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ARTICLE INFO ABSTRACT
Keywords: Soil heat flux (SHF) is a key component of the surface energy balance and driver of soil physiochemical and
Soil heat flux biological processes. Accurate estimation of soil heat flux is challenging due to variations in soil composition,

Surface energy balance
Explainable machine learning
Remote sensing

Land surface temperature

overlying vegetation density and phenology, and highly variable environmental forcings. Existing SHF process-
based and data-driven estimation methods have focused on midday landscape scale estimates that correspond to
satellite acquisitions, despite the high variability that SHF displays at diurnal scales and throughout the growing
season. Recently developed data-driven techniques have emphasized pre-determined predictor variables, with
model complexity and predictor selection not carefully evaluated, leaving a gap in our understanding of what
information is required to accurately predict SHF. Here we developed and evaluated a suite of ensemble machine
learning (ML) models to quantify the ability of meteorological and remote sensing data to predict SHF variability
at half-hourly temporal resolution throughout a growing season, producing a comprehensive evaluation of the
importance of predictor set composition for SHF estimation at high temporal resolution. We compared this suite
of machine learning models to six semi-empirical models and found that the machine learning models broadly
outperformed the existing models in capturing diurnal variability across the growing season for four agro-
ecosystems (soybean, corn, sorghum, and miscanthus). Crop-specific ML models were able to capture over
86% of the variability in SHF using only two predictor variables, pointing to the need for careful evaluation of
predictor sets to identify synergistic combinations. ML models developed using pooled data across all crops
captured almost 80% of SHF variability using three predictors, demonstrating the power and generalizability of
these methods independent of crop type. Shapley additive explanations (SHAP) were used to examine model
interpretability, providing insights into the typically opaque ML modelling process and interaction of predictor
variables. Models trained with fewer input variables tended to display more linear and interpretable feature
attribution, motivating the use of interpretability as an important consideration in parsimonious model selection.
These results provide a robust demonstration of the ability of ML to capture the variability in SHF at sub-hourly
resolution across growing seasons spanning a wide range of phenological variation for unique agricultural sys-
tems. This study provides a comprehensive evaluation of predictor requirements for model performance, guiding
future applications that will take advantage of the next generation of satellite-based observing systems, or in-situ
proximal observations of vegetation status and meteorological conditions.

1. Introduction flux (LE), sensible heat flux (H) and soil heat flux (Allen, 1998; Drewry
etal., 2010a, 2010b; Priestley and Taylor, 1972). Accurate modelling of

Soil heat flux (SHF) is the thermal energy exchange between the surface energy conditions is critical for a range of applications including
environment immediately above the surface and the topmost surface soil climate modelling (Franzke et al., 2020), crop modelling (Gupta et al.,
layer. SHF is a crucial component of the surface energy balance which 2022; Oliver et al., 1987) and water management (Mandal et al., 2020;
determines energy transfer into the soil system. The net radiation of the Yao et al., 2010). Improving soil heat flux characterization is therefore
terrestrial land surface (shortwave and longwave inputs minus reflected required to fully understand surface energy balance through energy
and emitted radiation) is utilized for metabolic processes, latent energy balance closure approaches and conditions of the surface environment
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(Bai et al., 2022).

Quantifying soil heat flux is essential for predicting the dynamics of
soil temperature, which controls a wide range of processes that are
critical for understanding the soil microclimate (Sauer and Peng, 2020),
soil biogeochemical cycles (Pregitzer and King, 2005) and plant growth
(Brown, 2018). Soil heat flux is linearly proportional to the change in
soil temperature with time, alongside changes in soil characteristics. Soil
temperature regulates mineralization, a primary source of nutrients for
plants through the decomposition of organic matter (Burke et al., 1989;
Schimel et al., 1994). In agricultural soils, increases in nitrogen uptake
and short-term nitrogen availability have been linked with increased soil
temperatures (Dessureault-Rompré et al., 2010; Gavito et al., 2001;
Miller and Geisseler, 2018; Pregitzer and King, 2005). Increased soil
temperature has also been linked with changes in root morphology
through specific root length and branching angle that drives an increase
in nutrient accessibility (Pregitzer and King, 2005). Beyond nutrient
availability, soil temperature controls soil microbe communities and
broader soil biodiversity (Bodelier, 2011). Globally, soil acts as a carbon
reservoir, the extent and stability of which is principally governed by
soil temperature (Ciais et al., 2014; Schlesinger, 1997). Ongoing efforts
to sequester carbon through agriculture and forestry management
practices depend on the capacity to model soil energy fluxes across a
range of land-use conditions (Pechanec et al., 2018; Zhai et al., 2024).

Despite the central role of soil heat flux in the surface energy balance
and soil biogeochemical cycling, estimating this important land surface
energy flux remains a challenging task. Direct measurement is labor-
intensive and often requires disturbing the soil column to place instru-
mentation which provides limited spatial scope. Remote sensing has
been demonstrated to accurately retrieve biophysical parameters at
moderate spatial scales (Garcia-Santos et al., 2022; Kustas et al., 1993;
Liu, 2022; Zheng and Jia, 2022), but retrieval of SHF is particularly
challenging due to the complexity of formulating a biophysical model
for a flux with many potentially important predictive factors such as
near-surface climate (Santanello and Friedl, 2003), vegetative cover and
associated phenological changes (Clothier et al., 1986; Kustas et al.,
1993) and soil moisture content (Idso et al., 1975).

Prediction of soil heat flux can be done through thermal diffusion
calculations, which are limited by a dependence on estimates of soil
characteristics and soil temperature (Evett et al., 2012; Lettau, 1954;
Wang and Bras, 1999). Several studies have focused on the development
of semi-empirical models that estimate soil heat flux through observa-
tions that tend to be widely available (Bastiaanssen et al., 1998;
Choudhury, 1999; Gao et al., 2017; Kustas et al., 1993; Santanello and
Friedl, 2003) such as incident radiation, soil temperature, and plant
cover. A recent review of these methods found limited temporal and
spatial extensibility leading to the development of data-driven ap-
proaches for regional and global SHF estimation (Purdy et al., 2016).

Machine learning methods provide a powerful basis for developing
flexible, non-parametric models of complex phenomena and have
demonstrated strong predictive capabilities across many areas of the
physical sciences generally and the earth sciences specifically (Bai et al.,
2021; Gewali et al., 2019; Kamilaris and Prenafeta-Boldd, 2018;
Reichstein et al., 2019). Several studies have successfully estimated soil
heat flux for a range of environmental and spatial contexts (Bonsoms
and Boulet, 2022; Canelon and Chavez, 2011; de Andrade et al., 2021;
Zheng and Jia, 2022). de Andrade et al. (2021) and Bonsoms and Boulet
(2022) targeted a mixture of field meteorological observations of net
radiation and surface temperature, and satellite observations to train
neural network and random forest architectures for regional-scale soil
heat flux estimation across South America and Africa, respectively.
Zheng and Jia (2022) used daily observations from 144 FluxNet sites
and satellite observations of leaf area index (LAI) and albedo to produce
a globally applicable soil heat flux model. A key limitation in these
studies is their limitation to midday observations, defined by satellite
overpass times. Santanello and Friedl (Santanello and Friedl, 2003)
recognized significant variation in the relationship between SHF and net
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radiation across the day resulting in asymmetric diurnal SHF patterns
which may be lost when only midday forcings are considered.

