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A B S T R A C T   

Soil heat flux (SHF) is a key component of the surface energy balance and driver of soil physiochemical and 
biological processes. Accurate estimation of soil heat flux is challenging due to variations in soil composition, 
overlying vegetation density and phenology, and highly variable environmental forcings. Existing SHF process- 
based and data-driven estimation methods have focused on midday landscape scale estimates that correspond to 
satellite acquisitions, despite the high variability that SHF displays at diurnal scales and throughout the growing 
season. Recently developed data-driven techniques have emphasized pre-determined predictor variables, with 
model complexity and predictor selection not carefully evaluated, leaving a gap in our understanding of what 
information is required to accurately predict SHF. Here we developed and evaluated a suite of ensemble machine 
learning (ML) models to quantify the ability of meteorological and remote sensing data to predict SHF variability 
at half-hourly temporal resolution throughout a growing season, producing a comprehensive evaluation of the 
importance of predictor set composition for SHF estimation at high temporal resolution. We compared this suite 
of machine learning models to six semi-empirical models and found that the machine learning models broadly 
outperformed the existing models in capturing diurnal variability across the growing season for four agro- 
ecosystems (soybean, corn, sorghum, and miscanthus). Crop-specific ML models were able to capture over 
86% of the variability in SHF using only two predictor variables, pointing to the need for careful evaluation of 
predictor sets to identify synergistic combinations. ML models developed using pooled data across all crops 
captured almost 80% of SHF variability using three predictors, demonstrating the power and generalizability of 
these methods independent of crop type. Shapley additive explanations (SHAP) were used to examine model 
interpretability, providing insights into the typically opaque ML modelling process and interaction of predictor 
variables. Models trained with fewer input variables tended to display more linear and interpretable feature 
attribution, motivating the use of interpretability as an important consideration in parsimonious model selection. 
These results provide a robust demonstration of the ability of ML to capture the variability in SHF at sub-hourly 
resolution across growing seasons spanning a wide range of phenological variation for unique agricultural sys
tems. This study provides a comprehensive evaluation of predictor requirements for model performance, guiding 
future applications that will take advantage of the next generation of satellite-based observing systems, or in-situ 
proximal observations of vegetation status and meteorological conditions.   

1. Introduction 

Soil heat flux (SHF) is the thermal energy exchange between the 
environment immediately above the surface and the topmost surface soil 
layer. SHF is a crucial component of the surface energy balance which 
determines energy transfer into the soil system. The net radiation of the 
terrestrial land surface (shortwave and longwave inputs minus reflected 
and emitted radiation) is utilized for metabolic processes, latent energy 

flux (LE), sensible heat flux (H) and soil heat flux (Allen, 1998; Drewry 
et al., 2010a, 2010b; Priestley and Taylor, 1972). Accurate modelling of 
surface energy conditions is critical for a range of applications including 
climate modelling (Franzke et al., 2020), crop modelling (Gupta et al., 
2022; Oliver et al., 1987) and water management (Mandal et al., 2020; 
Yao et al., 2010). Improving soil heat flux characterization is therefore 
required to fully understand surface energy balance through energy 
balance closure approaches and conditions of the surface environment 
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(Bai et al., 2022). 
Quantifying soil heat flux is essential for predicting the dynamics of 

soil temperature, which controls a wide range of processes that are 
critical for understanding the soil microclimate (Sauer and Peng, 2020), 
soil biogeochemical cycles (Pregitzer and King, 2005) and plant growth 
(Brown, 2018). Soil heat flux is linearly proportional to the change in 
soil temperature with time, alongside changes in soil characteristics. Soil 
temperature regulates mineralization, a primary source of nutrients for 
plants through the decomposition of organic matter (Burke et al., 1989; 
Schimel et al., 1994). In agricultural soils, increases in nitrogen uptake 
and short-term nitrogen availability have been linked with increased soil 
temperatures (Dessureault-Rompré et al., 2010; Gavito et al., 2001; 
Miller and Geisseler, 2018; Pregitzer and King, 2005). Increased soil 
temperature has also been linked with changes in root morphology 
through specific root length and branching angle that drives an increase 
in nutrient accessibility (Pregitzer and King, 2005). Beyond nutrient 
availability, soil temperature controls soil microbe communities and 
broader soil biodiversity (Bodelier, 2011). Globally, soil acts as a carbon 
reservoir, the extent and stability of which is principally governed by 
soil temperature (Ciais et al., 2014; Schlesinger, 1997). Ongoing efforts 
to sequester carbon through agriculture and forestry management 
practices depend on the capacity to model soil energy fluxes across a 
range of land-use conditions (Pechanec et al., 2018; Zhai et al., 2024). 

Despite the central role of soil heat flux in the surface energy balance 
and soil biogeochemical cycling, estimating this important land surface 
energy flux remains a challenging task. Direct measurement is labor- 
intensive and often requires disturbing the soil column to place instru
mentation which provides limited spatial scope. Remote sensing has 
been demonstrated to accurately retrieve biophysical parameters at 
moderate spatial scales (Garcia-Santos et al., 2022; Kustas et al., 1993; 
Liu, 2022; Zheng and Jia, 2022), but retrieval of SHF is particularly 
challenging due to the complexity of formulating a biophysical model 
for a flux with many potentially important predictive factors such as 
near-surface climate (Santanello and Friedl, 2003), vegetative cover and 
associated phenological changes (Clothier et al., 1986; Kustas et al., 
1993) and soil moisture content (Idso et al., 1975). 

Prediction of soil heat flux can be done through thermal diffusion 
calculations, which are limited by a dependence on estimates of soil 
characteristics and soil temperature (Evett et al., 2012; Lettau, 1954; 
Wang and Bras, 1999). Several studies have focused on the development 
of semi-empirical models that estimate soil heat flux through observa
tions that tend to be widely available (Bastiaanssen et al., 1998; 
Choudhury, 1999; Gao et al., 2017; Kustas et al., 1993; Santanello and 
Friedl, 2003) such as incident radiation, soil temperature, and plant 
cover. A recent review of these methods found limited temporal and 
spatial extensibility leading to the development of data-driven ap
proaches for regional and global SHF estimation (Purdy et al., 2016). 

Machine learning methods provide a powerful basis for developing 
flexible, non-parametric models of complex phenomena and have 
demonstrated strong predictive capabilities across many areas of the 
physical sciences generally and the earth sciences specifically (Bai et al., 
2021; Gewali et al., 2019; Kamilaris and Prenafeta-Boldú, 2018; 
Reichstein et al., 2019). Several studies have successfully estimated soil 
heat flux for a range of environmental and spatial contexts (Bonsoms 
and Boulet, 2022; Canelón and Chávez, 2011; de Andrade et al., 2021; 
Zheng and Jia, 2022). de Andrade et al. (2021) and Bonsoms and Boulet 
(2022) targeted a mixture of field meteorological observations of net 
radiation and surface temperature, and satellite observations to train 
neural network and random forest architectures for regional-scale soil 
heat flux estimation across South America and Africa, respectively. 
Zheng and Jia (2022) used daily observations from 144 FluxNet sites 
and satellite observations of leaf area index (LAI) and albedo to produce 
a globally applicable soil heat flux model. A key limitation in these 
studies is their limitation to midday observations, defined by satellite 
overpass times. Santanello and Friedl (Santanello and Friedl, 2003) 
recognized significant variation in the relationship between SHF and net 

radiation across the day resulting in asymmetric diurnal SHF patterns 
which may be lost when only midday forcings are considered. 

