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ABSTRACT

Power-enhanced tests with high-dimensional data have received growing attention in theoretical and
applied statistics in recent years. Existing tests possess their respective high-power regions, and we may lack
prior knowledge about the alternatives when testing for a problem of interest in practice. There is a critical
need of developing powerful testing procedures against more general alternatives. This article studies the
joint test of two-sample mean vectors and covariance matrices for high-dimensional data. We first expand
the high-power regions of high-dimensional mean tests or covariance tests to a wider alternative space
and then combine their strengths together in the simultaneous test. We develop a new power-enhanced
simultaneous test that is powerful to detect differences in either mean vectors or covariance matrices under
either sparse or dense alternatives. We prove that the proposed testing procedures align with the power
enhancement principles introduced by Fan, Liao, and Yao and achieve the accurate asymptotic size and
consistent asymptotic power. We demonstrate the finite-sample performance using simulation studies and
a real application to find differentially expressed gene-sets in cancer studies. Supplementary materials for
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1. Introduction

Inferences on the equality of two distributions are of significant
interest in a wide range of real applications. Genetic studies
use the differential gene expression analysis to understand how
genes are related to diseases (Wang, Peng, and Li 2015). Medical
image analysis examines the differential structure of images to
diagnose abnormal tissues (Ginestet et al. 2017). Pharmaceutical
researchers rely on the analysis of comparative clinical trial
outcomes for drug discovery and development (Cummings et al.
2019).

To make inferences on the discrepancies between two distri-
butions, we usually consider their mean vectors and covariance
matrices that characterize commonly used distributions, for
example, the elliptical distributions (Anderson 2003). Over the
past decade, there has been significant progress in testing the
equality of two mean vectors (Chen and Qin 2010; Wang, Peng,
and Li 2015; Wang and Yuan 2019; Chen, Li, and Zhong 2019)
or covariance matrices (Li and Chen 2012; Zhu et al. 2017;
Chen, Guo, and Qiu 2019) under the high-dimensional setting.
Yet few works are capable of examining both mean vectors and
covariance matrices simultaneously.

However, in practice, we often do not know whether the
discrepancies reside in mean vectors or in covariance struc-
ture. It has been recognized that mean tests are powerful to
detect the differences in mean vectors but cannot detect the
different covariance structure. In contrast, covariance tests are
powerful to identify the differences in covariance structure but

are incompetent to distinguish the differential structure of two
mean vectors. Thus, it is crucial to develop a new simultaneous
testing procedure that is powerful to detect differences in either
mean vectors or covariance matrices.

Let X and Y be two p-dimensional populations with mean
vectors (fL1, m,) and covariance matrices (X1, X), respectively.
We consider the simultaneous test on the equality of mean
vectors and covariance matrices of the two populations, that is,

(1.1)

In real-world applications such as genetic studies, the sample
size is often less than a hundred, but the number of features can
be thousands or even larger (Clarke et al. 2008). Throughout this
article, we assume that the dimension p is much larger than the
sample size 11 or n,. The challenge of high dimensionality leads
to fundamental difficulties in understanding the asymptotic
behavior of test statistics.

Two different classes of alternatives (i.e., dense alternatives
and sparse alternatives) have been explored in the high-
dimensional hypothesis testing. For dense alternatives, the
parameter space of interest is defined using the squared entry-
wise £, norm, that is, ||, — p,||> and tr{(X; — X;)?}, and
the distributions under Hy and H; are hard to distinguish when
the nonzero entries of w; — p, and ¥; — X, are of about the
same size in the absolute value (Chen and Qin 2010; Li and
Chen 2012). For sparse alternatives, the parameter space of
interest is defined using the entry-wise maximum norm, that

Hy:py=p, and X = X
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is, max<i<p (17 — 2i)* and max,<ij<p(01;; — 024)? and
the distributions under Hy and H; are hard to distinguish when
there are only a few large nonzero entries of 1 —p, and ; — %,
(Arias-Castro, Candés, and Plan 2011; Cai, Liu, and Xia 2013).
The mathematical definitions of dense alternatives and sparse
alternatives will be presented in Section 3.

In the literature, there only exist a few works on jointly testing
means and covariances. In the classical setting with a fixed
dimension p, the likelihood ratio test (LRT) was extensively
studied in the multivariate analysis (Anderson 2003) when the
samples come from normal distributions. When p diverges
proportionally as the sample size tends to infinity such that
p/ min{n;,n,} — cforsome 0 < ¢ < 1, Jiang and Yang (2013)
studied the modified LRTs under the normal assumption and
derived central limit theorems. The normal assumption was
recently relaxed by Niu et al. (2019). To allow p to diverge at
a comparable rate as the sample size tends to infinity, that is,
0 < ¢ < 00, Liu et al. (2017) proposed a new approach by
replacing the entropy loss with the quadratic loss for covariance
matrix estimation. Hyodo and Nishiyama (2018) proposed a
new joint test using a weighted sum of multiple U-statistics to
allow p to diverge faster than the sample size.

However, most existing testing procedures only allow for
a moderately high dimension in the asymptotic regime such
that the dimension diverges at a slower rate than the sample
size. Also, these existing testing procedures are mainly based on
the modified LRTs or the L,-norm-based test. Like quadratic-
form tests, they perform well against dense alternatives but
perform poorly against sparse alternatives (Fan, Liao, and Yao
2015; Li and Xue 2015; Yu, Yao, and Xue 2019; Yu, Li, and Xue
2020). These tests suffer from power loss in detecting sparse
signals, as the errors in estimating high-dimensional parameters
accumulate (Fan, Liao, and Yao 2015). Moreover, these joint
testing procedures are essentially based on a weighted sum of
one test statistic related to the mean difference and another test
statistic related to the covariance difference. The weighted sum
is not an ideal combination due to potentially different scales
of two test statistics. These tests could be driven by the test
statistic of a larger scale, leading to undesired power loss in the
corresponding alternative space (Xie, Singh, and Strawderman
2011).

This article aims to develop a new power-enhanced simulta-
neous testing procedure that is powerful to detect differences in
either mean vectors or covariance structure against either sparse
alternatives or dense alternatives under a high-dimensional
setting. Fan, Liao, and Yao (2015) introduced the power
enhancement framework for high-dimensional hypothesis
testing, which consists of the following power enhancement
(PE) principles: (a) no size distortion; (b) the power-enhanced
test is at least as powerful as the original test; (c) the power
is substantially enhanced under a more general alternative. In
this work, we interpret the more general alternatives from the
following two perspectives:

(a) expanding the high-power regions of mean tests or covari-
ance tests to a wider alternative space, respectively. We aim
to develop the power-enhanced tests against the union of
their corresponding dense and sparse alternatives.
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(b) extending the test capability to alternative spaces with
respect to both mean vectors and covariance matrices. We
aim to combine strengths of two power-enhanced tests and
develop a joint test that is capable of detecting the difference
from either mean vectors or covariance matrices.

To expand the high-power regions, we construct power-
enhanced tests for mean vectors and covariance matrices sep-
arately. We revisit the test statistics of Chen and Qin (2010) and
Liand Chen (2012) that are constructed based on the estimators
of the squared Euclidean distance of two sample mean vectors
and the squared Frobenius distance of two sample covariance
matrices, respectively. It is known that they are powerful to
detect dense signals but unable to detect sparse signals (Chen,
Li, and Zhong 2019). We introduce their respective PE compo-
nents to effectively enlarge the high-power regions to the union
of sparse and dense alternatives. We show that the proposed
power-enhanced tests satisfy three desired PE principles. It is
worth pointing out that we need new ideas to deal with a
more challenging setting than that in Fan, Liao, and Yao (2015).
The mechanism of enhancing test power via PE components is
to add a constructed component to an asymptotically pivotal
statistic, so that the resultant testing power is strengthened
upon the original test. The construction of PE components
relies on a screening over the marginal test statistics. Fan, Liao,
and Yao (2015) employs a quadratic-form OLS-based statis-
tic, whose marginal distributions are asymptotically normal.
However, Chen and Qin (2010) and Li and Chen (2012) use
degenerate U-statistics, and the distributions of their marginal
test statistics are no longer asymptotically normal but rather a
x? distribution under the null hypothesis. The asymmetrically
distributed marginal statistics require additional attention in
the design of PE components. To the best of our knowledge,
this is the first work that constructs PE components based on
degenerate U-statistics.