While machine learning methods have been demonstrated to be
flexible predictive tools capable of integrating diverse data streams, they
present significant challenges in terms of interpretability and general-
izability (Reichstein et al., 2019). This is especially true in the context of
ecohydrological or biophysical systems, where the objective is often to
develop a better understanding of the underlying system rather than
exclusively improve predictive performance (Drewry et al., 2010a,
2010b). There is a growing recognition that interpretability, physical
consistency, and data complexity are key challenges in the successful
adoption of machine learning methodologies (Baptista et al., 2022; Hu
et al., 2021). One proposed approach is the concept of parsimony which
seeks to use the simplest set of explanatory variables to reach a target
performance threshold (de Silva et al., 2020). Parsimony is founded on
concepts from dominant balance physics, a modelling approach that
approximates complex physical systems through relatively few and
simple dominant physical processes which can improve model gener-
alizability, interpretability, and physical consistency (Callaham et al.,
2021; Kaiser et al., 2022; Kutz and Brunton, 2022). Here we refer to
parsimony as a minimal or reduced predictor set (i.e. the number of
observed physical variables used to predict SHF) that provides near-
maximum (but likely somewhat below the absolute maximum) model
performance achieved across all models.

The main objective of this research is to quantify the limits of pre-
dictive performance for soil heat flux using widely available and non-
invasive environmental and remote sensing observations at sub-hourly
temporal resolution. We leverage the power of machine learning, with
rigorous cross-validation, to explore the information content in each
potential predictor variable and their combinations to understand which
combinations of variables provide optimal predictive power (i.e. mini-
mize redundancy and maximize synergy). We conduct this work at a
unique agricultural study site in which homogeneous fields of four
contrasting agricultural systems (soybean, corn, miscanthus and sor-
ghum) are instrumented with a wide array of sensors including eddy
covariance flux systems, net radiometers, meteorological stations and
proximal remote sensing observations of reflectance indices and radio-
metric surface temperature.

2. Methods
2.1. SABR experimental study site

This study was conducted at the lowa State University Sustainable
Advanced Bioeconomy Research Farm (SABR) outside of Ames, Iowa
(Aslan-Sungur et al., 2023; Bendorf et al., 2022). The 2021 growing
season around Ames was characterized by higher temperatures and less
precipitation on average, particularly during the critical period of crop
development in June (Thessen et al., 2022).

SABR consists of four independently monitored plots to examine the
performance of standard Midwest commodity crops (corn, soybean)
relative to potential bioenergy crops (energy sorghum, miscanthus) in
the same climate and soil system. At the center of each plot is a tower
with an eddy covariance (EC) system to continuously monitor the ex-
change of carbon dioxide, water and energy between each crop and the
atmosphere, as well as a full suite of meteorological sensors at several
meters above each land cover type (Campbell Scientific HMP-155),
downwelling shortwave (SW) and longwave (LW) radiation (Kipp &
Zonen CNR4 net radiometer), and sensors to monitor soil temperature
and soil heat flux at a depth of 10 cm (Hukseflux HFPO1SC soil heat flux
plates). All flux and environmental variables were averaged to 30-min
intervals, and independently measured at each of the four SABR
towers. More information on the sensors and equipment at the site can
be found on the SABR website (https://sabr.shinyapps.io/appSABR/).

Additionally, at each tower a set of in-situ proximal remote sensing
instruments were deployed over the growing season to continuously
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monitor land surface temperature (LST), the normalized difference
vegetation index (NDVI) (Tucker, 1979) and the photochemical reflec-
tance index (PRI) (Gamon et al., 1997), providing high temporal reso-
lution observations of these remote sensing variables allowing us to
examine their importance in diurnal SHF estimation. NDVI and PRI were
collected using two-band radiometers (SRS sensors from METER Inc.,
Washington, USA) affixed to each of the four towers. These sensors were
positioned such that they viewed a homogenous region of the canopy to
the south of each tower. LST measurements were collected using
infrared thermometers (SI-421, SI-431, SI-4H1 infrared thermometers,
Apogee Instruments, Utah, USA) deployed on each tower looking down
on the land surface / canopy from an approximate height of 3-4 m above
the surface. These in-situ remote sensors collected observations at 5-min
intervals which were then averaged to 30-min intervals to correspond
with the averaging period of the other tower observations.

Proximal remote sensing observations were made from June 9th to
October 1st. This produced approximately 5500 half-hourly observation
periods for each of the crops. Corn, sorghum, and soybean were planted
on April 28th, June 2nd, and May 12th in 2021, respectively. The
perennial Miscanthus crop was originally planted on May 3rd, 2019.

2.2. Data post-processing

2.2.1. Soil heat flux

Soil heat flux was measured at each of the four SABR EC towers using
three heat flux plates in the proximity of each tower. All SHF mea-
surements were made at a depth of 10 cm. To avoid introducing addi-
tional sources of uncertainty that could be induced by empirical
approaches to transform 10 cm observations to the heat flux at the soil
surface, all machine learning models were developed here using the
observed SHF at 10 ecm (Gao et al., 2017). Section 2.4 discusses cor-
rections to estimate the surface soil heat flux. No gap filling was per-
formed on soil heat flux observations. In this study, we use
environmental and proximal remote sensing observations as predictors
in SHF estimation. Below we briefly describe these two classes of pre-
dictor variables.

2.2.2. Environmental data

The environmental predictors are based on meteorological mea-
surements from the four SABR fields containing instrumented towers.
Where meteorological data is missing for one of the fields, it is first filled
from a nearby meteorological station at the Ames Municipal Airport,
located 6.9 km from the site, as part of the standard processing methods
applied to SABR data. Further details are available at the SABR webpage
(https://sabr.shinyapps.io/appSABR/). Remaining missing data points
are filled using a linear transformation from one of the SABR towers
where the missing variables are available.

2.2.3. Remote sensing data

The remote sensing predictors for this study were collected at 5-min
intervals at each of the four SABR towers. These remote sensing obser-
vations included: NDVI (Tucker, 1979), PRI (Gamon et al., 1997), and
LST collected using calibrated infrared thermometers. Each remote
sensing variable was averaged to 30-min intervals to be consistent with
the temporal resolution of SABR tower observations. NDVI and PRI were
each calculated from two-band sensors centered at 650 nm and 810 nm,
with 50 nm and 40 nm full width half maximum (FWHM) band widths
respectively, for NDVI, and 532 nm and 570 nm with 10 nm FWHM band
widths for PRI. To reduce noise and variability of these indices, a 4-h
window around local solar noon was selected and averaged for each
day to produce daily NDVI and PRI values. This provided dynamic es-
timates of these indices for each crop throughout the growing season
while minimizing sensor noise and eliminating periods during which
these calculations are invalid (i.e. nighttime and periods of low radiation
forcing). This averaging makes NDVI and PRI effectively daily obser-
vations, as opposed to LST and the environmental predictor variables
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that were all used at the 30-min resolution for which SHF was measured
and modeled.

