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A B S T R A C T

In recent years, magnetic-responsive soft materials with high remanent magnetization have received significant
attention due to their capacity for untethered and rapid actuation under magnetic fields, with diverse
applications spanning robotics, biomedicine, and vibration mitigation. Most designs of the magnetic soft
materials rely on discrete remanent magnetization orientations, which could limit the actuation performance
because of the restricted selection of magnetization orientations and potentially cause fabrication challenges
due to the sharp changes in magnetization orientations at the interfaces that may induce strong repelling forces.
To expand the programmability and improve the fabricability of the magnetic soft materials, we enable design
capability with optimal continuous magnetization orientations. This paper proposes a multiphysics topology
optimization framework that concurrently optimizes topologies and continuous remanent magnetization
distributions in the magnetic soft materials and structures. Employing the proposed approach, we design and
investigate problems of letter programming, actuators, and metamaterials with magnetic actuation under large
deformations. We demonstrate that the proposed strategy enhances design flexibility, improves performance,
eliminates sharp changes in magnetization orientations, and is capable of creating non-intuitive designs that
can achieve multiple functionalities. Finally, we prototype our optimized design to highlight its potential to
bridge design optimization and direct-ink-writing fabrication of magnetic materials with continuously varying
magnetization orientations.
1. Introduction

In recent years, there has been an increasing interest in research
focused on magnetic-responsive soft materials capable of untethered
and rapid actuation when subjected to magnetic fields. These materials
have been used in diverse applications in various domains, including
robotics (Lum et al., 2016; Kim et al., 2019), biomedicine (Ceylan et al.,
019; Zhou et al., 2021), vibration mitigation (Li et al., 2014; Kang
et al., 2020), and electronics (Rahmati et al., 2023a). This study focuses
on hard-magnetic soft materials (Zhao et al., 2019; Lu et al., 2023) with
igh remanent magnetization, which are created by embedding high-
oercivity magnetic particles, such as neodymium–iron–boron alloy,
nto a soft matrix. This type of magnetic soft materials has displayed
ignificant promise, offering flexible programmability and enabling a
ange of functionalities, including programmable shape transforma-
ions (Zhao and Zhang, 2023; Wu et al., 2020), tunable buckling

Invited Editor: Yihui Zhang.
∗ Corresponding author at: Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, 205 North Mathews Ave, Urbana,
L 61801, USA.

E-mail address: zhangxs@illinois.edu (X.S. Zhang).

responses (Zhao et al., 2023; Chen et al., 2021), and magnetoelectric-
ity (Rahmati et al., 2023a,b). Additionally, advanced manufacturing
techniques, such as direct ink writing (Kim et al., 2018), have been
employed to produce magnetic soft materials with complex geometries
and heterogeneous remanent magnetization distributions.

In the context of designing magnetic soft materials, while several
studies have successfully designed magnetic soft materials through
topology optimization (Zhao and Zhang, 2022; Wang et al., 2023; Tian
et al., 2022) and machine learning (Ma et al., 2022; Lloyd et al.,
2020) approaches, most of these designs utilize discrete remanent
magnetization orientations. This feature may encounter performance
limitations because of the restricted magnetization orientation choices
and fabricability challenges arising from sharp changes in remanent
magnetization at interfaces.

In this study, as illustrated in Fig. 1(a) and (b), we propose a
multiphysics topology optimization framework for designing magnetic
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soft materials and structures with continuous remanent magnetization
orientations. We highlight that the remanent magnetization vector at
each location in the design can have a continuously-selected (arbitrary)
orientation. For brevity, we sometimes use the term ‘‘magnetization’’
for ‘‘remanent magnetization’’ in the paper. Also, the magnetization
orientation flows continuously and smoothly in the optimized designs.
This framework is developed using a density-based topology optimiza-
tion approach (Bendsoe and Sigmund, 2003) and can concurrently
optimize both their geometry and a continuous distribution of remanent
magnetization. As shown in Fig. 1(c), designs incorporating continuous
magnetization present three significant advantages: (1) Improved actu-
ation performance is attainable, thanks to an expanded design space
facilitated by arbitrary magnetization orientations; (2) Unfavorable
sharp changes in spatial magnetization orientation flow are avoided,
reducing repelling forces and enhancing fabricability; (3) Optimized
designs with continuous magnetization orientation are highly compati-
ble with the recently developed magnetic direct-ink-writing fabrication
technique (Kim et al., 2018).

In Fig. 2, we present an illustrative example with a cantilever setup
whose magnetization is optimized to attain a 5/8 circular shape under
an upward magnetic field, supporting the advantages outlined in points
1 and 2. The applied constitutive model is detailed in Appendix A.
By employing the proposed continuous magnetization optimization
approach for the cantilever example, we can achieve the best fitting
performance compared to designs optimized with discrete magnetiza-
tion (using the design approach developed in our previous work Zhao
and Zhang, 2022). We note that in discrete magnetization optimiza-
tion, designs incorporating a large number of candidate magnetization
orientations can approach the performance achieved through continu-
ous magnetization optimization. However, introducing more candidate
magnetization orientations typically results in a rise in computational
burden and optimization complexity.

We introduce a design parameterization scheme that systematically
represents the continuous remanent magnetization distribution and the
geometry of the soft matrix. Through the interpolation of Helmholtz
free energy function, we then characterize the nonlinear response of
a given design under the applied magnetic field. We illustrate the
effectiveness of this framework through several types of examples.
These include shape-programmed letters, functional magnetic actua-
tors by optimizing both topology and continuous magnetization, and
magneto-mechanical metamaterials capable of controllable lateral de-
formation under pure mechanical stimulus and combined mechanical
and magnetic stimuli. To showcase the manufacturability of the ac-
quired designs with continuous magnetization orientations, we utilize
a direct-ink-writing method to fabricate magnetic actuator designs and
present experimental demonstrations of their enabled functionality.

The remainder of this paper is organized as follows. Section 2
introduces design parameterization schemes that systematically rep-
resent the continuous remanent magnetization distribution and the
geometry of the soft matrix as well as the topology optimization formu-
lation. Section 3 presents several design examples, including magnetic
actuators and metamaterials, to demonstrate the unique advantages
enabled by the proposed formulation. Section 4 shows the fabrication
f magnetic actuator designs and experimental demonstrations. Sec-
ion 5 provides concluding remarks. Appendix A presents the applied
agneto-mechanical constitutive model. Appendix B reviews the design
arameterization scheme for discrete magnetization orientations to
enerate results for comparison. Appendix C complements the paper by
investigating the impact of magnetized areas on their adjacent regions
due to non-zero magnetic susceptibility.

2. Topology optimization framework

In this section, we introduce the proposed density-based topology
optimization framework. We start by presenting the parameteriza-
tion scheme for continuous magnetization orientations, followed by
 m

2 
the parameterization for the geometry variable and the interpola-
tion of the energy function. We then provide a detailed explanation
of the optimization formulation. We utilize a simplified constitutive
model defined by a Helmholtz free energy function (Zhao et al., 2019)
to model magnetic soft materials under large deformation, as pre-
sented in Appendix A. The finite element method is used to solve the
magneto-mechanical boundary value problem. It is worth noting that
our topology optimization approach is general and can adapt to various
magneto-mechanical models.

