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ABSTRACT

The suocient forecasting (SF) provides a nonparametric procedure to estimate forecasting indices from
high-dimensional predictors to forecast a single time series, allowing for the possibly nonlinear forecasting
function. This article studies the asymptotic theory of the SF with a diverging number of factors and devel-
ops its predictive inference. First, we revisit the SF and explore its connections to Fama–MacBeth regression
and partial least squares. Second, with a diverging number of factors, we derive the rate of convergence of
the estimated factors and loadings and characterize the asymptotic behavior of the estimated SF directions.
Third, we use the local linear regression to estimate the possibly nonlinear forecasting function and obtain
the rate of convergence. Fourth, we construct the distribution-free conformal prediction set for the SF
that accounts for the serial dependence. Moreover, we demonstrate the onite-sample performance of the
proposed nonparametric estimation and conformal inference in simulation studies and a real application
to forecast onancial time series.
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1. Introduction

Forecasting a single time series using high-dimensional predic-
tors has received a lot of interests in macroeconomics, onance,
business, epidemiology, and many other research oelds. In a
data-rich environment, it is usually reasonable to assume that
a few underlying common factors simultaneously drive the
forecasting target and the high-dimensional predictors. The use
of principal components efectively reduces the dimensionality
and more importantly provides a useful characterization of
economic predictors.

By assuming the linear forecasting function, Stock and Wat-
son (1989, 2002a, 2002b) demonstrated the validity of the
estimated principal components in forecasting. Bai and Ng
(2006) conducted inferences on factor-augmented regressions
to enable the forecast. Further eforts reone the forecast by
oltering out information unrelated to the target based on the
predictors or estimated factors. Bair et al. (2006) applied the
correlation screening to obtain relevant predictors, and Bai and
Ng (2008) established the thresholding criteria to rule out pre-
dictors not informative for the target. Kelly and Pruitt (2015)
proposed a three-pass regression olter method that follows the
philosophy of partial least squares (PLS) and selectively identi-
oes the subset of factors innuencing the target while discarding
factors that are irrelevant.

However, all of the aforementioned works may not perform
well when the target and the latent factors have possibly nonlin-
ear relationship. The possibly nonlinear and nonseparable fore-
casting function poses a signiocant challenge when extracting
the information relevant to the target. Fan, Xue, and Yao (2017)
proposed the suocient forecasting (SF) procedure to obtain the
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suocient predictive indices with provable theoretical guaran-
tees, allowing for an unknown nonlinear forecasting function.
In this article, we shall enrich the methodology, theory, and
applicability of the SF by understanding the relation between the
SF and other methods, exploring the nonparametric estimation
of the forecasting function, and conducting the predictive infer-
ence for the SF.

First, we revisit the SF and point out its close connections
to existing methods in panel data analysis such as the Fama–
MacBeth (FM) regression (Fama and MacBeth 1973) and the
three-pass regression olter (Kelly and Pruitt 2015). Both meth-
ods involve time-series regressions in their orst pass. Proposi-
tion 2.1 will show that the characterization of the SF is similar
in spirit to the FM regression aver transforming the inverse
regression curves of the forecasting indices using the loading
matrix. Also, Proposition 2.2 will show that the SF can be
derived as the solution to a constrained problem that includes
the PLS as a special example.

Second, we characterize the asymptotic behavior of the esti-
mated predictive directions for the SF with a diverging number
of latent factors that increases with sample size. The diverging
number of factors avoids possible model misspeciocation and
accommodates potential structural changes (Ludvigson and Ng
2007; Li, Li, and Shi 2017; Luo, Xue, and Yao 2017). In addition,
by using the known result that low dimensional projections
from high-dimensional predictors is almost linear (Hall and Li
1993), the diverging number of factors provides the necessary
guarantee that the linearity condition (Li 1991) approximately
holds. Thus, we also relax the restricted linearity condition in
the SF that might lead to the undesired time reversibility (Xia

© 2020 American Statistical Association



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 343

et al. 2002). As will be shown in Theorem 3.2, the asymptotic
decomposition of the estimated predictive directions illustrates
the source of estimation errors in the SF.

Third, built on the asymptotic properties of estimated direc-
tions, we study the estimation of the possibly nonlinear andnon-
separable forecasting function using the local linear regression
(LLR). In the SF, it is important but challenging to provide the
theoretical guarantee for the nonparametric estimation of the
forecasting functionwith nonparametrically generated forecast-
ing indices. To this end, we extend the theoretical analysis of
Mammen, Rothe, and Schienle (2012) based on independent
observations to the panel data setting for the SF. Aver a careful
analysis, we derive the explicit rate of convergence for the non-
parametric estimation of the forecasting function. This result
olls an important gap in the methodology and theory of the SF
(Fan, Xue, and Yao 2017).

Fourth, we introduce the permutation-based conformal
inference to construct a prediction band for the SFwith provable
guarantees. It is very important for real-world applications to
conduct the predictive inference without requiring stringent
assumptions on the data generation process. Following the con-
formal inference (Vovk, Gammerman, and Shafer 2005; Lei et al.
2018), we conduct hypothesis tests on a grid of hypothesized
values of the target and then calculate valid p-values based
on the empirical quantiles of augmented samples. Thus, the
prediction set is constructed according to the testing results.
However, most of existing methods in the conformal infer-
ence are based on independent observations and require the
exchangeability condition to guarantee the desired coverage.
In this work, we follow the recent work by Chernozhukov,
Wuthrich, and Zhu (2018) to conduct the conformal inference
for the SF by incorporating blocks in the permutation scheme,
which efectively preserves the temporal dependence structure
in panel data.

The rest of this article is organized as follows. Section 2
revisits the SF and shows its connections to existing methods.
Section 3 studies the asymptotic properties of the forecasting
directions and also nonparametric estimation of the forecasting
function, and Section 4 presents the conformal inference. Sec-
tion 5 gives simulation studies and an empirical study to fore-
cast onancial time series. Section 6 includes a few concluding
remarks. Technical details and additional numerical results are
given in the supplementary materials.

2. Revisiting Suocient Forecasting

We orst present an alternative interpretation of the SF in Sec-
tion 2.1 and then point out its connections to FM regression and
PLS in Sections 2.2 and 2.3.

2.1. Suocient Forecasting

Consider the factor representation of a large number of predic-
tors in the form that

xit = b′
ift + uit , 1 ≤ i ≤ p, 1 ≤ t ≤ T, (2.1)

where ft = (f1t , . . . , fKt)
′ are the common factors, bi are the

corresponding factor loadings, and uit is an idiosyncratic error.

In matrix notation, the factor model is xt = Bft + ut , where
xt = (x1t , . . . , xpt)

′ is the cross-section of p× 1 predictors, B =
(b1, . . . , bp)

′ is the p×K loadingmatrix and ut = (u1t , . . . , upt)
′

is the p × 1 error term. The canonical normalization

cov(ft) = IK and B′B is diagonal, (2.2)

where IK is a K × K identity matrix, serves as an identiocation
condition of the loadings and factors. For simplicity, we also
assume that E(ft) = 0 and hence E(xt) = 0.