It should be noted that in the literature there is some inconsistency
regarding the definition of surface temperature, which can refer to either
the soil surface (Ts) or the canopy surface (T¢). Throughout this paper
we use radiometric observations from a height above each crop canopy
as the source of surface temperature observations and will use LST to
refer to these remote sensing observations as they may partially observe
the soil surface or the canopy depending on canopy density and
coverage.

2.3. Study crops

Corn, miscanthus and sorghum are C4 grasses that have potential to
be used for future biofuel production (Carpita and McCann, 2008).
Miscanthus is a perennial crop known for its high water and nutrient use
efficiency (Vermerris, 2008). Sorghum, an annual crop, demonstrates
drought tolerance and high rates of biomass production and so is also
considered a promising bioenergy feedstock (Carpita and McCann,
2008). Soybeans are the only C3 crop considered in this study.

Variations in plant physiology, morphology, and phenology influ-
ence interactions throughout the plant-soil system (Moore et al., 2021;
van der Putten et al., 2013). The state of canopy closure and canopy
density (i.e. leaf area index) control the amount of incident shortwave
radiation reaching the soil surface as well as the emission and propa-
gation of longwave radiation throughout the canopy (Drewry et al.,
2010a, 2010b).

Fig. S1 presents mean diurnal soil heat flux and soil temperature (Ts)
at a 10 cm depth as well as downwelling shortwave radiation across the
growing season for each of the four crops. These diurnal averages show
that SHF peaks in the late afternoon / evening, preceding the peak in soil
temperature at the 10 cm measurement depth. Both SHF and soil tem-
perature show a lag relative to incident shortwave radiation.

Increased NDVI values (an indicator of a dense canopy) lead to a
decrease in measured soil temperature at 10 cm for each of the four
crops studied here (Fig. S2). Miscanthus is a perennial crop, and NDVI
for it was relatively constant during the study period and does not show
the negative trend in Tg seen for the other three annual crops.

2.4. Empirical soil heat flux models

Six empirical models were used to compute SHF for each of the four
crops to provide benchmarks for assessing the performance of the ma-
chine learning models developed in this study (Bastiaanssen et al., 1998;
Boegh et al., 2004; Choudhury, 1999; Gao et al., 2017; Kustas et al.,
1993; Santanello and Friedl, 2003). These empirical models often
include a dependence on a variable related to canopy structure (i.e.
NDVI, LAI - four of the six empirical models evaluated here) and net
radiation (all six empirical models), with land surface temperature also
included in some instances as a forcing variable (see Table S1 in the
Supplementary Material). We note that as described in the section
below, we do not use an aggregate radiation variable such as the net
radiation flux (R;,) as a predictor variable in this study as R, requires
information on both downwelling and upwelling, shortwave and long-
wave radiative fluxes which require specific sensors (net radiometers)
that are not as widely available as other weather observations and would
limit the applicability of the models developed here. In this way many of
the ML models developed in this study are more widely applicable than
these semi-empirical models evaluated here, as they only require stan-
dard meteorological data as predictors. In addition we evaluate models
that include remote sensing data products (reflectance indices and land
surface temperature) that are now widely available from satellite sour-
ces and proximal sensing methods.

Each of the six empirical models is presented in Table S1. As soil heat
flux is typically estimated at the soil surface, a correction factor is
necessary to compensate for the energy stored between the soil surface
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and the heat flux plate at 10 cm (Sauer and Horton, 2005). Here we
apply the calorimetric method (Fuchs, 1986) to perform the trans-
formation between soil heat flux observations at 10 cm and soil surface
heat flux estimates to evaluate the performance of the empirical SHF
models. The calorimetric method is the most common approach to this
transformation and calculates a soil heat storage term to describe the
amount of energy stored in the soil between the surface and a given
depth based on soil temperature, soil moisture and soil composition
(Kustas and Daughtry, 1990; Liebethal et al., 2005; Liu et al., 2017).

Despite the popularity of the calorimetric method, several studies
have examined the limitations of the method to accurately compensate
for stored heat (Massman, 1992; Sauer and Horton, 2005). With this in
mind, we chose to use the heat flux measurement at 10 cm depth for the
development and evaluation of all ML models here. This prevents
introducing additional biases or errors due to the choice of a specific
correction methodology into the ML models (Gao et al., 2017), and
provides a test of the ML models to accurately estimate the observed
physical variable. We did test a selection of ML model formulations that
were trained against surface soil heat flux estimates using the calori-
metric method. These results are presented in Table S2.

In order to fairly evaluate the six empirical benchmark models,
which were developed to estimate the surface soil heat flux, we produce
independent parameter optimizations and evaluations of them both
directly against SHF observations (Fig. S3) as well as evaluations against
surface soil heat flux estimates developed by correcting SHF using the
calorimetric method (Fig. S4). We found that performing a simple cali-
bration for each of the six empirical benchmark models improved results
for this SABR dataset. A nested, repeated k-fold cross-validation
(described in Section 2.7) is used to parameterize each of these six
empirical models to provide a set of optimized benchmarks against
which to evaluate the performance of the machine learning models. The
MATLAB Optimization Toolbox was used to calibrate model-specific
parameters from the training set independently for each empirical
model and crop combination.

2.5. Machine learning methods

Recent studies have found that using observations of land surface
temperature, NDVI, and net radiation to train machine learning models
can improve the performance of soil heat flux predictions. Bonsoms and
Boulet (2022) analyzed sites throughout Europe and Africa and found
that their models outperformed existing empirical models. However,
this study was limited in temporal resolution due to the use of sun-
synchronous satellite observations. Zheng and Jia (2022) used obser-
vations of surface albedo and LAI from the Global LAnd Surface Satellite
(GLASS) with measurements of soil temperature, net radiation, and soil
heat flux from 144 FluxNet sites to compare empirical methods to three
machine learning models at a global scale. They found that all three
machine learning methods tested outperformed empirical methods, with
as much as 79% of observed variability captured using a random forest
model. de Andrade et al. (2021) developed a neural network for soil heat
flux estimation using MODIS observations across 23 flux towers in South
America and found that adding a land cover classification to a dataset of
surface temperature, albedo, net radiation and the enhanced vegetation
index (EVI) improved predictions particularly during mid-morning.
Each of these three studies focused on soil heat flux estimates at
spatial resolutions of approximately 1km? due to dependencies on sat-
ellite data, and likewise focused on daily estimations near midday due to
typical satellite overpass times. This current study provides a signifi-
cantly more robust evaluation of the ability of ML to capture the vari-
ability in SHF at sub-hourly resolution across a growing season spanning
a wide range of phenological variation in four unique agricultural sys-
tems. We provide a comprehensive evaluation of predictor requirements
for model performance, guiding future applications that will take
advantage of the next generation of satellite-based observing systems, or
in-situ proximal observations of vegetation status and meteorological
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conditions.

