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Abstract—Sepsis is a syndrome that develops in the body in
response to the presence of an infection. Characterized by severe
organ dysfunction, sepsis is one of the leading causes of mortality
in Intensive Care Units (ICUs) worldwide. These complications
can be reduced through early application of antibiotics. Hence,
the ability to anticipate the onset of sepsis early is crucial to the
survival and well-being of patients. Current machine learning
algorithms deployed inside medical infrastructures have demon-
strated poor performance and are insufficient for anticipating
sepsis onset early. Recently, deep learning methodologies have
been proposed to predict sepsis, but some fail to capture the
time of onset (e.g., classifying patients’ entire visits as developing
sepsis or not) and others are unrealistic for deployment in clinical
settings (e.g., creating training instances using a fixed time to
onset, where the time of onset needs to be known apriori). In this
paper, we first propose a novel but realistic prediction framework
that predicts each morning whether sepsis onset will occur within
the next 24 hours using the most recent data collected the
previous night, when patient-provider ratios are higher due to
cross-coverage resulting in limited observation to each patient.
However, as we increase the prediction rate into daily, the number
of negative instances will increase, while that of positive instances
remain the same. This causes a severe class imbalance problem
making it hard to capture these rare sepsis cases. To address
this, we propose a nightly profile representation learning (NPRL)
approach. We prove that NPRL can theoretically alleviate the
rare event problem and our empirical study using data from
a level-1 trauma center demonstrates the effectiveness of our
proposal.

Index Terms—early sepsis onset prediction, ICU trauma pa-
tients, nightly patient profile, rare event, profile representation
learning

I. INTRODUCTION

Sepsis is a syndrome of a host’s dysregulated immune
response to the presence of an infection. The host immune
response is not specific in its mobilization against pathogens
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in the body, that it starts to attack the host’s own tissue as
well, causing organ dysfunction and tissue damage. To this
day, sepsis remains to be a prominent complication in the
modern medical facilities, particularly ICUs. According to a
global audit conducted in [1], depending on the region studied,
13.6% to 39.3% of patients admitted in ICU are affected by
sepsis. Globally, this proportion is 29.5%. Of the patients that
develop sepsis in the ICU, up to 26% will die likely due to
sepsis. From this, it can be estimated that approximately 7.6%
of patients admitted into ICUs across the globe will die as a
result of sepsis, making it one of the leading causes of death in
ICUs. Moreover, sepsis also contributes to long term morbidity
and mortality. About one-third of ICU sepsis survivors develop
persistent and prolonged organ dysfunction, a syndrome com-
monly recognized as chronic critical illness, characterized by
persistent immune suppression [2]–[4], muscle wasting [5],
and recurrent infections [6]. Survivors experience high rates
of sepsis recidivism, hospital readmission, deficits in physical
and cognitive function [7], and increased 1-year and 5-year
all-cause mortality [8].

These outcomes can be improved through early intervention
[9]. Early administration of antibiotics treats the underlying
infection and prevents the progression of sepsis-related organ
dysfunction. It is estimated that as much as 80% of septic
shock-related deaths are preventable with early intervention
and chances of survival decrease about 7.6% each hour that
action is not taken [10]. Hence, it is critical to the survival
and well-being of patients to anticipate the onset of sepsis
accurately and early. Although patients who acquire sepsis
during hospitalization (i.e., hospital-acquired sepsis) are at
greatest risk for sepsis-associated morbidity and mortality [11],
early detection is challenging in these groups. In critically
ill trauma patients (i.e., individuals admitted to the ICU
for management of injury caused by blunt or penetrating
force), injury-related inflammation and organ dysfunction may
increase the risk for sepsis, while also masking the clinical
signs of infection [12], [13]. Therefore, detecting sepsis early
in the critically ill trauma population is in great need but
challenging, which is the focus of this work.

Due to the abundance of available data, many have
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looked into machine learning using patients’ Electronic Health
Records (EHRs) to predict sepsis or septic shock. However,
many prior studies only work retrospectively [14]. Specifically,
many studies like [9], [14]–[19] identify the timestamp of the
target event such as sepsis onset or septic shock, and then look
back in time for a fixed time interval for early prediction.
As such, the time length between prediction and the target
event stays fixed. This approach is less useful prospectively for
deployment because clinicians often do not know in advance
when sepsis will actually onset. Therefore, in practice, it would
be difficult to decide how and when to use such ML models
for prediction. For example, we may need to use the model
very frequently (e.g., every hour), so that we do not miss any
chance of early prediction. This is not realistic in a live setting.
In addition, some prior approaches like [9], [14], [16], [18]
created one data sample per hospital admission, not multiple
instances such as for each day the patient is in the hospital.
In these cases, the model does not discriminate between days,
where sepsis is or is not present in the patient. Thus, they
do not capture the time of onset as well, which is a major
shortcoming we address in our work.

