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Abstract—Sepsis is a life-threatening organ malfunction caused
by the host’s inability to fight infection, which can lead to
death without proper and immediate treatment. Therefore, early
diagnosis and medical treatment of sepsis in critically ill pop-
ulations at high risk for sepsis and sepsis-associated mortality
are vital to providing the patient with rapid therapy. Studies
show that advancing sepsis detection by 6 hours leads to earlier
administration of antibiotics, which is associated with improved
mortality. However, clinical scores like Sequential Organ Failure
Assessment (SOFA) are not applicable for early prediction, while
machine learning algorithms can help capture the progressing
pattern for early prediction. Therefore, we aim to develop a
machine learning algorithm that predicts sepsis onset 6 hours
before it is suspected clinically. Although some machine learning
algorithms have been applied to sepsis prediction, many of them
did not consider the fact that six hours is not a small gap.
To overcome this big gap challenge, we explore a multi-subset
approach in which the likelihood of sepsis occurring earlier
than 6 hours is output from a previous subset and feed to the
target subset as additional features. Moreover, we use the hourly
sampled data like vital signs in an observation window to derive
a temporal change trend to further assist, which however is often
ignored by previous studies. Our empirical study shows that both
the multi-subset approach to alleviating the 6-hour gap and the
added temporal trend features can help improve the performance
of sepsis-related early prediction.

Index Terms—Sepsis, Septic Shock, Early Prediction, Machine
Learning, Multi-Subset Approach, Temporal Change Trend

I. INTRODUCTION

Sepsis is a major public health concern. It is a life-

threatening disease caused by a host’s failed response to an

infection [1]. The immune system of a sepsis patient becomes

aggressive in its protection against infection in the body,

which causes organ dysfunction and potential organ damage.

Sepsis is still a common problem in modern medical settings,

particularly Intensive Care Units (ICUs). According to a global

survey conducted in 2018 [2], roughly 13.6% to 39.3% of

patients admitted to ICU are impacted by sepsis. This share is

29.5% worldwide. Patients with sepsis also experience longer

and more expensive hospital stays. For patients that survive,

sepsis can cause an increased risk of permanent organ damage,

and physical disability [3].

Early treatment before the formation of sepsis in patients has

been shown to improve the chances of successfully treating

and preventing the disease [4]. Early care can prevent 80%

of sepsis-related deaths, and the chances of survival drop by

8% every hour if action is not taken [5]. In particular, studies

have shown that treating sepsis 6 hours earlier before the onset

significantly improves the patient’s chance of recovering [6].

Therefore, this work focuses on the problem of early sepsis

prediction, that is, 6 hours in advance. Several clinical scores

such as SOFA have been developed to indicate the onset of

sepsis with clinical-based data [1], [7]. These measures are

helpful when sepsis is onset already but have been limited for

early prediction. For early sepsis onset prediction, predictions

derived using supervised machine learning models such as

Random Forest or Long Short-Term Memory (LSTM) models

have vastly outperformed clinical scores [8].

Because of this, there has been ongoing research in de-

veloping machine learning predictive models to detect the

onset of sepsis early before it is suspected clinically. Some

studies have used traditional machine learning models such as

Logistic Regression and Random Forest [9], [10]. However,

these studies did not capture the progressing temporal pattern

that can be useful for early sepsis prediction. Recently, deep

learning models have also been applied in sepsis prediction,

such as Recurrent Neural Networks (RNNs) and Convolutional

Neural Networks (CNNs) [11]. Compared with traditional

machine learning methods, deep learning often provides better

prediction performance. However, training deep models can

be tedious to obtain the optimal subsets and parameters. In

addition, none of them has considered the fact that 6 hours

is not a small gap. Without the progressing information for

the next 6 hours before onset, it is challenging to make an

accurate prediction, which is explored in this work.

First, it should be noted that training successful deep neural

networks (DNNs) is expensive in terms of time, computational

resources, and data. We aim to avoid using DNNs but still

capture the progressing temporal change pattern for early

sepsis prediction. We accomplish this by computing the hourly

changes in feature values like heart rate within a given observa-

tion window. Doing this will allow us to consider the temporal

changes in the feature even in a traditional machine learning

model, where features are often considered independently.

Second, we propose a multi-subset approach to close the 6-

hour gap. The contributions of this paper can be summarized

as follows.