Among machine learning techniques, random forest models have
been found to be particularly effective and are used here due to their
demonstrated robust performance for a wide range of contexts. The use
of random forests in a variety of areas of remote sensing is well-
documented (Baret and Buis, 2008; Bonsoms and Boulet, 2022; Chan
and Paelinckx, 2008; Maxwell et al., 2018; Zheng and Jia, 2022) and
motivated by flexibility in hyperparameter selection, input dimension-
ality, and data volume. Random forest models are a class of machine
learning methods referred to as ensemble learning, an architecture that
operates by generating many randomized decision trees based on sub-
sets of the input features (Breiman, 2001). By averaging the results from
each tree, the model produces a more reliable result than any one tree
could produce. The number of trees, leaves, and clustering methods are
the primary hyperparameters required for application of the random
forest method. Here, hyperparameter optimization was performed using
Bayesian Optimization to minimize a 5 k-fold cross-validation loss
during model development (Section 2.7).

2.6. Selection of predictor variables

Soil heat flux has been shown to correlate strongly with a range of
environmental forcing variables such as downwelling shortwave and
longwave radiation, soil moisture content and land surface temperature
(Liebethal and Foken, 2007; Santanello and Friedl, 2003; Venegas et al.,
2013). Likewise the density of vegetation above the surface plays an
important role in controlling environmental conditions at the soil sur-
face including the magnitudes of radiative fluxes incident on the surface
(Bastiaanssen et al., 1998; de Andrade et al., 2021).

In many SHF empirical models the net radiation flux at the surface is
used as a predictor variable. Here we use the individual downwelling
components of Ry, SW and LW, and do not use observations of the up-
welling radiation components that contain information on canopy
structure and temperature. This provides a more rigorous test of SHF
estimation that does not rely on 4-band net radiometer observations or
other methods for estimating the two upwelling radiation fluxes. In this
way the ML models developed in this study are more widely applicable
than the empirical models evaluated here which all require R, as an
input variable.

We also include air temperature (T,) and LST as independent pre-
dictor variables. While these two variables will be correlated throughout
the growing season they represent unique states (atmospheric vs sur-
face) that have the potential to influence SHF predictions in independent
ways.

In total, seven predictor variables were explored in this study with
each of these variables collected uniquely for each of the four agro-
ecosystems (i.e. each of the four SABR measurement towers). These
variables are: downwelling shortwave and longwave radiation, air
temperature, LST, NDVI and PRI. We also include as a predictor variable
solar zenith angle, which is calculated based on location, day of year and
time of day.

Here we explore three categories of predictor variable sets for ML
model training and evaluation. The first category examines the extent to
which simple models, developed using sets of one, two or three predictor
variables, can be used to accurately predict soil heat flux. The explora-
tion of models in this category provides insights into the ability of
models with simpler data requirements, and lower computational costs,
to capture the variability in SHF. The second model category considers
model formulations that utilize exclusively either meteorological ob-
servations (LW, SW, and T,) or remote sensing (RS) observations that
can now be made in-situ at high temporal resolution (PRI, NDVI, and
LST). Due to the widespread availability of meteorological stations we
also evaluated how the addition of a single remote sensing observation
to the three meteorological predictors used here could improve soil heat
flux estimation. The final model category we explored is one developed
using the full set of predictor variables considered in this study,
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spanning meteorological and remote sensing variables. We developed
and evaluated these three categories of models for each agro-ecosystem
represented at the SABR experimental facility (soybean, corn, sorghum,
miscanthus) and also evaluate models developed using the combined
dataset spanning all four systems (i.e. models that can be applied
generally across these four agro-ecosystems).

Across these three categories we evaluated 65 predictor sets for each
of the four agro-ecosystems, totaling 260 unique models. All predictors
used here were averaged to 30-min resolution spanning June 9th to
October 1st of the 2021 growing season.

2.7. Machine learning training methodology

To ensure accuracy and reliability of results, a repeated nested k-fold
cross-validation approach was employed for all ML models developed
here. An outer 10 k-fold cross-validation provided an initial division of
the data into holdout data and data for model development (Molinaro
et al., 2005). An inner 5 k-fold cross-validation was then used to mini-
mize the bias caused by tuning of hyperparameters on training results, as
demonstrated in previous studies (Cawley and Talbot, 2010; Yates et al.,
2022). The training performance was calculated based on the inner
cross-validated ensemble, while the testing performance was deter-
mined by selecting the optimal set of hyperparameters from the entire
training set to predict on the holdout data. This process was repeated 15
times for each unique model to reduce the potential bias and variance
related to random sampling (Kim, 2009).

This cross-validation methodology also allows for the assessment of
uncertainty in the model performance and post-hoc explainability
metrics, such as SHapley Additive exPlanations (SHAP) (Lundberg and
Lee, 2017). Typically SHAP explanations are based on evaluation of a
single partitioning of a model and its set of hyperparameters. Scheda and
Diciotti (2022) propose a cross-validation method for SHAP values,
which we use here to assess the consistency of learned relationships.

Squared Pearson correlation values (R?) are used to evaluate model
performance due to the theoretical monotonic increase that it displays as
additional predictors are added to model development (Chicco et al.,
2021). In practice, an excessively large predictor set may reduce model
performance (Banks and Fienberg, 2003), but was not found to be the
case in this study. Further, R? is more interpretable than MSE and RMSE,
allowing for a simpler model comparison (Chicco et al., 2021).

2.8. Machine learning interpretability

SHapley Additive exPlanations is a widely used technique for inter-
preting machine learning models after they have been trained (Lundberg
and Lee, 2017). The method calculates a feature attribution score for
each input feature (predictor) that provides an estimate of the contri-
bution of that feature to the model prediction. Unlike other methods that
are specific to certain model architectures, SHAP is model-agnostic and
uses local information from the input data to provide explanations. We
employed the built-in Shapley methods of MATLAB for this calculation
(Lundberg and Lee, 2017). Following Scheda and Diciotti (2022) we
averaged SHAP feature attributions across repeated k-fold cross-
validations to reduce variance resulting from data partitioning.

We use SHAP values to analyze how different input sets affect the
explainability and performance of the models developed here. These
values provide detailed information on how individual predictors and
their interactions contribute to model predictions, which aids in un-
derstanding the physical meaning of the models and provides insight
into synergisms and redundancies among predictor variables. The
motivation for evaluating such a wide range of models is to quantify how
predictive performance and model complexity (number of predictor
variables used) are related, and to provide interpretability to the in-
teractions of predictor variables to inform model selection when
considering complex goals such as parsimony.
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3. Results and discussion

Summary performance statistics for each of the model categories
(various combinations of predictors) are presented in Table 1. Across all
model categories at least one machine learning model outperformed the
existing empirical methods reviewed in Section 2.4 (see Figs. S3 and S4),
demonstrating the flexibility of machine learning to optimize the use of
information in even simple, but relevant, predictor sets to quantify SHF
at diurnal to seasonal temporal scales.