After expanding the high-power regions, we aim to combine
their strengths to develop the power-enhanced simultaneous
test to further enhance the test capability for jointly testing
mean vectors and covariance matrices. We prove the asymp-
totic independence of two PE test statistics and then aggregate
information from the two aspects via the combination of their
respective p-values using Fisher’s method (Fisher 1925). We
also show that the proposed power-enhanced simultaneous test
satisfies three PE principles. It is important to note that, unlike
Fan, Liao, and Yao (2015), Li and Xue (2015); Yu, Yao, and
Xue (2019), and Yu, Li, and Xue (2020), we do not require the
stringent normal assumption or independent assumption when
deriving the asymptotic independence result. Compared with
Fan, Liao, and Yao (2015) and Li and Xue (2015), our proposed
test is scale-invariant and computationally efficient.

We study the theoretical properties under an ultra-high
dimensional setting where the dimension may grow at a nearly
exponential rate of the sample size. Moreover, we conduct
simulation studies to compare the proposed test's numerical
performance against several benchmark tests under various
alternatives. In a real application, we further demonstrate the
power of the proposed test to find differentially expressed gene-
sets using an acute lymphoblastic leukemia dataset. Our findings
are supported by the biological literature.
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The rest of this article is organized as follows. Section 2
presents the preliminaries, and Sections 3 and 4 include
the complete methodological details. Theoretical properties,
including the power enhancement properties, the asymptotic
size and power analysis as well as the asymptotic optimality,
are also established in these two sections. Section 5 conducts
simulation studies to demonstrate the finite-sample properties
under different alternative hypotheses. Section 6 presents an
empirical study on identifying differentially expressed gene-
sets among various types of cancers. Section 7 includes a few
concluding remarks. All technical details are presented in the
supplementary materials.

2. Preliminaries

Let X be a p-dimensional random vector with mean p; =

/ 3 — .. -
(U115 - -+ 1p)" and covariance X; = (Ul’y)pxp’ and Ybeap
dimensional random vector with mean p, = (u21,...,M12p)
and covariance X, = (Uz’ij)pxp' Suppose that {Xi,...,Xy,}

are iid copies of X, and {Y;,...,Y
are independent of {Xj, ...
dimensional mean test

n,} are iid copies of Y that
, X, }. Now, we consider the high-

Hom : by = Ko, 2.1)
and the high-dimensional covariance test
0c: X1 = X, (22)

respectively. Chen and Qin (2010) proposed the following
quadratic-form statistic My, ,, for testing if the two high-
dimensional populations share the same mean vector in (2.1):

ny

1
_ X/Xv
ﬂ1(ﬂ1—1)z( o) +

ny

1
_ Y)Y,
na(ny — 1) ;( )

My, =

ny Ny

o ZZ (X,Y,)

To test the equality of two covariance matrices in (2.2), Li
and Chen (2012) constructed their test statistic based on the
squared Frobenius norm of X; — X». Since |X; — 222||12D =
tr (1 — 22)?) = (T + tr(T}) — 2tr(T1X5), they pro-
posed a test statistic T}, , in the form of linear combination of
unbiased estimators for each term, that is,

Tyyny =An, +Bp, —2

(2.3)

(2.4)

where A,,, By,, and C,, ,, are the unbiased estimators for
tr(Z%), tr()]%), and tr(X;X,), respectively. The following
assumptions are discussed in Chen and Qin (2010) and Li and
Chen (2012) to establish the asymptotic properties of two test
statistics My, 4, and Ty, p,.

Cnl,nz,

Assumption 1. For any i,j, k,I € {1,2}, as ny, nz, p — o0,

tr {Z,-):j):k):,} =o0 {tr (E,‘Z]‘) tr ():k):,)}
(2.5)

tr (XX — oo,

Theoretically, if we consider a simple case that ¥; = X, =
¥, the condition (2.5) reduces to tr(X*) = o(tr2(X?)), which
holds when kfnax = o(tr(X?)). When the smallest eigenvalue
is larger than 0, the condition allows A,y to diverge as long as

max = 0(p)

Assumption 2. The random vectors {X,},,;, {Y,},2, satisfy

u=1>

Xy =T1Zyy+p, Yy =T2Zy+p, 1<u=<n,1<v=<mn,

(2.6)
where T'; = (yil,...,yip)’ is a p x m; matrix for some
m; > p such that ;T = ¥; fori = 1,2, and {Z,-]-};’;1 =
{(Zijls cee
any positive integers q and o such that quzl o) < 8, and for
any 1 <kj #ky #--- # kg < mj,

> Zijm;)! };’;1 € R™i are iid random vectors such that for

E(zijx) = 0, var(zjix) = 1, cov(zijk,, Zijk,) = 0,

(2.7)
E(z k) =34+ A, E(z k) < 00,

and

E(zj 251, sz) E(j E(ZG1,) - E(zyk) (2.8)

Note that (2.6) expresses the samples using a factor-model
structure, and (2.7) spells the moment conditions needed for the
factors z;j, in which the A; measures the fourth-moment differ-
ence compared to a standard normal distribution. (2.8) depicts a
pseudo-independent pattern among its components for each Z;;.
The condition is satisfied if Z;; does have independent structure.

Under the null hypothesis Hy,, Chen and Qin (2010) consid-

ered the standardized test statistic My, ., /001 and proved that,

M d
under Hypy @ —22 5 N(0,1) as ny, g, p — 00, (2.9)
001
where Gy is a consistent estimator of 6g; = (——=— tr(Zz) +

ny (711
nz(nz ) tr(Zz) + nz tr(X1X7))2, 2, which is the standard devia-
tion of My, », under Hom. The test rejects Hy,, with significance
level o if My, ,, > 00124, Where zy is the upper a-quantile of
standard normal distribution.

Under the null hypothesis Hy., we note that the leading vari-
o T n%)z tr? (Zz) . With ¢, being a
consistent estimator of og,, Li and Chen (2012) conducted the
test for Ho. on the basis of the test statistic T}, n, /002 and proved
that,

ance of Ty, , is 03, = 4 (

Tﬂl»ﬂz

under Hy, : —d> N(,1) (2.10)

as ny, np, p — Q.
002

The test rejects Ho, with a nominal significance level o« if

Toyn, = G022 -

In the sequel, we will present our proposed power-enhanced
simultaneous test on jointly testing means and covariances in
high dimensions. In Section 3, we propose power-enhanced
tests for the mean test and the covariance test, respectively, to
boost their respective power. In Section 4, anchored in these two
power-enhanced test statistics, we study their asymptotic joint
distribution and subsequently introduce our simultaneous test
to expand the test capability for jointly testing high-dimensional
mean vectors and covariance matrices.

3. Power-Enhanced Tests

Both M, », and Ty, , are quadratic-form statistics. It has been
known that such type of statistics suffer from low power against
sparse alternatives where the parameter of interest differs only in



a small proportion of coordinates. One predominant approach
to achieve high testing power against sparse alternatives is to
use extreme values to construct test statistics (Cai, Liu, and
Xia 2013; Chernozhukov, Chetverikov, and Kato 2019), whereas
another way continues with the quadratic-form statistics but
rules out nonsignal bearing dimensions via thresholding (Fan
1996; Chen, Li, and Zhong 2019; Chen, Guo, and Qiu 2019).
However, these tests generally require either stringent condi-
tions or bootstrap to derive the limiting null distribution and are
likely to suffer from size distortions due to slow convergence.
Also, even though the extreme value tests and thresholding
tests retain high power against sparse alternatives, they tend
to lack the ability to detect dense and faint signals, in which
circumstances the quadratic-form tests are favored.

