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Abstract— Precise 3D environmental mapping with semantics
is essential in robotics. Existing methods often rely on pre-
defined concepts during training or are time-intensive when
generating semantic maps. This paper presents Open-Fusion,
an approach for real-time open-vocabulary 3D mapping and
queryable scene representation using RGB-D data. Open-
Fusion harnesses the power of a pretrained vision-language
foundation model (VLFM) for open-set semantic comprehen-
sion and employs the Truncated Signed Distance Function
(TSDF) for swift 3D scene reconstruction. By leveraging the
VLFM, we extract region-based embeddings and their asso-
ciated confidence maps. These are then integrated with the
3D knowledge from TSDF using an enhanced Hungarian-
based feature-matching mechanism. In particular, Open-Fusion
delivers outstanding annotation-free 3D segmentation for open
vocabulary query without the need for additional 3D training.
Benchmark tests on the ScanNet dataset against leading zero-
shot methods highlight Open-Fusion’s superiority. Further-
more, it seamlessly combines the strengths of region-based
VLFM and TSDF, facilitating real-time 3D scene comprehen-
sion that includes object concepts and open-world semantics.
We encourage the readers to view the demos on our project
page: https://uark—aicv.github.io/OpenFusion

I. INTRODUCTION

Real-time 3D scene understanding, crucial in computer
vision, involves discerning object semantics, locations, and
geometric attributes from RGB-D data in unstructured en-
vironments [1]. Despite its diverse applications in virtual
reality, robotics, and augmented reality, traditional training
methods face significant challenges [2]. These include the
need for extensive human annotations, limited closed-set
semantic information, and the demand for real-time perfor-
mance in applications like robotics and augmented reality.

In recent years, the convergence of language and robotics
has garnered significant attention, driven by the promise it
holds in enabling robots to interpret and act upon straight-
forward natural language commands. This benefit from the
emergence of large-scale vision-language foundation models
(VLFMs) such as CLIP [3], ALIGN [4], BLIP [5], GLIP
[6], RegionCLIP [7], etc. Those models are learned in
unsupervised manner using massive image-text pairs from
the internet and have showcased remarkable capabilities in
zero-shot learning and open-vocab reasoning. However, inte-
grating VLFMs into robotics requires addressing scalability
and real-time processing concerns. Scalability is essential to
avoid exponential data growth in large environments, while
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real-time capability is vital for instant decision-making.
Achieving these goals necessitates efficient data extraction
and integration without undue delays.

Despite the impressive qualities exhibited by these
VLFMs, there remains a significant untapped potential for
their integration into robotic applications, particularly in the
context of 3D mapping and understanding. The primary
bottleneck in leveraging VLFMs for robotics stems from
the fact that most foundation models consume images and
produce only a single vector encoding of the entire image
within an embedding space. This approach falls short of
meeting the stringent demands of robotic perception systems,
which require precise reasoning at point-level or object-level
granularity across a diverse spectrum of concepts. This is
crucial for tasks involving interaction with the external 3D
environment, such as navigation and manipulation. More-
over, it is essential to acknowledge that applying VLFMs at
the point-level can be computationally intensive and time-
consuming, rendering it unsuitable for meeting the real-time
demands of real-world applications. Therefore, to fully har-
ness the potential of VLFMs in robotics, there is a pressing
need to develop more efficient and effective techniques that
enable these models to operate in real-time while delivering
the required level of precision for tasks in complex 3D
environments.

In response to the aforementioned challenges, we present
Open-Fusion, a queryable semantic representation rooted
in VLFMs. Open-Fusion facilitates real-time 3D scene re-
construction, incorporating semantics, through the use of
the Truncated Signed Distance Function (TSDF). Our work
demonstrates that Open-Fusion excels in the efficient zero-
shot reconstruction and understanding of 3D scenes, offering
queryable scene representations for enhanced understanding
and interaction. To summarize, we make the following contri-
butions: 1) Real-time 3D Scene Reconstruction: We extend
TSDF to achieve effective real-time 3D scene reconstruction.
2) Semantic-aware Region-based Feature Matching: We
extend Hungarian matching to seamlessly match features
from the VLFM into the 3D scene representation, enabling
incremental semantic reconstruction. 3) Embedding Dictio-
nary for Efficiency: To reduce memory consumption during
scene reconstruction and facilitate open-vocab scene queries,
we implement an embedding dictionary. 4) Open-Fusion:
As a result, we propose Open-Fusion, a real-time 3D map
reconstruction and scene representation with open-vocab
query capabilities. This framework promises to advance the
field of real-time 3D scene understanding for robotics.