While machine learning methods have been demonstrated to be 
flexible predictive tools capable of integrating diverse data streams, they 
present significant challenges in terms of interpretability and general
izability (Reichstein et al., 2019). This is especially true in the context of 
ecohydrological or biophysical systems, where the objective is often to 
develop a better understanding of the underlying system rather than 
exclusively improve predictive performance (Drewry et al., 2010a, 
2010b). There is a growing recognition that interpretability, physical 
consistency, and data complexity are key challenges in the successful 
adoption of machine learning methodologies (Baptista et al., 2022; Hu 
et al., 2021). One proposed approach is the concept of parsimony which 
seeks to use the simplest set of explanatory variables to reach a target 
performance threshold (de Silva et al., 2020). Parsimony is founded on 
concepts from dominant balance physics, a modelling approach that 
approximates complex physical systems through relatively few and 
simple dominant physical processes which can improve model gener
alizability, interpretability, and physical consistency (Callaham et al., 
2021; Kaiser et al., 2022; Kutz and Brunton, 2022). Here we refer to 
parsimony as a minimal or reduced predictor set (i.e. the number of 
observed physical variables used to predict SHF) that provides near- 
maximum (but likely somewhat below the absolute maximum) model 
performance achieved across all models. 

The main objective of this research is to quantify the limits of pre
dictive performance for soil heat flux using widely available and non- 
invasive environmental and remote sensing observations at sub-hourly 
temporal resolution. We leverage the power of machine learning, with 
rigorous cross-validation, to explore the information content in each 
potential predictor variable and their combinations to understand which 
combinations of variables provide optimal predictive power (i.e. mini
mize redundancy and maximize synergy). We conduct this work at a 
unique agricultural study site in which homogeneous fields of four 
contrasting agricultural systems (soybean, corn, miscanthus and sor
ghum) are instrumented with a wide array of sensors including eddy 
covariance flux systems, net radiometers, meteorological stations and 
proximal remote sensing observations of reflectance indices and radio
metric surface temperature. 

2. Methods 

2.1. SABR experimental study site 

This study was conducted at the Iowa State University Sustainable 
Advanced Bioeconomy Research Farm (SABR) outside of Ames, Iowa 
(Aslan-Sungur et al., 2023; Bendorf et al., 2022). The 2021 growing 
season around Ames was characterized by higher temperatures and less 
precipitation on average, particularly during the critical period of crop 
development in June (Thessen et al., 2022). 

SABR consists of four independently monitored plots to examine the 
performance of standard Midwest commodity crops (corn, soybean) 
relative to potential bioenergy crops (energy sorghum, miscanthus) in 
the same climate and soil system. At the center of each plot is a tower 
with an eddy covariance (EC) system to continuously monitor the ex
change of carbon dioxide, water and energy between each crop and the 
atmosphere, as well as a full suite of meteorological sensors at several 
meters above each land cover type (Campbell Scientific HMP-155), 
downwelling shortwave (SW) and longwave (LW) radiation (Kipp & 
Zonen CNR4 net radiometer), and sensors to monitor soil temperature 
and soil heat flux at a depth of 10 cm (Hukseflux HFP01SC soil heat flux 
plates). All flux and environmental variables were averaged to 30-min 
intervals, and independently measured at each of the four SABR 
towers. More information on the sensors and equipment at the site can 
be found on the SABR website (https://sabr.shinyapps.io/appSABR/). 

Additionally, at each tower a set of in-situ proximal remote sensing 
instruments were deployed over the growing season to continuously 
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monitor land surface temperature (LST), the normalized difference 
vegetation index (NDVI) (Tucker, 1979) and the photochemical reflec
tance index (PRI) (Gamon et al., 1997), providing high temporal reso
lution observations of these remote sensing variables allowing us to 
examine their importance in diurnal SHF estimation. NDVI and PRI were 
collected using two-band radiometers (SRS sensors from METER Inc., 
Washington, USA) affixed to each of the four towers. These sensors were 
positioned such that they viewed a homogenous region of the canopy to 
the south of each tower. LST measurements were collected using 
infrared thermometers (SI-421, SI-431, SI-4H1 infrared thermometers, 
Apogee Instruments, Utah, USA) deployed on each tower looking down 
on the land surface / canopy from an approximate height of 3–4 m above 
the surface. These in-situ remote sensors collected observations at 5-min 
intervals which were then averaged to 30-min intervals to correspond 
with the averaging period of the other tower observations. 

Proximal remote sensing observations were made from June 9th to 
October 1st. This produced approximately 5500 half-hourly observation 
periods for each of the crops. Corn, sorghum, and soybean were planted 
on April 28th, June 2nd, and May 12th in 2021, respectively. The 
perennial Miscanthus crop was originally planted on May 3rd, 2019. 

2.2. Data post-processing 

2.2.1. Soil heat flux 
Soil heat flux was measured at each of the four SABR EC towers using 

three heat flux plates in the proximity of each tower. All SHF mea
surements were made at a depth of 10 cm. To avoid introducing addi
tional sources of uncertainty that could be induced by empirical 
approaches to transform 10 cm observations to the heat flux at the soil 
surface, all machine learning models were developed here using the 
observed SHF at 10 cm (Gao et al., 2017). Section 2.4 discusses cor
rections to estimate the surface soil heat flux. No gap filling was per
formed on soil heat flux observations. In this study, we use 
environmental and proximal remote sensing observations as predictors 
in SHF estimation. Below we briefly describe these two classes of pre
dictor variables. 

2.2.2. Environmental data 
The environmental predictors are based on meteorological mea

surements from the four SABR fields containing instrumented towers. 
Where meteorological data is missing for one of the fields, it is first filled 
from a nearby meteorological station at the Ames Municipal Airport, 
located 6.9 km from the site, as part of the standard processing methods 
applied to SABR data. Further details are available at the SABR webpage 
(https://sabr.shinyapps.io/appSABR/). Remaining missing data points 
are filled using a linear transformation from one of the SABR towers 
where the missing variables are available. 

2.2.3. Remote sensing data 
The remote sensing predictors for this study were collected at 5-min 

intervals at each of the four SABR towers. These remote sensing obser
vations included: NDVI (Tucker, 1979), PRI (Gamon et al., 1997), and 
LST collected using calibrated infrared thermometers. Each remote 
sensing variable was averaged to 30-min intervals to be consistent with 
the temporal resolution of SABR tower observations. NDVI and PRI were 
each calculated from two-band sensors centered at 650 nm and 810 nm, 
with 50 nm and 40 nm full width half maximum (FWHM) band widths 
respectively, for NDVI, and 532 nm and 570 nm with 10 nm FWHM band 
widths for PRI. To reduce noise and variability of these indices, a 4-h 
window around local solar noon was selected and averaged for each 
day to produce daily NDVI and PRI values. This provided dynamic es
timates of these indices for each crop throughout the growing season 
while minimizing sensor noise and eliminating periods during which 
these calculations are invalid (i.e. nighttime and periods of low radiation 
forcing). This averaging makes NDVI and PRI effectively daily obser
vations, as opposed to LST and the environmental predictor variables 

that were all used at the 30-min resolution for which SHF was measured 
and modeled. 

It should be noted that in the literature there is some inconsistency 
regarding the definition of surface temperature, which can refer to either 
the soil surface (TS) or the canopy surface (TC). Throughout this paper 
we use radiometric observations from a height above each crop canopy 
as the source of surface temperature observations and will use LST to 
refer to these remote sensing observations as they may partially observe 
the soil surface or the canopy depending on canopy density and 
coverage. 

