x1, x2 ∈ R, as n1, n2, p →
∞,

P (MPE ≤ x1,TPE ≤ x2) → �(x1)�(x2). (4.1)

With the information of the two separate power-enhanced
tests at hand, the next step is to reasonably aggregate the results
for testingmeans and covariances simultaneously.Most existing
works rely on the classical likelihood ratio test (Anderson 2003)
and its variants (Jiang and Yang 2013; Liu et al. 2017; Niu et al.
2019). Their test statistics are in the form of a summation of two
statistics, where one is designed for detecting discrepancies in
covariance matrices, and the other is to catch signals of distinct
mean vectors. We call this type of combined statistic as the
weighted sum statistics (Li and Xue 2015; Li, Xue, and Zou
2018).

However, the weighted sum statistics bear some drawbacks.
The two components are usually of diferent magnitudes. The
combined test would be mostly driven by the statistic with a
larger scale, but insensitive to the statistic with a smaller scale.
Such ineociency in combination would lead to power loss in
certain alternative spaces. Also, the distribution of the weighted
sum statistic depends on the convolution of twomarginal distri-
butions, which is usually computationally challenging, resulting
in dioculty in choosing critical value.

We propose a scale-invariant statistic to simultaneously test
the equality of mean vectors and covariance matrices, by com-
bining their separate p-values via Fisher’s method:

Jn1,n2 = −2 log(pm) − 2 log(pc), (4.2)

where pm = 1 − �(MPE) and pc = 1 − �(TPE) are the p-
values acquired from the power-enhanced mean test and the
covariance test, respectively, and �(·) is the cdf of N(0, 1).
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Figure 1. Power-enhanced simultaneous testing procedure.

As a matter of fact, the Fisher’s method has been widely
used in meta-analysis for combining the results of multiple
scientioc studies (Hedges and Olkin 2014). It is worth noticing
that meta-analysis is designed for combining studies coming
from independent sources. Yet combining two test statistics
which are constructed from the same sample would be a dif-
ferent story, and therefore requires careful investigation on the
independence assumption.

Theorem 4 proves that under the null hypothesis H0, the
two test statisticsMPE and TPE are asymptotically independent.
Hence, under H0, pm and pc asymptotically independently fol-
low a uniform distribution on the interval [0, 1], and therefore
−2 log(pm) and−2 log(pc) asymptotically independently follow
a Chi-squared distribution with 2 degrees of freedom. As a
result,

under H0 : Jn1,n2
d→ χ2

4 as n1, n2, p → ∞. (4.3)

Let qα denote the upper-α quantile of χ2
4 distribution, we reject

the null hypothesis at the signiocance level α if

Jn1,n2 ≥ qα . (4.4)

The procedures are summarized schematically in Figure 1.
Equippedwith the two key ingredientsMPE andTPE, we proceed
to investigate the size and power property of our proposed test
Jn1,n2 in Theorem 5. We show that our proposed test owns
asymptotically accurate size approximation to the nominal sig-
niocance level α and detects diferences in either mean vectors
or covariances over a wide range of alternatives.

Theorem 5 (Asymptotic Size and Power for Power-Enhanced
Simultaneous Test). Suppose n1/ (n1 + n2) → γ for some
constant γ ∈ (0, 1) as min{n1, n2} → ∞ and log p = o(n1/5).
Given Assumptions 1–3, as n1, n2, p → ∞, the test Jn1,n2
achieves (i) asymptotically accurate size, that is, under the null
hypothesis H0 : μ1 = μ2 and �1 = �2, we have

P
(
Jn1,n2 ≥ qα

)
→ α,

and (ii) asymptotically consistent power, speciocally,

inf
{(�1,�2)∈Gd

c ∪Gs
c}∪{(μ1,μ2)∈Gd

m∪Gs
m}
P

(
Jn1,n2 ≥ qα

)
→ 1.

Remark 4.1. Theorem 5 conorms that our second PE procedure
of expanding test capability from testing mean or covariances
only to jointly testing mean vectors and covariance matrices
satisoes the three PE principles.

There are other ways to aggregate information from the
two aspects as the asymptotic independence permits the valid-
ity of many other combination methods. In what follows, we
present two other tests using diferent methods to aggregate
information to facilitate numerical comparison in the empirical
studies. In Remark 4.2 and Section 5, we will show that the
Fisher’s combined test (4.4) outperforms other approaches as it
is asymptotically optimal with respect to Bahadur eociency.