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 9411

Authorized licensed use limited to: West Virginia Univ Institute of Technology. Downloaded on September 29,2024 at 19:32:16 UTC from IEEE Xplore. Restrictions apply.



HIGH-LEVEL COMPARISON BETWEEN OUR OPEN-FUSION AND EXISTING SOTA QUERYABLE SCENE REPRESENTATIONS. P DENOTES THE NUMBER OF

TABLE I

POINTS IN A MAP, M IS THE NUMBER OF OBJECTS IN THE SCENE.

Map Method Representation Foundation Model Feature Level | Real-time ! | Scene-specific | Sem-Query 2
CoW [8] point CLIP [3] + GradCAM [9] point X O(P)
2D NLMap [10] point ViLD [11] + CLIP [3] bbox - X O(P)
VLMap [12] point LSeg [13] point X X O(P)
CLIP-Fields [14] NeRF Detic [15] + CLIP [3] bbox X v -
3D LERF [16] NeRF CLIP [3] image patch X v -
SemAbs[17] occupancy CLIP [3] + GradCAM [9] point X X O(P)
ConceptFusion [18] point SAM [19] + CLIP [3] bbox X X O(P)
Open-Fusion TSDF SEEM [20] region 4 X O(M)

II. RELATED WORKS
A. Vision-Language Foundation Models (VLFMs).

VLFMs have brought about a revolution in the field
of perception by enabling open-set inference using natural
language. These models, renowned for their robust gen-
eralization capabilities, owe their success to the extensive
datasets and model parameters that drive them. VLFMs
can be broadly categorized into three groups based on the
level of resolution in vision-language alignment as follows:
(i) Image-Level Aligned Models (ILAMs), (ii) Pixel-Level
Aligned Models (PLAMs), and (iii) Region-Level Aligned
Models (RLAMs). Specifically, ILAMs (UniCL [21], CLIP
[3], ALIGN [4], BLIP [5], BLIPv2 [22], etc.) generate a
single vector representation for the entire image that can cor-
relate with text embeddings. PLAMs (LSeg[13], MaskCLIP
[23], etc.), on the other hand, produce vector representation
for each pixel of an image. Similarlly, RLAMs (GLIP [6],
GLIPv2 [24], RegionCLIP [7], ODISE [25], SEEM [20],
HIPIE [26], SemanticSAM [27], etc.) offer the representation
for each region within an image.

Image-level representations offer the advantage of com-
putational efficiency but are limited by their provision of
coarser semantic insights. This limitation becomes pro-
nounced in contexts demanding finer semantic information,
necessitating the integration of auxiliary modules such as
Grad-CAM [9] to imbue spatial knowleadge. However, this
integration incurs a substantial increase in computational
overhead, rendering such approaches impractical for appli-
cations where real-time processing is desired. In contrast,
pixel-level and region-level Aligned Models are inherently
endowed with spatial awareness, positioning them as more
apt solutions for tasks requiring granular semantic insights.
Recognizing the necessity for both open-set semantics and
computational expediency, we have opted to leverage SEEM,
a region-level VLFM with masks. SEEM strikes a balance
between the demand for nuanced semantic understanding
and the imperative of time-efficient processing, all while
maintaining scalability.

B. Queryable scene representation.

To offer a detailed survey of the current landscape in
semantic mapping methodologies, we examine both two-
dimensional (2D) and three-dimensional (3D) approaches.

IReal-time: the real-time requirement for 3D scene reconstruction.
2Sem-Query: the time for open-vocab semantic query.