2.3. Study crops 

Corn, miscanthus and sorghum are C4 grasses that have potential to 
be used for future biofuel production (Carpita and McCann, 2008). 
Miscanthus is a perennial crop known for its high water and nutrient use 
efficiency (Vermerris, 2008). Sorghum, an annual crop, demonstrates 
drought tolerance and high rates of biomass production and so is also 
considered a promising bioenergy feedstock (Carpita and McCann, 
2008). Soybeans are the only C3 crop considered in this study. 

Variations in plant physiology, morphology, and phenology influ
ence interactions throughout the plant-soil system (Moore et al., 2021; 
van der Putten et al., 2013). The state of canopy closure and canopy 
density (i.e. leaf area index) control the amount of incident shortwave 
radiation reaching the soil surface as well as the emission and propa
gation of longwave radiation throughout the canopy (Drewry et al., 
2010a, 2010b). 

Fig. S1 presents mean diurnal soil heat flux and soil temperature (TS) 
at a 10 cm depth as well as downwelling shortwave radiation across the 
growing season for each of the four crops. These diurnal averages show 
that SHF peaks in the late afternoon / evening, preceding the peak in soil 
temperature at the 10 cm measurement depth. Both SHF and soil tem
perature show a lag relative to incident shortwave radiation. 

Increased NDVI values (an indicator of a dense canopy) lead to a 
decrease in measured soil temperature at 10 cm for each of the four 
crops studied here (Fig. S2). Miscanthus is a perennial crop, and NDVI 
for it was relatively constant during the study period and does not show 
the negative trend in TS seen for the other three annual crops. 

2.4. Empirical soil heat flux models 

Six empirical models were used to compute SHF for each of the four 
crops to provide benchmarks for assessing the performance of the ma
chine learning models developed in this study (Bastiaanssen et al., 1998; 
Boegh et al., 2004; Choudhury, 1999; Gao et al., 2017; Kustas et al., 
1993; Santanello and Friedl, 2003). These empirical models often 
include a dependence on a variable related to canopy structure (i.e. 
NDVI, LAI – four of the six empirical models evaluated here) and net 
radiation (all six empirical models), with land surface temperature also 
included in some instances as a forcing variable (see Table S1 in the 
Supplementary Material). We note that as described in the section 
below, we do not use an aggregate radiation variable such as the net 
radiation flux (Rn) as a predictor variable in this study as Rn requires 
information on both downwelling and upwelling, shortwave and long
wave radiative fluxes which require specific sensors (net radiometers) 
that are not as widely available as other weather observations and would 
limit the applicability of the models developed here. In this way many of 
the ML models developed in this study are more widely applicable than 
these semi-empirical models evaluated here, as they only require stan
dard meteorological data as predictors. In addition we evaluate models 
that include remote sensing data products (reflectance indices and land 
surface temperature) that are now widely available from satellite sour
ces and proximal sensing methods. 

Each of the six empirical models is presented in Table S1. As soil heat 
flux is typically estimated at the soil surface, a correction factor is 
necessary to compensate for the energy stored between the soil surface 
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and the heat flux plate at 10 cm (Sauer and Horton, 2005). Here we 
apply the calorimetric method (Fuchs, 1986) to perform the trans
formation between soil heat flux observations at 10 cm and soil surface 
heat flux estimates to evaluate the performance of the empirical SHF 
models. The calorimetric method is the most common approach to this 
transformation and calculates a soil heat storage term to describe the 
amount of energy stored in the soil between the surface and a given 
depth based on soil temperature, soil moisture and soil composition 
(Kustas and Daughtry, 1990; Liebethal et al., 2005; Liu et al., 2017). 

Despite the popularity of the calorimetric method, several studies 
have examined the limitations of the method to accurately compensate 
for stored heat (Massman, 1992; Sauer and Horton, 2005). With this in 
mind, we chose to use the heat flux measurement at 10 cm depth for the 
development and evaluation of all ML models here. This prevents 
introducing additional biases or errors due to the choice of a specific 
correction methodology into the ML models (Gao et al., 2017), and 
provides a test of the ML models to accurately estimate the observed 
physical variable. We did test a selection of ML model formulations that 
were trained against surface soil heat flux estimates using the calori
metric method. These results are presented in Table S2. 

In order to fairly evaluate the six empirical benchmark models, 
which were developed to estimate the surface soil heat flux, we produce 
independent parameter optimizations and evaluations of them both 
directly against SHF observations (Fig. S3) as well as evaluations against 
surface soil heat flux estimates developed by correcting SHF using the 
calorimetric method (Fig. S4). We found that performing a simple cali
bration for each of the six empirical benchmark models improved results 
for this SABR dataset. A nested, repeated k-fold cross-validation 
(described in Section 2.7) is used to parameterize each of these six 
empirical models to provide a set of optimized benchmarks against 
which to evaluate the performance of the machine learning models. The 
MATLAB Optimization Toolbox was used to calibrate model-specific 
parameters from the training set independently for each empirical 
model and crop combination. 

2.5. Machine learning methods 

Recent studies have found that using observations of land surface 
temperature, NDVI, and net radiation to train machine learning models 
can improve the performance of soil heat flux predictions. Bonsoms and 
Boulet (2022) analyzed sites throughout Europe and Africa and found 
that their models outperformed existing empirical models. However, 
this study was limited in temporal resolution due to the use of sun- 
synchronous satellite observations. Zheng and Jia (2022) used obser
vations of surface albedo and LAI from the Global LAnd Surface Satellite 
(GLASS) with measurements of soil temperature, net radiation, and soil 
heat flux from 144 FluxNet sites to compare empirical methods to three 
machine learning models at a global scale. They found that all three 
machine learning methods tested outperformed empirical methods, with 
as much as 79% of observed variability captured using a random forest 
model. de Andrade et al. (2021) developed a neural network for soil heat 
flux estimation using MODIS observations across 23 flux towers in South 
America and found that adding a land cover classification to a dataset of 
surface temperature, albedo, net radiation and the enhanced vegetation 
index (EVI) improved predictions particularly during mid-morning. 
Each of these three studies focused on soil heat flux estimates at 
spatial resolutions of approximately 1km2 due to dependencies on sat
ellite data, and likewise focused on daily estimations near midday due to 
typical satellite overpass times. This current study provides a signifi
cantly more robust evaluation of the ability of ML to capture the vari
ability in SHF at sub-hourly resolution across a growing season spanning 
a wide range of phenological variation in four unique agricultural sys
tems. We provide a comprehensive evaluation of predictor requirements 
for model performance, guiding future applications that will take 
advantage of the next generation of satellite-based observing systems, or 
in-situ proximal observations of vegetation status and meteorological 

conditions. 
Among machine learning techniques, random forest models have 

been found to be particularly effective and are used here due to their 
demonstrated robust performance for a wide range of contexts. The use 
of random forests in a variety of areas of remote sensing is well- 
documented (Baret and Buis, 2008; Bonsoms and Boulet, 2022; Chan 
and Paelinckx, 2008; Maxwell et al., 2018; Zheng and Jia, 2022) and 
motivated by flexibility in hyperparameter selection, input dimension
ality, and data volume. Random forest models are a class of machine 
learning methods referred to as ensemble learning, an architecture that 
operates by generating many randomized decision trees based on sub
sets of the input features (Breiman, 2001). By averaging the results from 
each tree, the model produces a more reliable result than any one tree 
could produce. The number of trees, leaves, and clustering methods are 
the primary hyperparameters required for application of the random 
forest method. Here, hyperparameter optimization was performed using 
Bayesian Optimization to minimize a 5 k-fold cross-validation loss 
during model development (Section 2.7). 