• We propose to generate a series of delta values to capture

the temporal change trend, which is incorporated into the

feature set for training and prediction.

• We develop a multi-subset approach in which the likeli-
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hood of sepsis arising earlier than 6 hours are generated

from the previous subset and provided to the target subset

as additional features to close the big 6-hour gap.

• Based on the proposed method, we apply an economical

machine learning algorithm, that is XGBoost [12], to the

trauma patients from the year 2012 to 2019 at ICUs of

UW Harborview Center, and obtain an AUROC of 0.7906

for early sepsis prediction and that of 0.9199 for early

septic shock prediction, better than a deep learning model

due to limited amount of sepsis cases.

II. RELATED WORK

Various machine learning models have been studied for

sepsis prediction as follows.

A. Traditional Models

Some of the research done in sepsis prediction used simple

traditional machine learning models. For example, Zabihiet et

al. [13] used a wrapper feature selection algorithm based on

XGBoost to extract five different sets of features from clinical

data to predict sepsis 6 hours before onset. Both valid and

missing clinical data are used to derive the relevant attributes.

Afterward, an ensemble model comprised of five XGBoost

models is utilized to predict sepsis. In addition, Firoozabadi

et al. [14] created models to predict sepsis as part of the

PhysioNet/CinC Challenge 2019. In this study, the authors

took hourly samples of 40 features from each patient’s data

from three different ICUs. They processed the data to remove

outliers, filled in missing data, and replaced the remainder

with the population average. They discovered similarly that

an ensemble of bagged decision trees is effective for early

sepsis prediction 6 hours before onset. A similar observation

is shown by Fu et al. [15].

However, these models did not consider that the temporal

change trend can be helpful for early sepsis onset prediction,

and missing 6 hours of progressing information is challenging

to make an accurate prediction. In this work, we address both

by adding temporal change trend features and proposing a

multi-subset approach.

B. Deep Learning Models

Deep learning models have also been applied to address

specific challenges of sepsis prediction. For example, Gilbert-

son et al. [16] used the Principal Component Analysis (PCA)

to reduce the dimensionality of patient data before applying a

simple RNN. The PCA method reduced the original 40 patient

features to 10 main components. In addition to this, a fast

Sequential Organ Failure Assessment (qSOFA) score generates

one additional characteristic. These 11 characteristics are then

loaded into a DNN classifier. However, the characteristics

connected with each hour are examined independently. Later,

Tsang et al. [17] applied LSTM that allows consideration

of past time-step data embeddings within the prediction of

the current time-step to capture the temporal pattern. Most

recently, Shah et al. [18] proposed a DNN model to predict

sepsis 6 hours in advance. The DNN model is used because of

its feature learning capacity and its property of approximating

functions.

Better sepsis onset prediction performances were observed

using these DNNs. However, none of them has considered

addressing the 6-hour gap challenge, which is explored in this

paper. Moreover, training DNNs is often time, resource, and

data expensive, which is avoided in this work.

C. Temporal Change Trend

In 2019 and 2021, Brekke et al. [19] and Mahta et al.

[20] respectively proved that the temporal trend of vital signs

and white blood cells could improve the performance of

deterioration prediction by studying the retrospective cohort.

In the machine learning area, Orphanou et al. [21] employed

Temporal Association Rules (TAR) combined with Naı̈ve

Bayes classifiers for coronary heart disease diagnosis. They

showed that higher levels of temporal abstraction improved

the prediction performance when long sequences and distant

events are critical.

In the sepsis-related prediction area, Ghosh et al. [22]

adapted temporal patterns resulting from the contrast pattern

mining approach in conjunction with Coupled Hidden Markov

Model (CHMM) to predict septic shock 30-60 minutes prior to

onset. They demonstrated that this performance is significantly

higher than applying SVM directly on data or using CHMM

with continuous multivariate data. Nonetheless, the 30-60

minutes prediction window is too narrow to let the doctor

react.

III. THE PROPOSED METHOD

We assume that the Electronic Health Records (EHRs) for

a single patient can be represented as a t × f matrix X .

There are t number of rows, where each row represents an

hourly observation of a patient’s features and where the t-

th observation is the most recent. There is also f number

of columns, where each column represents a physiological

feature. Let xt,f denote the numerical entry in X for time

t and feature f .