One is a weighted statistics. Given the asymptotic indepen-
dence, we may take the sum of squares of two statistics and
transform the two asymptotic normal variables to an asymptotic
χ2
2 variable:

under H0 : Sn1,n2 = M2
PE + T2

PE
d→ χ2

2 as n1, n2, p → ∞.
(4.5)

The test rejectsH0 with a nominal signiocance level α if Sn1,n2 ≥
cα , where cα is the upper-α quantile ofχ2

2 distribution. The other
is an alternative p-value combination method. We consider the
aggregation via Cauchy transformation (Liu and Xie 2020).
The Cauchy combination is appealing for its insensitiveness
of dependence between the statistics to be combined. In here,
even though we obtain the asymptotic independence between
MPE and TPE, we introduce the Cauchy combination test as
a promising alternative. We deone the Cauchy combination
statistic as follows.

Cn1,n2 =
1

2
tan

(
(0.5 − pm)π

)
+

1

2
tan

(
(0.5 − pc)π

)
. (4.6)

Under H0, the asymptotic independence ensures that Cn1,n2

converges to a standard Cauchy distribution as n1, n2, p →
∞. The test rejects H0 with a nominal signiocance level α if
Cn1,n2 ≥ kα , where kα is the upper-α quantile of standard
Cauchy distribution.

Remark 4.2. Littell and Folks (1971, 1973) established the
asymptotic optimality of Fisher’s methods for combining
independent tests in terms of the Bahadur slope. Singh, Xie,
and Strawderman (2005) and Xie, Singh, and Strawderman
(2011) further discussed such optimality within the framework
of conodence distribution for meta-analysis. To combine the
two p-values pm = 1 − �(MPE) and pc = 1 − �(TPE),
the Fisher’s method yields the largest exact Bahadur slope
among all reasonable methods of combining independent tests,
leading to the fastest decay rate of the p-values. Such results
imply that to attain equal test power, the Fisher’s combination
test requires the smallest sample size. No other combining
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method is superior to Fisher’s method according to Bahadur
relative eociency. Therefore, Jn1,n2 is asymptotically optimal
with respect to Bahadur relative eociency.

5. Simulation Studies

In this section, we conduct simulation studies to demonstrate
the numerical performance of our proposed power-enhanced
simultaneous test. To evaluate the power of the tests under
diferent circumstances, we consider the following three types
of alternative hypotheses: (a) Hm: μ1 �= μ2, �1 = �2; (b) Hc:
μ1 = μ2, �1 �= �2; (c) Hb: μ1 �= μ2, �1 �= �2.

Hm describes the cases when the two populations share the
same covariancematrix but have diferentmeans.Hcmimics the
opposite situation in which the two populations have the same
mean vector but difer in covariances.Hb considers the scenarios
that there exist distinctions in both means and covariances
among the two groups. For each alternative, we further consider
two types of diferences in the parameter of interest: the dense
alternatives and the sparse alternatives. We use Hd

m and Hs
m

to represent the existence of dense and sparse diferences in
μ1−μ2, and analogously,H

d
c andH

s
c to denote those in�1−�2.

We simulate our samples from the moving average structure
shown below, so that we are able to accommodate the complex
alternative hypotheses in a general data-generating process. For
i = 1, . . . , p, let

Xu,i = μ1,i + Zu,i + θ1Zu,i+1, u = 1, . . . , n1,

Yv,i = μ2,i + Zv+n1,i + θ2Zv+n1,i+1, v = 1, . . . , n2.
(5.1)

In such a way, the parameters {μ1,i,μ2,i} alter the mean vectors
of our simulated samples {Xu}n1u=1 and {Yv}n2v=1 to generate Hd

m

andHs
m, and {θ1, θ2} control the covariance structure to account

for Hd
c . By assigning diferent values to these parameters, we

obtain simulated samples with various means and covariances.
For the sparse alternatives with respect to covariance matrices
Hs
c, we generate samples from a diferent approach by letting

Xu = �
1/2
1 Zu + μ1, Yv = �

1/2
2 Zv+n1 + μ2 for u = 1, . . . , n1,

v = 1, . . . , n2, where Zk = (Zk,1, . . . ,Zk,p)
′, k = 1, . . . , n1 + n2.

We orst draw {Zk,i}1≤k≤n1+n2,1≤i≤p+1 identically and inde-
pendently from the standard normal N(0, 1). To check the
robustness to nonnormally distributed data, we also generate
the random data from the centralized Gamma(4, 2). We take
the sample sizes as n1 = n2 = N being 100 and 200, and let
the dimension p take values in {100, 200, 500, 800, 1000}. For
each setup, we compare our three proposed testing methods
with four existing popular approaches: our proposed power-
enhanced simultaneous test Jn1,n2 as in (4.4), the proposed
power-enhanced mean test MPE as in (3.3), the proposed
power-enhanced covariance test TPE as in (3.5), the mean
test Mn1,n2 proposed by Chen and Qin (2010) as in (2.3), the
covariance test Tn1,n2 proposed by Li and Chen (2012) as in
(2.4), the Sn1,n2 approximation test as in (4.5), and the Cauchy
combination test Cn1,n2 as in (4.6). For each simulation setting,
we report the frequencies of rejections over 5, 000 replications
with signiocance level α = 0.05. We also compare the proposed
power-enhanced tests MPE and TPE with those tests that are
designed for sparse alternatives, speciocally, the extreme-value-
based tests proposed in Cai, Liu, and Xia (2013, 2014), see
Section S.3.3 of the supplementary materials.