In this paper, we propose a novel but more realistic pre-
diction setup for deployment in hospitals. Specifically, we use
data from each night when patients have limited observations
from doctors and re-assess the potential for sepsis onset the
following day. In this manner, we position the classifier as a
diagnostic tool similarly as lab tests rather than an auxiliary
alarm system. Then, instead of labeling the entire visit to
have sepsis (i.e., between 13.6% and 39.3% in the ICU)
or not, each day within the visit is examined for the first
potential occurrence of sepsis onset. Time prior to sepsis onset
is treated as time at risk. However, sepsis examples become
rare compared to negative examples, resulting in a severe class
imbalance problem (e.g., < 2% sepsis cases in the level-1
trauma center data). Without any help to address this rare event
problem, machine learning models can be easily mislead to
predict every example to be negative, which is useless.

In previous sepsis prediction studies [16], [18], [20]–[22],
the class imbalance problem was often addressed by simply re-
sampling the training data. For example, random oversampling
achieves balance by repeating minority examples, but often
leads to overfitting those examples in the minor class. On the
other hand, random undersampling removes major examples,
but results in information loss. Later, [19] proposed to use
ensemble to learn various characteristics from data to alleviate
the class imbalance problem, which however is very expensive.
More importantly, our class imbalance problem is way more
serious. Recently, due to the development of deep neural
networks, deep learning has outperformed in various aspects.
In terms of sepsis prediction, deep learning architectures such
as Recurrent Neural Networks (RNNs) [9], [17], [19], [21]
and Temporal Convolutional Neural Networks (TCNs) [18],
[20], which can capture temporal and sequential patterns sig-
nificantly outperformed traditional machine learning methods.
Moreover, deep learning has also helped advance techniques
to address the class imbalance problem [23]. For example, in

computer vision, [24] proposed a balanced loss that weights
the loss for a particular class inversely proportional to number
of instances in that class and [25] showed that self-supervised
representations are more robust to class imbalance than super-
vised representations. However, this has been rarely studied
in early sepsis onset prediction, where EHR data are totally
different from images in computer vision.

Therefore, to do nightly sepsis prediction resulting in rare
sepsis events, we propose to do self-supervised Nightly patient
Profile Representation Learning (NPRL). During the represen-
tation learning, we aim to capture the unique perspectives of
different patients at different nights. We theoretically prove
that such representations learned from self-supervised learning
can preserve the diversity of patient profiles at different
nights, and thus examples from the minor class will not be
dominated by those from the major class. Our empirical study
conducted on traumatic patients from a level-1 trauma center
demonstrates the effectiveness of our proposal. The main
contributions of this work can be summarized as follows.
• We propose a novel nightly prediction setup for sepsis in

ICU trauma patients that is more deploy-able in prospec-
tive clinical environments of ICUs and meets the needs
of ICU staff.

• We develop a self-supervised nightly patient profile repre-
sentation learning method to capture unique perspectives
of different patients at different nights, as to alleviate
the severe class imbalance problem with a theoretical
guarantee.

• We demonstrate the effectiveness of our proposal using
data from a level-1 trauma center and compare it with
various existing state-of-the-art methods.

II. RELATED WORK

In this section, we briefly review different sepsis prediction
setups, machine learning methodologies used in the literature
for early sepsis prediction, and existing techniques applied to
address its class imbalance problem.

A. Historical Sepsis Prediction Setup

How the prediction setup for sepsis is framed has many
major consequences for the utility of the predicted label and
the model fitting, which has been discussed in depth by
Lauritsen et al. [26]. In the reviewed literature, there are three
different setups used, that is, fixed time to onset, sequential,
and sliding window.