2.1. Parameterization of continuous magnetization orientations

The continuous magnetization orientations involve two key fea-
tures: one is to allow a continuous (arbitrary) option for an element-
wise magnetization orientation, and the other is to enable spatially
continuous magnetization orientation flow. Additionally, maintaining
a constant magnitude is usually preferable for fabrication. Therefore,
we also aim to impose constraints to promote a constant magnetization
magnitude in the optimized designs. In the following, we provide
specific details for parametrization schemes to achieve the continuous
magnetization orientations.

2.1.1. Continuous option of element-wise magnetization orientation
The two-dimensional (2D) element-wise residual magnetic flux den-

sity 𝐁r,𝑒 (remanent magnetization 𝐌r,𝑒 = 𝐁r,𝑒∕𝜇0 where 𝜇0 is the air
permeability) in element 𝑒 of the design can be interpolated by two
orthogonal and equal-magnitude residual magnetic flux density base
vectors, denoted as 𝐁(1)

r and 𝐁(2)
r . The residual magnetic flux density is

expressed as:

𝐁r,𝑒 = 𝑚(1)
𝑒 𝐁(1)

r + 𝑚(2)
𝑒 𝐁(2)

r . (1)

y interpolating the base vectors by the physical magnetization variable
𝑚(1)
𝑒 and 𝑚(2)

𝑒 , we can continuously select arbitrary orientation for
the element-wise magnetization vector. Note that we use Cartesian
representation for 𝐁r,𝑒 instead of the polar representation to circumvent
the associated local-minimal and 2𝜋 ambiguity issues (Nomura et al.,
2015).

To constrain the upper bound of the magnetization magnitude,
(𝑚(1)

𝑒 )2+(𝑚(2)
𝑒 )2 ≤ 1, we use an iso-parametric mapping scheme (Nomura

t al., 2015), as illustrated in Fig. 3(a). The corresponding expression
s provided by the following equation:

𝑚(1)
𝑒 =

∑8
𝑖=1 𝑎

(1)
𝑖 𝑁𝑖(𝜉

(1)
𝑒 , 𝜉

(2)
𝑒 )

𝑚(2)
𝑒 =

∑8
𝑖=1 𝑎

(2)
𝑖 𝑁𝑖(𝜉

(1)
𝑒 , 𝜉

(2)
𝑒 )
, (2)

where 𝑎𝑖 = {𝑎(1)𝑖 , 𝑎
(2)
𝑖 }𝑇 , 𝑖 = 1...8 is the coordinate of the 𝑖th node on

the mapped circular shape (as shown in Fig. 3a); 𝜉
(1,2)
𝑒 is the element-

wise intermediate design variable with the range of [−1, 1]; the mapping
function 𝑁𝑖(⋅), inspired by the eight-node biquadratic quadrilateral
lement, is given by

𝑁1 = −(1 − 𝜉
(1)
𝑒 )(1 − 𝜉

(2)
𝑒 )(1 + 𝜉

(1)
𝑒 + 𝜉

(2)
𝑒 )∕4

𝑁2 = (1 − 𝜉
(1)
𝑒 )(1 − 𝜉

(2)
𝑒 )(1 + 𝜉

(1)
𝑒 )∕2

𝑁3 = −(1 + 𝜉
(1)
𝑒 )(1 − 𝜉

(2)
𝑒 )(1 − 𝜉

(1)
𝑒 + 𝜉

(2)
𝑒 )∕4

𝑁4 = (1 + 𝜉
(1)
𝑒 )(1 − 𝜉

(2)
𝑒 )(1 + 𝜉

(2)
𝑒 )∕2

𝑁5 = −(1 + 𝜉
(1)
𝑒 )(1 + 𝜉

(2)
𝑒 )(1 − 𝜉

(1)
𝑒 − 𝜉

(2)
𝑒 )∕4

𝑁6 = (1 − 𝜉
(1)
𝑒 )(1 + 𝜉

(2)
𝑒 )(1 + 𝜉

(1)
𝑒 )∕2

𝑁7 = −(1 + 𝜉
(1)
𝑒 )(1 + 𝜉

(2)
𝑒 )(1 + 𝜉

(1)
𝑒 − 𝜉

(2)
𝑒 )∕4

𝑁8 = (1 − 𝜉
(1)
𝑒 )(1 − 𝜉

(2)
𝑒 )(1 + 𝜉

(2)
𝑒 )∕2

. (3)

By employing the iso-parametric mapping, we can constrain the
pper bound of the magnetization magnitude. To promote a magnetiza-
ion distribution with constant magnitude, we also apply a lower-bound
agnitude constraint incorporated in Formulation (7).
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Fig. 1. Topology optimization for magnetic materials with continuous magnetization orientations: (a) design variables, (b) achievable functionalities, and (c) three notable
advantages.
Fig. 2. Illustrative example: A cantilever with optimized magnetization orientations deforming to a 5/8 circular shape under a prescribed external magnetic field, highlighting
improved performance (reduced fit error) and smooth magnetization transition compared to designs with discrete magnetization orientations.
2.1.2. Spatial continuity of magnetization orientation
To enable a spatial continuity of magnetization orientation, en-

suring a smooth flow of the magnetization vector in the optimized
designs, a filtering process is applied. We obtain the variables 𝜉

(1,2)
𝑒

through a distance-based filtering operation (Bourdin, 2001; Bendsoe
and Sigmund, 2003). The expression is given by

𝜉
(𝑗)
𝑒 =

∑

𝑖∈ℐ𝑒(𝑅𝑚)𝑤
(𝑖,𝑒)
𝑚 𝑣𝑖𝜉

(𝑗)
𝑖

∑

𝑖∈ℐ𝑒(𝑅𝑚)𝑤
(𝑖,𝑒)
𝑚 𝑣𝑖

, 𝑗 = 1, 2, (4)

where 𝝃(1,2) are the design variables in the optimization, the set ℐ𝑒(𝑅𝑚)
represents the 𝑒th element set within a region defined by a circle
3 
centered at the centroid of the 𝑒th element with a radius of 𝑅𝑚, 𝑣𝑖
is the volume of the 𝑖th element, and the weighting factor 𝑤(𝑖,𝑒)

𝑚 (𝑅𝑚)
is determined by the distance between the centroids of the 𝑖th and
𝑒th elements (denoted as 𝐗𝑖 and 𝐗𝑒, respectively), which is given by
𝑤(𝑖,𝑒)
𝑚 = 1−(|

|

𝐗𝑖 − 𝐗𝑒|| ∕𝑅𝑚). Fig. 3(b) illustrates the magnetization orien-
tation before and after the filtering process. The comparison shows that
filtering effectively smooths the spatial continuity of the orientation.

2.2. Parameterization of geometry

We utilize a density-based approach to associate the geometry to
a physical design variable 𝜌 for each element, where 𝜌 indicates
𝑒 𝑒
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Fig. 3. Parameterization schemes for continuous magnetization vectors: (a) iso-parametric mapping; (b) filtering process.
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whether a location in space is solid (𝜌𝑒 = 1) or void (𝜌𝑒 = 0). To
nsure the discreteness of the design, the physical density variables 𝝆
re obtained using a Heaviside projection operator with a threshold of
∕2 (Wang et al., 2011):

𝜌𝑒 =
tanh( 𝛽𝜌2 ) + tanh(𝛽𝜌(𝜌𝑒 −

1
2 ))

2 tanh( 𝛽𝜌2 )
, (5)

here 𝛽𝜌 controls the discreteness of the projection. The symbol 𝜌𝑒
represents the intermediate variable, which is obtained through a fil-
tering process on the design variable 𝜌𝑒 using the distance-based filter
Eq. (4) to address the checkerboard issue and control minimal member
size (Bendsoe and Sigmund, 2003).