2.6. Selection of predictor variables 

Soil heat flux has been shown to correlate strongly with a range of 
environmental forcing variables such as downwelling shortwave and 
longwave radiation, soil moisture content and land surface temperature 
(Liebethal and Foken, 2007; Santanello and Friedl, 2003; Venegas et al., 
2013). Likewise the density of vegetation above the surface plays an 
important role in controlling environmental conditions at the soil sur
face including the magnitudes of radiative fluxes incident on the surface 
(Bastiaanssen et al., 1998; de Andrade et al., 2021). 

In many SHF empirical models the net radiation flux at the surface is 
used as a predictor variable. Here we use the individual downwelling 
components of Rn, SW and LW, and do not use observations of the up
welling radiation components that contain information on canopy 
structure and temperature. This provides a more rigorous test of SHF 
estimation that does not rely on 4-band net radiometer observations or 
other methods for estimating the two upwelling radiation fluxes. In this 
way the ML models developed in this study are more widely applicable 
than the empirical models evaluated here which all require Rn as an 
input variable. 

We also include air temperature (Ta) and LST as independent pre
dictor variables. While these two variables will be correlated throughout 
the growing season they represent unique states (atmospheric vs sur
face) that have the potential to influence SHF predictions in independent 
ways. 

In total, seven predictor variables were explored in this study with 
each of these variables collected uniquely for each of the four agro- 
ecosystems (i.e. each of the four SABR measurement towers). These 
variables are: downwelling shortwave and longwave radiation, air 
temperature, LST, NDVI and PRI. We also include as a predictor variable 
solar zenith angle, which is calculated based on location, day of year and 
time of day. 

Here we explore three categories of predictor variable sets for ML 
model training and evaluation. The first category examines the extent to 
which simple models, developed using sets of one, two or three predictor 
variables, can be used to accurately predict soil heat flux. The explora
tion of models in this category provides insights into the ability of 
models with simpler data requirements, and lower computational costs, 
to capture the variability in SHF. The second model category considers 
model formulations that utilize exclusively either meteorological ob
servations (LW, SW, and Ta) or remote sensing (RS) observations that 
can now be made in-situ at high temporal resolution (PRI, NDVI, and 
LST). Due to the widespread availability of meteorological stations we 
also evaluated how the addition of a single remote sensing observation 
to the three meteorological predictors used here could improve soil heat 
flux estimation. The final model category we explored is one developed 
using the full set of predictor variables considered in this study, 
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spanning meteorological and remote sensing variables. We developed 
and evaluated these three categories of models for each agro-ecosystem 
represented at the SABR experimental facility (soybean, corn, sorghum, 
miscanthus) and also evaluate models developed using the combined 
dataset spanning all four systems (i.e. models that can be applied 
generally across these four agro-ecosystems). 

Across these three categories we evaluated 65 predictor sets for each 
of the four agro-ecosystems, totaling 260 unique models. All predictors 
used here were averaged to 30-min resolution spanning June 9th to 
October 1st of the 2021 growing season. 

2.7. Machine learning training methodology 

To ensure accuracy and reliability of results, a repeated nested k-fold 
cross-validation approach was employed for all ML models developed 
here. An outer 10 k-fold cross-validation provided an initial division of 
the data into holdout data and data for model development (Molinaro 
et al., 2005). An inner 5 k-fold cross-validation was then used to mini
mize the bias caused by tuning of hyperparameters on training results, as 
demonstrated in previous studies (Cawley and Talbot, 2010; Yates et al., 
2022). The training performance was calculated based on the inner 
cross-validated ensemble, while the testing performance was deter
mined by selecting the optimal set of hyperparameters from the entire 
training set to predict on the holdout data. This process was repeated 15 
times for each unique model to reduce the potential bias and variance 
related to random sampling (Kim, 2009). 

This cross-validation methodology also allows for the assessment of 
uncertainty in the model performance and post-hoc explainability 
metrics, such as SHapley Additive exPlanations (SHAP) (Lundberg and 
Lee, 2017). Typically SHAP explanations are based on evaluation of a 
single partitioning of a model and its set of hyperparameters. Scheda and 
Diciotti (2022) propose a cross-validation method for SHAP values, 
which we use here to assess the consistency of learned relationships. 

Squared Pearson correlation values (R2) are used to evaluate model 
performance due to the theoretical monotonic increase that it displays as 
additional predictors are added to model development (Chicco et al., 
2021). In practice, an excessively large predictor set may reduce model 
performance (Banks and Fienberg, 2003), but was not found to be the 
case in this study. Further, R2 is more interpretable than MSE and RMSE, 
allowing for a simpler model comparison (Chicco et al., 2021). 

2.8. Machine learning interpretability 

SHapley Additive exPlanations is a widely used technique for inter
preting machine learning models after they have been trained (Lundberg 
and Lee, 2017). The method calculates a feature attribution score for 
each input feature (predictor) that provides an estimate of the contri
bution of that feature to the model prediction. Unlike other methods that 
are specific to certain model architectures, SHAP is model-agnostic and 
uses local information from the input data to provide explanations. We 
employed the built-in Shapley methods of MATLAB for this calculation 
(Lundberg and Lee, 2017). Following Scheda and Diciotti (2022) we 
averaged SHAP feature attributions across repeated k-fold cross- 
validations to reduce variance resulting from data partitioning. 

We use SHAP values to analyze how different input sets affect the 
explainability and performance of the models developed here. These 
values provide detailed information on how individual predictors and 
their interactions contribute to model predictions, which aids in un
derstanding the physical meaning of the models and provides insight 
into synergisms and redundancies among predictor variables. The 
motivation for evaluating such a wide range of models is to quantify how 
predictive performance and model complexity (number of predictor 
variables used) are related, and to provide interpretability to the in
teractions of predictor variables to inform model selection when 
considering complex goals such as parsimony. 

3. Results and discussion 

Summary performance statistics for each of the model categories 
(various combinations of predictors) are presented in Table 1. Across all 
model categories at least one machine learning model outperformed the 
existing empirical methods reviewed in Section 2.4 (see Figs. S3 and S4), 
demonstrating the flexibility of machine learning to optimize the use of 
information in even simple, but relevant, predictor sets to quantify SHF 
at diurnal to seasonal temporal scales. 

In the first predictor sets we assess the capabilities of models 
requiring few input predictors and the importance of each predictor: the 
One Predictor, Two Predictor, and Three Predictor categories. The R2 

performance and variables in the optimal predictor set of each category 
and agro-ecosystem grouping are listed in the first three rows of Table 1. 

The strongest single predictors for soil heat flux estimation were air 
temperature (corn and miscanthus) and LST (sorghum and soybean) 
among the seven predictors evaluated here. Across the Two Predictor 
models a combination of one of the two reflectance indices (NDVI and 
PRI) and one of the two temperature variables (Ta and LST) provided the 
best performance for all four systems. Two Predictor models that include 
both Ta and LST do not significantly improve predictive performance 
relative to the optimal One Predictor model due to the high correlation 
and redundancy between these two temperature variables (see Table S3 
providing performance results for all Two Predictor models), pointing to 
the need to build parsimonious ML models using synergistic and non- 
redundant sources of information. Adding NDVI or PRI to one of the 
temperature variables adds independent information about canopy 
cover, and therefore the ability of incident radiation to reach the soil 
surface. These findings are consistent with those of Bonsoms and Boulet 
(2022) who found that both empirical and machine learning soil heat 
flux models benefit from inclusion of vegetation metrics and radiometric 
observations. The Three Predictor model class evaluations demonstrated 
that a combination of the reflectance and temperature variables 

Table 1 
R2 validation performance averaged across ML models trained and evaluated 
respectively on each of the four crop systems: corn, miscanthus, sorghum, and 
soybean. Model input features are included for each result. In the One Predictor, 
Two Predictor, and Three Predictor model categories, only the best performing 
model (set of predictors) for each agro-ecosystem is displayed.  