Table 1. Empirical size (%) with normal and gamma distributed {Zk,i} in the data
generating process.

Normal Gamma

N Method p = 100 200 500 800 1000 100 200 500 800 1000

100 Mn1 ,n2 5.24 5.24 5.12 5.06 5.32 5.10 4.72 5.00 5.04 5.10
MPE 5.96 5.84 5.36 5.46 5.48 5.64 5.18 5.32 5.36 5.34
Tn1 ,n2 4.96 4.80 4.90 5.02 4.82 5.30 5.22 4.96 5.22 4.44
TPE 4.96 4.80 4.90 5.02 4.82 5.32 5.22 4.96 5.22 4.44
Sn1 ,n2 5.70 5.84 5.98 5.12 5.40 5.92 5.60 5.34 5.10 4.84
Cn1 ,n2 5.58 5.80 6.14 5.24 5.68 5.86 5.64 5.48 5.24 5.32
Jn1 ,n2 5.60 5.56 5.22 5.42 5.12 5.58 5.56 5.16 5.54 5.06

200 Mn1 ,n2 5.48 5.30 5.46 5.16 5.22 4.94 5.06 5.06 5.24 5.26
MPE 5.68 5.56 5.62 5.18 5.30 5.34 5.32 5.18 5.32 5.34
Tn1 ,n2 4.78 4.72 5.20 4.98 4.98 4.92 5.26 4.86 5.38 5.60
TPE 4.78 4.72 5.20 4.98 4.98 4.94 5.26 4.86 5.38 5.60
Sn1 ,n2 5.14 4.80 5.46 5.22 5.46 5.64 5.22 5.18 5.56 5.54
Cn1 ,n2 5.36 4.86 5.22 5.36 5.30 5.30 5.00 5.30 5.60 5.72
Jn1 ,n2 5.50 5.12 5.24 5.30 5.08 5.50 5.22 5.56 5.54 5.54

NOTE: This table reports the frequencies of rejection by each method under the
null hypothesis H0 based on 5000 independent replications conducted at the
signiocance level 5%.

To carry out H0 : μ1 = μ2, �1 = �2, we set μ1i =
μ2i = 0 for all i = 1, . . . , p, and θ1 = θ2 = 0. Both
samples are essentially iid from p-dimensional standard normal
or multivariate gamma distribution. To evaluate the power, we

ox {μ1i}
p
i=1 as zeros and θ1 = 0 for the orst population, and vary

{μ2i}
p
i=1 to set up the mean diferences in Hd

m and Hs
m. As for

the covariance alternatives, we change θ2 to account for dense
covariance diferences in Hd

c and implement sparsely difered
covariance matrix pair (�1,�2) to generate H

s
c.

As forHm, we set θ2 = 0 to make sure the two samples share
the same covariancematrix. In termof themean vectors, forHd

m,
we follow Benjamini and Hochberg (1995) and consider a oxed
percentage (pct) of violations inμ1,i = μ2,i for i = 1, . . . , p. The
nonzero signal strength is determined in a similar fashion to Li

and Chen (2012) as δ =
√

ηp−1/2. To prevent trivial power of α
and 1, we choose η = 0.3 and pct = 15%. We set μ2,i = δ for
1 ≤ i ≤ [p · pct] and zeros for the remaining ones. For sparse
alternative Hs

m, we set the nonzero signal to be δ = 0.3
√
log p

and the number of nonzeros to be pr with r = 0.05.
As for Hc, we ensure the two samples share equal means

on every dimension. We set θ2 = 0.2 to create an MA(1)
pattern of covariance as the dense alternativeHd

c . For the sparse
alternative Hs

c, we follow Cai, Liu, and Xia (2013) to generate a
symmetric sparse matrix U with eight random nonzero entries,

each with a magnitude of δ = 0.3
√
log p2. The locations of four

nonzero entries are randomly selected from the upper triangle
of U while the other four are specioed by symmetry. Then we
generate samples from (�1,�2) with �1 = (1 + ε)Ip and
�2 = (1+ε)Ip+U, where ε =

∣∣min{λmin(U + Ip), 1}
∣∣+0.05 is

to make sure both �1 and �2 are positive deonite. Finally, with
respect to Hb, we adopt the same idea as in Hm for the mean
diferences, and the same approach as in Hc for the covariance
diferences.