2D Mapping: CoW [8] and NLMap [10] are notable exam-
ples, harnessing the open-set features derived from CLIP to
construct 2D map for exploration. CoW employs Grad-CAM
[9] to extract spatial knowledge from CLIP whereas NLMap
integrates ViLD [11] to crop objects before applying CLIP.
VLMaps [12] stands out by utilizing pixel-aligned features
from LSeg [13] to enable the creation of bird’s-eye view 2D
maps, specifically designed for efficient landmark querying.

NeRF-based 3D Mapping: CLIP-Fields [14] trains a NeRF-
inspired implicit representation network that maps spatial
coordinates (z,y, z) to vectors enriched with semantic infor-
mation through MLPs. Remarkably, this approach is scene-
specific, with direct supervision from semantic vectors ob-
tained from CLIP or other models like Sentence BERT
[28]. LERF [16], while also drawing inspiration from CLIP,
focuses primarily on object localization. It trains a neural
field through knowledge distillation from multi-scale CLIP
features and DINO. However, it is worth noting that LERF
may struggle with capturing precise object boundaries due
to its primary emphasis on object localization.

Non-NeRF 3D Mapping: SemAbs [17] proposed to incorpo-
rate semantics from CLIP with GradCAM and the 3D com-
pletion module to produce semantic-aware occupancy. While
it showcases promising results in 3D scene understanding,
it cannot run in real-time. ConceptFusion [18] introduces
a unique paradigm by employing off-the-shelf foundation
models to construct 3D maps with open-set features. While
this approach exhibits great potential for open-vocab 3D
scene understanding, their integration of semantics to every
points in space make the method resource intensive.

While NeRF-based methods excel in achieving photoreal-
istic scene reconstruction, they require retraining for each
new scene and are constrained in the volume they can
render. As a result, they tend to be customized for specific
scenes, which limits their applicability to real-world scenar-
ios. Conversely, non-NeRF-based methods have the potential
to capture more generalizable representations as they might
not require retraining for each new scene. However, previous
works focus on the offline generation of the queryable map
mainly due to the time-consuming computational require-
ments posed by their point-based approach. This drawback
makes them less suitable for real-time robotics applications.
To address this challenge, we introduce Open-Fusion, which
is a non-NeRF methods for real-time processing, resulting in
an open-vocab 3D scene representation suitable for robotics.
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Fig. 1.

The overall pipeline of Open-Fusion, which contains two modules. Real-time Semantic TSDF 3D Scene Reconstruction Module: This module

takes in a stream of RGB-D images (It, D¢) and the corresponding camera pose (A¢). It incrementally reconstructs the 3D scene, representing it as a
semantic TSDF volume V% at time t. Open-Vocabulary Query and Scene Understanding Module: In the second module, Open-Fusion accepts open-vocab
queries as inputs and provides corresponding scene segmentations in response, which can serve as an eye for language base robot commanding.

II1. METHODOLOGY

A. Problem Setup

Consider a sequence of T RGB-D observations ob-
tained from an environment, which can be represented as
{(L;, Dy, Ay)}E . Here, I; € REXWX3 represents an RGB
frame, D; € R¥>*W indicates a depth frame, and A; =
[R¢|t;] € R3** denotes the associated camera pose with
rotation R, € R3*3 and translation t € R3*!. Additionally,
we have the camera’s intrinsic parameters represented as
K € R®*3, Our primary objective is to construct a language-
queryable 3D map denoted as M in real-time. In this context,
we define a queryable map as a 2D/3D representation of
the environment that incorporates both physical and semantic
features. These features can be extracted using a query vector
q € R? Notably, various entities such as images, text,
coordinates, etc., can be transformed into the query vector
by encoding them into a shared embedding space using an
encoding function.