Model Category Corn Miscanthus Sorghum Soybean 

One Predictor 
0.790 ±
0.007 
[Ta] 

0.845 ±
0.008 
[Ta] 

0.686 ±
0.009 
[LST] 

0.758 ±
0.015 
[LST] 

Two Predictor 
0.873 ±
0.010 
[NDVI, Ta] 

0.887 ±
0.006 
[PRI, Ta] 

0.875 ±
0.014 
[NDVI, LST] 

0.866 ±
0.013 
[NDVI, 
LST] 

Three Predictor 

0.922 ±
0.015 
[NDVI, 
PRI, Ta] 

0.927 ±
0.015 
[NDVI, PRI, 
Ta] 

0.909 ±
0.028 
[NDVI, PRI, 
LST] 

0.895 ±
0.015 
[NDVI, LST, 
Ta] 

NDVI + LST 

0.858 ±
0.009 
[NDVI, 
LST] 

0.852 ±
0.005 
[NDVI, LST] 

0.875 ±
0.014 
[NDVI, LST] 

0.866 ±
0.013 
[NDVI, 
LST] 

Remote Sensing 

0.911 ±
0.015 
[NDVI, 
PRI, LST] 

0.909 ±
0.012 
[NDVI, PRI, 
LST] 

0.909 ±
0.028 
[NDVI, PRI, 
LST] 

0.903 ±
0.020 
[NDVI, PRI, 
LST] 

Meteorology 

0.836 ±
0.005 
[LW, SW, 
Ta] 

0.897 ±
0.007 
[LW, SW, Ta] 

0.658 ±
0.021 
[LW, SW, 
Ta] 

0.764 ±
0.018 
[LW, SW, 
Ta] 

Meteorology +
NDVI 

0.906 ±
0.010 
[LW, SW, 
Ta, NDVI] 

0.922 ±
0.010 
[LW, SW, Ta, 
NDVI] 

0.890 ±
0.024 
[LW, SW, 
Ta, NDVI] 

0.911 ±
0.020 
[LW, SW, 
Ta, NDVI] 

Seven Predictor 
(Complete Set) 

0.934 ±
0.018 

0.954 ±
0.012 

0.930 ±
0.017 

0.948 ±
0.006  
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produced the optimal predictor set for all crops. 
The next sets of model categories we evaluated are composed solely 

of either remote sensing or meteorological predictor variables. Remote 
sensing observations are particularly valuable for SHF prediction, with 
at least one of the three remote sensing variables (NDVI and LST) 
frequently selected as an optimal predictor in the One, Two, and Three 
Predictor categories. The purely remote sensing model using only the 
three remote sensing predictors [NDVI, PRI, LST], performed extremely 
well across all four agro-ecosystems (R2 > 0.9 in all cases). The model 
based on only [NDVI, LST], two widely available remote sensing ob
servables, likewise performed extremely well with >85% of the vari
ability in SHF captured for all four systems. 

Model performance for predictor sets restricted solely to meteoro
logical variables was mixed across the four agro-ecosystems, with R2 

values ranging from approximately 0.65–0.9. The meteorology-only 
models underperformed the remote sensing model in all cases, most 
significantly in sorghum and soybean. The mixed performance of the 
meteorology-only models is indicative of a varied degree of decoupling 
between the environments above and within the canopy, potentially due 
in part to variations in canopy structure across the four ecosystems that 
could result in differences in canopy roughness and radiation transfer. 

The combination of all seven predictors provided minor predictive 
improvements over the Three Predictor or Remote Sensing models 
(Table 1), suggesting that redundancy among some of the variables 
limits their utility in SHF estimation, and pointing to a much greater 
degree of parsimony in carefully selected 2- and 3-predictor model 
formulations. 

In the subsequent sections, we assess model performance in the 
context of model complexity and explainability, crop specific training 
against generalized training, and contrast remote sensing and meteo
rological measurements to provide predictive performance for several 
potential use cases. 

3.1. Model complexity 

The management of model complexity is an important consideration 
in data-driven model development (Jolliffe, 1986; Wang et al., 2017; 
Yates et al., 2021). In this study we define model complexity as the 
number of variables included in the predictor set. Proper selection of 
variables, i.e. feature selection, can minimize training costs, measure
ment requirements, and decrease the likelihood of overfitting (Banks 
and Fienberg, 2003; Cawley and Talbot, 2010). 

Here we examine the performance of models developed individually 
across the four agro-ecosystems at SABR. Fig. 1 presents model perfor
mance as a function of number of input variables, with the performance 
presented being that of the best performing model with the specified 
number of predictor variables. The optimal variable combinations for 
the first three sets for each ecosystem are included in Table 1. Extending 
the size of the predictor set to allow an additional variable produces at 
least equivalent predictive power to the previous in addition to poten
tially new information, as indicated by the R2 metric (Chicco et al., 
2021). The performance of all Two Predictor model permutations is 
provided in Table S3 of the Appendix for reference. 

For each of the four agro-ecosystems, R2 predictive performance 
reaches an approximate asymptote for three-predictor models, repre
senting close to optimal performance. Between the best performing 
model trained on two predictors and the model trained on all seven 
predictors, there was an R2 performance increase of 6.0% for corn, 5.8% 
for miscanthus, 3.5% for sorghum, and 8.9% for soybean (Fig. 1), 
indicating that in general Two or Three Predictor models, with appro
priate predictor selection, can be considered parsimonious for SHF 
estimation in agricultural systems. 

Performance of multi-variable models are dependent on the rele
vance of each variable to the predicted value, the independent infor
mation contained within each, and added information that may arise 
from the interaction between variables, which we refer to here as 

synergy. Variables such as incident shortwave radiation and zenith angle 
provide potentially redundant information. Additional variables may 
also act to fill any weaknesses left in a simpler model. For instance, soil 
heat flux is strongly correlated with LST, though this relationship is 
strongly influenced by the presence, or absence, of a canopy. A model 
lacking an indicator for canopy density, such as NDVI, would fail to 
capture this detail. In Section 3.5 we evaluate the impact of feature se
lection on model explainability in further detail. 

Simplicity is preferred where an acceptable trade-off for accuracy 
can be made. Simpler models are simultaneously easier to explain and 
more robust to noise than more complex models (Diaz-Ramirez et al., 
2021; Kutz and Brunton, 2022; Yates et al., 2021). From the perspective 
of integrating machine learning into physical observing systems, a 
robust and computationally inexpensive model presents opportunities to 
extend measurement capabilities. Further, instrumentation and mea
surements carry costs, so simple models may lower observational costs 
(Yates et al., 2021) and provide greater resilience to instrument failure 
than models using more predictors. The reduction of input variables 
shifts the focus to data volume, which is more easily achievable with 
fewer meteorological and/or remote sensing instruments. 