Most studies used a fixed time to onset framing for their
prediction setup [14]–[19]. For example, [16] predicted onset
in 12, 24, or 48 hours prior to onset. However, as mentioned
by [9], this setup is learning to predict onset at fixed intervals
prior to onset, and thus they are often limited to these
retrospective studies, where the time of onset is known a
priori. Thereafter, in deployment, these models will need to
assess patients’ risk at regular interval as not to miss the
chance to capture onset. The next most used prediction setup
is sequential [20]–[22], [27], which generates predictions at
regular intervals using all the data available from admission to
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the time of prediction. This is more realistic in that it expects to
assess patients at regular intervals and it considers all relevant
information available. However, a major challenge is the vari-
able observation window. Moreover, the observation window
grows the longer the patient stays in the hospital. Thereafter,
the amount of data to include can be quite large, and thus the
data is usually aggregated to distill the information down.

Sliding window [28]–[30] is similar to sequential, except
that it uses a fixed time length prior to prediction for the
observation window, making the shape of the input fixed and
only considering the most recent data. With this approach,
the raw EHR data can be used directly, preserving the tem-
porally progressing patterns. Hence, sliding window approach
is preferable for our purpose in discerning when the onset
of sepsis occurs. However, there are unmet needs in medical
infrastructures. For example, during night hours, the patient-
provider ratios are much higher due to cross-coverage, and
thus there is limited observations to each patient. An assistant
prediction from machine learning in situations when we do
not have full observations of each patient would be valuable.
In this work, we focus on whether sepsis onset will occur
within a 24-hour window with the help of most recent data
collected at night. We time delivery of daily predictions for
the early morning, right before routine morning rounds, so
that medical staff can apply this information to patient care
decisions throughout the day.

B. Machine Learning for Sepsis Prediction

In this subsection, we delve into the machine learning
technologies used to predict sepsis and that used to address
its class imbalance problem.

1) Sepsis Prediction: In the literature, various traditional
machine learning methods have been adopted for sepsis predic-
tion including but not limited to support vector machines [31],
random forest [16], and XGBoost [32]. A well-known sepsis
early warning system currently deployed in hospitals is Epic
Sepsis Model (ESM). ESM is a penalized logistic regression
model that produces a score indicating the potential of sepsis
calculated every fifteen minutes. Recently, [33] found that
ESM performed poorly using data from Michigan Medicine.
While there is still some utility of ESM scores to help medical
decisions, there is a need for better early predictions of sepsis
onset to be deployed in medical infrastructures. It should be
noted that we aim to move away from early warning systems
that produce frequent false alarms frustrating medical staff.

Recently, due to the advances in deep neural networks
and their utility of automatic feature learning, deep learning
methods have been increasingly applied to sepsis related
prediction. For instance, [15], [27] transformed the raw time-
series data through a Multitask Gaussian Process (MGP), and
then fed the latent function values through an RNN for the
classification, while [20] extended that to apply the Temporal
Convolutional neural Network (TCN). [21] also employed a
sequential approach using patients’ vital signs, demographics,
lab results, and medications to predict sepsis onset for the
next day. The selected features are aggregated daily so that

each day, up to 14 days, is one time step in the RNN. [18],
[22] used an event-based data representation, where each event
is formatted as a vector with three values (i.e., timestamp,
name of event, and the value) and CNN-RNN or TCN are
adopted for sepsis prediction. In this work, we focus more on
addressing the severe class imbalance problem. Considering
the prevalent promising performance of RNN in capturing
temporal patterns for sepsis prediction, we adopt it as our
partial deep learning architecture for nightly patient profile
representation learning.

2) Class Imbalance for Sepsis: Most existing sepsis pre-
diction studies [16], [18], [20]–[22], [34], [35] address the
class imbalance problem in sepsis prediction by simply re-
sampling the data to reduce the class imbalance. However,
simple over or under sampling strategies do not solve the
problem well [36]. Random oversampling achieves balance
by repeating minority examples, often leading to overfitting
on those examples in the minority class, and random under-
sampling removes majority examples sacrificing much of the
available information. To better address the class imbalance
problem, [19] utilizes an ensemble of Long Short-Term Mem-
ory networks (LSTM). Specifically, multiple LSTM models
are trained, capturing different characteristics of the data.
Then, their predictions do ensemble to better capture sepsis
prediction, which is obviously expensive.