In the first predictor sets we assess the capabilities of models
requiring few input predictors and the importance of each predictor: the
One Predictor, Two Predictor, and Three Predictor categories. The R?
performance and variables in the optimal predictor set of each category
and agro-ecosystem grouping are listed in the first three rows of Table 1.

The strongest single predictors for soil heat flux estimation were air
temperature (corn and miscanthus) and LST (sorghum and soybean)
among the seven predictors evaluated here. Across the Two Predictor
models a combination of one of the two reflectance indices (NDVI and
PRI) and one of the two temperature variables (T, and LST) provided the
best performance for all four systems. Two Predictor models that include
both T, and LST do not significantly improve predictive performance
relative to the optimal One Predictor model due to the high correlation
and redundancy between these two temperature variables (see Table S3
providing performance results for all Two Predictor models), pointing to
the need to build parsimonious ML models using synergistic and non-
redundant sources of information. Adding NDVI or PRI to one of the
temperature variables adds independent information about canopy
cover, and therefore the ability of incident radiation to reach the soil
surface. These findings are consistent with those of Bonsoms and Boulet
(2022) who found that both empirical and machine learning soil heat
flux models benefit from inclusion of vegetation metrics and radiometric
observations. The Three Predictor model class evaluations demonstrated
that a combination of the reflectance and temperature variables

Table 1

R? validation performance averaged across ML models trained and evaluated
respectively on each of the four crop systems: corn, miscanthus, sorghum, and
soybean. Model input features are included for each result. In the One Predictor,
Two Predictor, and Three Predictor model categories, only the best performing
model (set of predictors) for each agro-ecosystem is displayed.

Model Category Corn Miscanthus Sorghum Soybean
0.790 + 0.845 + 0.686 + 0.758 +
One Predictor 0.007 0.008 0.009 0.015
[T.] [Tal [LST] [LST]
0.873 + 0.887 + 0.875 + 826132 *
Two Predictor 0.010 0.006 0.014 [NDVI,
[NDVI, T,] [PRI, Ta] [NDVI, LST] LST]
0.922 + 0.927 + 0.909 + 0.895 +
Three Predictor 0.015 0.015 0.028 0.015
[NDVI, [NDVI, PRI, [NDVI, PRI, [NDVI, LST,
PRI, Tal Tal LST] Tal
3322 = 0.852 + 0.875 + gg?g *
NDVI + LST [NDVL, 0.005 0.014 [NDVL,
1sT] [NDVI, LST] [NDVL 1ST] |, ST]
0.911 + 0.909 + 0.909 + 0.903 +
Remote Sensing 0.015 0.012 0.028 0.020
[NDVI, [NDVI, PRI, [NDVI, PRI, [NDVI, PRI,
PRI, LST] LST] LST] LST]
0.836 + 0.897 + 0.658 + 0.764 +
Meteorology 0.005 0.007 0.021 0.018
[LW, SW, [LW, SW, T,] [LW, SW, [LW, SW,
Tal P Tal Tal
0.906 + 0.922 + 0.890 + 0.911 +
Meteorology + 0.010 0.010 0.024 0.020
NDVI [LW, SW, [LW, SW, T,, [LW, SW, [LW, SW,
Ta, NDVI] NDVI] Ta, NDVI] Ta, NDVI]
Seven Predictor 0.934 + 0.954 + 0.930 + 0.948 +
(Complete Set) 0.018 0.012 0.017 0.006
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produced the optimal predictor set for all crops.

The next sets of model categories we evaluated are composed solely
of either remote sensing or meteorological predictor variables. Remote
sensing observations are particularly valuable for SHF prediction, with
at least one of the three remote sensing variables (NDVI and LST)
frequently selected as an optimal predictor in the One, Two, and Three
Predictor categories. The purely remote sensing model using only the
three remote sensing predictors [NDVIL, PRI, LST], performed extremely
well across all four agro-ecosystems (R? > 0.9 in all cases). The model
based on only [NDVI, LST], two widely available remote sensing ob-
servables, likewise performed extremely well with >85% of the vari-
ability in SHF captured for all four systems.

Model performance for predictor sets restricted solely to meteoro-
logical variables was mixed across the four agro-ecosystems, with R?
values ranging from approximately 0.65-0.9. The meteorology-only
models underperformed the remote sensing model in all cases, most
significantly in sorghum and soybean. The mixed performance of the
meteorology-only models is indicative of a varied degree of decoupling
between the environments above and within the canopy, potentially due
in part to variations in canopy structure across the four ecosystems that
could result in differences in canopy roughness and radiation transfer.

The combination of all seven predictors provided minor predictive
improvements over the Three Predictor or Remote Sensing models
(Table 1), suggesting that redundancy among some of the variables
limits their utility in SHF estimation, and pointing to a much greater
degree of parsimony in carefully selected 2- and 3-predictor model
formulations.

In the subsequent sections, we assess model performance in the
context of model complexity and explainability, crop specific training
against generalized training, and contrast remote sensing and meteo-
rological measurements to provide predictive performance for several
potential use cases.

3.1. Model complexity

The management of model complexity is an important consideration
in data-driven model development (Jolliffe, 1986; Wang et al., 2017;
Yates et al., 2021). In this study we define model complexity as the
number of variables included in the predictor set. Proper selection of
variables, i.e. feature selection, can minimize training costs, measure-
ment requirements, and decrease the likelihood of overfitting (Banks
and Fienberg, 2003; Cawley and Talbot, 2010).

Here we examine the performance of models developed individually
across the four agro-ecosystems at SABR. Fig. 1 presents model perfor-
mance as a function of number of input variables, with the performance
presented being that of the best performing model with the specified
number of predictor variables. The optimal variable combinations for
the first three sets for each ecosystem are included in Table 1. Extending
the size of the predictor set to allow an additional variable produces at
least equivalent predictive power to the previous in addition to poten-
tially new information, as indicated by the R? metric (Chicco et al.,
2021). The performance of all Two Predictor model permutations is
provided in Table S3 of the Appendix for reference.

For each of the four agro-ecosystems, R? predictive performance
reaches an approximate asymptote for three-predictor models, repre-
senting close to optimal performance. Between the best performing
model trained on two predictors and the model trained on all seven
predictors, there was an R performance increase of 6.0% for corn, 5.8%
for miscanthus, 3.5% for sorghum, and 8.9% for soybean (Fig. 1),
indicating that in general Two or Three Predictor models, with appro-
priate predictor selection, can be considered parsimonious for SHF
estimation in agricultural systems.