3.2. Impact of crop type 

Among the seven candidate predictors of soil heat flux, surface 
temperature and air temperature achieve the highest individual R2 

predictive performance, indicating a strong physical relationship to soil 
heat flux variation (see Table S3). Other predictors such as NDVI and 
PRI, while significant in multi-predictor models (Table 1), do not 
perform well individually due to low variability from day to day, and the 
fact that they do not vary diurnally as do the radiation fluxes that pro
vide the source of energy for soil heat fluxes. LST is a stronger predictor 
than air temperature for sorghum and soybean, while air temperature 
performs marginally better in corn and miscanthus models. 

Miscanthus models consistently produce the highest predictive per
formance across the four crops. This is due in part to the dense canopy 
(high NDVI) throughout our observation period (see Fig. 2). Miscanthus 
is a perennial crop and had developed a closed canopy by the start of the 
observation period (discussed below). This is the reason that NDVI alone 
has the lowest predictive performance for miscanthus. The three other 
agro-ecosystems experience a sharp increase in growth during the early 
portion of the observing period, and decline at the end of the season, 
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Fig. 1. R2 validation performance for models trained and evaluated respec
tively on each of the four agricultural systems: (a) corn, (b) miscanthus, (c) 
sorghum, and (d) soybean. Results are the aggregate of 15 cross-validated it
erations of the highest performing model utilizing the respective number of 
input predictors. 
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which allows NDVI to provide important information on canopy closure 
and density variation for SHF estimation. See Tables S2 and S3 for 
further details of the relative importance of NDVI for SHF predictions 
across these four crops. 

On average, sorghum models underperform the other crop models 
that utilize a single predictor. The daily soil heat flux response for sor
ghum does not differ significantly from corn or soybean (see Fig. S1). It 
may be that the soil heat flux response for sorghum is more complex, 
thus the relative improvement in performance with more predictors, or 
contains dependencies that are not captured in the predictor sets eval
uated here. The sorghum and soybean systems show a significant per
formance increase with LST as a predictor, relative to Ta. This is not the 
case for the corn and miscanthus systems and may indicate that there are 
crop-specific traits (i.e. related to canopy structure and not solely can
opy density) that impact the utility of LST in soil energy balance esti
mation. In Section 3.5 we examine the ability of a single ML formulation 
to predict SHF across all agro-ecosystems examined here (i.e. a gener
alized model of SHF). 

3.3. Assessment of predictor source 

Here we assess the performance attainable by using only measure
ments from one of two sources: remote sensing measurements (NDVI, 
PRI, and LST) and meteorological observations (LW, SW, and Ta). In 
addition, we highlight the potential benefit of introducing remote 
sensing observations into models developed using meteorological ob
servations. In Fig. 2 NDVI is displayed as a green line and can be seen to 
rise and fall at the shoulders of the growing season of the three annual 
crops (soybean, sorghum, and corn), representing seasonal plant growth 
/ phenology. The remote sensing model that incorporates NDVI has 
lower SHF prediction errors relative to the meteorology-only model 
throughout the season for the three annual crops. The addition of NDVI 
to the meteorology-only model provides a significant improvement in R2 

predictive performance in corn (0.84 → 0.90), sorghum (0.66 → 0.89), 
and soybean (0.76 → 0.86), and a modest performance increase in 
miscanthus (0.90 → 0.92) which was mature during the data collection 

period. 
In the span of a day, soil heat flux experiences significant diurnal 

variation. All three models demonstrate an overestimation in the period 
before noon, and an underestimation in the period after noon (Fig. 3). 
This behavior is more prominent in the remote sensing model, for which 
the only source of information on diurnal variations is contained in LST, 
as NDVI and PRI are considered here as daily averages. Due to the 
proximity of the four towers, each station recorded similar meteoro
logical observations. However, the meteorology-only models show 
different patterns of error due to different learned patterns for each 
system, and possibly subtle variations in meteorological variables 
directly over each canopy or differences in sensor noise across obser
vation sites. These differences may also be due to variations in canopy 
structure and density that impact the relationships between canopy-top 
meteorology and SHF. The meteorology model for sorghum (Fig. 3c) 
shows a sharp transition from overestimation to underestimation near 
14:00, which becomes less significant in the remote sensing model or the 
meteorology model once NDVI is included as a predictor. 

Meteorological variables alone are much less capable of capturing 
variation in the canopy structure above the soil throughout the season. 
This in part explains the reliance of the semi-empirical SHF models on Rn 
rather than the downwelling radiation fluxes alone, as upwelling 
shortwave reflected and emitted thermal radiation fluxes carry some 
information on the land surface cover related to vegetation cover and 
phenology. As a result of the lack of phenological information in the 
meteorological variable set, the meteorology-only models tend to show 
an underestimation early in the growing season prior to canopy maturity 
and an overestimation after the canopy has developed. 

The one-to-one modeled vs observed SHF performance for 
meteorology-only [SW, LW, Ta] models developed for each crop indi
vidually is presented in Fig. 4. The models for each crop are seen to 
perform well, with the greatest error occurring in the soybean and sor
ghum model predictions early in the growing season. The diurnal error 
trend is apparent in corn, soybean, and sorghum particularly early in the 
growing season when underestimates at high observed SHF values (mid- 
day) are balanced by overestimates for low SHF conditions in the late 
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afternoon and nighttime. The small range of variability of the mis
canthus SHF values are due to the dense canopy cover of this system 
throughout the measurement period, resulting in strong model perfor
mance as the phenological information carried by NDVI is not important 

in this context. 
In contrast, the remote sensing predictor model [NDVI, PRI, LST] 

results (Fig. 5) demonstrate the importance of capturing canopy cover 
variations throughout the season. While this dataset in general has less 

Fig. 3. Diurnal prediction error across the entire observation season for (a) corn, (b) miscanthus, (c) sorghum and (d) soybean. Blue depicts the model trained using 
remote sensing predictors [LST, NDVI, PRI], orange the model trained on meteorology data [SW, LW, Ta] and yellow the meteorology predictor model that includes 
NDVI [NDVI, SW, LW, Ta]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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information about short-term changes in the environment (i.e. due to 
clouds, weather systems, etc.), the information on diurnal variability in 
the important drivers of SHF variability is contained in LST observa
tions, allowing for strong predictive performance across the four agro- 
ecosystems. These models demonstrate unbiased results throughout 
the season with very high predictive performance using only three 
predictor variables, and only modestly under-performing models using 
all seven predictor variables examined here (see Table 1). 

In studying soil heat flux across various time scales, it’s evident that 
there is significant hourly, daily, and monthly variation that requires 
multi-source data integration to overcome. Quantifying soil heat flux at 
high resolution requires observations of local environmental conditions, 
canopy characteristics, and radiative forcings. For regional or global 
applications, vegetation indices acquired at a daily or weekly scale may 
be sufficient as they primarily govern seasonal changes in SHF (Liang 
et al., 2022). However, hourly or sub-hourly estimates of local condi
tions and forcings are necessary to minimize error within a day. In ap
plications of evapotranspiration (ET) modelling, instantaneous midday 
estimates are upscaled to daily values to compensate for once-a-day 
satellite overpass times (Cammalleri et al., 2014). These upscaling 
techniques introduce several biases, in part due to improper assump
tions or modelling of SHF. With the models developed here, such as the 
Meteorology + NDVI model, meteorological forcings in conjunction 
with infrequent remote sensing observations can be used to parame
terize SHF models more accurately. 