It should be noted that the development of deep learning has
also advanced the machine learning techniques to address the
class imbalance problem [23] in other domains but not sepsis.
For example, in computer vision, [24] proposed a balanced
loss that weights the loss for a particular class inversely
proportional to number of instances in that class and [25]
showed that self-supervised representations are more robust
to class imbalance than supervised representations. However,
this has been rarely studied in early sepsis onset prediction,
where EHR data are totally different from images in computer
vision. Based on our proposed prediction setup, we develop a
nightly patient profile representation learning using EHR data
to address the serious class imbalance problem.

III. NIGHTLY PROFILE REPRESENTATION LEARNING

In this section, we first describe our nightly prediction
setup for early sepsis prediction, which is more realistic
in ICUs. Then, due to the resulting severe class imbalance
problem making sepsis a rare event, we propose a patient
profile representation learning method to capture the unique
perspective of different patients at different nights.

A. Early Sepsis Prediction Setup

In this study, we propose to utilize data collected from
patients at night to predict whether the onset of sepsis will
occur within the next 24 hours. Specifically, data recorded
between the hours of 10 p.m. and 6 a.m. are used to predict
whether sepsis onset will occur in the next 24 hours (i.e.,
until 6 a.m. of the next day). We use data recorded during this
nighttime window because 1) most staff are gone for the night
so the model captures a gap in observation, 2) data collected
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Fig. 1. Sepsis Prediction Setup. Temporal features are extracted from the nighttime window between 10 p.m. and 6 a.m., forming a 9×T matrix. S static
features which are consistent throughout the admission for each patient. Both are used for predicting sepsis onset within the subsequent 24 hour prediction
window.

at night is more likely to reflect the actual physiology of the
patient as they are less exposed to external stimuli of hospital
staff, 3) there are fewer interruptions to data collection as
diagnostic procedures and interventions are typically planned
during daytime hours, and 4) the night window is immediately
adjacent to the period of time in which we predict sepsis onset.
Each day in a typical ICU, teams of medical staff conduct
morning rounds, a standard procedure in which staff will
evaluate the current progress of patients and plan treatment
for the next 24 hours. This is why we target predictions for
early morning. This way, the deployed classifier will act as
another decision support diagnostic tool similar to lab tests for
staff to discern during rounds. This is much more desirable to
clinicians compared to auxiliary monitoring systems that lead
to alarm fatigue. Therefore, our setup is more practical and
complements current ICU operating procedures.

It should be noted that for each patient in ICUs, we are
able to collect hourly vital signs (e.g., heart rate and body
temperature) and hourly cumulative exposures (e.g., IV fluid
bolus volume). Given this kind of hourly temporal data, our
sepsis prediction problem can be framed as a multi-variate
time-series classification task, which is beneficial to adopt
RNN to capture temporal patterns for sepsis prediction. Some
patient profile information (e.g., age, gender, and injury type)
could be potential risk factors contributing to sepsis, but are
static. Therefore, in our setting each observation contains 9
hours (i.e., 10 p.m. to 6 a.m.) of T temporal feature values
and S static features as illustrated in Fig. 1. Then, we aim to
predict if sepsis will be onset in the next 24 hours from 6
a.m. of the current day to 6 a.m. the next morning as shown
in Fig. 1.

B. NPRL for Class Imbalance

Given both the temporal and static data for each observation
in our setting, it is natural to adopt a multi-modal RNN for
sepsis prediction as illustrated in Fig. 2, which is denoted as

model fθ with parameters θ . Concretely, the 9×T matrix of
temporal data is fed to a bidirectional RNN layer to capture
the temporal information. LSTM [37] and Gated Recurrent
Unit (GRU) [38] are often used, where GRU has been proved
to be preferable in medical prediction tasks [39]. Moreover,
bidirectional RNNs can further improve the performance [40].
Therefore, we opt for a Bidirectional GRU layer (i.e., the blue
component in Fig. 2) for our temporal representation learning.
Then, the representation learned from the temporal features is
concatenated with the representation learned from the S static
features using a deep dense layer architecture (i.e., the red
component in Fig. 2) for the final classification of sepsis.