2.3. Interpolation of the Helmholtz free energy function

To characterize the nonlinear magneto-mechanical properties of
magnetic soft materials, we apply an interpolation method to the
Helmholtz free energy function based on physical variables 𝝆 and𝐦(1,2).
The interpolated free energy 𝑊I of element 𝑒 under load case 𝓁 is given
by

𝑊I

(

𝜌𝑒, 𝑚
(1)
𝑒 , 𝑚

(2)
𝑒 ,𝐮

(𝓁)
𝑒

)

=
(

𝜖 + (1 − 𝜖)
(

𝜌𝑒
)𝑝𝜌)𝑊E

(

𝐮(𝓁)𝑒
)

+ (𝜌𝑒)
𝑝𝜌𝑊M

(

𝐮(𝓁)𝑒 ,𝐁r,𝑒(𝑚
(1)
𝑒 , 𝑚

(2)
𝑒 )

)

, (6)

where 𝐮(𝓁)𝑒 is the displacement vector in element 𝑒 under the load case
𝓁, and we introduce a small value of 𝜖 = 10−5 to avoid numerical
ingularity. To penalize both hyperelastic stored energy and magnetic
ree energy and promote a nearly discrete design, we use the SIMP
pproach (Bendsøe, 1989; Bendsoe and Sigmund, 2003) (using power
𝜌) in the interpolation formula above, driving the variable 𝜌𝑒 towards
ither 0 or 1. To alleviate excessive deformations of low-density re-
ions that can lead to numerical instabilities during optimization, we
mploy an energy interpolation scheme (Wang et al., 2014a) for the
yperelastic stored energy 𝑊E.

.4. Optimization formulation

Using the design space parameterization and free-energy interpola-
ion schemes, we present a topology optimization formulation for gen-
rating magneto-actuated designs with continuous magnetization ori-
ntations. Formally, we formulate the topology optimization problem
 m

4 
s follows:
min

𝝆,𝝃(1) ,𝝃(2)
𝐽
(

𝐮(𝓁)
)

, 𝓁 ∈ 1,… , 𝑁𝓁

s.t.: 𝐯T𝝆
|𝛺h|

≤ 𝑣max,

{𝑁e
∑

𝑒=1

[𝑤𝜎 (𝜌𝑒)
𝑣𝑒 ∫𝛺h,𝑒

𝜎VM
(

𝝈E
(

𝐮(𝓁)
)

)

d𝐗
]𝑝n

}1∕𝑝n

≤ 𝜎(𝓁)max,

𝓁 = 1,… , 𝑁𝓁 ,
∑𝑁e
𝑒=1

[

𝜌𝑒

(

1 −
(

1 −
√

(𝑚(1)
𝑒 )2 + (𝑚(2)

𝑒 )2
)𝑝𝑣)]

∑𝑁e
𝑒=1 𝜌𝑒

≥ 1 − 𝜀𝑣

𝐫(𝝆,𝐦(1),… ,𝐦(𝑁m),𝐮(𝓁)) = 𝟎, 𝓁 = 1,… , 𝑁𝓁 ,

𝟎 ≤ 𝝆 ≤ 𝟏,
−𝟏 ≤ 𝝃(1,2) ≤ 𝟏,

(7)

where the converged displacement vector obtained under the load case
𝓁 is denoted by 𝐮(𝓁). The objective function evaluated at 𝐮(𝓁) is given by
𝐽 (𝐮(𝓁)) whose expression depends on the specific application needs. The
proposed optimization formulation includes a volume usage constraint,
with 𝐯 representing the element volume vector and 𝑣max being the
upper bound of the volume ratio assigned for matrix materials. Stress
constraints (Duysinx and Bendsøe, 1998; Zhao and Zhang, 2022) are
also incorporated to ensure that the maximum von Mises stress associ-
ated with the mechanical Cauchy stress tensor 𝝈E = 1∕𝐽 (𝜕𝑊E(𝐅)∕𝜕𝐅)𝐅T

does not exceed a prescribed upper limit 𝜎(𝓁)max. To avoid singularity is-
sues in stress-constrained topology optimization (Duysinx and Bendsøe,
1998; Bruggi, 2008), a relaxation approach is utilized. In this approach,
a function 𝑤𝜎 (𝜌𝑒) ≐ 𝜖 + (1 − 𝜖)𝜌

𝑞𝜌
𝑒 is defined, where 𝑞𝜌 < 1. The

maximum stress is estimated using the 𝑝-norm approach (Duysinx and
endsøe, 1998) with the power of 𝑝n. It is worth noting that stress
constraints serve as a numerical technique to prevent the optimized
design from containing thin members and hinge-like connections and
to limit the level of local deformations (Zhao and Zhang, 2022). To
ensure

√

(𝑚(1)
𝑒 )2 + (𝑚(2)

𝑒 )2 is close to 1, a magnetization lower-bound
agnitude constraint (Nomura et al., 2015) is applied where 𝑝𝑣 ≥ 1
nd 𝜀𝑣 is a small value to alleviate numerical issue. Additionally, the
quilibriums solved by finite element analysis under each load case are
ested constraints within the formulation.
We use a gradient-based update algorithm, specifically the method

f moving asymptotes (Svanberg, 1987), to solve the proposed for-
ulation (7). The sensitivities of objective and constraint functions
ith respect to the design variables are obtained through the adjoint

ethod (Bendsoe and Sigmund, 2003; Wang et al., 2023).
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3. Numerical examples

In this section, we present three numerical examples to illustrate
the effectiveness of the proposed optimization framework in generating
magneto-actuated designs with continuous magnetization orientations.
Example 1 demonstrates the optimization of magnetizations with pre-
scribed geometries for three shape-programmed letters. In Example 2,
we obtain functional magnetic actuators by optimizing both topology
and continuous magnetization. In Example 3, we create magneto-
mechanical metamaterials capable of controllable lateral deformation
under pure mechanical stimulus and combined mechanical and mag-
netic stimuli. Note that in Examples 1 and 3, we conduct comparisons
with the designs featuring discrete magnetization orientations using
the design method presented in Zhao and Zhang (2022) (refer to
Appendix B for a brief review of the parameterization scheme for
discrete magnetization orientations) to highlight the advantages of
designs featuring continuous magnetization orientations.