Table 1 presents the empirical size of the seven tests withNor-
mal andGammadistributed {Zk,i} in the data generating process
(5.1). Tables 2–4 report the empirical power of the seven meth-
ods for testing Hm, Hc and Hb with normal distributed {Zk,i}.
We also carry out studies on the power analysis for Gamma
distributed {Zk,i}. The results show a similar pattern to theGaus-
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Table 2. Empirical power (%) against Hm and Hc with normal distributed {Zk,i} in
the data-generating process.

N = 100 N = 200

H Method p = 100 200 500 800 1000 100 200 500 800 1000

Hdm Mn1 ,n2 47.30 44.94 47.00 46.64 46.52 87.04 88.92 90.76 91.54 91.32
MPE 48.64 45.92 47.52 46.88 46.88 87.34 89.10 90.86 91.58 91.34
Tn1 ,n2 5.38 5.36 4.98 5.12 4.48 5.36 4.80 5.62 4.64 4.96
TPE 5.38 5.36 4.98 5.12 4.48 5.36 4.80 5.62 4.64 4.96
Sn1 ,n2 34.06 30.16 30.32 29.32 28.44 75.18 76.74 77.74 79.46 79.26
Cn1 ,n2 34.22 29.88 29.96 28.88 27.98 75.48 77.82 78.60 80.40 79.96
Jn1 ,n2 39.36 37.48 36.78 36.80 36.72 80.32 82.20 83.32 84.46 84.64

Hsm Mn1 ,n2 42.24 33.38 54.22 44.68 17.74 82.24 72.48 94.46 88.60 40.12
MPE 79.00 79.54 96.30 95.58 78.98 99.22 99.68100.00 99.98 99.74
Tn1 ,n2 4.74 4.28 4.80 4.98 5.44 5.10 4.64 4.76 4.66 5.04
TPE 4.74 4.28 4.80 4.98 5.44 5.10 4.64 4.76 4.66 5.04
Sn1 ,n2 76.80 78.10 95.66 95.22 77.88 99.18 99.66100.00 99.98 99.74
Cn1 ,n2 76.92 78.04 95.60 95.20 78.02 99.18 99.62100.00 99.98 99.74
Jn1 ,n2 77.68 78.92 95.86 95.50 78.50 99.18 99.64100.00 99.98 99.74

Hdc Mn1 ,n2 4.80 4.92 5.12 4.84 5.10 5.10 5.00 5.26 5.18 5.26
MPE 5.50 5.60 5.38 5.26 5.48 5.48 5.26 5.36 5.32 5.40
Tn1 ,n2 58.62 60.38 58.90 59.12 59.98 97.46 98.24 98.52 98.22 98.46
TPE 58.64 60.38 58.90 59.12 59.98 97.46 98.24 98.52 98.22 98.46
Sn1 ,n2 37.22 37.52 36.12 36.52 38.16 91.80 92.62 93.94 92.90 93.16
Cn1 ,n2 37.60 38.38 36.64 37.00 38.58 92.62 92.98 94.24 93.76 94.08
Jn1 ,n2 45.20 46.52 46.02 45.94 47.24 94.34 94.68 95.62 95.50 95.64

Hsc Mn1 ,n2 5.12 4.98 5.14 5.28 5.22 5.08 5.38 5.40 4.90 5.16
MPE 5.76 5.44 5.38 5.54 5.44 5.56 5.60 5.46 5.02 5.18
Tn1 ,n2 30.94 19.48 9.78 7.66 8.14 72.40 46.14 17.54 11.64 9.84
TPE 65.60 66.76 58.20 45.00 37.90 99.68 99.48 98.70 99.04 99.16
Sn1 ,n2 60.00 63.74 57.06 44.02 36.72 99.60 99.44 98.80 98.98 99.16
Cn1 ,n2 60.08 63.80 57.10 43.88 36.96 99.58 99.44 98.82 98.98 99.16
Jn1 ,n2 62.46 65.58 57.92 44.82 37.54 99.62 99.44 98.74 98.98 99.18

NOTE: (a) This table reports the frequencies of rejection by each method under the
alternative hypothesis based on 5000 independent replications conducted at the

signiocance level 5%. (b)Hdm andHsm stands for the type of alternative hypotheses

(dense/sparse) in regards of the mean diferences of the two populations. (c) Hdc
and Hsc stands for the type of alternative hypotheses (dense/sparse) in regards of
the covariance diferences of the two populations.

sian cases and are presented in Section 3.1 of the supplementary
materials. Moreover, we examine the test performance in regard
to datawith two additional covariance structures, and the results
are summarized in Section S.3.2 of the supplementarymaterials.
These numerical comparisons provide us with the following
ondings:

1. Under H0, all of the seven tests achieve reasonably accurate
size approximation over a broad range of dimensionality.
Besides, the empirical sizes with Gamma distribution illus-
trate that these tests are quite robust to non-Gaussianity.