A. Multi-Subset Approach

We denote the ground truth§ for a sepsis incident as ŷ that

has an indication of onset hour t. More than often, the hourly

physiological patient data contain missing values, which are

imputed and filled in. In order to train the model to predict

the onset of a sepsis incident h hours into the future, for each

patient, we first shift the values in ŷ earlier by h hours and

call this ŷh. This step creates a new target feature that will

occur in h hours. The leftover values on the table with no

ground truth values are dropped from the data. This step is

illustrated in Table I when we set h = 3. From this example,

we can observe that if we want to predict sepsis event onset

in 3 hours, using observed patient data up to t = 1, the onset

prediction for t = 4 should be 0, and using data up to t = 2,
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TABLE I
IN THIS EXAMPLE, THE TABLE ON THE LEFT CONTAINS THE GROUND

TRUTH FOR A SEPSIS INCIDENT AT TIME t. IN ORDER TO PRODUCE NEW

GROUND TRUTH VALUES FOR AN INCIDENT AT TIME t+ h, THE ŷ VALUES

ARE SHIFTED BY h = 3 HOURS. THE LEFTOVER ROWS ARE DROPPED.

t ŷ

1 0

2 0

3 0

4 0

5 1

6 1

→

t ŷ3
1 0

2 1

3 1

4 -

5 -

6 -

→

t ŷ3
1 0

2 1

3 1

TABLE II
PROBABILITY OF A SEPSIS INCIDENT IN h = 3 HOURS. FEATURES x1 , x2 ,
..., xf ARE USED TO TRAIN A MODEL WITH THE GROUND TRUTH LABEL

ŷh , AND THE MODEL IS THEN USED TO PREDICT THE PROBABILITY OF

ONSET IN h HOURS AS yh .

t x1 x2 ... xf

1 98 102 ... 30

2 95 107 ... 32

3 98 111 ... 35

4 100 109 ... 40

5 97 109 ... 41

+

ŷ3
0

0

0

0

1

→

y3
0.16

0.24

0.32

0.49

0.61

the prediction of the onset of a sepsis incident for t = 5 should

be 1.

After shifting the label for h hours to predict the onset of an

incident in h hours, for a certain hour t, we can use only the

xt,f values across all of the features, and the new ground truth

label ŷh to train a classification model for the onset of a sepsis

incident that will be able to make a prediction on new patients

and provide the probability of the event in h hours as yh. This

is illustrated as an example in Table II. Specifically, given the

hard label of an incident, the trained model can provide the

probability of the onset of such an event at each time stamp,

which inspires our multi-subset approach.

To close the 6-hour gap of missing progressing information,

we can include the probability of a sepsis incident in 3 hours

as a new feature (i.e., one subset) to predict the incident

in 6 hours in the target subset as shown in Table III. This

procedure is also illustrated in Fig. 1. In a previous subset

(e.g., Subset 1 in Fig. 1), we use the observed data up to the

prediction time to determine the probabilities that a patient will

experience a sepsis incident between the current time t and the

sepsis incident onset time t+6. For example, we can use the

§The onset of a sepsis incident label has been given using the CDC’s adult
sepsis surveillance criteria with prior modifications utilizing readily obtainable
EMR data to improve specificity for the trauma population. It is required
that all of the following be present: 1) an order for a new IV or qualifying
oral antibiotic, not administered within the previous 48 hours and excluding
antibiotics used for surgical prophylaxis; 2) a body tissue culture was ordered
within 48 hours of antibiotic initiation; 3) a qualifying antibiotic was sustained
for at least 4 consecutive days, or until death or discharge; and 4) a 2-point
increase in the maximum daily sequential organ failure assessment (SOFA)
score occurred within 3 days before and 3 days after the qualifying culture.
The criteria are restricted to hospital-acquired infections, which are defined
as cultures obtained on or after the third hospital day. Two subgroups were
independently adjudicated before final sepsis assignments were made: culture-
negative sepsis and patients meeting partial but not full criteria.