Performance of multi-variable models are dependent on the rele-
vance of each variable to the predicted value, the independent infor-
mation contained within each, and added information that may arise
from the interaction between variables, which we refer to here as
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Fig. 1. R? validation performance for models trained and evaluated respec-
tively on each of the four agricultural systems: (a) corn, (b) miscanthus, (c)
sorghum, and (d) soybean. Results are the aggregate of 15 cross-validated it-
erations of the highest performing model utilizing the respective number of
input predictors.

synergy. Variables such as incident shortwave radiation and zenith angle
provide potentially redundant information. Additional variables may
also act to fill any weaknesses left in a simpler model. For instance, soil
heat flux is strongly correlated with LST, though this relationship is
strongly influenced by the presence, or absence, of a canopy. A model
lacking an indicator for canopy density, such as NDVI, would fail to
capture this detail. In Section 3.5 we evaluate the impact of feature se-
lection on model explainability in further detail.

Simplicity is preferred where an acceptable trade-off for accuracy
can be made. Simpler models are simultaneously easier to explain and
more robust to noise than more complex models (Diaz-Ramirez et al.,
2021; Kutz and Brunton, 2022; Yates et al., 2021). From the perspective
of integrating machine learning into physical observing systems, a
robust and computationally inexpensive model presents opportunities to
extend measurement capabilities. Further, instrumentation and mea-
surements carry costs, so simple models may lower observational costs
(Yates et al., 2021) and provide greater resilience to instrument failure
than models using more predictors. The reduction of input variables
shifts the focus to data volume, which is more easily achievable with
fewer meteorological and/or remote sensing instruments.

3.2. Impact of crop type

Among the seven candidate predictors of soil heat flux, surface
temperature and air temperature achieve the highest individual R?
predictive performance, indicating a strong physical relationship to soil
heat flux variation (see Table S3). Other predictors such as NDVI and
PRI, while significant in multi-predictor models (Table 1), do not
perform well individually due to low variability from day to day, and the
fact that they do not vary diurnally as do the radiation fluxes that pro-
vide the source of energy for soil heat fluxes. LST is a stronger predictor
than air temperature for sorghum and soybean, while air temperature
performs marginally better in corn and miscanthus models.

Miscanthus models consistently produce the highest predictive per-
formance across the four crops. This is due in part to the dense canopy
(high NDVI) throughout our observation period (see Fig. 2). Miscanthus
is a perennial crop and had developed a closed canopy by the start of the
observation period (discussed below). This is the reason that NDVI alone
has the lowest predictive performance for miscanthus. The three other
agro-ecosystems experience a sharp increase in growth during the early
portion of the observing period, and decline at the end of the season,
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which allows NDVI to provide important information on canopy closure
and density variation for SHF estimation. See Tables S2 and S3 for
further details of the relative importance of NDVI for SHF predictions
across these four crops.

On average, sorghum models underperform the other crop models
that utilize a single predictor. The daily soil heat flux response for sor-
ghum does not differ significantly from corn or soybean (see Fig. S1). It
may be that the soil heat flux response for sorghum is more complex,
thus the relative improvement in performance with more predictors, or
contains dependencies that are not captured in the predictor sets eval-
uated here. The sorghum and soybean systems show a significant per-
formance increase with LST as a predictor, relative to T,. This is not the
case for the corn and miscanthus systems and may indicate that there are
crop-specific traits (i.e. related to canopy structure and not solely can-
opy density) that impact the utility of LST in soil energy balance esti-
mation. In Section 3.5 we examine the ability of a single ML formulation
to predict SHF across all agro-ecosystems examined here (i.e. a gener-
alized model of SHF).

3.3. Assessment of predictor source

Here we assess the performance attainable by using only measure-
ments from one of two sources: remote sensing measurements (NDVI,
PRI, and LST) and meteorological observations (LW, SW, and T,). In
addition, we highlight the potential benefit of introducing remote
sensing observations into models developed using meteorological ob-
servations. In Fig. 2 NDVI is displayed as a green line and can be seen to
rise and fall at the shoulders of the growing season of the three annual
crops (soybean, sorghum, and corn), representing seasonal plant growth
/ phenology. The remote sensing model that incorporates NDVI has
lower SHF prediction errors relative to the meteorology-only model
throughout the season for the three annual crops. The addition of NDVI
to the meteorology-only model provides a significant improvement in R2
predictive performance in corn (0.84 — 0.90), sorghum (0.66 — 0.89),
and soybean (0.76 — 0.86), and a modest performance increase in
miscanthus (0.90 — 0.92) which was mature during the data collection

period.

In the span of a day, soil heat flux experiences significant diurnal
variation. All three models demonstrate an overestimation in the period
before noon, and an underestimation in the period after noon (Fig. 3).
This behavior is more prominent in the remote sensing model, for which
the only source of information on diurnal variations is contained in LST,
as NDVI and PRI are considered here as daily averages. Due to the
proximity of the four towers, each station recorded similar meteoro-
logical observations. However, the meteorology-only models show
different patterns of error due to different learned patterns for each
system, and possibly subtle variations in meteorological variables
directly over each canopy or differences in sensor noise across obser-
vation sites. These differences may also be due to variations in canopy
structure and density that impact the relationships between canopy-top
meteorology and SHF. The meteorology model for sorghum (Fig. 3c)
shows a sharp transition from overestimation to underestimation near
14:00, which becomes less significant in the remote sensing model or the
meteorology model once NDVI is included as a predictor.

Meteorological variables alone are much less capable of capturing
variation in the canopy structure above the soil throughout the season.
This in part explains the reliance of the semi-empirical SHF models on R,
rather than the downwelling radiation fluxes alone, as upwelling
shortwave reflected and emitted thermal radiation fluxes carry some
information on the land surface cover related to vegetation cover and
phenology. As a result of the lack of phenological information in the
meteorological variable set, the meteorology-only models tend to show
an underestimation early in the growing season prior to canopy maturity
and an overestimation after the canopy has developed.

The one-to-one modeled vs observed SHF performance for
meteorology-only [SW, LW, T,] models developed for each crop indi-
vidually is presented in Fig. 4. The models for each crop are seen to
perform well, with the greatest error occurring in the soybean and sor-
ghum model predictions early in the growing season. The diurnal error
trend is apparent in corn, soybean, and sorghum particularly early in the
growing season when underestimates at high observed SHF values (mid-
day) are balanced by overestimates for low SHF conditions in the late
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Fig. 4. Validation performance for models trained individually for (a) corn, (b) miscanthus, (c) sorghum and (d) soybean on the three meteorological predictors [T,,
SW, LW]. Each point is the average half-hourly prediction from 15 training iterations. Color indicates the day of year.

afternoon and nighttime. The small range of variability of the mis-
canthus SHF values are due to the dense canopy cover of this system
throughout the measurement period, resulting in strong model perfor-
mance as the phenological information carried by NDVI is not important

in this context.

In contrast, the remote sensing predictor model [NDVI, PRI, LST]
results (Fig. 5) demonstrate the importance of capturing canopy cover
variations throughout the season. While this dataset in general has less
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placed in-situ on each observing tower.

information about short-term changes in the environment (i.e. due to
clouds, weather systems, etc.), the information on diurnal variability in
the important drivers of SHF variability is contained in LST observa-
tions, allowing for strong predictive performance across the four agro-
ecosystems. These models demonstrate unbiased results throughout
the season with very high predictive performance using only three
predictor variables, and only modestly under-performing models using
all seven predictor variables examined here (see Table 1).