The target yt+1 depends on the factors only through pro-
jected variables φ′

1ft , . . . ,φ
′
Lft ,

yt+1 = g(φ′
1ft , . . . ,φ

′
Lft) + εt+1, (2.3)

where φi’s are unknown vectors, g(·) is an unknown link func-
tion, and εt+1 is some stochastic error independent of ft and uit .
Denote by � = (φ1, . . . ,φL) a K × L matrix. We may impose
the identiocation condition�′� = IL such that those directions
form an orthonormal basis of the central space. Fan, Xue, and
Yao (2017) orst considered such models and proposed the SF
procedure to estimate the directions φi’s. If g(·) is linear with
L = 1, (2.1) and (2.3) constitute the difusion index forecasting
model of Stock and Watson (2002b).

The target yt+1 can be either an asset return or a general
macroeconomic indicator.While ourmodel is cast as a forecast-
ing problem, the same theory applies when yt+1 is replaced by
yt , in which case yt moves contemporaneously with the factors.
When the target is a carefully constructed portfolio and the link
function g(·) is linear with L = 1, there exists a large literature
on constructing the meaningful portfolios, for example, Fama
and French (1993), Jagannathan and Wang (1996), Lettau and
Ludvigson (2001), and Li, Vassalou, and Xing (2006), to name a
few. These proposed portfolios (or factors) can be subsequently
used to determine individual asset’s beta, a diferent goal than
ours here. When the target is a macroeconomic factor, however,
there is typically no guarantee that it will be linearly related to
the latent factors.

To extract information from the panel data, SF con-
siders the covariance of conditional expectation of factors,
cov(E(ft|yt+1)). To obtain forecasting directions φi’s, Fan, Xue,
and Yao (2017) extracted the estimated factors f̂t from the
observable predictors to form an estimator of cov(E(ft|yt+1)).
A slicing version of the covariance is

�f |y =
1

H

H∑

h=1

E(ft|yt+1 ∈ Ih)E(f ′t |yt+1 ∈ Ih), (2.4)

where H ≥ L is oxed and the range of yt+1 is divided into H
slices I1, . . . , IH such that P(yt+1 ∈ Ih) = 1/H. The sliced
covariance is more appealing as we do not require H → ∞.
As discussed in Li (1991) and Fan, Xue, and Yao (2017), any
direction orthogonal to E(ft|yt+1) is also orthogonal to �f |y.
Hence, the central curve E(ft|yt+1) is cononed in the eigenspace
of�f |y. Suppose we take one step further and have the following
coverage condition:

〈φ1, . . . ,φL〉 = 〈ψ1, . . . ,ψL〉, (2.5)

where ψ i’s are the eigenvectors of �f |y corresponding to
its L leading positive eigenvalues. The notation 〈φ1, . . . ,φL〉
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denotes the subspace spanned by vectors {φ1, . . . ,φL}, that is,
〈φ1, . . . ,φL〉 =

{∑L
i=1 ciφi, ci ∈ R

}
. The coverage condition

ensures that the subspace spanned by the inverse conditional
mean E(ft|yt+1) coincides with the central space spanned by
{φ1, . . . ,φL}. This condition is common in the suocient dimen-
sion reduction literature (e.g., Chiaromonte, Cook, and Li 2002;
Cook 2004; Zhu, Miao, and Peng 2006; Fan, Xue, and Yao 2017;
Lin, Zhao, and Liu 2018). Consequently, one would recover the
column space � by exploiting the eigenvectors of �f |y. Recall
that φj in (2.3) is only identioable up to a transformation, but
the column space formed by � could be identioed. Since the SF
pursues �f |y, we assume for simplicity that � actually consists
of the eigenvectors of�f |y. Note that condition (2.5) imposes an
implicit condition on the link function g(·) in (2.3), for example,
the condition fails if g(·) is symmetric. We leave the relaxation
of this condition for future study.

The SF sets out with estimated factors f̂t . Given T pairs
(yt+1, f̂t), we divide them into H slices according to the order
statistics of yt+1 and denote them by (y(t+1), f̂(t)). For ease of
argument, we assume T = cH for some integer c and write
the sorted data as (y(h,j), f̂(h,j)), where in the double script (h,j), h
refers to the slice number and j refers to the order number of an
observation in the given slice. Or formally, y(h,j) = y(c(h−1)+j+1)

and f̂(h,j) = f̂(c(h−1)+j) for h = 1, . . . ,H and j = 1, . . . , c. The
estimator for (2.4) is

�̂f |y =
1

H

H∑

h=1

ξ̂hξ̂
′
h, (2.6)

where ξ̂h = c−1
∑c

l=1 f̂(h,l) approximates the sliced inverse
curve ξh = E(ft|yt+1 ∈ Ih). By eigenvalue decomposition of
�̂f |y, we obtain the estimated forecasting directions �̂.

2.2. Connection to FMRegression

The SF studies the inverse regression curve E(xt|yt+1). Suppose
that the linearity condition on the underlying factors holds, that
is, for any direction b in R

K ,

E(b′ft|φ′
1ft , . . . ,φ

′
Lft) =

L∑

i=1

ciφ
′
ift (2.7)

for some constants ci, i = 1, . . . , L. The following proposition
shows that the curve E(xt|yt+1) contains information of the
forecasting directions �.

Proposition 2.1. Under (2.1)–(2.7), we have E(xt|yt+1) =
B�γ (yt+1), where the L × 1 vector γ (y) consists of the
inverse regression curves of the forecasting indices, γ (yt+1) =
E(�′ft|yt+1) = E((φ′

1ft , . . . ,φ
′
Lft)

′|yt+1).

Note that the loading matrix B transforms the underlying
curve E(ft|yt+1) to E(xt|yt+1). Since xt is readily observable,
the time series regression on the target unveils their loadings
on the forecasting indices. The characterization is similar in
spirit to the orst pass of the FM procedure or the recently
proposed three-pass regression olter (3PRF), where they run
time-series regressions for each predictor (asset) to obtain expo-
sure to market factor or economic proxies (see, e.g., Fama

and MacBeth 1973; Cochrane 2001; Kelly and Pruitt 2015).
An important distinction, however, is that their consideration
is based on cov(xt , yt+1). In our setup, this is equivalent to
E(xtyt+1) = E(E(xt|yt+1)yt+1) = B�E(γ (yt+1)yt+1), as xt
has been demeaned. Their results hence could only recover an
average φ̄ of the true directions, where φ̄ = �E(γ (yt+1)yt+1) =∑L

i=1 E((φ′
ift)yt+1)φi. Fan, Xue, and Yao (2017) observed the

same fact in the comparison between SF and principal compo-
nent regression (PCR). Here, the beneot of using E(xt|yt+1) is
more clear.

2.3. Connection to Partial Least Squares

The ultimate goal of many forecasting problems translates into
onding some predictive coeocient ζ on individual predictors.
On population level, SF orst recovers latent factor directions φi

of the target from cov(E(ft|yt+1)), and then obtains forecasting
direction ζ i on the original predictors xt via ζ i = �′

bφi,
where �b = (B′B)−1B′ only involves the loading matrix. One
may observe that such ζ i’s reside in the column space of the
loading matrix B. Had we obtained a direction ζ̃ orthogonal to

the column space of B, the predictive index ζ̃
′
xt = ζ̃

′
(Bft +

ut) = ζ̃
′
ut would be completely irrelevant to the target. This

can also be understood as mitigating the impact of irrelevant
factors if the idiosyncratic term admits further factor structure,
in which case the target is only driven by a strict subset of
factors that explain the cross-section of the predictors. In fact,
the SF can be derived as the solution to the following constrained
optimization.