TABLE III
A TOY EXAMPLE OF CALCULATING THE PROBABILITY OF ONSET IN 6

HOURS WITH AN ADDITIONAL FEATURE OF y3 , THAT IS, THE PROBABILITY

OF ONSET AT h = 3 OUTPUT FROM A PREVIOUS SUBSET.

t x1 x2 ... xn y3
1 98 102 ... 30 0.16

2 95 107 ... 32 0.24

+

ŷ6
0

1

→

y6
0.46

0.64

Fig. 1. Timeline of subsets used to close the prediction gap

observed data to determine the probability of the onset of a

sepsis incident at t+ 3. Then, this probability will be treated

as an additional input feature in the target subset (e.g., Subset

2 in Fig. 1) of our approach. After that, the large 6-hour gap

can be shrunk using an in-between measure with a smaller

gap of 3. We can further shrink the gap by providing sepsis

incident probabilities of each hour in-between to feed more

features in the target subset, which is using multiple subsets

to close the 6-hour gap.

B. Delta Values for Temporal Change Trend

It should be noted that the same absolute value for different

patients can have totally different meanings, while changes

over time can share the same indication. Therefore, we use

delta values to capture the changes in feature values over

time, which can provide valuable temporal patterns for sepsis

prediction. The observation window size as shown in Fig. 1,

denoted by w, is an important parameter that determines the

duration of time over which the delta values are computed.

To compute the delta values, we create a new feature,

denoted by f ′, which is computed as the difference between

the value of f at timestamp t and the value of f at the

previous timestamp t − 1 within the observation window w.

In other words, the value of f ′ at timestamp t is calculated as

xt,f ′ = xt,f − xt−1,f . This computation is repeated for each

feature and each timestamp within the observation window.

For example, if the heart rate at timestamp 11 is 70 beats per

minute (bpm) and the heart rate at timestamp 10 is 75 bpm,

the delta value for the heart rate at timestamp 11 would be -5

bpm.

C. Statistical Values for Temporal Change Trend

We leverage delta values to capture the temporal change

trend within the observation window w. We can also in-

corporate statistical information computed from a feature f
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Fig. 2. An overview of our proposed method.

within the same time window to describe the feature distri-

bution. Specifically, for each feature f within the observation

window w, we can calculate six statistical values based on

the sequence S = [xt−w,f , xt−w+1,f , xt−w+2,f , ..., xt,f ]: the

mean, minimum, maximum, standard deviation, skewness, and

kurtosis. Variance, which is the expectation of the squared

deviation, measures how spread out the data is, while skewness

is a measure of the asymmetry of the variable’s probability

distribution, and kurtosis measures the tailedness of the proba-

bility distribution. The formulas for calculating these statistical

values are as follows:

• Mean value: x = 1
N

∑N

i=1 xi

• Standard deviation: σ =
√

1
N

∑N

n=1(xi − x)2

• Kurtosis: K = 1
N

∑N

i=1
(xi−x)4

σ4

• Skewness: Sk = 1
N

∑N

i=1
(xi−x)3

σ3

By incorporating both delta values and statistical informa-

tion, our model is better equipped to capture the temporal

change trend for early sepsis prediction. The overall process

is illustrated in Fig. 2. First, delta and/or statistic values are

generated. Then, a 3-hour prediction is generated to address

the prediction gap and added as a previous subset for the target

6-hour prediction.

IV. EXPERIMENTS

To sufficiently demonstrate the proposed method, we apply

it to two important sepsis-related tasks, that is, early sepsis

onset prediction and early septic shock prediction. we con-

duct extensive experiments using the state-of-art traditional

machine learning model, i.e., XGBoost [12], to justify the su-

periority of our proposal and answer the following questions:

• What are the benefits of using multi-subsets in the devel-

opment of sepsis and septic shock prediction models?

• How do delta and statistic values that incorporate the

temporal change trend affect the effectiveness of the

prediction models for sepsis and septic shock?

• Which features are more important for early sepsis or

septic shock prediction?

A. Data Description

To evaluate the proposed method, we use trauma pa-

tients’ data from UW Harborview Medical Center. It contains

prospectively collected, de-identified data from injured adults

ages 16 years and older, who were admitted to the ICU be-

tween 2012 to 2019 and required at least three days of invasive

mechanical ventilation. This data includes physiological data

on 2,802 patients, 486 (17%) were identified to have sepsis

during the first 14 days of admission. The patient data is

sampled at different time intervals. Vital signs, for example,

were sampled hourly, whereas laboratory tests were sampled

daily or less frequently. As such, there are some features with

many missing values. We address missing values using carry-

forward imputation.