2. The numerical results of the power-enhanced tests MPE and
TPE echo with the power enhancement properties presented
in Theorems 1 and 2. Table 1 reveals that adding power
enhancement components does not innate the testing size
under the null hypothesisH0. On the other hand, Tables 2–4
renect that the testing power is substantially enhanced under
sparse alternatives Hs

m and Hs
c.

3. As shown in Table 2, the mean tests (Mn1,n2 and MPE) are
powerful in detecting mean diferences as in Hm, but have
almost no power in discovering the covariance diferences
under Hc. In contrast, the covariance tests (Tn1,n2 and TPE)
performwell in declaring signiocance for covariance alterna-
tiveHc, however, it is powerless to identify the unequalmeans
under Hm.

Table 3. Empirical power (%) against Hb with normal distributed {Zk,i} in the data
generating process.

Hb N Method p = 100 200 500 800 1000

Hdm ∩ Hdc 100 Mn1 ,n2 44.78 44.80 44.40 45.26 45.60
MPE 46.40 45.44 44.80 45.54 45.84
Tn1 ,n2 57.80 58.70 58.94 59.16 59.78
TPE 57.80 58.70 58.94 59.16 59.78
Sn1 ,n2 58.80 58.12 57.58 58.08 59.30
Cn1 ,n2 57.22 56.56 55.40 55.76 56.72
Jn1 ,n2 73.24 74.68 74.42 75.94 76.24

200 Mn1 ,n2 84.44 85.58 87.92 89.20 89.22
MPE 84.86 85.74 88.02 89.26 89.22
Tn1 ,n2 98.16 98.26 98.26 98.38 98.48
TPE 98.16 98.26 98.26 98.38 98.48
Sn1 ,n2 98.84 99.12 99.38 99.24 99.30
Cn1 ,n2 98.50 98.88 98.98 98.98 99.08
Jn1 ,n2 99.64 99.88 99.88 99.88 99.90

Hdm ∩ Hsc 100 Mn1 ,n2 38.90 42.42 41.68 39.08 38.40
MPE 40.52 43.12 42.16 39.42 38.70
Tn1 ,n2 32.48 18.16 9.96 7.96 7.12
TPE 72.36 72.62 58.12 42.76 37.58
Sn1 ,n2 75.42 77.76 65.86 52.62 48.62
Cn1 ,n2 75.02 77.84 65.84 52.84 48.82
Jn1 ,n2 81.34 81.98 70.56 59.42 54.56

200 Mn1 ,n2 77.06 82.92 85.12 83.38 82.46
MPE 77.54 83.14 85.22 83.40 82.48
Tn1 ,n2 74.24 46.52 17.68 11.54 10.06
TPE 99.82 99.46 98.84 98.94 99.00
Sn1 ,n2 99.90 99.72 99.40 99.38 99.34
Cn1 ,n2 99.90 99.72 99.42 99.36 99.34
Jn1 ,n2 99.92 99.82 99.52 99.42 99.42

NOTE: (a) This table reports the frequencies of rejection by each method under
the alternative hypothesis based on 5000 independent replications conducted
at the signiocance level 5%. (b) Hb stands for the type of alternative hypotheses
(dense/sparse) in regards of the mean and covariance diferences of the two
populations.

4. With respect to Hm and Hc, even though one of the MPE

test and TPE test fails, the three combination tests remain
powerful across all the experiments. This coincides with the
power analysis shown in Theorem 5 that the combination of
two tests makes use of their respective power under diferent
alternatives, therefore, successfully discover the discrepan-
cies in either mean vectors or covariance matrices.

5. Tables 3 and 4 illustrate that our proposed simultaneous test
acquires additional gains when both mean diferences and
covariance diferences exist. Under Hb, both MPE test and
and TPE test successfully sense the diferences in regard to
the means and covariances, respectively. By combining the
two tests together, our proposed approach yields to a higher
testing power as it can simultaneously detect both types of
diferences.

6. What’s more, for each simulation setting, the proposed test
Jn1,n2 prevails with higher power compared with the Sn1,n2
and Cn1,n2 tests. This onding resounds with the asymptoti-
cally optimal property discussed in Remark 4.2.