To deal with the challenge mentioned above, we first explore
power enhancement for testing high-dimensional mean vectors
and covariance matrices based on My, », and Ty, ,,, respectively.
Fan, Liao, and Yao (2015) provides a helpful insight for us to
enhance testing power against sparse alternatives and preserve
the merits of existing quadratic-form tests at the same time. We
construct two PE components J,, and J;, which are designed to
take zero values under the null hypothesis but diverge quickly
under sparse alternatives. The PE components are designed
delicately following the guidance of the three PE principles. By
adding the PE components to the original statistics, the resultant
tests 30_1an1,"2 + J,» and Eo_lem,nz + J; acquire substantially
enhanced power under sparse alternatives with little size distor-
tion under the null hypothesis.

Different from Fan, Liao, and Yao (2015), the distributions of
our marginal test statistics are no longer asymptotically normal
under Hy. To be more specific, Fan, Liao, and Yao (2015) uses a
quadratic-form OLS-based statistic to test the significance of the
intercept in multi-factor pricing models. For each coordinate,
the marginal test statistic asymptotically follows a standard nor-
mal distribution. Yet here, My, », and Ty, ,, are degenerate U-
statistics. Under the null hypothesis, their marginal statistics are
no longer asymptotically normal, causing difficulties in design-
ing the PE components. In specific, the PE component is usually
constructed using a screening technique. A properly chosen
threshold is critical to capture the signal-bearing dimensions
while exclude nonsignal-bearing dimensions effected by esti-
mation noise. The choice of such threshold is straightforward
for the well-known normal distribution but requires additional
efforts for nonnormal distributions. After careful investigation,
we prove that the marginal standardized statistics follow Chi-
squared distributions. To overcome the challenge brought by
these asymmetrically distributed marginal statistics, we control
the tail probabilities using a generalized result (Petrov 1954) of
Cramér’s limiting theorem, and choose the thresholds accord-
ingly.

Let n = ny + ny and 8, and 5, be the thresholds chosen
for the mean statistics and covariances statistics, respectively.
We choose J;,;, and J; to be the sum of marginal standardized
statistics whose values exceed 8, and 7,. By construction, the
screening procedure rules out all the noises under the null
hypothesis. Still, it makes it capable of capturing nonzero signals
under sparse alternatives, implying that J,, and J. equal to zero
under the null hypothesis but diverge quickly under the sparse
alternatives.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2551

3.1. Power-Enhanced Mean Tests

We use X = (Xp,...,Xp) and Y = (Yy,..
the random vectors of interest. Let X;, = (Xu1,...,Xyp)" and
Y, =Yu,..., va)/ be the corresponding random samples. We

rewrite the statistic My, ,,, into My, ,, = Zle M;, where

., Yp)" to denote

1 o 1 e
Mi=——— Y XuiXo) + ———— Y (Yui Yo
j m(m_l);v( ui W)+”2<”2—1)uz¢v( i Yoi)
n np

2
— Z Z (Xui i) -

Foreachi=1,...,p, M; consistently estimates (j11; — wai)? as

ny,ny — 00. Under the null hypothesis Hy,, : 1 = p,, the
variance of M; is
2 5 2 , 4
V= o O 01,ii072,ii>
YT = 1) Y (g — 1) P ,

. . . -~ 2 ~2
which can be consistently estimated by v; := ;=507 +
252 4 5.5 with &1 55 - bei
=) O 2ii + 0 O Lii02is V.Vlth 01,i and o0, being sample
variances of X; and Y;, respectively. Define

p
I = @ZM@.—WI{\/EM@—W +1> 8}

i=1

(3.1)

with 8, = 2log p as the power enhancement component for the
mean test. The theoretical analysis regarding J,, is established
upon 8, = 2logp. In practical implementations, we follow Fan,
Liao, and Yao (2015) to choose a slightly larger thresholding
value, specifically 8,, = 2logploglogn, to mitigate finite-
sample biases.

In what follows, we present some theoretical properties of the
constructed PE component J,,, as well as the proposed power-
enhanced mean test. To ensure that adding the PE component
does not bring in size distortion, Fan, Liao, and Yao (2015)
assumes the errors in a regression model follow a normal distri-
bution. Benefiting from the usage of concentration inequalities
to analyze the tail probabilities for degenerate U-statistics, we
only assume the distributions of both populations are sub-
Gaussian.

Assumption 3. There exists a positive constant H such that for
allh € [-H, H],

)2 )2 .
Ee'Xui=11)” < oo EhVvimia)” < 50 fori= L...,p.

(3.2)

The sub-Gaussianity assumption is imposed to control the
tail probability of marginal statistics, ensuring the PE compo-
nents equal to zero under the null hypothesis. This condition
has also been assumed in relevant literature such as Chen, Guo,
and Qiu (2019) and Chen, Li, and Zhong (2019).

Theorem 1. Suppose n;/ (n; + n;) — y for some constant
y € (0,1) as min{n;,n3} — oo and logp = o(n'/3). Given
Assumptions 1-3, under the null hypothesis Ho, : ; = it5, as
n1, 2, p —> 00,

1 p

d

P =0Hom) > 1, Mpp==—3 M;+Jm = N(O,1).

01 “

i=1

(3.3)
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Theorem 1 proves that J,, = 0 holds under Hy,, with
probability tending to 1. Thus, adding J,,, to the mean statistic
Gg1 My, n, will not affect its limiting null distribution. The
proposed power-enhanced mean test rejects Hy,, with the sig-
nificance level « if Mpg > z,.

3.2. Power-Enhanced Covariance Tests

As for the covariance test statistic T}, ,,, we first decompose
Ty, n, into

p p p p
Tom =)D Tij= ) (Aj+Bj~—

2Gy),
i=1 j=1 =1 j=1
where
1 oL
A — XuiX0iX i X,
7T (g — 1) ;, e
_ Xuininijj
ni(n —1(m —2) utvk
+ Xuiniijle)
m(m = Dlm =2)(m —=3) =
1 =
Bi— — Y,iYV,iY: Y,
) nz(”lz — 1) ; ui LyiLyjlyj
2 S

Z YuiYvi YV] Yk]

Cm(m = Dm=2) =
1

+
na(ny — 1)(ny — 2)(nz — 3)
n ny
o= XuiYiXuiYyi
1 nlnzzz ui Lyidyj Lyj

ny  ny

1
- - X, Yo Yo X0
g (ng — 1) ;{XV: ui Lyi Y yjAkj

ny
> YuYuYyYy,
uFEvEkF#L

ny m

- Z Z YMIXWXV] Yk]

nmz("z -1 T

ny np

! DO XuiYuiXi Y.

mny(ny — 1)(np — 1) "k vl

The decomposition is essential to derive the PE component.
For each i,j = 1,...,p, Tjj consistently estimates the element-

. . . . . P
wise difference in covariances, that is, Tj; — (01, — az,ij)z as
ny,ny — oo. Under the null hypothesis Ho, : X1 = X, the
variance of Tj; is

1
&ij —2< (01’.7+01 1101]]+A1tr(71171]°}’1171]))

2
1
+ P, (022,1']- + 02,302, + Aztr(}’zi)'sz ° J’zinTj)>> 1 +o(D),

where y;; and Ay, k = 1,2 are defined by (2.6) and (2.7) in
Assumption 2. In addition, we know that var((X; — u1;)(Xj —

nij) = alz’ij—{-ol,,-ial,]j—i-Altr(yliy};oylilej),and analogously,
var((Y; — w2 (Yj — poj)) = Gzz,ij + 02,ii025 + Aztr(}’zi)’sz S

)’Zi)’sz)- Therefore, &;; can be consistently estimated by

%::2(

+ _2 Z{(Yw

"=

Z{(Xm _X)(Xu] _X) -0 z]}

1 u=1
2
Y (Y, — ) — Ez,ij}2>

where X'J and 17] are the sample mean of X; and Y}, 51, and
32,,-]- are sample covariances of (Xj, X;) and (Y, Y}), respectively.
Define

=P ZZWE‘“ZI{\/_ Ty 2 +1 > np)

i=1 j=1

(3.4)

as the power enhancement component for the covariance test,
with , = 4log p. Similar to the previous section, the theoretical
analysis regarding J. is established upon 7, = 4logp. In practi-
cal implementations, we use a slightly larger thresholding value,
specifically n, , = 4log ploglog n, for the purpose of mitigating
finite-sample biases.