To find which features would be more useful for early

sepsis prediction, we set groups of features that share com-

mon attributes. They are vital signs, static profile, cumulative

exposures, and laboratory results, where static profile includes

initial physiology from the first 48 hours and patient factors,

and cumulative exposures are the summary of events. These 4

groups are denoted as G1, G2, G3, and G4. The detailed list

is shown in the Appendix.

B. Imbalanced-Class Problem in Data

One of the primary problems with the sepsis patient data we

received is predicting an outcome that occurs in a minority of

the study population using an hour-by-hour framework. This

can be a problem because it leads to imbalanced classes in the

data. In this case, the outcome of interest, which is a sepsis

event, occurs in only 17% of the patients, making it a minority

class. When there is a class imbalance in the data, it can lead to

biased model performance. Approximately 1.84% of the hour-

by-hour records in the data have a sepsis indicator, while the

rest does not have it. Most of the patients admitted to the ICU

never develop sepsis. Some patients develop sepsis within an

hour or two, and some develop sepsis after a more extended

period.

To account for the imbalanced nature of the data, we use

the following methods. First, we only include hourly patient

records from day 2 until day 14 of the patient’s stay in the ICU.

This is because the scope of this study is patients developing
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sepsis after being in the ICU. Limiting the data will reduce the

number of hourly records with no sepsis that does not need

to be included. Second, if a patient has an hourly record with

sepsis, we remove all the subsequent hourly records for that

patient. For example, if we see a patient record with sepsis at

4:00, all observations after that time are removed. It is because

that we are only interested in the early sepsis onset prediction,

that is, the first onset. In addition, to further account for the

imbalance of data, we use a random oversampling of 0.8. To

illustrate this further, suppose there are 20 minority samples

and 1000 majority samples. Random oversampling duplicates

the 20 minority samples without replacing them until there

are 800 samples. As a result, there are 800 minority samples

and 1000 majority samples. Finally, we use random under-

sampling to make the number of minority class data the same

as the number of majority class data in the sample.

C. Evaluation Metrics

To evaluate the performance of the proposed approach, we

use metrics of Area Under the Receiver Operator Curve (AU-

ROC), Sensitivity, and Specificity, where the average perfor-

mance under 5-fold cross-validation is reported. Specifically,

Sensitivity = TP
TP+FN

, where TP is the number of true

positives and FN is the number of false negatives, is defined

as a measure of how well the model can recognize positive

examples.

At the same time, Specificity = TN
FP+TN

is the fraction of

real negatives properly detected by the model. Finally, AUROC

is a useful metric for evaluating the performance of a binary

classifier because it provides a single number that summarizes

the classifier’s ability to discriminate between positive and

negative samples over all possible decision thresholds.

D. Effect of Multi-Subset Approach

Considering the feature selection property of XGBoost that

can benefit from more features, we use the largest set of

features (i.e., Group 1+2+3+4 with delta and statistic values in

the observation window, which is set to w = 6) to demonstrate

the effect of our multi-subset approach. In the comparison,

we use ‘1 Subset’ to denote the method using only the target

subset, ‘2 Subsets’ to denote the method adding the probability

of sepsis in 3 hours to the target subset, and ‘6 Subsets’ to

denote the method adding probabilities of sepsis in 1 hour, 2

hours, 3 hours, 4 hours, and 5 hours to the target subset.

TABLE IV
PERFORMANCE COMPARISON OF MULTI-SUBSETS WITH GROUP 1+2+3+4

DELTA AND STATS FOR SEPSIS AND SEPTIC SHOCK PREDICTION.

Name AUROC Sensitivity Specificity

Sepsis

1 Subset 0.7720 0.7090 0.6960

2 Subsets 0.7790 0.6990 0.7220

6 Subsets 0.6180 0.6210 0.5490

Septic Shock

1 Subset 0.7906 0.6000 0.6188

2 Subsets 0.8219 0.6971 0.7587

6 Subsets 0.8781 0.7943 0.7829

Table IV compares the performance for both the tasks of

early sepsis prediction and early septic shock prediction. We

can observe that our multi-subset approach is definitely helpful

for the task of early septic shock prediction, where adding

the probability of shock in 3 hours improves the performance

compared to using only the target subset and adding more

probabilities can further improve. However, this is not the case

for early sepsis prediction. In the experiment, we observed

that more features does not mean more choices of features for

XGBoost that can help improve the performance. For the task

of early sepsis prediction, we find that using only Group 1

(i.e., vital signs) and Group 2 (i.e., static profile) features are

more helpful as shown in Table V. More importantly, we can

observe the similar phenomenon that adding the probability

of sepsis in 3 hours improves the performance compared to

using only the target subset and adding more probabilities can

further improve.