Additionally, Figure 2 provides a graphical representation
of the testing power using seven approaches under Hb when
both mean diferences and covariances diferences exist. We
study four diferent hypotheses consisting of the combination of
sparsely/densely difered means (Hs

m/Hd
m) and sparsely/densely

difered covariances (Hs
c/H

d
c ). The ogure shows that the tests

Mn1,n2 and Tn1,n2 favor dense alternatives H
d
m and Hd

c , respec-
tively, because of its nature of quadratic forms, but lack the
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Table 4. Empirical power (%) against Hb with normal distributed {Zk,i} in the data-
generating process

Hb N Method p = 100 200 500 800 1000

Hsm ∩ Hdc 100 Mn1 ,n2 41.16 31.58 23.28 18.20 17.70
MPE 77.24 77.26 77.86 77.36 78.96
Tn1 ,n2 58.18 59.96 58.80 58.26 58.78
TPE 58.20 59.96 58.80 58.26 58.78
Sn1 ,n2 83.14 83.90 84.86 84.50 85.36
Cn1 ,n2 83.14 84.06 84.98 84.64 85.72
Jn1 ,n2 87.50 88.68 88.60 88.00 88.80

200 Mn1 ,n2 81.52 69.82 51.78 41.72 38.26
MPE 99.10 99.46 99.60 99.74 99.74
Tn1 ,n2 97.56 97.78 98.40 97.96 98.54
TPE 97.56 97.78 98.40 97.96 98.54
Sn1 ,n2 99.96 99.96 100.00 99.98 99.98
Cn1 ,n2 99.96 99.98 100.00 100.00 99.98
Jn1 ,n2 99.98 100.00 100.00 100.00 99.98

Hsm ∩ Hsc 100 Mn1 ,n2 34.84 29.34 20.34 16.94 15.04
MPE 66.12 71.62 70.74 67.76 68.60
Tn1 ,n2 30.74 19.70 9.84 7.76 7.12
TPE 69.44 74.36 57.28 43.96 38.32
Sn1 ,n2 85.56 89.86 84.80 78.64 78.14
Cn1 ,n2 85.48 89.90 84.84 78.90 78.10
Jn1 ,n2 87.30 91.14 86.12 79.82 79.44

200 Mn1 ,n2 72.94 64.52 46.32 36.32 31.20
MPE 97.54 98.48 98.92 98.78 98.68
Tn1 ,n2 74.22 46.46 17.76 11.72 10.94
TPE 99.72 99.36 99.00 98.86 98.88
Sn1 ,n2 99.98 99.94 99.94 99.80 99.76
Cn1 ,n2 99.98 99.94 99.94 99.84 99.76
Jn1 ,n2 99.98 99.94 99.96 99.84 99.76

NOTE: (a) This table reports the frequencies of rejection by each method under
the alternative hypothesis based on 5000 independent replications conducted
at the signiocance level 5%. (b) Hb stands for the type of alternative hypotheses
(dense/sparse) in regards of the mean and covariance diferences of the two
populations.

ability of detecting sparse alternatives such asHs
m andHs

c. Fortu-
nately, the proposed power-enhanced testsMPE and TPE greatly
promote the respective testing power underHs

m andHs
c.When it

comes to jointly testing means and covariances, the plot clearly
shows that our proposed Fisher’s combined test Jn1,n2 achieves
the highest power among the three combination approaches
(Fn1,n2 , Sn1,n2 , and Cn1,n2).

Moreover, we would like to discuss the efects of data char-
acteristics (e.g., sample size n and data dimensionality p) on
the test performance renected by the empirical results. Using
the MPE test as an example, the convergence rate of MPE is
dominated by a leading term that depends on n, p, and the
structure of�. Hence, the size and power performance is related
with data dimensionality in a complicated way. The theoretical
results require both n and p go to inonity. The larger the p is,
the better ot it is in regard to the asymptotic regime. It is likely
the reason why when n = 100, p = 500 yields a more accurate
size than that of p = 100 in Table 1. However, since the leading
term also depends on the structure of �, it is not always true
that a larger p leads to a more accurate size or a more higher
power. As for the sample size n, a larger n provides a better ot
to the asymptotic regime. Yet we would like to point out that
the main term ofMPE is a martingale and its convergence rate is
slow with respect to n. When n is increased from 100 to 200, the
convergence rate is not signiocantly improved. Together with
the randomness in simulation studies, the empirical size with
n = 100 is not necessarily closer to 5% compared with that

of n = 200. In addition, the uncertainty due to randomness
in simulation studies also has some impacts on the results of
empirical size and empirical power.