Our proposed Open-Fusion, as depicted in Fig. 1, com-
prises two main modules: 1) Real-time Semantic TSDF 3D
Scene Reconstruction: this module consists of two sub mod-
ules i) Feature Extraction: this module aims to extract region-
based feature including confidence map and embedding map
ii) Real-time Semantic 3D Scene Reconstruction: this module
facilitates the integration of an incoming frame at time ¢
into the current semantic STDF volume V;_; while updating
the embedding dictionary (D). Consequently, it generates
a 3D scene representation Vp and an updated embedding
dictionary (Dr) after the integration of 7" frames. The second
module consists of three components of Feature Rendering
by TSDF, Region-based Semantic Feature Matching, and
Feature Update. 2) Open-Vocab Query and Scene Under-

standing: this module is designed to localize and segment
objects in the scene based on user queries and open-vocab
semantics.

B. Region-based Feature Extractor

Given the RGB frame of the current view I; at time ¢,
employ the SEEM model [20], denoted as 6, for encoding.
Unlike the widely adopted CLIP model, SEEM produces
region-level aligned feature. This aims to eliminate the need
for the class agnostic mask proposal generator in two-stage
setup [18] or attention-explainability model to localize the
relevant regions like [8], [17]. Considering the real-time
constraints, avoiding the inclusion of such expensive models
in a sequence of function calls is of utmost importance.

For each I;, the model 6 generates region confidence maps
C, € RIQIXH/AXW/4 at 3 quarter of the input resolution.
Additionally, it produces corresponding semantic embedding
vectors, denoted as E; € RI9I*4 tailored for the predefined
number of object queries |Q|, where d is feature dimen-
sion. The feature extraction at time ¢ can be formulated
as Ci,E; = 60(I;). In practice, the region-based feature
extraction process is specifically for semantic-related tasks
and may pose a bottleneck due to SEEM’s time consumption
at 4.5 FPS. If a task doesn’t require semantics, this process
can be skipped. Additionally, given the substantial overlap
between two consecutive frames, it’s feasible to omit some
frames. To enhance the flexibility and efficiency of our
OpenFusion, we have implemented a semantic switch, as
depicted in Fig. 1.

C. Real-time 3D Scene Reconstruction with Semantics

Every time-frame, we incorporate the incoming observa-
tion (I, Dy, A;) into an implicit surface using the Truncated
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Signed Distance Function (TSDF). Specifically, we integrate
(I, D¢, A;) into the TSDF volume V;_; to create the TSDF
volume at time ¢, denoted as V;. It is important to emphasize
that the TSDF volume V; comprises a set of M volumetric
blocks, represented as V; = {G;}M,. The TSDF is an
extension of the Signed Distance Function (SDF) ¢, which is
a function that provides the shortest distance to any surface
for every 3D point. The sign indicates whether the point is
located in front of or behind the surface. In the context of
scene reconstruction, the points of interest typically reside
on the boundary 6€). For a distance function d and a point
p € R3, the SDF ¢ : R? — R defines the signed distance to
the surface as follows: ( )
—d(p,6Q) ifpe

o(p) = { d(p,6Q) if pe Qe (1

This means that points located inside the surface have
negative values, while the surface itself lies precisely at the
zero crossing point between positive and negative values. The
TSDF truncates all values above with a specified threshold
7, with 7 chosen as four times the voxel size.

As the reconstruction of the 3D scene essentially repre-
sents a local 2D surface—a 2D manifold embedded in 3D
space—we can efficiently embed the 3D scene using globally
sparse but locally dense voxel blocks. These voxel blocks
exhibit a distinctive characteristic where they are globally
present only near the surface of interest (while other parts
remain void). Within each block, we maintain a dense voxel
grid typically sized at X r x r. Following the approach in
[29], we construct semantic TSDF volume as a set of globally
sparse volumetric blocks V; = {G;}},, each containing a
locally dense voxel grid G; = {p; };; and the information
in p; = {(RGBj,w;, qgj, k;,c;)} includes color RGB,
weight w for TSDF updates, TSDF value (;AS, embedding key
k, and confidence score c.

Notably, unlike previous approaches like [18] that store the
semantic embedding for each point, we opt to store only the
keys for embedding and the associated confidence scores for
each pixel. The actual embedding information is maintained
separately within the dedicated embedding dictionary D :
k — E. Given our utilization of region-based embedding
for the scene, it’s important to highlight that the number
of embeddings required for the entire scene is significantly
reduced compared to point-based counterparts. In addition to
the surface and color data, we also incorporate semantics into
the TSDF volume. However, to optimize computation and
memory usage in subsequent modules, we limit the storage
of semantics to points near the surface. These points are
strategically sampled based on the TSDF values, resulting in
a more efficient representation.