Theorem 2. Suppose n;/ (n + n;) — y for some constant
y € (0,1) as min{nj, ny} — oo and logp = o(n'/?). Given
Assumptions 1-3, under the null hypothesis Hy. : £; = X5, as
ni, Ny, p — 00,

P(J. =0|Ho) — 1,
002

P p
1
TPE—A—ZZ Tj+J % N, D).
o (3.5)

Theorem 2 proves that under the null hypothesis Hy., /. = 0
with probability approaching 1. The power-enhanced covari-
ance test rejects Hy,,, with significance level o if Tpg > z.

Remark 3.1. The thresholding values 8, and ), are chosen such
that the power enhancement principles (Fan, Liao, and Yao
2015) are guaranteed. Please see the theoretical analyses that
are presented in Sections S.2.4 and S.2.5 of the supplement for
the details. Intuitively, 6, can be regarded as a threshold chosen
to control the tail behavior of p marginal x7 random variables,
whereas 1, is used to control the tail behavior of p* marginal x}
random variables. Given the fact that logp?> = 2logp, we can
specify n, = 4logp and §, = 2logp.

3.3. Power Enhancement Properties

In this section, we study the power enhancement properties of
our proposed power-enhanced tests Mpg and Tpg. Chen and
Qin (2010) and Li and Chen (2012) provided power analysis
of the mean test statistic My, ,, and the covariance test statistic
Ty n,» respectively. Consider the following parameter spaces G%
and G¢ for their alternative hypotheses:

- wl?
/\/max{tr(z%),tr(zg)} — oo},

G4 = {(ry, o) : min{ny, na} |y




1
G ={(Z1,%,): T; > 0,%; > 0, —tr(T})
ny

+ niztr(Z%) = o (tr{(Zy — 22)2})},

Chen and Qin (2010) pointed out that as ny,nz,p — o0,
the mean test statistic My, ,, would correctly reject the null
hypothesis Hy,, with probability approaching 1 if the mean
differences w; — p, fall into the subspace G%. Li and Chen
(2012) drew analogous conclusions in regard to the covariance
alternative space G¢ corresponding to the covariance test Ty, ,.
More specifically, as ny, nz, p — 00,

inf P (Mpy,n, > 0012¢) — 1 and

(R112)EGH
inf P (Tpm, > 0022a) — 1. (3.6)
(21,%2)eGd

Note that g;i, and ggf use the squared Euclidean-norm || p; —
& |? and the squared Frobenius-norm || 1 — X, ||12D to specify a
large magnitude of differences in mean vectors and covariance
matrices in order for the tests to be powerful in detecting the
discrepancies.

In what follows, we present the power enhancement proper-
ties of our proposed tests. We will show that adding the power
enhancement components J,,, and ], enables the tests to observe
sparse signals which only differ in a few coordinates.

Theorem 3. Suppose n1/ (n; + ny) — y for some constant
y € (0,1) as min{n;,ny} — oo and logp = o(n'/?). Given
Assumptions 1-3, as ny, 12, p — 00, we have

inf P(Mpg > z,) — 1, and
(1:12)€GHUGS,

inf P(Tpg > z4) — 1,
(21,%2)€G2UGE

with
(i — 1ai)?
S = . _— >
G = {1y : 1‘25‘5’; 172 > Cop}

i
gg = {(21,22) : 21 > 0,22 > 0,
(01,5 — 02,ij)*
max ———-=— > Cnp}
1<i,j<p él]
where C is an absolute constant that does not depend on ny, n;
and p.

Theorem 3 shows that the power-enhanced tests have the
same rejection regions as those of the original tests, but the high
power regions are substantially expanded from G% and G to
gff, U G;, and gf U G, respectively.

Remark 3.2. Theorems 1-3 demonstrate that §, and 7, dom-
inate the maximum noise level under the null hypothesis, and
select signals under the designated alternatives. Aslong as n and
p are not too small such that §,,7, > 1, which coincides with
the high-dimensional framework, the theorems confirms the
resultant power-enhanced mean test Mpg and power-enhanced
covariance test Mpg satisfy the three PE principles introduced
by Fan, Liao, and Yao (2015).
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4. Power-Enhanced Simultaneous Test

Given two power-enhanced tests, we have boosted the respective
power of testing mean vectors and covariance matrices. Before
heading to the aggregation of information from the two aspects,
we study the joint limiting distribution of the two statistics Mpg
and TPE-

We begin with some insights on the joint distributions for
statistics of the two aspects. Suppose we have a random sample
iid drawn from a univariate normal distribution, then it is well-
known that the sample mean and sample variance are indepen-
dent. To a slightly more complex case, suppose we have a ran-
dom sample iid drawn from a multivariate normal distribution
Np (i, %) in the traditional statistical settings when p is fixed.
We look into two likelihood ratio test (LRT) statistics. Let Ay
be the LRT statistic for testing Hp : {# = 0,X = I,} versus
H, : {p € RP,T = I,}, and let A; be the LRT statistic for
testing Ho : {pu € RP, X =1I,} versus H, : { € RP, X > 0}.In
multivariate statistics, we know that A; and A are independent
(Anderson 2003, Lemma 10.3.1).

The above discussion inspires us to conjecture on analogous
propositions regarding the joint distribution of Mpg and Tpg. As
a matter of fact, in the following theorem, we prove that the two
statistics are indeed asymptotically independent.

Theorem 4. Suppose n1/ (n; + ny) — y for some constant
y € (0,1) as min{n;,n2} — oo and logp = o(n'/%). Given
Assumptions 1-3, under Hy, for any x1,x2 € R, as ny,n2,p —
oo,

P (Mpg < x1, Tpg < x2) — P(x1) P (x2). (4.1)

With the information of the two separate power-enhanced
tests at hand, the next step is to reasonably aggregate the results
for testing means and covariances simultaneously. Most existing
works rely on the classical likelihood ratio test (Anderson 2003)
and its variants (Jiang and Yang 2013; Liu et al. 2017; Niu et al.
2019). Their test statistics are in the form of a summation of two
statistics, where one is designed for detecting discrepancies in
covariance matrices, and the other is to catch signals of distinct
mean vectors. We call this type of combined statistic as the
weighted sum statistics (Li and Xue 2015; Li, Xue, and Zou
2018).

However, the weighted sum statistics bear some drawbacks.
The two components are usually of different magnitudes. The
combined test would be mostly driven by the statistic with a
larger scale, but insensitive to the statistic with a smaller scale.
Such inefficiency in combination would lead to power loss in
certain alternative spaces. Also, the distribution of the weighted
sum statistic depends on the convolution of two marginal distri-
butions, which is usually computationally challenging, resulting
in difficulty in choosing critical value.

We propose a scale-invariant statistic to simultaneously test
the equality of mean vectors and covariance matrices, by com-
bining their separate p-values via Fisher’s method:

]nl,nz = —210g(Pm) -2 IOg(Pc), (4-2)

where p,, = 1 — & (Mpg) and p. = 1 — & (Tpg) are the p-
values acquired from the power-enhanced mean test and the
covariance test, respectively, and ®(-) is the cdf of N(0, 1).
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Figure 1. Power-enhanced simultaneous testing procedure.