In summary, the simulation results demonstrate the promis-
ing onite-sample performance of our proposed simultaneously
tests, providing numerical evidence to verify the theoretical
properties introduced in the previous section. Under the null
hypothesis, the proposed test retains the desired nominal signif-
icance level. It is powerful in detecting either mean diferences
or covariance diferences, and it remains high power for either
sparse alternatives or dense alternatives. Moreover, the testing
power is boosted against more general alternatives.

6. Application to Gene-Set Testing

This section demonstrates the power of our proposed tests
through a real application on anAcute Lymphoblastic Leukemia
(ALL) dataset from the Ritz Laboratory at the Dana-Farber
Cancer Institute (DFCI). The data was originally published by
Chiaretti et al. (2004) and is now available at the Bioconductor
website. The ALL dataset contains gene expression levels of
12,625 probes on Afymetrix chip series HG-U95Av2 from 128
individuals with either T-cell ALL or B-cell ALL, depending
on the type of lymphocyte for the leukemia cells. This study
focuses on a subset of theALLdata for 79 patients with the B-cell
ALL. We further divide the patients into two groups according
to their B-cell tumors’ subtypes: the BCR/ABL fusion and the
cytogenetically normal NEG, whose sample sizes are 37 and 42,
respectively.

Identifying diferentially expressed gene-sets has received
considerable attention in genetic studies (Efron and Tibshirani
2007; Goeman and Bühlmann 2007). Since each gene does not
work individually but rather tend to function groups to achieve
complex biological tasks, researchers look into gene expression
prooles based on groups of genes depending on their functional
characteristics. To make full use of prior biological knowledge,
we group sets of genes according to their Gene Ontology (GO)
annotations. The GO system describes the biological domains
with respect to three aspects: biological process (BP), cellular
component (CC), and molecular function (MF). We follow the
same criteria to perform a prescreening procedure by exclud-
ing those probes with low nuorescence intensities and nar-
rowly spread, characterized by small absolute values and small
interquantile ranges. The oltering step retains 2391 probes, cor-
responding to 1849 unique GO terms in BP category, 306 in CC
and 324 in MF.

Let S1, . . . , SK denote K gene-sets and {μ1Sk ,�1Sk}, {μ2Sk ,
�2Sk} be the mean vectors and covariance matrices of two types
of tumors, respectively. We are interested in testing

H0,category : μ1Sk = μ2Sk and �1Sk = �2Sk , k = 1, · · · ,K

where category ∈ {BP,CC,MF}. We classify gene-sets into
three diferent GO categories and shall test each GO category
separately. Figure 3 plots the dimension of gene-sets contained
in each category. The dimension of gene-sets in each category
can be as large as two thousand, which is much larger than
the sample sizes n1 = 37 and n2 = 42. To examine the test
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Figure 2. Empirical power comparison of the seven tests under Hb with normal distributed {Zk,i} and N = 100, p = 500.

Figure 3. Boxplots of the dimension of gene-sets for three GO categories.

Figure 4. Boxplots of the σ̂−1
01 Mn1 ,n2 and σ̂−1

02 Tn1 ,n2 test statistics for three GO categories.

assumptions imposed on the covariance matrices, we compute

the ratio of tr(�̂
2
1�̂

2
2) to tr(�̂

2
1)tr(�̂

2
2) for the gene-sets, where

�̂1 and �̂2 are sample covariances. We observe that the ratio
is small for most gene-sets. The median of the ratio values is
0.240 and the 75th percentile is 0.335. There are 92% of gene-
sets whose ratio is below 0.5.

Before proceeding, we explore the values of power-enhanced
test statisticsMn1,n2 andTn1,n2 for all gene-sets. Figure 4 presents
boxplots of Mn1,n2 and Tn1,n2 within each GO category. The
Mn1,n2 statistics have relatively larger values compared with the
Tn1,n2 statistics. Recall that under the null hypothesis, both
statistics converge to N(0, 1) in distribution. The onding that
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Table 5. The number of signiocant gene-sets declared by diferent tests after BH
control with nominal level α = 0.05.

GO category BP CC MF

Total number of gene-sets 1849 306 324

Number of Mn1 ,n2 1134 140 183
Signiocant MPE 1469 216 236
Gene-sets Tn1 ,n2 126 55 20

TPE 126 55 20
Sn1 ,n2 1485 219 234
Cn1 ,n2 1484 220 233
Jn1 ,n2 1511 226 238

theMn1,n2 statistics have larger absolute values indicates that for
these gene-sets, their mean vectors are more diferent compared
to the covariance matrices between the two groups. Moreover,
considering signiocance level α = 0.05 and the upper α-
quantile of N(0, 1) zα = 1.645, a large number of Mn1,n2

statistics fall above the threshold zα . Therefore, we would expect
a lot of rejections for testing the equality of the mean vectors.
The discussions in this paragraph give us an exploratory view of
the dataset. Later on, we will present more precise comparisons
among various test approaches.