TABLE V
PERFORMANCE COMPARISON OF MULTI-SUBSETS WITH GROUP 1+2

DELTA AND STATS FOR SEPSIS PREDICTION.

Name AUROC Sensitivity Specificity

1 Subset 0.6072 0.5741 0.5917

2 Subsets 0.7111 0.6420 0.6695

6 Subsets 0.7906 0.7222 0.7251

Fig. 3 further demonstrates the observation that for early

sepsis prediction, certain features are not helpful and even

harmful. In general, the model with more subsets performs

better than the model that has only 1 subset. However, we

find that the group combinations with G3 and G4 may affect

the result lower than fewer subsets. For example, Fig. 3 shows

the result of different group combinations with delta and stats

using different subsets. Group 1+2 and Group 1+3 are getting

better when adding subsets, but Group 1+3+4 is getting lower,

and Group 1+2+3+4 is getting higher first, then getting lower.

This is because that G4 has much more missing values than

other groups, which may mislead the model learning.

Fig. 3. AUROC comparison over different groups with delta & stats and
different subsets for sepsis onset prediction.
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E. Effect of Delta and Stats

In this sub-section, we evaluate the effect of using delta,

stats, or a combination of delta and stats in the prediction

for sepsis and septic shock. We take the best feature group

combination for each task with ‘6 Subsets’ to compare, that

is, Group 1+2 for sepsis and Group 1+2+3+4 for septic shock,

respectively.

TABLE VI
PERFORMANCE COMPARISON WITH GROUP 1+2 FOR SEPSIS AND GROUP

1+2+3+4 FOR SEPTIC SHOCK USING ‘6 SUBSETS’.

Name AUROC Sensitivity Specificity

Sepsis

Baseline 0.7495 0.6667 0.7277

Delta 0.7629 0.6728 0.7192

Stats 0.7904 0.7119 0.7170

Delta and Stats 0.7906 0.7222 0.7251

DNN 0.6869 0.4845 0.7824

Septic Shock

Baseline 0.9199 0.8457 0.8037

Delta 0.7929 0.7486 0.7021

Stats 0.7943 0.7314 0.7319

Delta and Stats 0.8781 0.7943 0.7829

DNN 0.6098 0.3143 0.7734

Table VI shows the results. First, for sepsis prediction, we

can observe that both AUROC and Sensitivity are increasing

when incorporating delta and stats. This indicates that using

delta and stats can help improve the detection performance

of sepsis patients, while the baseline can be biased to non-

sepsis patients with a way higher Specificity compared to

the Sensitivity. This demonstrates that using temporal change

trend is helpful for early sepsis prediction.

For the task of septic shock, we have a different observation.

Although the combination of Delta and Stats provides better

performance compared to using only one of them, the baseline

without using any additional temporal trend features gives the

best performance. In fact, this is a reasonable observation,

since shock as a sudden event is more related to the most

recent conditions of the patient, while sepsis can be more

observable using the progressing status of infections. In this

case, using multiple subsets to shrink the 6-hour gap is more

effective.

Moreover, considering the out-performance of DNNs, we

apply RNN to the temporal features and DNN to static

features. Then, we concatenate them for sepsis and septic pre-

diction using the same setup. However, DNN performs worse.

The potential reason is that DNNs often require sufficient

training data to be successful, while we have very limited

amount of sepsis cases, resulting in models significantly biased

to Specificity.

F. Model Explanation

To further verify if these probabilities added from the

previous subsets are helpful for making predictions, we apply

LIME [23], a tool that attempts to explain the weights in a

predictive model, and check the importance of features for

sepsis onset prediction. Specifically, we randomly take one

sepsis sample from the data and apply LIME to get the

importance of each feature for both models of ‘2 Subsets’ and

‘6 Subsets’ shown in Table VII. The top-10 important features

of each model are listed.