3.1. Example 1: letter programming

In this example, our objective is to program magneto-actuated
deformation to replicate the shapes of letters. As illustrated in Fig. 4(a),
we have programmed the letters ‘‘UIUC’’ to be formed under upward
magnetic fields by optimizing the magnetization distribution. The de-
sign domains, shown in Fig. 4(b), consist of in-plane elliptical stripes
with an aspect ratio of 2 and a width of 0.5 mm. The out-of-plane thick-
ness is 2 mm. The control and target points are indicated in black and
red, respectively. To help each elliptical stripe achieve individual letter
shapes, we customize the boundary conditions, control/target points,
the magnitude of external magnetic fields, as well as the magnetization
zone. We utilize material properties characterized from Ecoflex 00-30,
incorporating magnetic particles at a volume ratio of 15% (see Ap-
pendix A for details). The magnitude of residual magnetic flux density
is set at 100 mT, which is aligned with the magnetic characterization
result for the same amount of magnetic particle inclusion (Zhao et al.,
2023). In this example, our optimization focuses on the magnetization
distribution to achieve target displacements at the control points. Since
the geometry optimization is not incorporated, the volume and stress
constraints are not applied in this example. The objective function is
defined as follows:

𝐽1(𝐮) = max
𝛼∈{1,…,𝑁𝛼}

√

(

𝑢𝛼 − 𝑢∗𝛼
)2, (8)

here 𝑢𝛼 and 𝑢∗𝛼 are the actual and target displacement at the 𝛼th
ontrol degree of freedom (DOF), respectively; and 𝑁𝛼 is the total
umber of control DOFs. The min–max objective is solved by bound
ormulation (Olhoff, 1989). To further evaluate the average fitting
erformance, we define a normalized error as follows:

isp. fit err. =

√

∑

𝛼(𝑢𝛼 − 𝑢∗𝛼)2
√

∑

𝛼(𝑢∗𝛼)2
, (9)

In Fig. 4(c), we present the results of optimized letter programming.
We can observe that the UIUC shapes (three letters) are successfully
achieved under upward magnetic fields, with a fitting error of less than
2.1%. In response to magnetic actuation, the optimized magnetizations
exhibit a tendency to align with the direction of the applied magnetic
fields, thereby inducing the deformation of the elliptical strips into the
desired letter shapes. Upon closer inspection of the optimized magneti-
zation distribution, we observe a seamless transition in magnetization
directions enabled by the developed optimization framework. It should
be acknowledged that the approach of programming letter shapes from
closed elliptical shapes may have limitations when dealing with certain
letters, particularly unsymmetrical ones like ‘‘G’’ and ‘‘R’’. However, by
strategically setting up different initial shapes and boundary conditions,
such as an open elliptical initial shape, we can perform the shape
programming for these letters.
5 
To further highlight the advantages of continuous magnetization
distribution, we perform a comparative design optimization for the
letter ‘‘I’’ using discrete magnetization parameterization and compare
it with the continuous magnetization case in Fig. 5. In the discrete
case, magnetization exhibits abrupt transitions, possibly leading to
fabrication challenges due to stronger repelling forces. In contrast, the
continuous magnetization design naturally resolves this issue. Addi-
tionally, the ability to choose arbitrary magnetization directions in the
continuous case improves fitting accuracy by 9.1% compared to the
discrete magnetization design.

3.2. Example 2: magnetic actuators

In this example, our objective is to create functional magnetic
actuators, specifically designed for gripping and moving objects under
applied magnetic fields. As shown in Fig. 6, the design domain has an
in-plane size of 40 mm × 20 mm and an out-of-plane thickness of 5 mm,
with both ends clamped. The central region of the domain is designated
as the working area, tasked with gripping and moving objects. We set
up nearly rigid components (black areas in the figure) for contact with
objects, with two control points placed on the nearly rigid components.
Linear springs are applied on these control points to model the reaction
from the object. Within the working area, we prescribe the material
as non-magnetized. We employ the material property characterized
from polydimethylsiloxane (PDMS) with a base-to-agent ratio of 20 to
1 with magnetic particles at a volume ratio of 15% (see Appendix A
for details). The magnitudes of external magnetic field and residual
magnetic flux density are set at 50 mT and 100 mT, respectively. In
this example, we set the volume fraction upper bound to be 0.3 and
stress upper bound to be 0.1 MPa. The objective function is given by

𝐽2(𝐮(1),… ,𝐮(𝑁𝓁 )) = max
𝓁∈{1,…,𝑁𝓁}

𝛼∈{1,…,𝑁(𝓁)
𝛼 }

𝑢(𝓁)𝛼 , (10)

where 𝑢(𝓁)𝛼 is the actual displacement at the 𝛼th control DOF under
the 𝓁th load condition; and 𝑁𝛼 is the total number of control DOFs.
The actual displacement 𝑢(𝓁)𝛼 is defined to adopt the appropriate sign,
ensuring that minimizing 𝑢(𝓁)𝛼 is equivalent to maximizing it in the
opposite direction, which aligns with the target direction. To evaluate
the actuation performance, we define an average displacement 𝑢(𝓁)out at
the control points as:

𝑢(𝓁)out =
∑

𝛼 |𝑢
(𝓁)
𝛼 |

𝑁 (𝓁)
𝛼

, 𝓁 = 1,… , 𝑁𝓁 . (11)

In Fig. 7, we showcase the first type of optimized magnetic actuator
design with two nearly rigid components moving inward for object
gripping. We set the spring stiffness to be 0.25 N/m and the external
magnetic field pointing upward. Both geometry and magnetization
distributions are optimized simultaneously. The optimized structural
shapes contain four bulky members (colored in red and blue) connected
by slender and compliant members that act as hinges, allowing for
large movements of the bulky members. These interconnected bulky
members bend inward through magnetic torques, enabling the grip-
ping action of the two nearly rigid components. We can observe that
magnetization orientations in the design exhibit a smooth transition.
This feature results in less repelling force and helps alleviate debonding
issues, making it more favorable for fabrication.

In Fig. 8, we showcase the second type of optimized magnetic
actuator design, capable of achieving dual functionalities. This actuator
can grip objects under an upward magnetic field and move the object
downward under a downward magnetic field. The spring stiffness is
set to 0.125 N/m. A design challenge we face is the need for the upper
nearly rigid component to move downward under opposite magnetic
fields. Our topology optimization approach provides a solution to this
challenging design problem by simultaneously optimizing geometry
and continuous magnetization. The top part of the design features
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Fig. 4. Letter programming of magnetic responsive ellipse: (a) Letter programming of ‘‘UIUC’’, magnetization directions, and the direction of the applied magnetic field; (b) Design
setup for the letter programming; (c) Optimized design and the deformed shapes.
Fig. 5. Comparison of the letter programming based on the (a) discrete and (b) continuous magnetization.
two sets of bulky members connected by compliant small members,
forming a non-intuitive compliant mechanism. The orange and green
bulky members bend inward, driven by their optimized magnetiza-
tion aligning with the upward external magnetic field. On the other
hand, under the downward magnetic field, the light blue and light red
6 
members undergo inward bending due to the magnetic actuation. As
a result, under both upward and downward magnetic fields, the upper
nearly rigid component moves downward due to the inward bending of
these two sets of bulky members. For the bottom part, where the target
motion direction aligns with the corresponding magnetic field direction
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Fig. 6. Design setup of magnetic actuators.

in both cases, one set of magnetized members (in dark red and blue) is
formed to achieve the desired actuation. The actuation displacements
under both load cases are the same, 𝑢(1)out = 𝑢(1)out = 1.08 mm, due to the
se of a min–max formulation. This design illustrates how topology
ptimization can facilitate intricate multi-functional designs that are
ot easily achieved through intuitions.