We then apply our power-enhanced simultaneous test Jn1,n2
to test the means and covariances simultaneously, together with
the mean test Mn1,n2 , the covariance test Tn1,n2 and the two
power-enhanced testsMPE and TPE. We compare our proposed
approach Jn1,n2 with the χ2 approximation Sn1,n2 as well as the
Cauchy combination Cn1,n2 . In order to control the false discov-
ery rate (FDR), we apply the Benjamini–Hochberg (BH) pro-
cedure (Benjamini and Hochberg 1995) to each GO category.
Table 5 reports the number of signiocant gene-sets declared by
diferent tests with nominal level α = 0.05 for every category.

As shown in Table 5, Jn1,n2 identioes more signiocant gene-
sets than the other methods. The Mn1,n2 test declares a lot of
signiocance whereas the Tn1,n2 test only identioes a few. The
MPE identioes a fewmore diferentially expressed gene-sets with
respect to mean vectors, while the TPE does not yield addi-
tional power in detecting the difer ences among covariances.
This indicates there exist a large number of unequal means
between the two types of tumors, but not much diferences in
their covariance patterns. This phenomenon emphasizes the
importance of developing a powerful method for jointly testing
the means and covariances, so that we have a better chance to
detect diferences between two distributions even thoughwe are
in lack of prior knowledge about whether the diferences reside
in means or covariances.

The χ2 approximation Sn1,n2 and the Cauchy combination
Cn1,n2 yield comparative performance. As shown in Table 5,
the two methods identify more diferences than the covariance
test TPE, yet potentially miss some diferentially expressed gene-
sets compared to the mean test MPE. In contrast, our proposed
Jn1,n2 is able to identify more discrepancies between the two
groups, compared to the other three combination approaches
and also compared to the original means test as well as the
covariance tests. In a short summary, our proposed Fisher’s
combined simultaneous test Jn1,n2 beneots from incorporating
the information from the mean tests and covariance tests, and
outperforms other combination methods in detecting the sig-
niocant diferences among the gene-sets.

Next, we study those gene-sets which are declared signio-
cant only by Jn1,n2 but not any other method. Among those,
we pay special attention to the GO-term <GO:0005125= in the
MF category. This gene-set contributes to cytokine activity,
including interleukins which are a group of cytokines that reg-
ulate innammatory and immune responses (Okada and Pol-
lack 2004). Extensive scientioc studies have revealed the close
relationships between interleukins and leukemia (Touw et al.
1990; Paietta et al. 1997; Yoda et al. 2010; Canale et al. 2011).
For another example, it is known microRNAs act complemen-
tarily to regulate disease-related mRNA modules in human
diseases (Chavali et al. 2013). We observe that the expression
levels of <GO:0006913= in the BP category are statistically dif-
ferent between the two groups. This GO-term refers to nucle-
ocytoplasmic transport, whose association with leukemia has
been validated by numerous cancer studies (Chavali et al. 2013;
Gravina et al. 2014; Takeda and Yaseen 2014). The biologi-
cal evidence suggests our power-enhanced simultaneous test
Jn1,n2 provides more useful information compared with other
approaches, which further implies the importance of developing
power-enhanced simultaneous tests.

7. Conclusion and Discussion

In this work, we study the problem of jointly testing the equality
of two-sample mean vectors and covariance matrices of high-
dimensional data. We introduce a new power-enhanced simul-
taneous test, and prove the test achieves accurate asymptotic
size, enhanced and consistent asymptotic power under a more
general alternative, and asymptotic optimality with respect to
Bahadur eociency. The proposed test is scale-invariant and
computationally eocient. We demonstrate the onite-sample
performance using simulation studies and a real application to
gene-set testing. In our current setup, there are no structural
assumptions imposed on the mean vectors and covariance
matrices. In some applications, the mean vector or covariance
matrix may admit some structure due to the nature of data,
for example, the factor structure (Fan, Fan, and Lv 2008), and
the banded structure (Bickel and Levina 2008). To boost the
testing power of testing for parameters with certain structure,
we may need orst separate structural information and signals
for the alternatives, and then construct the PE component
upon the latter part. When the parameters naturally come with
some kind of structure, developing power-enhanced tests which
takes account of structural information would be an inter-
esting and practically useful extension. We leave it for future
work.

SupplementaryMaterials

The supplementary note consists of three sections to present lemmas,
complete proofs of lemmas and theorems, and additional numerical results.
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