In studying soil heat flux across various time scales, it’s evident that
there is significant hourly, daily, and monthly variation that requires
multi-source data integration to overcome. Quantifying soil heat flux at
high resolution requires observations of local environmental conditions,
canopy characteristics, and radiative forcings. For regional or global
applications, vegetation indices acquired at a daily or weekly scale may
be sufficient as they primarily govern seasonal changes in SHF (Liang
et al., 2022). However, hourly or sub-hourly estimates of local condi-
tions and forcings are necessary to minimize error within a day. In ap-
plications of evapotranspiration (ET) modelling, instantaneous midday
estimates are upscaled to daily values to compensate for once-a-day
satellite overpass times (Cammalleri et al., 2014). These upscaling
techniques introduce several biases, in part due to improper assump-
tions or modelling of SHF. With the models developed here, such as the
Meteorology + NDVI model, meteorological forcings in conjunction
with infrequent remote sensing observations can be used to parame-
terize SHF models more accurately.

3.4. Model Explainability

Data-driven modelling exercises are often motivated to achieve
maximum predictive performance using all available predictor variables
rather than focusing on understanding the value of each predictor var-
iable toward developing more parsimonious models. Feature selection is
often performed prior to model development to reduce training costs,

and data requirements (McLachlan, 2005). Model explainability is
seldom considered as a trade-off for feature selection despite the diverse
array of tools available. Shapley additive explanations is a post-hoc
feature attribution method used to assess the relative impact of pre-
dictors on model predictions. SHAP is uniquely suited for model
explainability and physical consistency, leveraging local explanations
(between data points) to build a complete global explanation (between
predictors) (Lundberg et al., 2018; Lundberg and Lee, 2017). SHAP
values only capture the relationship between predictors and the model
output and should not be used to assess causality without careful
consideration of uncaptured latent variables and redundancy (Baptista
et al., 2022). The analysis presented here utilizes domain knowledge to
examine the principles that have been learned by the models, while
keeping in mind the limitations of this technique.

Beeswarm plots (sometimes called waterfall plots) are a commonly
used tool to visualize the relative importance of predictors as deter-
mined from the magnitude of their SHAP attribution (Hu et al., 2021;
Zhang et al., 2023). These plots, as seen in Fig. 6 (e)-(h), show the dis-
tribution of attribution scores (x-axis) for the variables present in the
model (y-axis). Vertical offsets and coloration are added to signify the
density of points in the region and the relative value of each predictor
respectively.

Beeswarm plots are limited by the lack of information they contain
on the interactions occurring between variables that inform a given
model prediction. To address this need partial dependence plots have
been developed which display the impacts of multiple predictors on the
model’s outputs (Lundberg et al., 2020). In Fig. 6a-d we explore SHAP as
a tool for visualizing the synergistic effects of NDVI with LST through a
partial dependence plot of LST and NDVI to the SHAP attribution for
LST. Each of the four subplot pairs (a and e; b and f; ¢ and g; d and h)
represents a single crop system trained on predictor sets of NDVI, LST,
and PRI. Despite the fact that these models had similar aggregate per-
formance (R? of 0.91, 0.91, 0.91, and 0.90 for corn, miscanthus,
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sorghum, and soybean, respectively), the SHAP values show that the
models have learned significantly different relationships between pre-
dictors and model outputs.

In the sorghum system (Fig. 6¢,g) LST is the dominant predictor and
NDVI can be seen as a factor that modifies the relationship of LST to
SHAP attribution and thus SHF. Over a fully developed canopy, with

(red) saturated NDVI values, the slope of the LST to attribution curve
steepens and the distribution of points narrows, indicating greater cer-
tainty in the attribution to LST. When the canopy is less dense (low NDVI
values, blue dots) the attribution varies more and deviates from the
typical relationship at extreme LST values. These values correspond with
the beginning of the growing season before the canopy was well
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Fig. 7. SHAP attribution scatter plots for models trained on LST (a,d,g,j); NDVI and LST (b,e,h,k); NDVI, PRI, and LST (c,f,i,]). Points are positioned by measured LST
value (x-axis) against SHAP model attribution to LST (y-axis), colored by NDVI value. Rows correspond to (a-c) corn, (d-f) miscanthus, (g-i) sorghum and (j-
1) soybean.
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developed and represent a small portion of the dataset. Fig. 6g shows
that there is a minimal direct SHAP contribution for most values of NDVI
and PRI. Despite this, their addition in the model increases model per-
formance significantly through modification of the LST attribution
curve, resulting in predictive performance increases of: R? of 0.69 —
0.88 — 0.91 for [NDVI]; [NDVI, LST]; [NDVI, PRI, LST] respectively (see
Fig. 7 for a presentation of these attribution curves). Through analyzing
these interactions, it becomes possible to assess model sensitivity to
specific conditions and the nature of synergistic predictor effects.

The relationship between NDVI and LST differs strongly for the
miscanthus SHF model relative to the other three agricultural systems.
Miscanthus had developed a mature canopy by the start of data collec-
tion and therefore showed very little variation in NDVI throughout the
observation period. This produced very little data from which the model
could learn interaction effects between LST and NDVI, effectively
making all but the highest values of NDVI unseen for the miscanthus
model. The three other crops have LST attribution curves that share a
sigmoidal shape spanning the range of LST values that is influenced by
the information on canopy density. LST values for miscanthus do not
reach the magnitudes seen in the other three crops, and the shape of the
LST attribution curve is steeper, more linear and shows less spread.
Fig. 6(f) shows that both NDVI and PRI have low attribution and impact
on miscanthus model predictions, which is supported in the attribution
curves of the reduced order miscanthus models in Fig. 7, which show
little variation as NDVI and PRI are added to LST as model predictors.
While the [LST, NDVI, PRI] models for the four crops have very similar
performance (R? between 0.90 and 0.91), the data in Fig. 6 show con-
trasting model attributions to these predictors, indicating that it may be
challenging to accurately model all four systems simultaneously with a
single (generalized) model developed using combined data from all four
systems and these three predictors (evaluated further in Section 3.5).

As model complexity (number of predictor variables) increases so
does the potential for redundancy, whereby adding predictors may
primarily increase model complexity without improvement in perfor-
mance. This has the potential to lead the model to exploit non-physical
patterns, such as sensor noise, reducing interpretability. The ability to
infer relationships between input variables also becomes significantly
more difficult as models become more complex. Importantly our results
demonstrate that strong SHF predictive performance is possible with
only one or two carefully chosen predictor variables (see Table 1 and
Table S2).

3.5. Generalizing model findings

The models and findings discussed thus far have focused on models
developed for individual agro-ecosystems that have unique phenological
and canopy structural properties. If models like this are to be applied at
large scale, data on crop type may not be available, making it difficult to
choose a crop-specific model to apply. Here we examine the extent to
which models such as these can be developed to predict SHF across
multiple distinct agricultural systems, given widely available remote
sensing observations and environmental variables. Here we have
repeated the training procedure described in Section 2.7 for the com-
bined data from all four study agro-ecosystems to quantify how pre-
dictive performance is impacted by exposing the training data to a
mixture of agricultural systems. The results of these “generalized”
models, determined by evaluation on withheld data for each crop, are
presented in Table 2.