As a result, to integrate (I;, Dy, A;) at time ¢ into semantic
TSDF volume V;_; at time t— 1, consisting of M volumetric
blocks {G;}M,, we perform the following steps:

1) Feature Rendering: This initial step involves generating
a rendered confidence map C; and retrieving corre-
sponding embedding E; from the existing TSDF volume
Vi1

2) Region-based Matching: In this step, we establish the
correspondence between the confidence map C; and the
rendered confidence map C, for the update.

3) Feature Update: This step focuses on updating the
TSDF volume V;_; at time ¢ and concurrently updating
the embedding dictionary D, based on the matching.

Feature Rendering by TSDF: We render confidence

map C, with its corresponding embeding map E, from the
TSDF volume with the current camera pose R¢|t; and depth
image D; at time ¢. Given the semantic TSDF volume V;_1
accumulated from time O to ¢ — 1 and the current observation
(I;, D¢, A¢), our integration process involves several key
steps: (i) Conversion of depth image D;: Initially, we convert
the depth value D} obtained from the 2D depth image at
the location of pixel coordinates 7, 7 within the image, into
a 3D coordinates (z,y, z) using Eq.2.

y | =R;/"IDPK G -te, @
z 1

where R; and t; are the rotation and translation component
of camera pose Ay, and K represents intrinsic parameters.
(ii) Identifying relevant blocks: Next, we identify the set
of volumetric blocks Gt that contain points unprojected
from the current depth image. We determine these active
blocks within the current viewing frustum by examining
whether the 3D coordinates (x,y, z) fall within the bound-
aries of these blocks or not. (iii) Projection of semantic
information: Subsequently, we project the voxels G; within
the active blocks that possess semantic keys and confidence
scores onto the image plane, as defined by Eq.3.

u T
o | =K (R |y |+t . 3
d z

where K represents the rescaled intrinsic parameters ob-
tained by scaling K to the 6’s output reslution and the coordi-
nate of the valid voxel (z,y, z) are mapped to the pixel loca-
tion (u/d, v/d) subjected to (CZ > O) A (0 <u/d < W/4) A
(0<wv/d < H/4).

This projection is a crucial step in incorporating semantic
information into the current frame’s representation. Building
upon the rendering operation described above, we generate
confidence maps C; € R™*H/4xW/4 within the current field
of view (FoV).

Region-based Temporal Feature Matching: This step
aims to find fusion candidates by matching pairs between
the confidence map C; and the rendered confidence map
C,, which casts the knowledge of objects accumulated until
t—1 in the semantic TSDF volume from the current FoV. We
formulate this feature matching as a 2D rectangular assign-
ment problem, with the goal of identifying the assignment
S* that maximizes the soft-IoU [30] between C; and Ct.

S* = argéllax Z Z Ematch<cta Ct>i7j0—i7j ’ (4)

i=1 j=1
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Here, n represents the number of semantic regions in the cur-
rent frame, and m is the number of rendered regions within
the current FoV. L,,.tcn calculates the soft-IoU of C; and
Ct. The matrix S represents a set of all o; ; values, subject
to the constraints Z;nzl oi; =1V, > 0i; <1;Vj, and
oi; € {0,1}. If 0; ; = 1, it signifies that the prediction in
row ¢ is assigned to the rendered embedding in column j. To
solve this problem, we employ a modified Jonker-Volgenant
algorithm [31] (extension version of Hungarian). We discard
the match if the soft-IoU score is below 0.10. This operation
helps us to avoid fusing poor quality masks of the same
object due to occlusion or blur.