.3. Example 3: programmable lateral deformation of magnetic metamate-
ial

In this example, we aim to program the lateral (perpendicular to the
niaxial loading direction) deformation of magnetic metamaterials un-
er both purely mechanical and magneto-mechanical loads. As shown
n Fig. 9(a), for a periodic metamaterial, effective material responses
an be characterized using a unit cell. Consequently, we focus on
esigning a magneto-active unit cell. As shown in Fig. 9(b), within the
quare unit cell design domain with dimensions 𝐿 = 30 mm and the
ut-of-plane thickness of 𝑡 = 5 mm, we consider a scenario involving
niaxial tensile loading under periodic boundary conditions (Wang
t al., 2014b). The left-bottom corner is fixed. The effective engineering
train is determined by the boundary displacement, derived through the
verage theorem (Nemat-Nasser and Hori, 2013), and is expressed as
ollows:

𝜀𝑥𝑥 = (𝑢𝑥𝑥 − 𝑢𝑥𝑥0)∕𝐿, 𝜀𝑦𝑥 = (𝑢𝑦𝑥 − 𝑢𝑦𝑥0)∕𝐿,

𝜀𝑥𝑦 = (𝑢𝑥𝑦 − 𝑢𝑥𝑦0)∕𝐿, 𝜀𝑦𝑦 = (𝑢𝑦𝑦 − 𝑢𝑦𝑦0)∕𝐿, (12)

where 𝑢𝑥𝑥 and 𝑢𝑥𝑥0 represent the displacement in the 𝑥 direction for
node pairs located on the left and right boundaries. The definitions for
the other displacement pairs remain consistent. It is important to note
that, owing to the periodic boundary condition, the displacement pairs
exhibit a uniform displacement difference. We apply a prescribed 𝜀𝑥𝑥 to
oad the unit cell and program the lateral strain 𝜀𝑦𝑦 under both purely
mechanical and magneto-mechanical loads, respectively.

We utilize the material property characterized from Ecoflex 00-30
with embedded magnetic particles at a volume ratio of 15% (refer
to Appendix A for details). The external magnetic field and residual
magnetic flux density magnitudes are fixed at 50 mT and 100 mT,
respectively. We note that, to ensure a smooth transition of magne-
tization orientations, the magnetization filtering (Eq. (4)) takes into
account unit periodicity. For this example, we set the upper bounds for
volume fraction and stress as 0.4 and 0.5 MPa, respectively. To program
the lateral strain, we employ an error-minimization formulation. The
objective function is defined as follows:

𝐽3(𝐮(1),… ,𝐮(𝑁𝓁 )) = max
𝓁∈{1,…,𝑁𝓁}

(𝓁)

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝜀(𝓁)𝑦𝑦,𝑠 − 𝜀
∗(𝓁)
𝑦𝑦,𝑠

𝜀∗(𝓁)𝑦𝑦,𝑠

⎞

⎟

⎟

⎠

2

, (13)

𝑠∈{1,…,𝑁𝑠 } o

7 
with 𝜀∗(𝓁)𝑦𝑦,𝑠 being the target lateral strain under the 𝓁th load case and
𝑠th load step (𝑁 (𝓁)

𝑠 is the total load steps). Furthermore, to ensure
connectivity in both 𝑥 and 𝑦 direction, we apply corresponding initial
stiffness constraints (in addition to the constraints in Formulation (7)),
stated as follows:

𝜎𝑥𝑥 ≥ 𝜎min and 𝜎𝑦𝑦 ≥ 𝜎min, (14)

where 𝜎𝑥𝑥 = 𝐹𝑥𝑥∕(𝐿 ⋅𝑡) and 𝜎𝑦𝑦 = 𝐹𝑦𝑦∕(𝐿 ⋅𝑡) represent the effective nom-
inal stress in the 𝑥 and 𝑦 directions, resulting from a small mechanical
oad 𝜀𝑥𝑥 and 𝜀𝑦𝑦 (set at 0.06 in this example), respectively. The term
𝜎min denotes the lower bound for effective stress (utilized as 1.3 kPa
in this example). To quantify the error between the actual and target
performance, we introduce a normalized error for the 𝓁th load case:

Strain fit err. =

√

∑

𝑠(𝜀
(𝓁)
𝑦𝑦,𝑠 − 𝜀

∗(𝓁)
𝑦𝑦,𝑠 )2

√

∑

𝑠(𝜀
∗(𝓁)
𝑦𝑦,𝑠 )2

, (15)

In Fig. 10, we present a design capable of achieving two levels of
lateral contraction under purely mechanical and magneto-mechanical
loads. The optimized design, as illustrated in Fig. 10(a), exhibits a
seamless transition of magnetization orientations both within each
unit cell and on the interfacial area of adjacent unit cells. Observing
Fig. 10(b), it is evident that the actual lateral strain closely aligns
with the targets, demonstrating an error of less than 2.7%. In the
scenario of magneto-mechanical loading, the metamaterial experiences
initial deformation when the strain 𝜀𝑥𝑥 is zero. Throughout magneto-
echanical loading, it contracts more compared to the purely mechan-
cal loading case, mainly due to the bending of the middle yellow
embers activated by the magnetic field. The magnetic field, acting as
switch, can alternate between the two programmed curves, enabling
he metamaterial to achieve various levels of lateral contraction.
In Fig. 11, our objective is to obtain a more intricate lateral de-

ormation, where the metamaterial undergoes lateral contraction un-
er purely mechanical load and expansion under magneto-mechanical
oad. The optimized design is shown in Fig. 11(a). A complex and
non-intuitive mechanism is discovered through the simultaneous op-
timization of geometry and continuous magnetization distribution. The
optimized geometry features four cross-like members at the corners and
two arch-like members in the center. When the design is mechanically
stretched, the rotation of the cross shapes causes vertical compression
in the arch-shaped members, leading to overall lateral contraction
of the unit cell. Simultaneously optimizing continuous magnetization
alongside the geometry alters the response to lateral expansion under
magneto-mechanical load. The arch-shaped members vertically expand
due to the alignment of magnetization with the external magnetic field,
resulting in an overall lateral expansion.

To further showcase the advantage of the design with continu-
ous magnetization orientation, we perform a comparative design op-
timization with discrete magnetization parameterization in Fig. 11(b).
Compared to the design with discrete magnetization, the continuous
magnetization design exhibits smooth transitions of magnetization ori-
entations, which could help alleviate repelling forces and debonding
issues. Their performance is presented in Fig. 11(c). We observe that the
actual lateral strain of the continuous magnetization design aligns more
closely with the target. For both mechanical and magneto-mechanical
cases, the strain fitting errors (4.5% and 13.2%, respectively) for the
ontinuous magnetization design are lower than those for the discrete
agnetization design (7.8% and 21.6%, respectively). The enlarged
esign space gained from the arbitrary and continuous magnetization
rientation option successfully reduces the fitting error by around 40%.
We also conduct a strain distribution analysis for the optimized

esign in Fig. 11(a) under purely mechanical stimulus and magneto-
echanical stimuli. We present the four components (𝐸𝑥𝑥, 𝐸𝑦𝑥, 𝐸𝑥𝑦,
𝑦𝑦) of the Green–Lagrangian strain 𝐸 under the applied nominal strain
𝜀 = 0.5 in Fig. 12. From the results, we can observe that overall
f 𝑥𝑥