As a matter of fact, the Fisher’s method has been widely
used in meta-analysis for combining the results of multiple
scientific studies (Hedges and Olkin 2014). It is worth noticing
that meta-analysis is designed for combining studies coming
from independent sources. Yet combining two test statistics
which are constructed from the same sample would be a dif-
ferent story, and therefore requires careful investigation on the
independence assumption.

Theorem 4 proves that under the null hypothesis Hy, the
two test statistics Mpg and Tpg are asymptotically independent.
Hence, under Hy, p,, and p. asymptotically independently fol-
low a uniform distribution on the interval [0, 1], and therefore
—2log(pm) and —2log(p.) asymptotically independently follow
a Chi-squared distribution with 2 degrees of freedom. As a
result,

under Hy :  Juy ., —d> Xf as ny, ug, p — 00. (4.3)

Let g, denote the upper-o quantile of x7 distribution, we reject
the null hypothesis at the significance level o if

Joim = Ga- (4.4)

The procedures are summarized schematically in Figure 1.
Equipped with the two key ingredients Mpg and Tpg, we proceed
to investigate the size and power property of our proposed test
Jnn, in Theorem 5. We show that our proposed test owns
asymptotically accurate size approximation to the nominal sig-
nificance level o and detects differences in either mean vectors
or covariances over a wide range of alternatives.

Theorem 5 (Asymptotic Size and Power for Power-Enhanced
Simultaneous Test). Suppose n1/(n; +n) — 7y for some
constant y € (0, 1) as min{n;,n,} — oo and logp = o(nl/?).
Given Assumptions 1-3, as nj,n3,p — 00, the test [y, u,
achieves (i) asymptotically accurate size, that is, under the null
hypothesis Hp : 1 = p, and X; = X, we have

P(]nl,nz = q(x) — o,
and (ii) asymptotically consistent power, specifically,

inf P(Juym = 4qa) — 1.
{(21,2)€GEUGHU((11.12) €GHUGS,)

Remark 4.1. Theorem 5 confirms that our second PE procedure
of expanding test capability from testing mean or covariances
only to jointly testing mean vectors and covariance matrices
satisfies the three PE principles.

d
Mpg = Gyt My, + = N(0,1)

Power-Enhanced
Simultaneous Test
Hoipg = ppandZ; =3I,

d
Jaym, = —210g(pm) — 2log(p.) - X§f=4

d
Tpe = 65 Toymyt 1™ N(0,1)

There are other ways to aggregate information from the
two aspects as the asymptotic independence permits the valid-
ity of many other combination methods. In what follows, we
present two other tests using different methods to aggregate
information to facilitate numerical comparison in the empirical
studies. In Remark 4.2 and Section 5, we will show that the
Fisher’s combined test (4.4) outperforms other approaches as it
is asymptotically optimal with respect to Bahadur efficiency.

One is a weighted statistics. Given the asymptotic indepen-
dence, we may take the sum of squares of two statistics and
transform the two asymptotic normal variables to an asymptotic
X22 variable:

under Hy :  Spyn, = Mg + Ty 4 X3 asmy,ny,p —> 00,

(4.5)
The test rejects Hy with a nominal significance level « if Sy, ,,, >
ca» Where ¢, is the upper-o quantile of 3 distribution. The other
is an alternative p-value combination method. We consider the
aggregation via Cauchy transformation (Liu and Xie 2020).
The Cauchy combination is appealing for its insensitiveness
of dependence between the statistics to be combined. In here,
even though we obtain the asymptotic independence between
Mpg and Tpg, we introduce the Cauchy combination test as
a promising alternative. We define the Cauchy combination
statistic as follows.

Copny = %tan ((0.5 — pm)) + %tan ((0.5—po)m). (4.6)

Under Hy, the asymptotic independence ensures that C,, ,
converges to a standard Cauchy distribution as ny,n,p —
00. The test rejects Hy with a nominal significance level « if
Cuyny = kg, where kg is the upper-or quantile of standard
Cauchy distribution.

Remark 4.2. Littell and Folks (1971, 1973) established the
asymptotic optimality of Fisher’s methods for combining
independent tests in terms of the Bahadur slope. Singh, Xie,
and Strawderman (2005) and Xie, Singh, and Strawderman
(2011) further discussed such optimality within the framework
of confidence distribution for meta-analysis. To combine the
two p-values p,, = 1 — ®(Mpg) and p. = 1 — O (Tpg),
the Fisher’s method yields the largest exact Bahadur slope
among all reasonable methods of combining independent tests,
leading to the fastest decay rate of the p-values. Such results
imply that to attain equal test power, the Fisher’s combination
test requires the smallest sample size. No other combining



method is superior to Fisher’s method according to Bahadur
relative efficiency. Therefore, J,, », is asymptotically optimal
with respect to Bahadur relative efficiency.

5. Simulation Studies

In this section, we conduct simulation studies to demonstrate
the numerical performance of our proposed power-enhanced
simultaneous test. To evaluate the power of the tests under
different circumstances, we consider the following three types
of alternative hypotheses: (a) Hp: L1 # fy, X1 = Xo; (b) He:
Ry = o Xy # To;(c) Hp: g # o, Ty # X,

H,, describes the cases when the two populations share the
same covariance matrix but have different means. H. mimics the
opposite situation in which the two populations have the same
mean vector but differ in covariances. Hy considers the scenarios
that there exist distinctions in both means and covariances
among the two groups. For each alternative, we further consider
two types of differences in the parameter of interest: the dense
alternatives and the sparse alternatives. We use an and Hj,
to represent the existence of dense and sparse differences in
1 — R, and analogously, HY and H? to denote those in | — X,.

We simulate our samples from the moving average structure
shown below, so that we are able to accommodate the complex
alternative hypotheses in a general data-generating process. For

i=1,...,plet
Xuyi = 1, + Zyi + 01Zy541, u=1,...,ny, 5.1)
Yyi = m2i+ Zyin,i+02Zyyniv1, v=1...,n. '

In such a way, the parameters {1¢1,;, (2.} alter the mean vectors
of our simulated samples {XM}ZI=1 and {YV}ZZ=1 to generate Hfln
and H;,, and {60}, 6} control the covariance structure to account
for Hf. By assigning different values to these parameters, we
obtain simulated samples with various means and covariances.
For the sparse alternatives with respect to covariance matrices
HE, we generate samples from a different approach by letting
X, = ):}/ZZL, +u, Y, = Z;/zlvﬂl 4+ pyforu=1,...,n,
v=1,...,ny, where Zy = (Zx1,..., Zkp) s k= 1,...,n1 + ny.

We first draw {Z ;}1<k<n;+n,,1<i<p+1 identically and inde-
pendently from the standard normal N(0,1). To check the
robustness to nonnormally distributed data, we also generate
the random data from the centralized Gamma(4,2). We take
the sample sizes as n; = n, = N being 100 and 200, and let
the dimension p take values in {100,200, 500, 800, 1000}. For
each setup, we compare our three proposed testing methods
with four existing popular approaches: our proposed power-
enhanced simultaneous test J,, ,, as in (4.4), the proposed
power-enhanced mean test Mpg as in (3.3), the proposed
power-enhanced covariance test Tpg as in (3.5), the mean
test My, n, proposed by Chen and Qin (2010) as in (2.3), the
covariance test Ty, ,, proposed by Li and Chen (2012) as in
(2.4), the Sy, », approximation test as in (4.5), and the Cauchy
combination test Cy, ,, as in (4.6). For each simulation setting,
we report the frequencies of rejections over 5,000 replications
with significance level « = 0.05. We also compare the proposed
power-enhanced tests Mpg and Tpg with those tests that are
designed for sparse alternatives, specifically, the extreme-value-
based tests proposed in Cai, Liu, and Xia (2013, 2014), see
Section S.3.3 of the supplementary materials.
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Table 1. Empirical size (%) with normal and gamma distributed {Zj ;} in the data
generating process.