Feature Update and Inverse Rendering: In this step,
information, i.e., (I, D¢, C;, E;), we obtain from the current
time frame is integrated into the semantic TSDF volume V;_1
to create V;. First, each voxel p; within the active volumetric
blocks Guctive undergoes the standard TSDF integration
process [29], where the stored color RG B; and TSDF values
qgj are updated using weighted average. Using Eq. 3 with the
actual camera intrinsic K, we can obtain (u,v,d) and the
update is summarized as:

RGB;j + wj - RGij:lIg/d,v/d o

5o W0t POV g ) .
wj +1

oo ™

where W(-) is the truncation operation that is applied to SDF
to obtain TSDF (Section III-C).

The dictionary D and the confidence score c¢; and the
associated key k; will be updated according to the matching
S*. If the new region is matched to the existing one, only
the confidence map is updated with weighted average while
unmatched candidates also update the dictionary as a new
region. The confidence maps C; are inversely rendered by

applying Eq.3.

D. Querying Semantics from the 3D Map

At any time ¢, we can extract the corresponding point
cloud or mesh from the semantic TSDF volume V; by
querying it with a vector q. Our querying method involves
a similarity calculation between the query and the semantic
embeddings stored in the dictionary D,. This approach is
significantly faster and more memory-efficient than previous
methods that store embeddings for individual points. Specif-
ically, we calculate the cosine similarity cos(E, q) between
the semantic embeddings E € R* in the dictionary D; and
the query vector q € R¢, which is obtained using a modality-
specific encoder trained in a shared embedding space with
the semantic vectors E, and select the most relevant region
as the object proposal. After the query, Marching Cubes is
applied to extract surfaces or point clouds from the semantic
TSDF volumes to indicate the queried region. For a resource
constraint environment, one can simply use the semantic
TSDF voxel coordinates as the approximation of the region.

TABLE II
QUANTITATIVE COMPARISON OF OPEN-SET SEMANTIC SEGMENTATION
AND 3D SCENE REPRESENTATION TIME BETWEEN OPEN-FUSION AND
EXISTING METHODS ON THE SCANNET DATASET.

Time (FPS)1 Accuracy?

Method 3D-Rec.! Sem-3D-Rec? [mAcc f-mIoU
LSeg - - 0.70  0.63
.- |OpenSeg - - 0.63 0.62
i£ 3|CLIPSeg (rd64-uni) - - 041 0.34
CLIPSeg (rd16-uni) - - 041 036
| MaskCLIP - - 024 0.28
g 4| ConceptFusion 1.5 0.15 0.63 0.58
Open-Fusion 50 4.5 0.62 0.59

IV. EXPERIMENTS

In this section, we conduct a comprehensive evaluation
of Open-Fusion’s performance through both quantitative and
qualitative assessments on the ScanNet [32] and Replica [33]
datasets, specifically focusing on open-set semantic segmen-
tation tasks. In this work, we will focus our quantitative
results and comparisons exclusively on the ScanNet dataset
and we will provide qualitative results and comparisons for
the Replica dataset. Furthermore, we showcase the real-
world applicability of Open-Fusion by seamlessly integrating
it into the Kobuki platform, enabling real-time 3D scene
representation.

A. Quantitative Benchmarks

Our quantitative experimental benchmarks are conducted
on the ScanNet dataset, a comprehensive RGB-D video
dataset with annotations for 3D camera poses, surface re-
constructions, and instance-level semantic segmentations.
Following the methodology of ConceptFusion [18], we select
room-scale indoor scenes for evaluation of our research.
For each selected scene, we utilize the semantic categories
provided in the scene annotations as text-prompted queries
for performing open-set segmentation tasks.

Consistent with the evaluation methodology introduced in
ConceptFusion [18], we assess both performance and time
efficiency of Open-Fusion in the context of open-set semantic
3D scene understanding. Our evaluation encompasses a dual
focus: performance and time efficiency. To assess accuracy,
we employ the mean accuracy (mAcc) and frequency mean
Intersection over Union (f-mloU) metrics. In addition, we
measure time consumption for 3D scene representation in
frames per second (FPS). The measurements were done on
single RTX 3900. Table II offers a comprehensive compar-
ative analysis between Open-Fusion against existing SOTA
methods in terms of mAcc, f-mloU, and FPS. Thanks to
the utilization of region-based embedding and TSDF, Open-
Fusion achieves nearly real-time performance at 4.5 FPS,
which is 30 times faster than the runner-up ConceptFusion.