Z. Zhao et al.

Fig. 7. Magnetic gripper with continuous magnetization orientations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 8. Dual-functional magnetic actuators demonstrating the capability to grip and move objects under varied external magnetic fields. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Design setup of a magnetic metamaterial with programmable lateral deformation: (a) periodic metamaterial and unit cell; (b) purely mechanical and magento-mechanical
load cases.
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Fig. 10. Programming two levels of lateral contractions under purely mechanical and magneto-mechanical loads: (a) an optimized design and deformation configurations; (b)
𝜀𝑦𝑦 − 𝜀𝑥𝑥 relations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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he strain distribution can be larger than 0.1, which necessitates the
use of nonlinear finite deformation analysis in this study. Also, the 𝐸𝑥𝑥
for the horizontal members are significantly larger than other members
because they undergo horizontal mechanical stretching. Comparing
the strain distributions under the two stimuli scenarios, we find the
component 𝐸𝑦𝑦 significantly differs from the other three components
𝐸𝑥𝑥, 𝐸𝑦𝑥, and 𝐸𝑥𝑦. The vertical members (circled in Fig. 12) show
tension strain in the 𝑦 direction due to magnetic actuation, leading to
he programmed lateral expansion shown in Fig. 11.
In summary, the proposed optimization framework allows pro-

rammable control of complex magnetic metamaterials with continu-
us magnetization orientations, enabling the achievement of versatile
ehaviors.

. Prototyping and experimental demonstration

We employ the direct ink writing (DIW) fabrication method, which
as demonstrated effectiveness in the additive manufacturing of soft
aterials (Kim et al., 2018; Chen et al., 2024), to produce magnetized
arts of optimized designs shown in Figs. 7 and 8 with continuous
agnetization orientations. Notably, the DIW method is particularly
ffective for fabricating magnetic designs with continuous magneti-
ation orientations, as it allows for a seamless printing path that
an be aligned with the direction of magnetization. For the non-
agnetized parts, the soft components are produced using the mold-

asting method, while the nearly rigid components are fabricated using t

9 
polylactic acid (PLA) through fused deposition modeling 3D print-
ing. Different parts are bonded using adhesives. We experimentally
demonstrate the performance of fabricated prototypes.

4.1. Direct-ink-writing fabrication

The ink material comprises a blend of PDMS, Ecoflex 00-30 Part
B, fumed silica nanoparticles, and NdFeB magnetic particles with an
average size of 5 μm (Kim et al., 2018). The material ingredients
re thoroughly mixed using a planetary mixer. Subsequently, the ink
aterial undergoes magnetization through an impulse magnetizer. For
ispensing the magnetic ink material in a controllable manner, a cus-
omized gantry system and an air pressure-based dispenser are em-
loyed. A magnet is fixed to the nozzle to realign the magnetic particles
ithin the liquid-state soft material, ensuring the magnetization direc-
ion aligns with the printing direction. A magnetic shielding is applied
o prevent the influence of the magnet on the printed samples. The
rinting setup is shown in Fig. 13(a). It is crucial to note that the
rinting path, illustrated in Fig. 13(b), is determined based on the
ptimized design, aligning with the magnetization direction. The two
abricated prototypes are shown in Fig. 13(c). To accommodate the
rinting resolution, we scale up the design by three times and enlarge
he thin connections in the dual-motion magnetic actuator design. To
erify the printing quality, we measure the vertical member size of the
rinted magnetic gripper to be approximately 4 mm, compared to the

arget size of 3.8 mm.
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Fig. 11. Programming lateral contraction and expansion under purely mechanical and magneto-mechanical loads, respectively: (a) an optimized unit cell and deformation
configurations with continuous magnetization; (b) an optimized unit cell with discrete magnetization; (c) 𝜀𝑦𝑦 − 𝜀𝑥𝑥 relations.
The magnetization outcome in the fabricated samples is crucial
or achieving the target magneto-mechanical responses. The magne-
ized area may have an influence on the magnetization distribution
f adjacent regions, which we discuss in three aspects. First, during
IW fabrication, magnetized printed areas generate a small amount of
agnetic field that could potentially affect adjacent regions. This effect
s anticipated to be insignificant because of the small self-generated
agnetic field and the presence of fumed silica in the ink material,
hich increases the viscosity and impedes the easy rotation of magnetic
articles under a weak magnetic field. Second, for a fabricated sample,
he self-generated magnetic field from magnetized regions could impact
he magnetization field of adjacent areas due to non-zero magnetic sus-
eptibility. Our magnetostatic simulation (Appendix C) indicates that
his influence is small and possibly negligible. Third, the self-generated
agnetic field could induce initial deformation, indirectly affecting the
ulerian magnetization field of adjacent regions. Although significant
agneto-induced initial deformation is not observed in our fabricated
esign (see Fig. 13), we acknowledge that further investigation into
agneto-mechanical self-interaction is necessary for future studies.
10 
4.2. Experimental demonstration for magnetic actuator designs

We experimentally demonstrate the magneto-mechanical actuation
performances of the discovered designs under external magnetic fields
generated by a Helmholtz coil. The magnetic gripper actuation is shown
in Fig. 14(a). We define the gripping ratio as the ratio of the magneto-
actuated gripping distance of the nearly rigid components divided by
the gap distance between the nearly rigid components without the
magnetic field. Successful gripping performance is achieved with a grip-
ping ratio of 76% under an upward magnetic field of 40 mT strength.
Furthermore, we quantify the relationship between the gripping ratio
and the applied external magnetic field in Fig. 14(b). As the magnetic
field strength increases, the gripping ratio also increases.

In Fig. 15, we demonstrate the dual-functional magneto-mechanical
performance of the fabricated magnetic actuator prototype. In addition
to the gripping ratio, we define the performance metric, the moving
ratio, as the average movement distance of the nearly rigid compo-
nents under a magnetic field divided by the gap distance between the
nearly rigid components without the magnetic field. Under upward and
downward magnetic fields with 30 mT strength, we observe that the
actuator can achieve the gripping and moving target performances with
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Fig. 12. Green–Lagrangian strain distributions for an optimized design (with programmed lateral contraction and expansion) under the applied engineering nominal strain of
𝜀𝑥𝑥 = 0.5.
Fig. 13. Direct-ink-writing prototyping and experimental demonstration for an optimized design with continuous magnetization orientations: (a) printing setup; (b) printing path;
c) fabricated samples.
he designed deformation modes as shown in Fig. 8. The experimentally
easured gripping and moving ratios are 58% and 103%, respectively.
e acknowledge that the individual displacements of the two rigid
omponents are not the same, which differs from the simulation results.
his discrepancy may be caused by surface friction during actuation
nd inconsistent material property. We clarify that the focus of this
tudy is on the theoretical and computational optimization frame-
ork, and the experimental results aim to provide a proof-of-concept
emonstration. This demonstration does not contain a quantitative
omparison between experimental and numerical results due to the
eed for accurate characterization of the printing material properties.
ore comprehensive material characterization, improved fabrication
echniques, and extensive experimental investigations are planned for
uture work.
We measure the response time of the fabricated magnetic design to

e 0.1–0.3 s, which is consistent with the values reported in the liter-
ture (Kim et al., 2018). In this study, we do not focus on controlling
he response time; however, we note that the quick and controllable
esponse time of hard-magnetic soft materials can be a significant

enefit for biomedical applications.