Gamma
1000 100 200 500 800

Normal
N  Method p =100 200 500 800

1000

100 Mp;.n, 524 524 512 506 532 510 472 5.00 5.04 5.10

Mpg 596 584 536 546 548 5.64 518 532 536 534
Tny.ny 496 480 4.90 502 4.82 530 522 496 522 444
TpE 496 480 490 502 4.82 532 522 496 522 444

Snq.ny 570 584 598 512 540 592 560 534 510 484
Cny,ny 558 580 6.14 524 568 586 564 548 524 532
Iny.ny 560 556 522 542 512 558 556 5.16 5.54 5.06

200 Mnq,n, 548 530 546 5.16 522 494 5.06 5.06 524 526

Mpg 568 556 562 518 530 534 532 518 532 534
Tnyny 478 472 520 498 498 492 526 4.86 5.38 5.60
TpE 478 472 520 498 498 494 526 4.86 5.38 5.60

Snqy,ny 514 480 546 522 546 564 522 518 556 5.54
Cny,ny 536 486 522 536 530 530 5.00 530 5.60 572
Inyny 550 5.12 524 530 5.08 550 522 556 5.54 554

NOTE: This table reports the frequencies of rejection by each method under the
null hypothesis Hy based on 5000 independent replications conducted at the
significance level 5%.

To carry out Hy : p; = H,, X1 = X, we set yuj; =
H2i = Oforali = 1,...,p,and 8, = 6, = 0. Both
samples are essentially iid from p-dimensional standard normal
or multivariate gamma distribution. To evaluate the power, we
fix { Mli}le as zeros and 0; = 0 for the first population, and vary

{Mz,-}le to set up the mean differences in Hf,l1 and H;,. As for
the covariance alternatives, we change 6, to account for dense
covariance differences in H? and implement sparsely differed
covariance matrix pair (X, X,) to generate H.

As for Hy,, we set 6, = 0 to make sure the two samples share
the same covariance matrix. In term of the mean vectors, for H,
we follow Benjamini and Hochberg (1995) and consider a fixed
percentage (pct) of violationsin p1; = up;fori =1,...,p. The
nonzero signal strength is determined in a similar fashion to Li
and Chen (2012) as § = /np~1/2. To prevent trivial power of «
and 1, we choose n = 0.3 and pct = 15%. We set u,,; = § for
1 < i < [p - pct] and zeros for the remaining ones. For sparse
alternative H;, , we set the nonzero signal to be § = 0.3,/logp
and the number of nonzeros to be p” with r = 0.05.

As for H,, we ensure the two samples share equal means
on every dimension. We set 6, = 0.2 to create an MA(1)
pattern of covariance as the dense alternative H. For the sparse
alternative H, we follow Cai, Liu, and Xia (2013) to generate a
symmetric sparse matrix U with eight random nonzero entries,
each with a magnitude of § = 0.3,/log p?. The locations of four
nonzero entries are randomly selected from the upper triangle
of U while the other four are specified by symmetry. Then we
generate samples from (X1, Xp) with £; = (1 + ¢)I, and
X, = (148)I,4+ U, where & = |min{Amin (U + I), 1}|+0.05 is
to make sure both X and X, are positive definite. Finally, with
respect to Hp, we adopt the same idea as in Hy, for the mean
differences, and the same approach as in H, for the covariance
differences.

Table 1 presents the empirical size of the seven tests with Nor-
mal and Gamma distributed {Z} ;} in the data generating process
(5.1). Tables 24 report the empirical power of the seven meth-
ods for testing H,,, H. and Hjp with normal distributed {Zj;}.
We also carry out studies on the power analysis for Gamma
distributed {Zy ;}. The results show a similar pattern to the Gaus-
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Table 2. Empirical power (%) against Hp and H¢ with normal distributed {Zj ;} in
the data-generating process.

Table 3. Empirical power (%) against Hp, with normal distributed {Zj ;} in the data
generating process.

N = 100 N = 200
H Method p=100 200 500 800 1000 100 200 500 800 1000
HY Mnyn,  47.30 44.94 47.00 46.64 4652 87.04 88.92 90.76 91.54 91.32
Mpg ~ 4864 4592 47.52 46.88 46.88 87.34 89.10 90.86 91.58 91.34
Toymy 538 536 498 512 448 536 480 562 464 4.96
Toe 538 536 498 5.12 448 536 480 562 464 4.96
Smn, 3406 30.16 3032 29.32 28.44 75.18 76.74 77.74 79.46 79.26
nn, 3422 29.88 29.96 28.88 27.98 75.48 77.82 78.60 80.40 79.96
Jnyny 3936 37.48 36.78 36.80 36.72 80.32 82.20 83.32 84.46 84.64
HSy Mnyn, 4224 3338 5422 44.68 17.74 8224 72.48 94.46 88.60 40.12
Mpg ~ 79.00 79.54 9630 95.58 78.98 99.22 99.68100.00 99.98 99.74
Toymy 474 428 480 498 544 510 464 476 466 504
Toe 474 428 480 498 544 510 464 476 466 504
Snyn, 7680 78.10 95.66 95.22 77.88 99.18 99.66100.00 99.98 99.74
nn, 7692 7804 9560 9520 78.02 99.18 99.62100.00 99.98 99.74
Jnyny 7768 7892 9586 95.50 78.50 99.18 99.64100.00 99.98 99.74
HY Mp,n, 480 492 512 484 510 510 500 526 518 526
Mpg 550 560 538 526 548 548 526 536 532 5.40
Toym, 5862 6038 58.90 59.12 59.98 97.46 98.24 98.52 98.22 98.46
Toe 5864 60.38 58.90 59.12 59.98 97.46 98.24 98.52 98.22 98.46
Snmy,  37.22 3752 36.12 36.52 38.16 91.80 92.62 93.94 92.90 93.16
Cryny 3760 3838 36.64 37.00 38.58 92.62 92.98 94.24 93.76 94.08
Jnyny, 4520 4652 46.02 45.94 47.24 9434 94.68 95.62 95.50 95.64

HE Mnqny 512 498 5.14 528 522 5.08 538 540 490 5.16

Mpg 576 544 538 554 544 556 560 546 502 5.18
Tnyny 3094 1948 9.78 7.66 8.14 7240 46.14 17.54 11.64 9.84
Tpe 65.60 66.76 58.20 45.00 37.90 99.68 99.48 98.70 99.04 99.16
Sny.ny 60.00 63.74 57.06 44.02 36.72 99.60 99.44 98.80 98.98 99.16
Cnyny 60.08 63.80 57.10 43.88 36.96 99.58 99.44 98.82 98.98 99.16
1.y 6246 65.58 57.92 44.82 37.54 99.62 99.44 98.74 98.98 99.18

NOTE: (a) This table reports the frequencies of rejection by each method under the
alternative hypothesis based on 5000 independent replications conducted at the
significance level 5%. (b) H;jn and H3, stands for the type of alternative hypotheses
(dense/sparse) in regards of the mean differences of the two populations. (c) H?
and H; stands for the type of alternative hypotheses (dense/sparse) in regards of
the covariance differences of the two populations.

sian cases and are presented in Section 3.1 of the supplementary
materials. Moreover, we examine the test performance in regard
to data with two additional covariance structures, and the results
are summarized in Section S.3.2 of the supplementary materials.
These numerical comparisons provide us with the following
findings:

1. Under Hy, all of the seven tests achieve reasonably accurate
size approximation over a broad range of dimensionality.
Besides, the empirical sizes with Gamma distribution illus-
trate that these tests are quite robust to non-Gaussianity.

2. The numerical results of the power-enhanced tests Mpg and
Tpg echo with the power enhancement properties presented
in Theorems 1 and 2. Table 1 reveals that adding power
enhancement components does not inflate the testing size
under the null hypothesis Hy. On the other hand, Tables 2-4
reflect that the testing power is substantially enhanced under
sparse alternatives H;, and H;.