13D-Rec.: 3D scene reconstruction only.

2Sem-3D-Rec: 3D scene reconstruction with semantics.

3Priv.: finetuned VLFMs specifically for semantic segmentation.
47S: zero-shot approaches.
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Query & Input Scene ConceptFusion (0.15 FPS) Ours (4.5 FPS)
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Fig. 2.

Qualitative comparison of 3D object query results on Replica
dataset. While ConceptFusion failed to pinpoint the object location, Open-
Fusion can estimate more precise location from language queries.

While excelling in time efficiency, Open-Fusion maintains
competitive performance levels with the existing SOTA Con-
ceptFusion in terms of both mAcc and f-mloU metrics. This
experiment underscores the efficiency and effectiveness of
Open-Fusion in the realm of open-set semantic 3D scene
understanding. Open-Fusion represents a significant advance-
ment, establishing itself as the new SOTA in terms of both
performance and efficiency.

B. Qualitative Results

We conducted a qualitative evaluation of Open-Fusion on
the Replica dataset [33], as illustrated in Fig. 2. In this exper-
iment, we demonstrated the semantic segmentation perfor-
mance with queries involving various object sizes, from small
objects like vases and lamps to larger ones like sofas and
cabinets. Our Open-Fusion not only achieves significantly
faster processing times (30x faster) but also delivers more
accurate queryable semantic segmentation results.

C. Real-World Experiment

In this section, we present a real-world demonstration
of real-time queryable scene reconstruction. Our experiment
was conducted using the Kobuki platform, equipped with
an RGB-D camera setup. Specifically, we utilized the Azure
Kinect Camera to capture RGB-D images at a downsampled
resolution of 360 x 630, along with the Intel T265 Camera for
capturing corresponding camera poses. To ensure accurate
alignment between camera poses and image streams, we
synchronized them based on timestamps and filtered out any
images without a matching pose recorded within a 10 ms

S omes | '

. A

_[Kobud ]
- enatform J 1}

Kobuki Platform with Azure
" Kinect and T265 Camera

Fig. 3. The Kobuki platform is equipped with an Azure Kinect Camera
and an Intel T265 Camera to demonstrate real-time mapping in a real-world
environment. This system enables interaction with the world through natural
language queries. The system is able to highlight the novel objects like the
”quadruped robot” or “chicken taxidermy”.

Reconstructed Scene Over Time

timeframe. Fig. 3 provides a visual representation of our real-
world experimental setup using the Kobuki platform.

As it is difficult to obtain the ground truth semantic mask
for real environment, we visually compare the suggested
region by the model with the known environment setup. Fig.
3 displays the 3D map reconstruction generated at 50 FPS
and semantics updated at 4.5 FPS running on two threads by
the Kobuki platform. In this demonstration, we emphasize
long-tailed reasoning like “quadruped robot” or “chicken
taxidermy”.

V. CONCLUSION & DISCUSSION

In this paper, we have introduced Open-Fusion, an efficient
approach for real-time open-vocabulary 3D mapping and
queryable scene representation from RGB-D data. Open-
Fusion leverages the VLFM to extract region-based embed-
dings and employs TSDF, along with an extended version
of Hungarian matching, for 3D semantic representation. We
conducted both qualitative and quantitative benchmarks to
assess our performance. In a qualitative evaluation, we com-
pared Open-Fusion with ConceptFusion using the Replica
dataset, demonstrating superior object segmentation results
and real-time efficiency. In a quantitative assessment, we
compared Open-Fusion with SOTA methods using the Scan-
Net dataset, achieving competitive results in terms of mean
accuracy (mAcc) and surface mean Intersection over Union
(f-mlIoU) while Open-Fusion is 30x faster than ConceptFu-
sion. Additionally, we conducted a real-world experiment
with the Kobuki platform, highlighting Open-Fusion’s ca-
pability in practical applications.

It is worth noting that our dependency on SEEM could
limit the audio queries or multiple language (e.g., Spanish
and French) queries presented in ConceptFusion.
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