Proposition 2.2. On population level, the ith SF predictive coef-
ocient on the observed predictor xt solves

max
ζ

max
T (·)

corr2(T (yt+1), ζ
′xt) (2.8)

subject to (I − B(B′B)−1B′)ζ = 0 (2.9)

and ζ ′BB′ζ = 1, ζ ′BB′ζ l = 0, l = 1, . . . , i − 1,

where maximum is taken over all bounded transform T (·) and
vectors ζ ∈ R

p.

Remark 2.1. Proposition 2.2 shows that the direction ζ lives in
the kernel of the projection matrix I − Mb = I − B(B′B)−1B′.
As discussed earlier, it ensures that noises irrelevant to yt+1 drop
out of the forecast. Kelly and Pruitt (2015) had a similar inter-
pretation of their 3PRF model, but they resorted to proxies to
determine relevant factor space. Our approach is more general,
as it involves a general transformation T (·) of the forecast target.

The characterization above also allows us to reveal its close
connections to the PLS method. Note that the ith PLS direction
solves

max
ζ

corr2(yt+1, ζ
′xt)cov(ζ

′xt) (2.10)

s.t. ζ ′ζ = 1, ζ ′Sζ l = 0, l = 1, . . . , i − 1,

where S = cov(xt); see Frank and Friedman (1993). Bar-
barino and Bura (2015, 2017) presented a connection of the
sliced inverse regression (SIR) to PLS in a somewhat diferent
paradigm. Rather than resorting to the latent factors E(ft|yt+1)
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as an intermediate step for dimension reduction, they introduce
an alternative approach by directly performing the SIR on top of
the conditional mean of predictors E(xt|yt+1). Their obtained
predictive coeocients ζ i is shown to be the solution to the
following maximization problem.

max
ζ

corr2(E(ζ ′xt|yt+1), ζ
′xt) (2.11)

s.t. ζ ′Sζ = 1, ζ ′Sζ l = 0, l = 1, . . . , i − 1.

Since S = BB′ + �u in our setup, where �u = cov(ut),
additional forecasting directions obtained from PLS or SIR on
E(xt|yt+1) would be mixed with undesired noises. The con-
straint ζ ′BB′ζ = 1 in the constraint (2.9) pertains to the
normalization of the forecasting directions φi’s on the latent
factor, and is therefore inconsequential.

The comparison of (2.8) with (2.10) and (2.11) not only sug-
gests the inherent connections of SF with PLS and SIR, but also
implies the beneots brought by employing E(ft|yt+1). Taking
advantages of the latent factor structure, our approach precludes
the undesirable efect of noises ut on forecasting directions ζ . In
addition, our approach is more nexible and gracefully handles
nonlinearity with the presence of T (·) in the optimization.

3. Nonparametric Estimation

Aver presenting the assumptions in Section 3.1, we present
the asymptotic properties of the forecasting directions in Sec-
tions 3.2 and 3.3 and then study the nonparametric estimation
of the forecasting function in Section 3.4.

3.1. Assumptions

To begin with, we provide a set of technical conditions for the
consistent estimation of SF directions.

Assumption 3.1 (Factors and loadings).

(i) There exists b > 0 such that supp∈N ||B||max ≤ b, and there
exist two positive constants c1 and c2 such that

c1 < p−1λmin(B
′B) < p−1λmax(B

′B) < c2.

(ii) Identiocation: T−1F′F = IK , and B′B is a diagonal matrix
with distinct entries, where F = (f1, . . . , fT)′ and B =
(b1, . . . , bp)

′.

Next, we impose the strong mixing condition on the data-
generating process. Denote by F0

∞ and F∞
T the σ -algebras

generated by {(ft ,ut , εt+1) : t ≤ 0} and {(ft ,ut , εt+1) :
t ≥ T}, respectively. Deone the mixing coeocient as α(T) =

sup
A∈F0

∞,B∈F∞
T

|P(A)P(B) − P(AB)|.

Assumption 3.2 (Data-generating process). {ft}t≥1, {ut}t≥1 and
{εt+1}t≥1 are three independent groups, and all of them are
strictly stationary.

(i) Both {K−2E||ft||4 : p ∈ N} and {K−1E(||ft||2|yt+1) : p ∈
N} are bounded sequences.

(ii) There exist some constants C > 0 and l > 0 that
E(exp(l|εt+1|)) ≤ C for any t ≥ 1.

(iii) The mixing coeocient α(T) < cρT for T ∈ Z
+, some c >

0 and some ρ ∈ (0, 1). In addition, α(T) ≤ exp(−cTγ1) for
all T ∈ Z

+ and some positive constants γ1 and c.

Assumption 3.3 (Residuals and dependence). There exists a pos-
itive constant M < ∞ that does not depend on p or T, such
that

(i) E(ut) = 0, and E|uit|8 ≤ M.
(ii) ||�u||1 ≤ M, and for every i, j, t, s > 0,

(pT)−1
∑

i,j,t,s |E(uitujs)| ≤ M.

(iii) For every (t, s), E|p−1/2(u′
sut − E(u′

sut))|4 ≤ M.

3.2. Asymptotics with Diverging K

In this subsection, we lay out the asymptotic properties per-
taining to the estimated factors and loadings, which serve as
our cornerstone for forecasting. We extend the method of Fan,
Xue, and Yao (2017) by allowing the number of factors K to
increase as p,T → ∞, which not only avoids the possible
modelmisspeciocation (Li, Li, and Shi 2017) but also accommo-
dates the potential structural changes (Ludvigson andNg 2007).
Speciocally, the estimation of factors is based on the asymptotic
principal components as follows:

(B̂K , F̂K) = argmin
(B,F)

||X − BF′||2F , (3.1)

subject to T−1F′F = IK , B′B is diagonal,

where X = (x1, . . . , xT),F′ = (f1, . . . , fT), and || · ||F denotes
the Frobenius norm of amatrix. SinceB and F are not separately
identioed, the normalization T−1F′F = IK and that B′B is
diagonal are necessary and correspond to (2.2). Such conditions
describe but do not impose any structure on the data, nor
would a diverging K place any restrictions on the data X. The
solution for F, denoted by F̂K , is

√
T times the eigenvectors

corresponding to the K largest eigenvalues of the T × T matrix
X′X. The solution forB, denoted by B̂K , is T

−1XF̂K . To simplify
notation, we let B̂ = B̂K and F̂ = F̂K .

The asymptotic properties of the estimated factors and load-
ings are presented in the following proposition.

Proposition 3.1. Under Assumptions 3.1–3.3, suppose that K =
o(min{p1/3,T}), then

1. 1
p ||̂B − B||2 = Op(

K3

p + K
T ),

2. 1
T ||̂F − F||2 = Op(

K3

p + K
T ).