3.4. Model Explainability 

Data-driven modelling exercises are often motivated to achieve 
maximum predictive performance using all available predictor variables 
rather than focusing on understanding the value of each predictor var
iable toward developing more parsimonious models. Feature selection is 
often performed prior to model development to reduce training costs, 

and data requirements (McLachlan, 2005). Model explainability is 
seldom considered as a trade-off for feature selection despite the diverse 
array of tools available. Shapley additive explanations is a post-hoc 
feature attribution method used to assess the relative impact of pre
dictors on model predictions. SHAP is uniquely suited for model 
explainability and physical consistency, leveraging local explanations 
(between data points) to build a complete global explanation (between 
predictors) (Lundberg et al., 2018; Lundberg and Lee, 2017). SHAP 
values only capture the relationship between predictors and the model 
output and should not be used to assess causality without careful 
consideration of uncaptured latent variables and redundancy (Baptista 
et al., 2022). The analysis presented here utilizes domain knowledge to 
examine the principles that have been learned by the models, while 
keeping in mind the limitations of this technique. 

Beeswarm plots (sometimes called waterfall plots) are a commonly 
used tool to visualize the relative importance of predictors as deter
mined from the magnitude of their SHAP attribution (Hu et al., 2021; 
Zhang et al., 2023). These plots, as seen in Fig. 6 (e)-(h), show the dis
tribution of attribution scores (x-axis) for the variables present in the 
model (y-axis). Vertical offsets and coloration are added to signify the 
density of points in the region and the relative value of each predictor 
respectively. 

Beeswarm plots are limited by the lack of information they contain 
on the interactions occurring between variables that inform a given 
model prediction. To address this need partial dependence plots have 
been developed which display the impacts of multiple predictors on the 
model’s outputs (Lundberg et al., 2020). In Fig. 6a-d we explore SHAP as 
a tool for visualizing the synergistic effects of NDVI with LST through a 
partial dependence plot of LST and NDVI to the SHAP attribution for 
LST. Each of the four subplot pairs (a and e; b and f; c and g; d and h) 
represents a single crop system trained on predictor sets of NDVI, LST, 
and PRI. Despite the fact that these models had similar aggregate per
formance (R2 of 0.91, 0.91, 0.91, and 0.90 for corn, miscanthus, 
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sorghum, and soybean, respectively), the SHAP values show that the 
models have learned significantly different relationships between pre
dictors and model outputs. 

In the sorghum system (Fig. 6c,g) LST is the dominant predictor and 
NDVI can be seen as a factor that modifies the relationship of LST to 
SHAP attribution and thus SHF. Over a fully developed canopy, with 

(red) saturated NDVI values, the slope of the LST to attribution curve 
steepens and the distribution of points narrows, indicating greater cer
tainty in the attribution to LST. When the canopy is less dense (low NDVI 
values, blue dots) the attribution varies more and deviates from the 
typical relationship at extreme LST values. These values correspond with 
the beginning of the growing season before the canopy was well 

-40 -20 0 20 40 60

Attribution [W/m2]

0

20

40

60
L

S
T

 [
o
C

]

(a)

NDVI

PRI

LST

-40 -20 0 20 40 60

(e)

-40 -20 0 20 40 60

Attribution [W/m2]

0

20

40

60

L
S

T
 [

o
C

]

(b)

NDVI

PRI

LST

-40 -20 0 20 40 60

(f)

-40 -20 0 20 40 60

Attribution [W/m2]

0

20

40

60

L
S

T
 [

o
C

]

(c)

NDVI

PRI

LST

-40 -20 0 20 40 60

(g)

-40 -20 0 20 40 60

Attribution [W/m2]

0

20

40

60

L
S

T
 [

o
C

]

(d)

0.5

0.55

0.6

0.65

0.7

0.75

0.8
N

D
V

I

NDVI

PRI

LST

-40 -20 0 20 40 60

(h)

-2

-1

0

1

2

N
o

rm
alized

V
alu

e

Fig. 6. (a-d) Scatter plots of LST vs SHAP attribution for LST, colored by NDVI value. (e-h) Swarm plots of SHAP attribution for LST, NDVI, and PRI from models 
trained individually on (a.e) corn, (b,f) miscanthus, (c,g) sorghum and (d,h) soybean. 

(c)(b)

0

10

20

30

40 (a)

(f)(e)

0

10

20

30

40 (d)

(i)(h)

0

10

20

30

40 (g)

-25 0 25 50

(l)

-25 0 25 50

(k)

-25 0 25 50
0

10

20

30

40 (j)

Attribution [W/m2]

L
S

T
 [

o
C

]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
NDVI

Fig. 7. SHAP attribution scatter plots for models trained on LST (a,d,g,j); NDVI and LST (b,e,h,k); NDVI, PRI, and LST (c,f,i,l). Points are positioned by measured LST 
value (x-axis) against SHAP model attribution to LST (y-axis), colored by NDVI value. Rows correspond to (a-c) corn, (d-f) miscanthus, (g-i) sorghum and (j- 
l) soybean. 

J.F. Cross and D.T. Drewry                                                                                                                                                                                                                   



Ecological Informatics 82 (2024) 102697

11

developed and represent a small portion of the dataset. Fig. 6g shows 
that there is a minimal direct SHAP contribution for most values of NDVI 
and PRI. Despite this, their addition in the model increases model per
formance significantly through modification of the LST attribution 
curve, resulting in predictive performance increases of: R2 of 0.69 → 
0.88 → 0.91 for [NDVI]; [NDVI, LST]; [NDVI, PRI, LST] respectively (see 
Fig. 7 for a presentation of these attribution curves). Through analyzing 
these interactions, it becomes possible to assess model sensitivity to 
specific conditions and the nature of synergistic predictor effects. 

The relationship between NDVI and LST differs strongly for the 
miscanthus SHF model relative to the other three agricultural systems. 
Miscanthus had developed a mature canopy by the start of data collec
tion and therefore showed very little variation in NDVI throughout the 
observation period. This produced very little data from which the model 
could learn interaction effects between LST and NDVI, effectively 
making all but the highest values of NDVI unseen for the miscanthus 
model. The three other crops have LST attribution curves that share a 
sigmoidal shape spanning the range of LST values that is influenced by 
the information on canopy density. LST values for miscanthus do not 
reach the magnitudes seen in the other three crops, and the shape of the 
LST attribution curve is steeper, more linear and shows less spread. 
Fig. 6(f) shows that both NDVI and PRI have low attribution and impact 
on miscanthus model predictions, which is supported in the attribution 
curves of the reduced order miscanthus models in Fig. 7, which show 
little variation as NDVI and PRI are added to LST as model predictors. 
While the [LST, NDVI, PRI] models for the four crops have very similar 
performance (R2 between 0.90 and 0.91), the data in Fig. 6 show con
trasting model attributions to these predictors, indicating that it may be 
challenging to accurately model all four systems simultaneously with a 
single (generalized) model developed using combined data from all four 
systems and these three predictors (evaluated further in Section 3.5). 

As model complexity (number of predictor variables) increases so 
does the potential for redundancy, whereby adding predictors may 
primarily increase model complexity without improvement in perfor
mance. This has the potential to lead the model to exploit non-physical 
patterns, such as sensor noise, reducing interpretability. The ability to 
infer relationships between input variables also becomes significantly 
more difficult as models become more complex. Importantly our results 
demonstrate that strong SHF predictive performance is possible with 
only one or two carefully chosen predictor variables (see Table 1 and 
Table S2). 