11 
5. Conclusion

To conclude, this paper introduces an innovative design framework
for magnetic soft materials, with a parameterization scheme that op-
timizes continuous remanent magnetization orientations and material
geometry. Through three illustrative examples, we demonstrate the
effectiveness of this approach. Example 1 showcases the achievement
of letter shapes using the optimization framework. Example 2 high-
lights the capability to design functional actuators by optimizing both
continuous magnetization and geometry. In the final example, we
create magneto-mechanical metamaterials capable of controlled lateral
deformation under mechanical and magnetic stimuli. Notably, the ex-
amples underscore the advantages in performance and avoiding sharp
changes in magnetization offered by our continuous magnetization
parameterization over discrete methods. Additionally, we successfully
use the direct-ink-writing approach to fabricate and demonstrate the
performance of magnetic actuator designs with continuous remanent

magnetization orientations.
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Fig. 14. Experimental demonstration of fabricated magnetic gripper: (a) gripping performance of the magnetic gripper; (b) relationship between gripping ratio and external magnetic
ield.
Fig. 15. Experimental demonstration of fabricated dual-functional magnetic actuator.
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Extending our approach to three dimensions (3D) is an important
uture work, presenting both challenges and benefits. The computa-
ional burden increases due to more finite element degrees of free-
om, which can be mitigated using advanced computational techniques
uch as those presented in the paper (Ferrari and Sigmund, 2020).
Fabrication also poses a challenge, as our current magnetic direct-
ink-writing technique primarily supports 2D magnetization, with true
3D magnetization orientations requiring further research. However,
the 3D extension enlarges the design space and offers significant ben-
efits, such as enhanced control over magnetic robots for complex
motions, especially in biomedical applications, and the potential to de-
sign multi-functional 3D magnetic materials with increased versatility
and improved performance.

Additionally, a more comprehensive characterization and experi-
mental study for designs with continuous magnetization orientations is
an important next step. Conducting numerical simulations that incor-
porate coupled magneto-mechanical interactions with the air domain
(Moreno-Mateos et al., 2023; Rambausek and Schöberl, 2023) and the
stretch-independent consideration of remanent magnetization (Danas
nd Reis, 2024; Yan et al., 2023; Moreno-Mateos et al., 2023) will be
mperative to verify and understand the potential limitations of the
implified magnetic soft material model used for optimized designs
ith complex magnetization distributions in the current work.
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ppendix A. Constitutive model and finite element analysis for
ard-magnetic soft materials

This section provides a concise overview of the constitutive model
hat describes the magneto-mechanical behavior of magnetic soft mate-
ials under finite deformations. It is followed by a discussion of the cor-
esponding finite element analysis, which employs a total Lagrangian
ramework.
Consider a deformable solid occupying a domain 𝛺 in its unde-

ormed state, where 𝐗 represents the position vector. The solid is
ubjected to an applied displacement field 𝐮̃ on the boundary 𝛤u and
n applied traction on 𝛤t , such that 𝛤u ∪ 𝛤t = 𝜕𝛺 and 𝛤u ∩ 𝛤t = ∅. The
eformation of the solid is described by a deformation map 𝜒 , which
aps a material point 𝐗 to its corresponding position 𝐱 = 𝜒(𝐗). The
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deformation gradient tensor 𝐅 is defined as 𝐅 = ∇𝜒 , where ∇ denotes
he gradient operator with respect to the undeformed configuration.
We employ a simplified model for ideal hard-magnetic soft materials

eveloped in Zhao et al. (2019), which is described by the following
elmholtz free energy function (per unit volume in the undeformed
onfiguration):

(𝐅) = 𝑊E(𝐅) +𝑊M(𝐅) = 𝑊E(𝐅) −
1
𝜇0

𝐅𝐁r ⋅ 𝐁a, (16)

where 𝑊M(𝐅) is magnetic free energy; 𝑊E(𝐅) is the hyperelastic stored
nergy for soft matrix materials (e.g., elastomers) with magnetic parti-
les. We note that this model relies on several important assumptions: a
inear magnetic permeability identical to air or vacuum (zero magnetic
usceptibility under small magnetic field after the material is fully
agnetized), the neglect of dipole–dipole interaction, and the assump-
ion of a uniform magnetic field. Despite its simplifications, the model
hows good agreement with experimental results (Zhao et al., 2019)
nd can be solved with a relatively low computational burden, which
s favorable for iterative topology optimization.
For the mechanical part, we utilize an isotropic and incompressible

yperelastic stored energy model of filled elastomers (Leonard et al.,
020). The model can be expressed as follows:

E(𝐅) = (1 − 𝑐)𝜓
(

𝐼1
)

with 𝐼1 =
𝐼1 − 3

(1 − 𝑐)7∕2
+ 3, (17)

where 𝑐 represents the volume ratio for magnetic particles, and 𝐼1
s the first principal invariant of the right Cauchy–Green deformation
ensor 𝐂 = 𝐅T𝐅. The function 𝜓(⋅) is defined by the expression given
in (Lopez-Pamies, 2010):

𝜓
(

𝐼1
)

=
𝑁L
∑

𝑖=1

31−𝛼𝑖
2𝛼𝑖

𝜇𝑖
(

𝐼𝛼𝑖1 − 3𝛼𝑖
)

(18)

where 𝛼𝑖 (𝑖 = 1, 2,… , 𝑁L) are real-valued constants and 𝜇 =
∑𝑁L
𝑖=1 𝜇𝑖

is the second Lamé parameter under the initial state. In this study, we
consider two sets of terms in the hyperelastic stored energy function,
i.e., 𝑁L = 2. In the numerical examples in Section 3, we utilize two sets
of characterized material parameters corresponding to PDMS with a
base-to-agent ratio of 20 to 1 (Example 2) and Ecoflex 00-30 (Examples
1 and 3) containing magnetic particles at a volume ratio of 15% (c
= 0.15). For the 20 ∶ 1 base-to-agent PDMS, the material constants
are: 𝛼1 = 1.4234, 𝛼2 = 0.5001, 𝜇1 = 0.0989 MPa, and 𝜇2 = 0.0882 MPa.
For the Ecoflex 00-30 material, the material constants are: 𝛼1 = 0.9001,
𝛼2 = 1.2218, 𝜇1 = 0.0145 MPa, and 𝜇2 = 0.0144 MPa.