Next, suppose K = o(min{p1/3,T1/2}), then the conditional
expectation ξh = E(ft|yt+1 ∈ Ih) is approximated by ξ̂h =
c−1

∑c
l=1 f̂(h,l) as in (2.6) with the following accuracy

(3) ||̂ξh − ξh|| = Op(
K3/2

p1/2
+ K

T1/2 ).

Remark 3.1. Part (2) of our Proposition 3.1 is in a similar
vein to Proposition 3.2 of Li, Li, and Shi (2017). Note that our
approach allows K = o(min{p1/3,T}) to achieve the same
error rate for estimating the factors as Li, Li, and Shi (2017),
which requires K = o(min{p1/17,T1/16}). Also, we prove the
asymptotic properties of the estimated factor loadings B̂ and
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estimated conditional expectation ξ̂h = Ê(ft|yt+1 ∈ Ih), which
were not studied by Li, Li, and Shi (2017).

Proposition 3.1 suggests that the cross-sectional average of
estimation errors in loadings and the time-series average of
estimation errors in factors, as measured in the spectral norm,
all vanish when p,T → ∞. The convergence rate depends both
on the panel structure p,T and on the factor structure K. Also,
the sliced inverse curve ξh can be consistently estimated by its
sample counterpart ξ̂h. We note that while there are alternative
methods for estimating factors and loadings, such as the quasi-
maximum likelihood by Bai and Li (2012), principal component
estimation remains a simple and popular choice.

3.3. Asymptotic Properties of Estimated Directions

Suppose we have at our disposal a reasonably well estimated fac-
tor f̂t for forecasting.We now show how they afect the accuracy
of forecasting directions �̂, without requiring knowledge of the
procedure of factor estimation. Let � = (ξ 1, . . . , ξH) be the
collection of the sliced regression curves and �̂ = (̂ξ 1, . . . , ξ̂H)

be the corresponding estimate. It is straightforward to translate
(2.4) and (2.6) into matrix notation: �f |y = H−1��′ and

�̂f |y = H−1�̂�̂′. Denote by� = �̂−� the diference between
the estimated and true regression curves.Wemake the following
high-level assumption for �.

Assumption 3.4. There is a positive sequenceωp,T,K = o(1) such
that ||�|| = Op(ωp,T,K).

The estimation accuracy of � hinges on the quality of
the estimated factors, which involves cross-sectional and time-
series dimensions as well as the factor structure. Evidently,
ωp,T,K = K3/2/p1/2 + K/T1/2 should we follow the principal
component estimation (3.1).

Deone an H × Lmatrix � = �′�, or,

� =

»
¼½
E(f ′tφ1|yt+1 ∈ I1) · · · E(f ′tφL|yt+1 ∈ I1)

...
. . .

...
E(f ′tφ1|yt+1 ∈ IH) · · · E(f ′tφL|yt+1 ∈ IH)

¾
¿À ,

each row of which depicts the projections of SIR functions on
diferent forecasting directions.

The following theorem characterizes the behavior of esti-
mated forecasting directions given the commonly used linearity
assumption.

Theorem 3.1. Suppose � is of full rank, the coverage condition
(2.5) holds, and the L largest eigenvalues of�f |y are positive and
distinct. Under Assumptions 3.1–3.4 and the linearity condition
that E(b′ft|φ′

1ft , . . . ,φ
′
Lft) is a linear function of φ′

1ft , . . . ,φ
′
Lft

for any b ∈ R
p, the SF direction estimates �̂ have the following

approximation,

�̂ = � + (I − ��′)��(�′�)−1 + op(ωp,T,K). (3.2)

The proof given in the supplementary materials sheds light
on how such decomposition is possible. A direct implication
of Theorem 3.1 is that the estimated forecasting directions are
consistent, that is, �̂ = � + Op(ωp,T,K). This result generalizes

the ondings in Theorem 3.1 of Fan, Xue, and Yao (2017), and
provides oner details of the estimation quality.

Theorem3.1 depends on the connection between the column
space of �f |y and the true forecasting directions given in �,
where the linearity condition plays an important role (Li 1991).
One important family of distributions that satisoes the linearity
condition is thewell-known elliptically symmetric distributions.
However, as pointed out in Xia et al. (2002), when lags are
included in the forecasting, the elliptical symmetry implies an
undesirable time reversibility. Thus, it is essential to relax the
linearity condition. In the sequel, we establish the consistency
of the SF direction estimates �̂ with a diverging K without
requiring the restricted linearity condition.

Let sin(·, ·) be the sine of the angle between two real vectors
of equal dimension under the usual Euclidean inner product,
γ (·) be the density function of ||ft||−1ft with respect to the
uniform distribution on the unit hypersphere in R

K , and ϒ

be an orthonormal basis of the orthogonal complement of the
central subspace. For 0 < c < 1, let B(c) = {ft : ||ft||2 ≤
K(1 − c)} and I(B(c)) be the indicator function of ft for B(c).
We introduce the following assumption to relax the linearity
condition when there is a diverging number of factors.

Assumption 3.5. The factors ft satisfy that

(i) The conditional covariance cov(ft|�′ft) is degenerate.
(ii) P(|K−1||ft||2 − 1| ≥ c) = o(K−1) and

E{K||ft||−2I(B(c))} = o(K−1) for any 0 < c < 1.
(iii) E{sup| sin(ft ,e)|≤c γ (e)} = o(K−1/2c−K) for some 0 < c ≤ 1.

(iv) There exists a function u(·) : R
L → R such

that E{u(φ′
1ft , . . . ,φ

′
Lft)} exists and ||E(ϒ ′ft|φ′

1ft , . . . ,
φ′
Lft)||4 ≤ u(φ′

1ft , . . . ,φ
′
Lft) almost surely.

It is worth pointing out that Assumption 3.5 is similar to
regularity conditions in Hall and Li (1993). Speciocally, (i)–(iii)
are introduced to show that the linearity condition (Li 1991)
approximately holds given a diverging number of factors, and
(iv) helps control the remainder term of this approximation.

Given Assumption 3.5, the following theorem provides an
important consistency result for the SF without requiring the
linearity condition.

Theorem 3.2. Suppose � is of full rank, the coverage condition
(2.5) holds, and the L largest eigenvalues of�f |y are positive and
distinct. Under Assumptions 3.1–3.5, the SF direction estimates
�̂ have the following approximation,

�̂ = � + (I − ��′)��(�′�)−1 + op(1). (3.3)

3.4. Estimation of the Forecasting Function

The nonparametric regression model (2.3) can be written as

yt+1 = g(r(xt)) + εt+1, with E(εt+1) = 0 (3.4)

where r(xt) = (φ′
1ft , . . . ,φ

′
Lft)

′ denotes L-dimensional predic-
tive indices extracted from p-dimensional predictors xt . Our
goal now is to provide a nonparametric estimation of the
unknown forecasting function g(z) = E(yt+1|r(xt) = z) given
the independence of {ft} and {εt+1}. Note that r(xt) can be

consistently estimated by r̂(xt) = (φ̂
′
1̂ft , . . . , φ̂

′
L̂ft) using the SF
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procedure, as established in previous section. For ease of nota-
tion, we deone rt = r(xt) and r̂t = r̂(xt). Note that covariates
rt are not observed but have to be estimated nonparametrically
from data. As shown in Mammen, Rothe, and Schienle (2012),
many economic applications require the nonparametric estima-
tion of the regression function with nonparametrically gener-
ated covariates r̂(xt), such as the simultaneous nonparametric
equation models (Newey, Powell, and Vella 1999; Imbens and
Newey 2009) and the structural equations for treatment efects
(Heckman and Vytlacil 2005).