TABLE VII
TOP FEATURES FROM LIME

3 Hour Probability Included

Feature Value

vent 0.126

fio2-3 -0.078

creatinine-3 -0.076

wbc-5 -0.063

StrongIon-6 0.057

sepsis-subset-3hr 0.055

creatinine-5 0.052

uop-6 0.046

stat-mean-temp -0.045

bicarb-2 0.027

1-5 Hour Probabilities Included

Feature Value

sepsis-subset-3hr 0.153

sepsis-subset-2hr 0.105

creatinine-2 -0.048

wbc-4 -0.044

creatinine-4 -0.043

fio2-2 0.040

fio2-5 0.039

StongIon-6 -0.034

bicarb-3 -0.031

bicarb-2 -0.027

The results show that the probability of sepsis occurring in 3

hours contributed significantly to the prediction of sepsis onset

for the method using 2 subsets. Similarly, the likelihood of sep-

sis occurring in 3 hours and 2 hours contributed significantly

to the prediction for the method using 6 subsets. Moreover,

most of the rest top features are delta values. This further

demonstrates our proposal of shrinking the gap and using

the temporal change trend. More importantly, we can observe

that the delta values from some features like ‘creatinine‘ are

showing significant contributions in the explanations. This

information can be further used by clinicians to understand

or predict sepsis better.

V. CONCLUSION

In this work, we present an economical machine learning

approach for sepsis related early prediction, which is way

less expensive in terms of data, resources, and training time

compared to deep learning models. First, to do early prediction

in 6 hours, we propose a multi-subset approach to close the

gap of missing 6 hours of patient data. Moreover, to capture

the temporal change trend that can share similar meaning

for different patients, we construct a series of delta and

statistic values. Our extensive experiments demonstrate the

effectiveness of these two components considering different

scenarios, which is also shown in the model explanation. In

the future, we would like to do a comprehensive explanation

of the model so that it can provide more valuable data (e.g.,

changes of ‘creatinine’ are important), which in turn can

identify discriminatory features to monitor and screen of sepsis

related events for clinicians.
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Ñamendys-Silva, I. Martin-Loeches, M. Leone, M.-N. Lupu, J.-L. Vin-
cent et al., “Sepsis in intensive care unit patients: worldwide data from
the intensive care over nations audit,” in Open forum infectious diseases,
vol. 5, no. 12. Oxford University Press US, 2018, p. ofy313.

[3] C. Jones and R. Griffiths, “Mental and physical disability after sepsis.”
Minerva anestesiologica, vol. 79, no. 11, pp. 1306–1312, 2013.

[4] H. I. Kim and S. Park, “Sepsis: Early recognition and optimized
treatment,” Tuberculosis and respiratory diseases, vol. 82, no. 1, pp.
6–14, 2019.

[5] A. Kumar, D. Roberts, K. E. Wood, B. Light, J. E. Parrillo, S. Sharma,
R. Suppes, D. Feinstein, S. Zanotti, L. Taiberg et al., “Duration of
hypotension before initiation of effective antimicrobial therapy is the
critical determinant of survival in human septic shock,” Critical care

medicine, vol. 34, no. 6, pp. 1589–1596, 2006.
[6] R. L. Gauer, “Early recognition and management of sepsis in adults: the

first six hours,” American family physician, vol. 88, no. 1, pp. 44–53,
2013.

[7] R. A. Balk, “Systemic inflammatory response syndrome (sirs) where did
it come from and is it still relevant today?” Virulence, vol. 5, no. 1, pp.
20–26, 2014.

[8] M. Vollmer, C. F. Luz, P. Sodmann, B. Sinha, and S.-O. Kuhn,
“Time-specific metalearners for the early prediction of sepsis,” in 2019

Computing in Cardiology (CinC). IEEE, 2019, pp. 1–4.
[9] F. Mahmud, N. S. Pathan, and M. Quamruzzaman, “Early detection of

sepsis in icu patients using logistic regression,” in 2019 3rd International

Conference on Electrical, Computer & Telecommunication Engineering

(ICECTE). IEEE, 2019, pp. 173–176.
[10] ——, “Early detection of sepsis in critical patients using random forest

classifier,” in 2020 IEEE Region 10 Symposium (TENSYMP). IEEE,
2020, pp. 130–133.