We note that for all ML models using between one and seven pre-
dictors the performance is always better than that found for any of the
six empirical models examined here (see Table S1 and Figs. S3 and S4).
We observed that the generalized models achieved a similar perfor-
mance overall, but that performance on individual crop datasets is
reduced relative to models trained on each agricultural system indi-
vidually (see Fig. 8 and Fig. S5). This reduction in performance is an
expected consequence of the development of a model using data across
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Table 2

R? validation performance from models trained on the combined dataset span-
ning all four agro-ecosystems. Results are averaged across 15 randomized trials
of a 10 k-fold cross-validation. For the One and Two Predictor categories the
predictor sets were chosen as the ones that demonstrated the highest average
performance across the four agro-ecosystems.

Model Category Corn Miscanthus Sorghum Soybean
One Predictor 0.732 + 0.664 + 0.656 + 0.732 +
[LST] 0.007 0.007 0.003 0.005
Two Predictor 0.786 + 0.524 + 0.707 + 0.731 +
[PRI, LST] 0.031 0.020 0.019 0.020
NDVI + LST 0.780 + 0.587 + 0.743 £ 0.762 +
[NDVI, LST] 0.023 0.022 0.012 0.021
Remote Sensing 0.845 + 0.556 + 0.764 + 0.751 +
[NDVI, PRI, LST] 0.034 0.032 0.016 0.020
Meteorology 0.844 + 0.700 + 0.713 £ 0.786 +
[LW, SW, T,] 0.009 0.006 0.027 0.017
Meteorology + NDVI 0.847 + 0.724 + 0.805 + 0.853 +
[LW, SW, T,, NDVI] 0.031 0.009 0.021 0.022
Seven Predictor 0.861 + 0.660 + 0.780 + 0.817 +
(Complete Set) 0.016 0.046 0.016 0.016
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Fig. 8. R? validation performance for “generalized” models trained and eval-
uated on a combined dataset from corn, miscanthus, sorghum, and soybean.
Results are the aggregate of a set of cross-validated iterations of the highest
performing model utilizing the specified number of input predictors.

multiple systems that may have fundamentally different relationships
between predictor variables and soil heat flux, and for which data was
collected during different growth / phenological stages.

Among the four systems, corn and soybean, which are similar in
terms of diurnal variability in SHF (see Fig. S1), exhibit the highest
predictive performance for the generalized models. This difference be-
tween the very strong performance of the generalized models for corn
and soybean, and somewhat reduced performance for sorghum and
miscanthus, may be due to similarities between corn and soybean SHF
and meteorological and canopy dynamics. These similarities could
effectively bias the training dataset toward these two similar crops,
reducing performance for the other two crops which diverge in these
relationships. The generalized models perform least well for miscanthus,
which is unique relative to the other crops examined here as it is
perennial and data collection began after the canopy had closed
resulting in a diminished importance for variables such as NDVI relative
to the other crops. Less than 9% of SHF variability is captured by NDVI
for miscanthus, relative to 20-37% for the other crops (see Table S4
which presents performance of all One Predictor models developed for
each crop).

In the Meteorology + NDVI set of models, the discrepancy in Mis-
canthus performance relative to the same set of predictors trained
individually on Miscanthus indicates limitations of NDVI as a predictor.
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It is well known that NDVI becomes less sensitive to changes in leaf area
as the canopy becomes more dense (Bajocco et al., 2022) in addition to
changes due to different stages of growth (Qiao et al., 2019). As a result,
differing canopies can present similar NDVI values while expressing
different controls on SHF. Future development of mechanistic SHF
models should consider approaches to disentangle biophysical traits
contained in NDVI or similar metrics characterizing canopy structural
traits.

While performance generally increases with the number of predictor
variables, a degradation of performance is seen when using the complete
predictor set. Although the complete predictor set scores the highest
training performance, it begins to suffer performance degradation on
individual crop types providing further motivation for selecting a
reduced number of parsimonious predictors over absolute predictive
performance. Examining the performance comparisons in Table 2, the 4-
predictor (Meteorology + NDVI) model may be an optimal choice. This
model is able to capture 70-85% of the SHF variability for the four agro-
ecosystems, representing a parsimonious choice balancing strong pre-
dictive performance with a small number of widely available predictors.
This 4-predictor model yields the highest R? performance for three out of
the four systems, higher than the model developed with all seven pre-
dictor variables. The predictor set includes only NDVI as a crop-specific
observation, which encourages the model to develop general relation-
ships between overlying meteorological conditions (T;, LW, and SW)
and SHF.

4. Conclusions

Accurate soil heat flux estimation is vital to improving our under-
standing and predictive ability for subsurface energy transport impact-
ing soil energy storage, temperature and biogeochemical cycling, as well
as being an important component of the surface energy balance. Here we
demonstrate the power of machine learning to produce accurate non-
parametric predictions of SHF for multiple agro-ecosystems at time-
scales spanning sub-hourly to seasonal. These models demonstrated
significant improvements over standard empirical formulations that
have been developed around widely available satellite data. This
remained true when ML models were generalized across all four agro-
ecosystems (miscanthus, energy sorghum, soybean, and corn), such
that a single model was used to predict SHF for all crop types, demon-
strating the flexibility and robustness of well-validated ML approaches.

Air temperature and land surface temperature were the two strongest
individual predictors of soil heat flux. NDVI was the most significant
complementary predictor to the temperature variables, providing per-
formance improvements in both air temperature and surface tempera-
ture models by providing information on canopy structure and
phenology not available in the temperature variables. Analysis of SHAP
values revealed that models developed with NDVI, PRI, and LST were
capable of accurately estimating soil heat flux and describing physically
meaningful relationships between model predictors and outputs. The
addition of other predictor variables produced a diminished return on
predictive performance while increasing data requirements and loss of
model transparency and interpretability.

Predictive performance across the four crop types was comparable
overall, with some specific exceptions noted in Section 3.1. In relation to
previous modelling work, the utilization of simple site-level remote-
sensing observations proved to be extremely useful. The three remote
sensing observations [NDVI, PRI, and LST] provided a powerful pre-
dictor set in the evaluations presented here. NDVI and LST, which have a
long-standing history in remote sensing, are remarkably capable of
estimating soil heat flux across the four crop systems. The sub-hourly
observations used in this study allowed us to develop and test models
of soil heat flux at much higher temporal resolution than is typically
done when the focus is on satellite observations with typical repeat
frequencies of several days to weeks. These demonstrations of strong
predictive performance throughout the diurnal cycle for a complete

12

Ecological Informatics 82 (2024) 102697

growing season across four agro-ecosystems provides confidence that
these same tools and formulations will transfer to satellite applications
where these predictor variables are available.
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