In what follows, we estimate ĝ(z) through a nonparametric
regression of yt+1 on r̂t by using local linear smoothing tech-
nique (Fan and Gijbels 1996), that is, ĝ(z) = α̂ is obtained by

(̂α, β̂) = argmin
α,β

T−1∑

t=1

(
yt+1 − α − β ′(̂rt − z)

)2
Kh(̂rt − z),

(3.5)
where Kh(u) = h−L

∏L
j=1K(uj/h) is a product kernel with uni-

variate kernel function K, and h > 0 is smoothing bandwidth.
Speciocally, let e1 = (1, 0, . . . , 0)′ ∈ R

L+1, Y = (y2, . . . , yT)′,

vt(r, z) =
(
1, (rt − z)′

)′
, Ẑ = (v1(̂r, z), . . . , vT−1(̂r, z))

′. Wr̂ =
diag(Kh(̂r1 − z), . . . ,Kh(̂rT−1 − z)) is a diagonal weighting
matrix. Then the solution to the local linear regression (LLR)

(3.5) is ĝ(z) = e′1
(̂
Z′ŴẐ

)−1 (̂
Z′ŴY

)
.

Before proceeding, we provide a set of assumptions for con-
sistent predictive inference.

Assumption 3.6 (Regularity).

(i) The density function fz(z) of random vector z = r(x) is
twice continuously diferentiable and bounded away from
0 on a compact support Iz.

(ii) The regression function g(z) is twice continuously difer-
entiable on Iz.

(iii) The kernel K(·) is a symmetric, twice continuously difer-
entiable, compactly supported density function.

(iv) The bandwidth h satisoes h ∼ T−η, and η < 1
L .

Assumption 3.7 (Accuracy). For some δ > η, the estimation of
r̂(x) satisoes that

||̂r − r||∞ = op(T
−δ).

Remark 3.2. Fan, Xue, and Yao (2017) prove that under
Assumptions 3.1–3.3, Assumption 3.7 holds for the predictive
indices estimated by the SF approach.

Assumption 3.8 (Complexity). There exists sequences of sets
MT,j such that

(i) Pr(̂rj ∈ MT,j) → 1 as T → ∞ for all j = 1, . . . , L.
(ii) For a constant CM > 0 and a function rT,j with ||rT,j −

r0,j||∞ = o(T−δ), the set M̄T,j = MT,j ∩ {rj : ||rj −
rT,j||∞ ≤ T−δ} can be covered by at most CMexp(λ−αjTξj)

balls with ||·||∞-radiusλ for allλ ≤ T−δ , where 0 < αj ≤ 2,
ξj ∈ R.

We have the following theorems on the estimation consis-
tency of the forecasting function.

Theorem 3.3. Given Assumptions 3.1–3.3, 3.6, and 3.8, let κ =
min{κ1, κ2, κ3}, and then, we have

sup
z∈Iz

|̂g(z) − g̃(z) + ∇ ′g(z)�̂(z)| = Op(T
−κ) (3.6)

with κ1 < δ + 1 − (L + 1)η − ( 1
γ1

+ 1)max(δαj + ξj), κ2 <

δ + η, κ3 < 2δ − η, where g̃(z) is an infeasible
estimator, expected to be otted by the true value rt instead
of the estimated r̂t , that is, g̃(z) = α̃ is obtained by

(̃α, β̃) = argmin
α,β

∑T−1
t=1

(
yt+1 − α − β ′(rt − z)

)2
Kh(rt −

z). �̂(z) = ᾱ is obtained by (ᾱ, β̄) =
argmin

α,β

∑T−1
t=1

(
(̂rt − rt) − α − β ′(rt − z)

)2
Kh(rt − z).

Theorem 3.4. Under the same assumptions as in Theorem 3.3,
the consistency of nonparametric estimator with generated
covariates ĝ(z) is given by

sup
z∈Iz

|̂g(z)−g(z)| = Op(

√
log(T)T−1+Lη +T−2η +T−δ +T−κ).

(3.7)

4. Conformal Inference

It is of interest to construct a prediction set based on a time
series {(xt , yt+1)}T−1

t=1 for a future response yT+1 given a new
feature xT . Fan, Xue, and Zou (2016) used multi-task quantile
regression to construct the provable prediction interval, and
Lei et al. (2018) proposed a distributed-free prediction using
conformal inference for regression problems. Standard confor-
mal prediction relies on the assumption of exchangeability, and
most existing works expose the iid assumption to fuloll the
exchangeability condition. To extend to dependent cases such
as time series data, Chernozhukov, Wuthrich, and Zhu (2018)
introduced a randomization method that accounts for potential
serial dependence. By including block structures which preserve
the dependence structure in the permutation scheme, their
proposed methodology established theoretical guarantees for
conformal inference by permutations covering most common
types of series models, including strongly mixing processes as a
special case.

To conduct conformal prediction in conjunction with the SF,
let y be a hypothesized value for yT+1, and μ(x) = E(yt+1|xt =
x). Note that because εt+1 is independent of xt as shown in
SF model (3.4), we have μ(x) = g(r(x)). Through the SF
algorithm and the nonparametric estimation from Section 3, we
obtain a valid estimator of μ(·). Let μ̂y(·) denote the estimator

constructed based on the augmented data {(xt , yt+1)}Tt=1, and
let μ̂π

y (·) denote the estimator based on the permuted data

{(xπ(t), yπ(t)+1)}Tt=1, where π is a permutation of {1, . . . ,T}.
The underlying mechanism is testing candidate values for

yT+1 and constructing prediction sets based on test inversion.
Consider the residual-based conformity score

Ry := |y − μ̂y(xT)| and Rπ
y := |y − μ̂π

y (xT)|,
and deone the randomization p-value for testing H0 : yT+1 = y
as

p̂(y) :=
1

|�|
∑

π∈�

1{Rπ
y ≥ Ry}, (4.1)
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Algorithm 1 Conformal inference for SF

Input: observed data {xt , yt+1}T−1
t=1 , new predictor xT ,Y (can-

didate values of yT+1), 1 − α (signiocance level), K (number
of factors), L (number of indices), H (number of slices).
Output: Ĉ1−α (a prediction set for yT+1 with coverage prob-
ability 1 − α)
Procedures:

(1) for y ∈ Y do

(i) Perform the SF procedure (Fan, Xue, and Yao 2017) on
{xt , yt+1}T−1

t=1 and {xT , y} to construct the predictive indices
[̂r′1, . . . , r̂′T]′ = F̂�̂.