[11] X. Li, G. A. Ng, and F. S. Schlindwein, “Convolutional and recurrent
neural networks for early detection of sepsis using hourly physiological
data from patients in intensive care unit,” in 2019 Computing in

Cardiology (CinC). IEEE, 2019, pp. Page–1.
[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in Proceedings of the 22nd acm sigkdd international conference on

knowledge discovery and data mining, 2016, pp. 785–794.
[13] M. Zabihi, S. Kiranyaz, and M. Gabbouj, “Sepsis prediction in intensive

care unit using ensemble of xgboost models,” in 2019 Computing in

Cardiology (CinC). IEEE, 2019, pp. Page–1.
[14] R. Firoozabadi and S. Babaeizadeh, “An ensemble of bagged decision

trees for early prediction of sepsis,” in 2019 Computing in Cardiology

(CinC). IEEE, 2019, pp. Page–1.
[15] M. Fu, J. Yuan, and C. Bei, “Early sepsis prediction in icu trauma

patients with using an improved cascade deep forest model,” in 2019

IEEE 10th International Conference on Software Engineering and

Service Science (ICSESS). IEEE, 2019, pp. 634–637.
[16] E. H. Gilbertson, K. M. Jones, A. M. Stroh, and B. M. Whitaker,

“Early detection of sepsis using feature selection, feature extraction,
and neural network classification,” in 2019 Computing in Cardiology

(CinC). IEEE, 2019, pp. Page–1.
[17] G. Tsang and X. Xie, “Deep learning based sepsis intervention: the mod-

elling and prediction of severe sepsis onset,” in 2020 25th international

conference on pattern recognition (ICPR). IEEE, 2021, pp. 8671–8678.
[18] N. Shah, J. Bhatia, N. Vasavat, R. Desai, and P. Sonawane, “Early sepsis

detection using machine learning and neural networks,” in 2021 2nd

Global Conference for Advancement in Technology (GCAT). IEEE,
2021, pp. 1–6.

[19] I. J. Brekke, L. H. Puntervoll, P. B. Pedersen, J. Kellett, and M. Brabrand,
“The value of vital sign trends in predicting and monitoring clinical de-
terioration: A systematic review,” PloS one, vol. 14, no. 1, p. e0210875,
2019.

[20] A. Mahta, M. E. Reznik, B. B. Thompson, L. C. Wendell, and K. L.
Furie, “In reply to the letter to the editor regarding” association of
early white blood cell trend with outcomes in aneurysmal subarachnoid
hemorrhage”,” World neurosurgery, vol. 154, p. 205, 2021.

[21] K. Orphanou, A. Dagliati, L. Sacchi, A. Stassopoulou, E. Keravnou,
and R. Bellazzi, “Incorporating repeating temporal association rules in
naı̈ve bayes classifiers for coronary heart disease diagnosis,” Journal of

biomedical informatics, vol. 81, pp. 74–82, 2018.
[22] S. Ghosh, J. Li, L. Cao, and K. Ramamohanarao, “Septic shock

prediction for icu patients via coupled hmm walking on sequential
contrast patterns,” Journal of biomedical informatics, vol. 66, pp. 19–31,
2017.

[23] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and

data mining, 2016, pp. 1135–1144.

APPENDIX

A. Feature Groups

1 G1 (Vital Signs)*:

• Heart Rate (hr)

• Diastolic Blood Pressure (dbp)

• Mean Arterial Pressure (map)

• Respiratory Rate (rr)

• Temperature (temp)

• FIO2 (fio2)

G2 (Static Profile):

• Age

• Sex (male or female)

• Transfer from another hospital (transfer)

• Mechanism (Injury Mechanism)

• Head Injury

• ED Systolic Blood Pressure (Initial.ED.SBPCat)

• Reverse Shock Index (rSICat)

• Max Base Deficit Cat (baseDef48Cat)

• Lactate Category (lactate48Cat)

• Red blood cell count (rbc48)

• Crystalloids count (crys48Cat)

• Apache

• Antibiotics 48 (abx48)

• Surgery 48 (surg48)

• ER Disposition (er dispCat)

G3 (Cumulative Exposures):

• IV Fluid BOLUS (bolusSum) *

• Red Blood Cell Count (RBCsum)

• Days in Ventilator (ventDaySum)

• Days in Surgery (surgSum)

• Hours in Surgery (surgHours)

G4 (Laboratory Result):

• Bicarbonate (bicarb) *

• Acidosis (acidosisCat)

• Strong Ion (StrongIon) *

• Blood Urea Nitrogen (bun) *

• Creatinine (creatinine) *

• White blood cell count (wbc) *

• Urine Output (uop) *

1* means this feature is used for generating delta and stats values
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