3.5. Generalizing model findings 

The models and findings discussed thus far have focused on models 
developed for individual agro-ecosystems that have unique phenological 
and canopy structural properties. If models like this are to be applied at 
large scale, data on crop type may not be available, making it difficult to 
choose a crop-specific model to apply. Here we examine the extent to 
which models such as these can be developed to predict SHF across 
multiple distinct agricultural systems, given widely available remote 
sensing observations and environmental variables. Here we have 
repeated the training procedure described in Section 2.7 for the com
bined data from all four study agro-ecosystems to quantify how pre
dictive performance is impacted by exposing the training data to a 
mixture of agricultural systems. The results of these “generalized” 
models, determined by evaluation on withheld data for each crop, are 
presented in Table 2. 

We note that for all ML models using between one and seven pre
dictors the performance is always better than that found for any of the 
six empirical models examined here (see Table S1 and Figs. S3 and S4). 
We observed that the generalized models achieved a similar perfor
mance overall, but that performance on individual crop datasets is 
reduced relative to models trained on each agricultural system indi
vidually (see Fig. 8 and Fig. S5). This reduction in performance is an 
expected consequence of the development of a model using data across 

multiple systems that may have fundamentally different relationships 
between predictor variables and soil heat flux, and for which data was 
collected during different growth / phenological stages. 

Among the four systems, corn and soybean, which are similar in 
terms of diurnal variability in SHF (see Fig. S1), exhibit the highest 
predictive performance for the generalized models. This difference be
tween the very strong performance of the generalized models for corn 
and soybean, and somewhat reduced performance for sorghum and 
miscanthus, may be due to similarities between corn and soybean SHF 
and meteorological and canopy dynamics. These similarities could 
effectively bias the training dataset toward these two similar crops, 
reducing performance for the other two crops which diverge in these 
relationships. The generalized models perform least well for miscanthus, 
which is unique relative to the other crops examined here as it is 
perennial and data collection began after the canopy had closed 
resulting in a diminished importance for variables such as NDVI relative 
to the other crops. Less than 9% of SHF variability is captured by NDVI 
for miscanthus, relative to 20–37% for the other crops (see Table S4 
which presents performance of all One Predictor models developed for 
each crop). 

In the Meteorology + NDVI set of models, the discrepancy in Mis
canthus performance relative to the same set of predictors trained 
individually on Miscanthus indicates limitations of NDVI as a predictor. 

Table 2 
R2 validation performance from models trained on the combined dataset span
ning all four agro-ecosystems. Results are averaged across 15 randomized trials 
of a 10 k-fold cross-validation. For the One and Two Predictor categories the 
predictor sets were chosen as the ones that demonstrated the highest average 
performance across the four agro-ecosystems.  

Model Category Corn Miscanthus Sorghum Soybean 

One Predictor 
[LST] 

0.732 ±
0.007 

0.664 ±
0.007 

0.656 ±
0.003 

0.732 ±
0.005 

Two Predictor 
[PRI, LST] 

0.786 ±
0.031 

0.524 ±
0.020 

0.707 ±
0.019 

0.731 ±
0.020 

NDVI + LST 
[NDVI, LST] 

0.780 ±
0.023 

0.587 ±
0.022 

0.743 ±
0.012 

0.762 ±
0.021 

Remote Sensing 
[NDVI, PRI, LST] 

0.845 ±
0.034 

0.556 ±
0.032 

0.764 ±
0.016 

0.751 ±
0.020 

Meteorology 
[LW, SW, Ta] 

0.844 ±
0.009 

0.700 ±
0.006 

0.713 ±
0.027 

0.786 ±
0.017 

Meteorology + NDVI 
[LW, SW, Ta, NDVI] 

0.847 ±
0.031 

0.724 ±
0.009 

0.805 ±
0.021 

0.853 ±
0.022 

Seven Predictor  
(Complete Set) 

0.861 ±
0.016 

0.660 ±
0.046 

0.780 ±
0.016 

0.817 ±
0.016  

1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

# of Variables

R
2

Fig. 8. R2 validation performance for “generalized” models trained and eval
uated on a combined dataset from corn, miscanthus, sorghum, and soybean. 
Results are the aggregate of a set of cross-validated iterations of the highest 
performing model utilizing the specified number of input predictors. 
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It is well known that NDVI becomes less sensitive to changes in leaf area 
as the canopy becomes more dense (Bajocco et al., 2022) in addition to 
changes due to different stages of growth (Qiao et al., 2019). As a result, 
differing canopies can present similar NDVI values while expressing 
different controls on SHF. Future development of mechanistic SHF 
models should consider approaches to disentangle biophysical traits 
contained in NDVI or similar metrics characterizing canopy structural 
traits. 

While performance generally increases with the number of predictor 
variables, a degradation of performance is seen when using the complete 
predictor set. Although the complete predictor set scores the highest 
training performance, it begins to suffer performance degradation on 
individual crop types providing further motivation for selecting a 
reduced number of parsimonious predictors over absolute predictive 
performance. Examining the performance comparisons in Table 2, the 4- 
predictor (Meteorology + NDVI) model may be an optimal choice. This 
model is able to capture 70–85% of the SHF variability for the four agro- 
ecosystems, representing a parsimonious choice balancing strong pre
dictive performance with a small number of widely available predictors. 
This 4-predictor model yields the highest R2 performance for three out of 
the four systems, higher than the model developed with all seven pre
dictor variables. The predictor set includes only NDVI as a crop-specific 
observation, which encourages the model to develop general relation
ships between overlying meteorological conditions (Ta, LW, and SW) 
and SHF. 

4. Conclusions 

Accurate soil heat flux estimation is vital to improving our under
standing and predictive ability for subsurface energy transport impact
ing soil energy storage, temperature and biogeochemical cycling, as well 
as being an important component of the surface energy balance. Here we 
demonstrate the power of machine learning to produce accurate non- 
parametric predictions of SHF for multiple agro-ecosystems at time
scales spanning sub-hourly to seasonal. These models demonstrated 
significant improvements over standard empirical formulations that 
have been developed around widely available satellite data. This 
remained true when ML models were generalized across all four agro- 
ecosystems (miscanthus, energy sorghum, soybean, and corn), such 
that a single model was used to predict SHF for all crop types, demon
strating the flexibility and robustness of well-validated ML approaches. 

Air temperature and land surface temperature were the two strongest 
individual predictors of soil heat flux. NDVI was the most significant 
complementary predictor to the temperature variables, providing per
formance improvements in both air temperature and surface tempera
ture models by providing information on canopy structure and 
phenology not available in the temperature variables. Analysis of SHAP 
values revealed that models developed with NDVI, PRI, and LST were 
capable of accurately estimating soil heat flux and describing physically 
meaningful relationships between model predictors and outputs. The 
addition of other predictor variables produced a diminished return on 
predictive performance while increasing data requirements and loss of 
model transparency and interpretability. 

Predictive performance across the four crop types was comparable 
overall, with some specific exceptions noted in Section 3.1. In relation to 
previous modelling work, the utilization of simple site-level remote- 
sensing observations proved to be extremely useful. The three remote 
sensing observations [NDVI, PRI, and LST] provided a powerful pre
dictor set in the evaluations presented here. NDVI and LST, which have a 
long-standing history in remote sensing, are remarkably capable of 
estimating soil heat flux across the four crop systems. The sub-hourly 
observations used in this study allowed us to develop and test models 
of soil heat flux at much higher temporal resolution than is typically 
done when the focus is on satellite observations with typical repeat 
frequencies of several days to weeks. These demonstrations of strong 
predictive performance throughout the diurnal cycle for a complete 

growing season across four agro-ecosystems provides confidence that 
these same tools and formulations will transfer to satellite applications 
where these predictor variables are available. 
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