(ii) Run the (local) linear regression on {̂rt , yt+1}T−1
t=1 and

{̂rT , y}.
(iii) Obtain Ry2 , . . . ,RyT ,Ry as the absolute value of otted

residuals based on (ii).
(iv) Calculate the randomization p-value p̂(y) =

(
∑T

t=2 1{Ryt ≥ Ry} + 1)/T.
end for

(2) Construct the prediction set Ĉ1−α = {y ∈ Y : p̂(y) ≥ α}.

where � is a group of permutations.
The standard conformal prediction with exchangeability

assumptions can be viewed as choosing the group to be the
set of all permutations. Yet when the exchangeability fails, it
is essential to choose a group of permutations that preserve
the dependence structure in the data. Following Chernozhukov,
Wuthrich, andZhu (2018), we consider the permutationπj(t) =
mod(t − j,T) + 1, t = 1, . . . ,T, and the collection of all
permutations is given by

� = {πj : 1 ≤ j ≤ T}. (4.2)

The randomization p-value (4.1) becomes p̂(y) :=
1
T

∑
π∈� 1

{
Rπ
y ≥ Ry

}
. For a given α ∈ (0, 1), the (1 − α)

conodence set contains the set of y whose p-values are larger
than α, that is,

C1−α =
{
y ∈ R : p̂(y) > α

}
. (4.3)

In practice, as it is impractical to search over the entire real line
R, we consider a grid of candidate values of yT+1, denoted byY .
We summarize the conformal prediction interval construction
for the SF procedure in Algorithm 1.

To study the theoretical properties of the conformal predic-
tion interval, we orst deone R�

y := |y−μ(xT)| as the oracle con-
formity score function. We can view {Rπ�

y }π∈� as a time series

{ut}Tt=1 for the � deoned by (4.2). In addition, we can see that
ut = εT+2−t . Chernozhukov,Wuthrich, and Zhu (2018) proved
that as long as the conformity score Rπ

y satisoes certain accuracy
and ergodicity conditions, the group of blocking permutations
preserves the dependence structure in the data, contributing
to an approximately valid conformal interval. In combination
with the SF, we can see that the resulting conformal prediction
interval retains its approximate validity.

Theorem 4.1. Under the same assumptions as in Theorem 3.4,
and suppose {εt+1}Tt=0 is stationary and strongly mixing with∑∞

T=1 αmixing(T) ≤ M for a constantM, the conformal predic-
tion set constructed from (4.3) has approximate coverage 1−α,
that is,

∣∣P
(
yT+1 ∈ C1−α

)
− (1 − α)

∣∣ = op(1) as T → ∞.

5. Numerical Studies

This section conducts both Monte Carlo experiments and an
empirical study to evaluate the proposed methods. Section 5.1
demonstrates the additional predictive power of using non-
parametrically estimated link function compared to a linear
regression (LR) on the predictive indices. In addition, we exam-
ine the sensitivity of forecasting performances using SF with
respect to the parameter K and its estimator. Those results are
presented in the supplementary materials. Section 5.2 verioes
the approximate validity of conformal prediction intervals. In
Section 5.3, we apply our methods to onancial data, and assess
the predictability of the daily market return using the cross-
section of stock returns.

5.1. Nonparametric Estimation

We orst examine the potential beneots brought by nonpara-
metrically estimated link functions. To be more specioc, aver

obtaining the suocient predictive indices φ̂
′
1̂ft , . . . , φ̂

′
L̂ft as

regressors, we compare the performance of SF using a LR to the
performance with link function estimated through LLR.

We set underlying factor model as xit = b′
ift +uit . Following

Li, Li, and Shi (2017), we set the number of factorsK to increase
with the cross-section p in the form of K = [1.5 log(p)] so as
to investigate the scenarios of a large K. Here, [x] denotes the
integer part of a real number x. Tomimic the serial dependence,
we generate fjt and uit following two AR(1) processes as fjt =
αjfj,t−1 + ejt , uit = ρiuit−1 + νit , where αj, ρi are drawn from
U[0.2, 0.8] and oxed during simulations.We simulate the noises
ejt , and νit independently from standard normal distribution, so
do factor loadings b′

i.
We consider the scenarios when the underlying link function

is a linear function and a nonlinear function. Both types of
models play an innuential role and have been widely employed
in economics and statistics (Rajan and Zingales 1988; Stock and
Watson 2002b). Sharing the spirit of Fan, Xue, and Yao (2017),
we consider the following linear forecasting model (Model 1)
and the forecasting model with factor interaction (Model 2):

• Model 1: yt+1 = φ′ft + εt+1 with φ = (0.8, 0.5, 0.3, 0′
K−3)

′;
• Model 2: yt+1 = f1t(f2t + f3t + 1) + εt+1;

where εt+1 is drawn from standard normal distribution. For
both models there are K common factors driving the predictors
whereas only the orst three are associated with the response
yt+1. For Model 1, the target is a linear function of the latent
factors plus some noise. For Model 2, the interaction between
factors is present. The true suocient directions in the central
space Sy|f can be represented by φ1 = (1, 0′

K−1)
′ and φ2 =

(0, 1, 1, 0′
K−3)

′/
√
2. When implementing the SF algorithms and

the PCR, we estimate K with K̂ using the IC(k) criterion pre-
sented in Section 2 of the supplementary materials.

To assess the predictability of diferent approaches, we exam-
ine the in-sample R2 and the out-of-sample R2 suggested by
Campbell and Thompson (2008). Let p = 100, 200, 500, 1000
and T = 100, 200, 500. For each setup, we generate 1000
independent replications, and report the average in-sample R2

and out-of-sample R2 in percentage.



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 349

Table 1. Forecasting performance using in-sample and out-of-sample R2 (Model 1).

In-sample R2(%) Out-of-sample R2(%)

p T SF1-LLR SF1-LR PCR PC1 SF1-LLR SF1-LR PCR PC1

100 100 50.9 49.6 50.8 20.1 36.6 38.3 41.3 16.4
100 200 50.1 49.4 49.7 21.0 43.9 44.6 45.1 19.3
100 500 49.1 48.9 49.0 20.5 46.8 47.1 47.2 19.9
200 100 51.4 49.9 51.3 17.4 34.8 36.4 40.0 13.4
200 200 50.4 49.7 50.1 17.8 43.5 44.2 44.8 16.2
200 500 49.6 49.3 49.4 17.7 47.1 47.4 47.5 17.1
500 100 52.0 50.5 52.5 13.5 32.4 34.0 38.3 10.2
500 200 50.9 50.2 50.7 13.7 42.4 43.1 43.9 11.7
500 500 49.8 49.6 49.7 14.0 46.7 46.9 47.1 13.4
1000 100 52.4 50.9 53.2 12.8 30.9 32.8 37.6 9.2
1000 200 51.1 50.4 51.0 12.8 42.2 42.9 43.7 10.7
1000 500 49.9 49.6 49.7 12.7 46.5 46.7 46.9 11.8

Table 2. Forecasting performance using in-sample and out-of-sample R2 (Model 2).