In the undeformed configuration, the equilibrium of the solid is
governed by the following partial differential equations with body force
neglected:

∇ ⋅ 𝐏 = 𝟎 in 𝛺,
𝐮 = 𝐮̃ on 𝛤u,
𝐏𝐍 = 𝐭 on 𝛤t ,

(19)

where 𝐏 is the first Piola–Kirchhoff stress, ∇⋅ stands for the divergence
perator in the undeformed configuration, 𝐍 is the outward unit vector
ormal to the undeformed boundary of the solid, and 𝐭 is the applied
raction.
Based on finite element theory (Belytschko et al., 2014), we con-

truct a finite element mesh 𝛺h consisting of 𝑁e elements and 𝑁n
nodes. We can express the total potential energy 𝛱(𝐮) and its stationary
condition 𝐫(𝐮) as follows:

𝛱(𝐮) =
𝑁e
∑

𝑒=1
∫𝛺𝑒

𝑊
(

𝐮𝑒
)

d𝐗 −
(

𝐟ext
)T 𝐮, (20)

and

𝐫(𝐮) = 𝜕𝛱
𝜕𝐮

(𝐮) = 𝐟int(𝐮) − 𝐟ext = 𝟎, (21)

espectively, where 𝛺𝑒 is the elementwise mesh domain, 𝐮 represents
he displacement vector, 𝐫 is the global residual vector, 𝐟 is the
int 𝐁
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nternal force vector, and 𝐟ext is the external force vector. To solve the
onlinear system of equations, the Newton–Raphson procedure with an
nexact line search method (Armijo, 1966; Zhang et al., 2017) is used
teratively. This study employs displacement-based finite elements in
D under the plane stress condition, which ensures that volumetric
ocking does not occur even for soft materials with incompressible
ehaviors.

ppendix B. Parameterization of discrete magnetization distribu-
ion using hypercube-to-simplex projection

The residual magnetic flux density in each location of the design
s chosen from a predetermined set of 𝑁m candidate residual magnetic
lux densities, denoted as 𝐁(1)

r , . . . , 𝐁
(𝑁m)
r , each pointing in a specific

irection. The residual magnetic flux density in element 𝑒 is expressed
s:

r,𝑒 =
𝑁m
∑

𝑗=1

(

𝑚(𝑗)
𝑒

)𝑝𝑚
𝐁(𝑗)
r . (22)

In the above interpolation, 𝑚(𝑗)
𝑒 represents the physical magnetization

variable which indicates the magnetization of element 𝑒: 𝑚(𝑗)
𝑒 = 1means

that the 𝑗th candidate residual magnetic flux density 𝐁(𝑗)
r is selected,

while 𝑚(𝑗)
𝑒 = 0 indicates that the 𝑗th candidate residual magnetic

flux density 𝐁(𝑗)
r is not selected. To penalize the mixture of candidate

magnetizations, we introduce a SIMP-type (Bendsøe, 1989; Bendsoe
and Sigmund, 2003) penalization power 𝑝𝑚.

To further promote discrete magnetization distribution and ac-
commodate non-magnetized regions in our designs, we adopt the
Hypercube-to-Simplex Projection (HSP) approach (Zhou et al., 2018).
The HSP approach has demonstrated robust performance based on our
prior experience (Zhao and Zhang, 2022), and its expression is provided
below:

𝑚(𝑗)
𝑒 =

2𝑁m
∑

𝑖=1
𝑠(𝑗)𝑖

(

(−1)
(

𝑁m+
∑𝑁m
𝑘=1 𝑐

(𝑘)
𝑖

) 𝑁m
∏

𝑘=1

(

𝜉
(𝑘)
𝑒 + 𝑐(𝑘)𝑖 − 1

)

)

, (23)

where 𝜉
(𝑗)
𝑒 is the intermediate variable obtained from similar filter-

ing and projection operations. The parameter 𝑐(𝑗)𝑖 = {0, 1} is the
𝑖th vertex of a 𝑁m-dimensional unit hypercube for the 𝑗th candidate
remanent magnetization vector, and 𝑠(𝑗)𝑖 is the mapped vertex of a
𝑁m-dimensional standard simplex domain:

𝑠(𝑗)𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑐(𝑗)𝑖
∑𝑁m
𝑘=1 𝑐

(𝑘)
𝑖

if ∑𝑁m
𝑘=1 𝑐

(𝑘)
𝑖 ≥ 1,

0 otherwise.
(24)

Appendix C. Impact of non-zero magnetic susceptibility on mag-
netization distribution

In this appendix, we investigate the impact of magnetized areas on
their adjacent regions due to non-zero magnetic susceptibility. We con-
duct a magnetostatic simulation to obtain the magnetization field for an
optimized magnetic design with continuous remanent magnetization.

Consider a hard-magnetic material with remanent magnetization
𝐌r = 1

𝜇0
𝐁r and permeability 𝜇 = (1 + 𝜒v)𝜇0 embedded in a large air

domain with permeability 𝜇0. We aim to determine the magnetization
distribution 𝐌 and compare it with remanent magnetization distri-
bution 𝐌r . In magnetostatics without free electric current, Maxwell’s
equations are presented as:

∇ ×𝐇 = 0 (25)

∇ ⋅ 𝐁 = 0, (26)

here 𝐇 is magnetic field strength, and 𝐁 is magnetic flux density. The
onstitutive relations for magnetic fields are given by:

= 𝜇𝐇 + 𝜇 𝐌 . (27)
0 r
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Fig. 16. Magnetostatic simulation for a pre-magnetized hard-magnetic material with continuous remanent magnetization: (a) problem setup and finite element mesh; (b) normalized
rror for total magnetization 𝐌 and remanent magnetization 𝑟 with increasing magnetic susceptibility 𝜒v; (c) comparison of magnetization distributions when 𝜒v = 0.063.
Assuming the magnetic field strength is derived from a scalar po-
ential 𝜙, we have:

= −∇𝜙. (28)

The Ampère’s law can be automatically satisfied. Substituting into
auss’s law for magnetism, we obtain:

∇ ⋅ (𝜇∇𝜙) = −∇ ⋅ (𝜇0𝐌r ). (29)

To solve the above equation, we use the finite element method. The
eak form of the equation is used for numerical computation. As shown
n Fig. 16(a), the domain is discretized into structured quadrilateral el-
ments, with a finer mesh for the magnetic material and a coarser mesh
or the air domain to save computational time while ensuring good
ccuracy. We set the magnetic scalar potential 𝜙 zero on the air domain
oundaries to approximate the far-field behavior. We experimentally
easure a direct-ink-writing fabricated sample using a vibrating sample
agnetometer. The measured remanent magnetization, 𝐌r , is 33.2

kA/m and initial magnetic susceptibility, 𝜒v, is 0.063. We solve for the
boundary value problem and obtain the magnetization field using the
following relation

𝐌 = 𝜒v(−∇𝜙) +𝐌r . (30)

We use the following normalized error metric to compare two vector
fields:

Normalized err. =
‖𝐌 −𝐌r‖2

‖𝐌r‖2
(31)

We take the left part of the magnetic design shown in Fig. 7(b) as
n example for investigation. We vary the magnetic susceptibility 𝜒v
ithin the range of 0.01 to 0.2, typically applicable for hard-magnetic
aterials (see Danas and Reis (2024)). In Fig. 16(b), the normalized
rror increases with the rising of 𝜒v, but remains small (<0.1). We
lot the magnetization orientation distributions in Fig. 16(c) with
ur experimentally measured data 𝜒v = 0.063, and observe that the
agnetization orientation is almost the same and the normalized error
s 0.3. Based on the magnetization simulation results in this appendix,
e conclude that the impact of magnetized areas on their adjacent
egions due to non-zero magnetic susceptibility is small and can be
ssumed to be negligible. This assumption is often used in modeling
or hard-magnetic soft materials (Zhao et al., 2019; Yan et al., 2023;
Moreno-Mateos et al., 2023).
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