3. As shown in Table 2, the mean tests (M,,,,, and Mpg) are
powerful in detecting mean differences as in H,,, but have
almost no power in discovering the covariance differences
under H.. In contrast, the covariance tests (T, ,, and Tpg)
perform well in declaring significance for covariance alterna-
tive H,, however, it is powerless to identify the unequal means
under Hy,.

Hy, N Method p=100 200 500 800 1000
HLAHE 100 Mpyn, 4478 4480 4440 4526 4560
Mpe 4640 4544 4480 4554 4584

Toyn, 5780 5870 5894 59.16 5978

Tee 5780 5870 5894 59.16 5978

Sy 5880 5812 57.58 5808 5930

Crymy 5722 5656 5540 5576 56.72

oy 7324 7468 7442 7594 7624

200 Mnyn, 8444 8558 8792 8920 89.22

MpE 8486 8574 8802 8926 89.22

Toyn, 98.16 9826 9826 9838 9848

Tee 98.16 9826 9826 9838 9848

Sy 9884 9912 9938 9924 9930

Cnyny 9850 9883 9898 9898  99.08

Jny.ny 99.64  99.88 99.88 99.88  99.90

H4, NHS 100 Mg, 3890 4242 4168 3908 3840
Mpg 4052 4312 4216 3942 3870

Toyn, 3248 1816 996 796 7.2

Toe 7236 7262 5812 4276 3758

Snym 7542 7776 6586 5262 4862

Crymy 7502 7784 6584 5284 48.82

oy, 8134 8198 7056 5942  54.56

200 Mngn, 7706 8292 8512 8338 8246

Mpg 7754 8314 8522 8340 8248

Toyn, 7424 4652 1768 1154 1006

Tee 99.82 9946 9884 9894  99.00

Sy 9990 9972 9940 9938 9934

Crymy 9990 9972 9942 9936 9934

oy, 99.92  99.82 99.52 9942  99.42

NOTE: (a) This table reports the frequencies of rejection by each method under
the alternative hypothesis based on 5000 independent replications conducted
at the significance level 5%. (b) Hp, stands for the type of alternative hypotheses
(dense/sparse) in regards of the mean and covariance differences of the two
populations.

4. With respect to H,, and H,, even though one of the Mpg
test and Tpg test fails, the three combination tests remain
powerful across all the experiments. This coincides with the
power analysis shown in Theorem 5 that the combination of
two tests makes use of their respective power under different
alternatives, therefore, successfully discover the discrepan-
cies in either mean vectors or covariance matrices.

5. Tables 3 and 4 illustrate that our proposed simultaneous test
acquires additional gains when both mean differences and
covariance differences exist. Under Hy, both Mpg test and
and Tpg test successfully sense the differences in regard to
the means and covariances, respectively. By combining the
two tests together, our proposed approach yields to a higher
testing power as it can simultaneously detect both types of
differences.

6. What’s more, for each simulation setting, the proposed test
Jn,.n, prevails with higher power compared with the Sy, 4,
and Cy, », tests. This finding resounds with the asymptoti-
cally optimal property discussed in Remark 4.2.

Additionally, Figure 2 provides a graphical representation
of the testing power using seven approaches under H, when
both mean differences and covariances differences exist. We
study four different hypotheses consisting of the combination of
sparsely/densely differed means (H?,/H¢ ) and sparsely/densely
differed covariances (HS/H?). The figure shows that the tests
My, n, and Ty, ,, favor dense alternatives H% and HY, respec-
tively, because of its nature of quadratic forms, but lack the



Table 4. Empirical power (%) against H, with normal distributed {Zj ;} in the data-
generating process

Hy N Method p=100 200 500 800 1000
H,NHE 1000 Mpyn, 4116 3158 2328 1820 17.70
Mpe 7724 7726 7786 7736 7896

Toyny 5818 5996 5880 5826 5878

Tee 5820 5996 5880 5826 5878

Sy 83.14 8390 8486 8450 8536

Crymy 83.14 8406 8498 8464 8572

oy, 8750 8868 8860 8800 88.80

200 Mnyp, 8152 6982 5178 4172 3826

MpE 99.10 9946 9960 99.74  99.74

Toyn, 9756 9778 9840 97.96 9854

Tee 97.56 9778 9840 97.96 9854

Sy 99.96  99.96 10000 99.98  99.98

Coyny 99.96  99.98 10000 10000  99.98

Jny.ny 99.98 10000 10000 10000  99.98

H, NHS 100 Mngn, 3484 2934 2034 1694 1504
Mpg 6612 7162 7074 6776 68.60

Toyn, 3074 1970 984 776  7.12

Toe 6944 7436 5728 4396 3832

Sy 8556  89.86 8480 7864 78.14

Coyny 8548 8990 8484 7890 78.10

Iny.ny 8730 9114 8612 79.82 79.44

200 Mpyn, 7294 6452 4632 3632 3120

Mpe 97.54 9848 9892 9878  98.68

Tnyn; 74.22 4646 1776 1172 1094

Toe 9972 9936 9900 9886 98.88

Sy 99.98  99.94 9994 9980 9976

Coymy 99.98 9994 9994 99.84 9976

Iny.ny 9998  99.94 9996 99.84 9976

NOTE: (a) This table reports the frequencies of rejection by each method under
the alternative hypothesis based on 5000 independent replications conducted
at the significance level 5%. (b) Hp, stands for the type of alternative hypotheses
(dense/sparse) in regards of the mean and covariance differences of the two
populations.

ability of detecting sparse alternatives such as H;, and H. Fortu-
nately, the proposed power-enhanced tests Mpg and Tpg greatly
promote the respective testing power under H;, and H. When it
comes to jointly testing means and covariances, the plot clearly
shows that our proposed Fisher’s combined test J,,, ,, achieves
the highest power among the three combination approaches
(Fnl,nz) Sni s and Cnl,nz)-

Moreover, we would like to discuss the effects of data char-
acteristics (e.g., sample size n and data dimensionality p) on
the test performance reflected by the empirical results. Using
the Mpg test as an example, the convergence rate of Mpg is
dominated by a leading term that depends on #, p, and the
structure of X. Hence, the size and power performance is related
with data dimensionality in a complicated way. The theoretical
results require both #n and p go to infinity. The larger the p is,
the better fit it is in regard to the asymptotic regime. It is likely
the reason why when n = 100, p = 500 yields a more accurate
size than that of p = 100 in Table 1. However, since the leading
term also depends on the structure of X, it is not always true
that a larger p leads to a more accurate size or a more higher
power. As for the sample size n, a larger n provides a better fit
to the asymptotic regime. Yet we would like to point out that
the main term of Mpg is a martingale and its convergence rate is
slow with respect to n. When # is increased from 100 to 200, the
convergence rate is not significantly improved. Together with
the randomness in simulation studies, the empirical size with
n = 100 is not necessarily closer to 5% compared with that
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of n = 200. In addition, the uncertainty due to randomness
in simulation studies also has some impacts on the results of
empirical size and empirical power.

In summary, the simulation results demonstrate the promis-
ing finite-sample performance of our proposed simultaneously
tests, providing numerical evidence to verify the theoretical
properties introduced in the previous section. Under the null
hypothesis, the proposed test retains the desired nominal signif-
icance level. It is powerful in detecting either mean differences
or covariance differences, and it remains high power for either
sparse alternatives or dense alternatives. Moreover, the testing
power is boosted against more general alternatives.