In-sample R2(%) Out-of-sample R2(%)

p T SF2-LLR SF2-LR SFi PCR PCRi SF2-LLR SF2-LR SFi PCR PCRi

100 100 46.4 27.8 36.5 30.1 34.3 18.0 9.3 14.1 10.8 12.5
100 200 51.7 26.7 43.2 27.5 31.1 35.0 16.7 28.2 17.9 20.3
100 500 59.2 25.5 57.0 25.6 29.1 51.5 21.2 48.4 21.5 24.4
200 100 45.7 28.3 36.4 31.2 34.7 15.5 8.5 12.3 9.7 10.3
200 200 49.2 26.5 40.9 27.5 30.4 31.0 15.8 25.4 17.0 18.8
200 500 58.9 25.8 56.7 26.0 28.6 50.2 21.2 47.3 21.6 23.8
500 100 43.2 28.3 34.6 32.5 35.2 10.8 6.8 9.4 7.7 7.6
500 200 47.2 27.5 39.6 28.8 31.1 27.4 14.9 22.7 16.4 17.4
500 500 57.6 26.4 55.2 26.7 28.4 47.5 21.2 44.5 21.6 22.9
1000 100 43.3 29.3 35.3 33.8 36.4 9.7 6.6 8.4 6.5 6.2
1000 200 47.1 28.3 39.7 29.8 31.8 26.2 15.0 21.8 16.5 17.2
1000 500 56.7 26.1 54.6 26.5 28.1 45.8 20.6 43.3 21.2 22.3

Table 1 presents the prediction performance of four forecast-
ing approaches for linear forecasting model. SF1-LLR denotes
the SF using only one predictive index, with link function esti-
mated via LLR. SF1-LR is also the SF approach with L = 1,
except that the response is otted using LR on the predictive
index. PCR stands for the the principal component regression,
and PC1 uses only the orst principal component. Roughly
speaking, SF1-LLR, SF1-LR, and PCR yield comparable per-
formance when the true predictive model is linear. However,
PC1 performs poorly, indicating using only the orst principal
component is not enough for prediction. The good performance
of PCR in linear forecasting has been well studied by Stock
and Watson (2002b) and the satisfactory results of SF1-LR is
guaranteed in Fan, Xue, and Yao (2017). Since the LLR has no
bias when the true model is linear (Fan and Gijbels 1996), SF1-
LLR exhibits similar behavior to SF1-LR in Model 1.

Table 2 displays the comparison among various forecasting
approaches in the presence of interaction between factors and
nonlinear link functions. SF2-LLR and SF2-LR are named in the
same fashion as SF1-LLR and SF1-LR, except the diference in
the number of predictive indices L = 2 rather than L = 1. SFi
and PCRi were introduced in Fan, Xue, and Yao (2017) as an
efective way to account for interactions in the model. SFi ots a
multivariate LR on the orst two predictive indices and includes
their interaction efect, and PCi extends PCR by including an
extra interaction term built on the orst two principal compo-
nents. As can be seen from the table, SF with linear link function
andPCRno longer performwell because of the existence of non-
linear efects. SFi and PCRi can improve over SF2-LR and PCR
in terms of in-sample performance, as including the interaction

term takes part of interaction into account. However, they do
not help much with the out-of-sample performance, since the
interaction term is incorrectly specioed. As a comparison, SF2-
LLR can efectively model the nonlinearity and perform well in
both in-sample and out-of-sample predictions.

5.2. Conformal Inference

In this subsection, we take a look into the onite-sample per-
formance of the conformal prediction sets. We adopt the same
data generating process as in Section 5.1. In addition, we let the
mis-coverage rate α to be 0.1. For each simulation setting, we
generate 1000 replications, and report the empirical coverage
rates and the average length of the conodence intervals. The
results are displayed in Tables 3 and 4 for Models 1 and 2,
respectively.

As is seen, for all methods, the empirical coverage rates
are approximately equal to 1 − α = 0.90, which provides
numerical evidence on the approximate validity mentioned in
Theorem 4.1. For linear forecasting model, SF1-LLR, SF1-LR,
and PCR share similar performance, yet PC1 yields to a wider
conodence set. For the nonlinear model, both SF2-LR and PCR
have relatively wider prediction intervals. PCi improve a bit, and
SFi and SF2-LLR can generate shorter intervals.

These outcomes resound with the conclusions from Sec-
tion 5.1 in the sense that a more accurate forecasting method
likely leads to a shorter conformal prediction interval (Lei et al.
2018). Intuitively, this happens because the conformal intervals
are essentially constructed based on the quantile of residuals.
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Table 3. Empirical coverage and average length of conformal prediction intervals (Model 1).

Coverage (%) Length

p T SF1-LLR SF1-LR PCR PC1 SF1-LLR SF1-LR PCR PC1

100 100 90.8 91.9 91.4 91.1 3.481 3.446 3.400 4.135
100 200 89.6 90.6 90.2 90.4 3.361 3.348 3.335 4.104
100 500 91.1 91.2 90.9 89.9 3.289 3.284 3.282 4.067
200 100 90.6 90.9 90.6 91.4 3.518 3.487 3.425 4.211
200 200 90.4 90.4 90.8 89.7 3.354 3.339 3.327 4.161
200 500 90.7 90.8 90.4 90.3 3.288 3.282 3.281 4.143
500 100 88.6 89.5 89.6 89.1 3.553 3.524 3.446 4.289
500 200 90.7 89.9 90.2 90.2 3.375 3.361 3.344 4.269
500 500 90.7 90.9 90.9 91.0 3.284 3.279 3.273 4.243
1000 100 90.0 91.0 90.6 90.7 3.593 3.565 3.452 4.314
1000 200 90.0 89.9 89.9 90.7 3.383 3.368 3.346 4.294
1000 500 90.8 90.5 90.7 88.8 3.290 3.284 3.281 4.264

Table 4. Empirical coverage and average length of conformal prediction intervals (Model 2).

Coverage (%) Length

p T SF2-LLR SF2-LR SFi PCR PCRi SF2-LLR SF2-LR SFi PCR PCRi

100 100 89.3 89.2 89.1 89.1 88.8 5.137 5.712 5.417 5.617 5.506
100 200 90.9 90.6 90.9 90.6 90.4 4.643 5.538 4.899 5.485 5.399
100 500 89.8 88.8 89.6 88.9 89.6 4.099 5.419 4.207 5.406 5.306
200 100 91.2 91.0 90.9 89.6 90.9 5.215 5.717 5.468 5.621 5.545
200 200 90.2 90.3 90.9 90.3 90.1 4.736 5.539 5.011 5.500 5.419
200 500 90.2 90.1 90.0 90.2 90.1 4.124 5.429 4.237 5.411 5.339
500 100 89.8 90.0 89.4 90.3 90.3 5.486 5.866 5.700 5.701 5.653
500 200 89.2 88.7 88.4 89.0 89.0 4.876 5.581 5.130 5.518 5.469
500 500 90.8 91.7 89.6 91.8 91.6 4.214 5.430 4.326 5.408 5.364
1000 100 89.4 89.7 89.8 89.3 88.9 5.601 5.939 5.778 5.749 5.699
1000 200 88.8 90.4 89.6 90.3 90.2 4.951 5.632 5.186 5.555 5.509
1000 500 88.5 88.4 90.0 88.9 89.2 4.267 5.449 4.349 5.431 5.388

As we improve the accuracy of forecasting approaches, the
otted residuals become smaller, so that the resulting conformal
intervals decrease in length.

5.3. An Empirical Study

Stock market returns are volatile and hard to predict, but we
want to examine whether the cross-section of individual stock
returns contains any predictive information of the market. Our
dataset is drawn from the Center for Research in Security
Prices (CRSP) database. The market return is proxied by S&P
500 index return, whereas the cross-section of equities con-
sists of 310 large-cap stock returns from 2007 to 2016 without
missing data. Most of the existing literature on market return
predictability (Fama and French 1993; Kelly and Pruitt 2015)
focuses on monthly frequency and relies on portfolios informa-
tion. By contrast, we examine the issue using individual stock
returns at daily frequency. Not only is such data readily available
for a long time from various sources, but it also provides enough
sample to conduct accurate estimation. In the real-world prac-
tice, daily factor models provided by Barra Inc. and Axioma Inc.
are widely used to explain the cross-section of stock returns.

We use a rolling out-of-sample forecast implementation. At
date t, our target yt+1 is the market return that is realized
over the next day t + 1, while our estimate is based on time t
information. Factors fs are constructed through (3.1) using daily
stock returns xs (s = t − 755, . . . , t) of the past three years of
trading days. We then collect {(fs, ys+1) : s = t−755, . . . , t−1}
(or simply the raw data {(xs, ys+1)}). Finally, we use ft (or xt)

Table 5. Correlation matrix of predicted market returns via diferent models.

SF1-LR SF2-LR SF1-LLR SF2-LLR PCR PLS

SF1-LR 1.00 0.90 0.68 0.55 0.76 0.54
SF2-LR – 1.00 0.61 0.67 0.84 0.62
SF1-LLR – – 1.00 0.66 0.50 0.39
SF2-LLR – – – 1.00 0.57 0.45
PCR – – – – 1.00 0.78
PLS – – – – – 1.00

alonewith the estimatedmodel tomake forecast. The evaluation
of diferent models is based on the closeness of their estimated
market returns and true market returns from 2010 to 2016.

Our models consist of SF, PCR, and PLS. For the orst two
models, we use seven estimated factors extracted from the
return panel, which on average account for around 60% of the
variation in the cross-section of stock returns.We denote by SF1
and SF2 the SF with L = 1, 2 predictive indices. To reveal its
potential, we consider both linear (SF-LR) and nonlinear (SF-
LLR) suocient forecasting in building the predictive regression,
where the nonlinear link function is estimated through LLR.

Table 5 reports the time-series correlation of the predicted
market returns via diferent models. We orst observe that those
predictions are positively correlated, indicating that these mod-
els are making similar bets on the next-day market returns.
Second, predictions from SF are more correlated with PCR than
PLS, as both SF and PCR depend on the estimated factors from
the orst step. In comparison, PLS starts directly from the return
panel xt and ignores the factor structure, resulting in quite
diferent forecasting directions on the original predictors. Third,
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Figure 1. Histograms of predicted market returns.

Table 6. Prediction summary.

SF1-LR SF2-LR SF1-LLR SF2-LLR PCR PLS

corr 7.76% 7.89% 7.58% 8.15% 6.85% 6.21%
RMSE 0.998 0.999 0.992 0.998 1.010 1.071

NOTES: Predictability measures by diferent models. The orst row reports the cor-
relation between realized and predicted market returns. The second row lays out
the relativemean square error (RMSE) to themeanmarket return in the evaluation
period.

Table 7. Empirical coverage and average length of conformal prediction intervals.

SF2-LM SF2-LLR PCR PLS

90% CI Coverage (%) 92.68 92.45 92.74 92.28

Length (×10−2) 3.820 3.815 3.836 3.849

95% CI Coverage (%) 96.77 96.82 96.82 96.48

Length (×10−2) 5.091 5.097 5.110 5.075

nonlinear forecasts can be very diferent from linear forecasts.
Figure 1 plots the histograms of predicted market returns by
each method. It is noticeable that the forecasts made by SF are
more concentrated around zero, while PLS’s forecast has much
wider distributions.

Table 6 shows the predictive power of the six methods. For
each methodM, we consider its correlation with the target and
its mean squared error relative to the out-of-sample mean,

RMSE(M) =
∑

t∈S(yt − ŷt)
2

∑
t∈S(yt − ȳt)2

,

where S is the evaluation sample and ȳt is the mean of yt in S.
When RMSE is larger than 1, it indicates that the model does
not beat the out-of-samplemean, which is not uncommon in the
forecast of stock returns. Many previously studied predictors of
stock returns in the literature typically perform well in sample
but become insigniocant out-of-sample, oven performingworse
than forecasts based on the historical mean return (Goyal and
Welch 2008). As shown in Table 6, SF methods yield slightly
better performance than the other methods, mostly because it is
a more concise model and is less prone to over-ot. By exploring
the nonlinear nature of market returns, SF2-LLR delivers addi-
tional predictive power in terms of correlation metrics. Figure 2
shows that the RMSEs for SF-LR, SF-LLR, and PCR are relatively
consistent through diferent months, and the fact that they are
close to 1 indicates that these methods’ predictability of market
returns can get as near as market average daily returns. On the
other hand, PLS does not exploit the factor structure in the
cross-section of stock returns and requires further reonement.

In addition to the forecasting performance via diferent
methods, we also examine the corresponding conformal pre-
diction intervals associated with each forecasting approach. Fig-
ure 3 displays the time series of the SP500 daily returns over the
evaluation periods from 2010 to 2016, together with the 90%
and 95% conformal prediction bands constructed by SF-LR, SF-
LLR, PCR, and PLS, respectively. Their corresponding empirical
coverage rates and average length are reported in Table 7. The
graphs show that both SF and PCR generate similar prediction
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Figure 2. Monthly RMSE over the evaluation period.

Figure 3. Conformal prediction intervals over the evaluation period. NOTES: The black lines denote the SP500 daily returns, the red lines denote the 95% prediction
intervals, and the blue lines denote the 90% prediction intervals.
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bands, while the PLS yields to a slightly diferent band which
oscillates more oven. All prediction intervals can achieve the
desired coverage, more precisely, a slightly higher coverage rate
than specioed.

6. Conclusion

This article revisits the SF and studies its nonparametric esti-
mation and predictive inference in a large panel data settings.
We point out the close connection between the SF and existing
methods (such as FM regression and PLS) in their way of
using the target information. The estimated forecasting direc-
tions are shown to be consistent under a diverging number
of latent factors, and the asymptotic behavior of the estimated
SF directions is carefully characterized. We also show that the
estimated predicted indices can be directly used to estimate the
forecasting function, which is oven a nontrivial issue in factor
analysis. Moreover, we introduce the conformal inference to
construct valid prediction sets for SF. In numerical studies, we
demonstrate that allowing nonlinearity in forecasting functions
can yield additional gains and illustrate the approximate validity
of prediction sets constructed from the conformal inference
for SF.

Supplementary Materials

The supplementary materials consist of three distinct sections, including
the complete proofs of propositions and theorems, the discussion on the
choice of turning parameters as well as additional numerical results about
the sensitivity of forecasting performances of SF with regards to the esti-
mated number of factors.
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