6. Application to Gene-Set Testing

This section demonstrates the power of our proposed tests
through a real application on an Acute Lymphoblastic Leukemia
(ALL) dataset from the Ritz Laboratory at the Dana-Farber
Cancer Institute (DFCI). The data was originally published by
Chiaretti et al. (2004) and is now available at the Bioconductor
website. The ALL dataset contains gene expression levels of
12,625 probes on Affymetrix chip series HG-U95Av2 from 128
individuals with either T-cell ALL or B-cell ALL, depending
on the type of lymphocyte for the leukemia cells. This study
focuses on a subset of the ALL data for 79 patients with the B-cell
ALL. We further divide the patients into two groups according
to their B-cell tumors’ subtypes: the BCR/ABL fusion and the
cytogenetically normal NEG, whose sample sizes are 37 and 42,
respectively.

Identifying differentially expressed gene-sets has received
considerable attention in genetic studies (Efron and Tibshirani
2007; Goeman and Bithlmann 2007). Since each gene does not
work individually but rather tend to function groups to achieve
complex biological tasks, researchers look into gene expression
profiles based on groups of genes depending on their functional
characteristics. To make full use of prior biological knowledge,
we group sets of genes according to their Gene Ontology (GO)
annotations. The GO system describes the biological domains
with respect to three aspects: biological process (BP), cellular
component (CC), and molecular function (MF). We follow the
same criteria to perform a prescreening procedure by exclud-
ing those probes with low fluorescence intensities and nar-
rowly spread, characterized by small absolute values and small
interquantile ranges. The filtering step retains 2391 probes, cor-
responding to 1849 unique GO terms in BP category, 306 in CC
and 324 in ME

Let Sy,...,Sk denote K gene-sets and {5, 15}, {Kas,»
Y55, } be the mean vectors and covariance matrices of two types
of tumors, respectively. We are interested in testing

HO,category s = Ko, and lek = ZZSka k=1,---,K

where category € {BP,CC, MF}. We classify gene-sets into
three different GO categories and shall test each GO category
separately. Figure 3 plots the dimension of gene-sets contained
in each category. The dimension of gene-sets in each category
can be as large as two thousand, which is much larger than
the sample sizes n; = 37 and n; = 42. To examine the test
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Figure 4. Boxplots of the 30_1 1 Mn; ,ny and 30_21 Tnq,n, test statistics for three GO categories.

assumptions imposed on the covariance matrices, we compute
the ratio of tr(f?fg) to tr(f%)tr(fg) for the gene-sets, where
¥ and X, are sample covariances. We observe that the ratio
is small for most gene-sets. The median of the ratio values is
0.240 and the 75th percentile is 0.335. There are 92% of gene-
sets whose ratio is below 0.5.

Before proceeding, we explore the values of power-enhanced
test statistics My, », and T}, ,, for all gene-sets. Figure 4 presents
boxplots of M, ,, and Ty, ,, within each GO category. The
My, n, statistics have relatively larger values compared with the
Th,,n, statistics. Recall that under the null hypothesis, both
statistics converge to N(0, 1) in distribution. The finding that



Table 5. The number of significant gene-sets declared by different tests after BH
control with nominal level « = 0.05.

GO category BP CC MF

Total number of gene-sets 1849 306 324
Number of Mn.ny 1134 140 183
Significant Mpg 1469 216 236
Gene-sets Tny.ny 126 55 20
Tee 126 55 20

Sniny 1485 219 234

Cnyny 1484 220 233

Jnyn 1511 226 238

the M,,, », statistics have larger absolute values indicates that for
these gene-sets, their mean vectors are more different compared
to the covariance matrices between the two groups. Moreover,
considering significance level « = 0.05 and the upper «-
quantile of N(0,1) zo, = 1.645, a large number of M, ,,
statistics fall above the threshold z,. Therefore, we would expect
a lot of rejections for testing the equality of the mean vectors.
The discussions in this paragraph give us an exploratory view of
the dataset. Later on, we will present more precise comparisons
among various test approaches.

We then apply our power-enhanced simultaneous test J,, ,
to test the means and covariances simultaneously, together with
the mean test M, ,,, the covariance test Ty, ,, and the two
power-enhanced tests Mpg and Tpg. We compare our proposed
approach Jy, ,, with the x? approximation Sy, ,, as well as the
Cauchy combination Cy,, ,,. In order to control the false discov-
ery rate (FDR), we apply the Benjamini-Hochberg (BH) pro-
cedure (Benjamini and Hochberg 1995) to each GO category.
Table 5 reports the number of significant gene-sets declared by
different tests with nominal level o« = 0.05 for every category.

As shown in Table 5, ], », identifies more significant gene-
sets than the other methods. The M, ,, test declares a lot of
significance whereas the Ty, ,, test only identifies a few. The
Mpg, identifies a few more differentially expressed gene-sets with
respect to mean vectors, while the Tpg does not yield addi-
tional power in detecting the differ ences among covariances.
This indicates there exist a large number of unequal means
between the two types of tumors, but not much differences in
their covariance patterns. This phenomenon emphasizes the
importance of developing a powerful method for jointly testing
the means and covariances, so that we have a better chance to
detect differences between two distributions even though we are
in lack of prior knowledge about whether the differences reside
in means or covariances.

The x? approximation S, ,, and the Cauchy combination
Cy,,n, yield comparative performance. As shown in Table 5,
the two methods identify more differences than the covariance
test Tpg, yet potentially miss some differentially expressed gene-
sets compared to the mean test Mpg. In contrast, our proposed
Juy,n, is able to identify more discrepancies between the two
groups, compared to the other three combination approaches
and also compared to the original means test as well as the
covariance tests. In a short summary, our proposed Fisher’s
combined simultaneous test J,, », benefits from incorporating
the information from the mean tests and covariance tests, and
outperforms other combination methods in detecting the sig-
nificant differences among the gene-sets.
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Next, we study those gene-sets which are declared signifi-
cant only by J,, », but not any other method. Among those,
we pay special attention to the GO-term “G0:0005125” in the
MF category. This gene-set contributes to cytokine activity,
including interleukins which are a group of cytokines that reg-
ulate inflammatory and immune responses (Okada and Pol-
lack 2004). Extensive scientific studies have revealed the close
relationships between interleukins and leukemia (Touw et al.
1990; Paietta et al. 1997; Yoda et al. 2010; Canale et al. 2011).
For another example, it is known microRNAs act complemen-
tarily to regulate disease-related mRNA modules in human
diseases (Chavali et al. 2013). We observe that the expression
levels of “GO:0006913” in the BP category are statistically dif-
ferent between the two groups. This GO-term refers to nucle-
ocytoplasmic transport, whose association with leukemia has
been validated by numerous cancer studies (Chavali et al. 2013;
Gravina et al. 2014; Takeda and Yaseen 2014). The biologi-
cal evidence suggests our power-enhanced simultaneous test
Juy,n, provides more useful information compared with other
approaches, which further implies the importance of developing
power-enhanced simultaneous tests.

7. Conclusion and Discussion

In this work, we study the problem of jointly testing the equality
of two-sample mean vectors and covariance matrices of high-
dimensional data. We introduce a new power-enhanced simul-
taneous test, and prove the test achieves accurate asymptotic
size, enhanced and consistent asymptotic power under a more
general alternative, and asymptotic optimality with respect to
Bahadur efficiency. The proposed test is scale-invariant and
computationally efficient. We demonstrate the finite-sample
performance using simulation studies and a real application to
gene-set testing. In our current setup, there are no structural
assumptions imposed on the mean vectors and covariance
matrices. In some applications, the mean vector or covariance
matrix may admit some structure due to the nature of data,
for example, the factor structure (Fan, Fan, and Lv 2008), and
the banded structure (Bickel and Levina 2008). To boost the
testing power of testing for parameters with certain structure,
we may need first separate structural information and signals
for the alternatives, and then construct the PE component
upon the latter part. When the parameters naturally come with
some kind of structure, developing power-enhanced tests which
takes account of structural information would be an inter-
esting and practically useful extension. We leave it for future
work.

Supplementary Materials

The supplementary note consists of three sections to present lemmas,
complete proofs of lemmas and theorems, and additional numerical results.
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