Let {(xT
i ,x

S
i ),yi}n

i=1 denote our training data set, where xT
i

denotes the temporal data, xS
i denotes the static data, and

yi ∈{1, . . . ,C} is the corresponding label with C = 2 for sepsis.
After feeding our temporal and static data to the multi-modal
RNN model fθ , we can denote the representation in the last
fully connected layer before classification as xi = fθ (xT

i ,x
S
i )

(i.e., the purple representation in Fig. 2). Then, the classifi-
cation model can be learned by empirical risk minimization
(ERM) as

min
θ

1
n

n

∑
i=1

`(xi,yi;θ)

where `(·) is a loss function and cross-entropy loss is popular
in deep learning. For a C-class classification problem, the task
is equivalent to

min
θ

C

∑
c=1

nc

n
g(x,y,c) (1)

where nc shows the number of examples from the c-th class
and

g(x,y,c) =
1
nc

∑
i:yi=c

`(xi,yi;θ)

According to the formulation, it is obvious that the loss will be
dominated by the major class if there is some class j such that
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Fig. 2. Multi-Modal RNN. Temporal data is processed using a bidirectional GRU layer (blue) to capture temporal information while static data is processed
using a deep dense layer architecture (red). Results from each are combined via concatenation for further dense layers (purple).

∀c,c 6= j,n j� nc. For example, if we have 100 examples for
sepsis prediction with only 2 of them having sepsis, the loss
will be dominated by those 98 non-sepsis examples, since we
treat each example equivalently. Then, the model may directly
predict each example as non-sepsis, which is useless.

Fortunately, in the following, we can show that the self-
supervised representation learning can help alleviate the prob-
lem. Before we do the sepsis classification directly, we can
conduct a self-supervised learning on fθ without the sepsis
classification layer to initialize the model’s parameters as θ0.
Specifically, given {(xT

i ,x
S
i )}n

i=1 without sepsis assignments,
we aim to uniquely identify each observation in the training
data, which is corresponding to a night profile for a patient
at a specific night and thus named as Nightly Profile Rep-
resentation Learning (NPRL). Thereafter, θ0 can be learned
by setting the classification layer as a n-class classification
problem with training data as {(xT

i ,x
S
i ), i}n

i=1, where each
instance is uniquely identified by the label i.

Given fθ0 , after changing the classification to sepsis, the
sepsis classification model can be fine-tuned with a small
learning rate and the optimization problem becomes

min
θ

C

∑
c=1

nc

n
g(x,y,c) s.t. ‖θ −θ0‖F ≤ γ (2)

which is equivalent to

min
θ

C

∑
c=1

nc

n
g(x,y,c)+

λ

2
‖θ −θ0‖2

F (3)

Compared with the original objective in Eqn. 1, a regulariza-
tion term is introduced to constrain the difference between
the learned model and the initialized model by NPRL. The
benefit from NPRL initialized model can be demonstrated in
the following theorem.

Definition 1. [41] A function h is L-Lipschitz continuous if

‖h(x)−h(y)‖2 ≤ L‖x− y‖2

For the sake of convenience, we denote x = θ(x) as a
simplified definition of x = fθ (xT ,xS).

Theorem 1. Let θ(x) be L-Lipschitz in x following [42] and
θ ∗ denote the solution of Eqn. 3. If γ ≤ 1

8L , we have

∀i, j, ‖θ ∗(xi)−θ
∗(x j)‖2

2

≥ ‖θ0(xi)−θ0(x j)‖2
2−‖θ0(xi)−θ0(x j)‖2/2−1/32

Proof.

‖θ ∗(xi)−θ
∗(x j)‖2

2

= ‖θ ∗(xi)−θ0(xi)+θ0(x j)−θ
∗(x j)+θ0(xi)−θ0(x j)‖2

2

= ‖θ0(xi)−θ0(x j)‖2
2 +2〈θ ∗(xi)−θ0(xi),θ0(x j)−θ

∗(x j)〉
+‖θ ∗(xi)−θ0(xi)‖2

2 +2〈θ ∗(xi)−θ0(xi),θ0(xi)−θ0(x j)〉
+‖θ0(x j)−θ

∗(x j)‖2
2 +2〈θ0(x j)−θ

∗(x j),θ0(xi)−θ0(x j)〉
≥ ‖θ0(xi)−θ0(x j)‖2

2−2‖θ ∗(xi)−θ0(xi)‖2‖θ0(x j)−θ
∗(x j)‖2

−2‖θ ∗(xi)−θ0(xi)‖2‖θ0(xi)−θ0(x j)‖2

−2‖θ0(x j)−θ
∗(x j)‖2‖θ0(xi)−θ0(x j)‖2
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Due to the smoothness of θ(x), we have

‖θ ∗(xi)−θ
∗(x j)‖2

2

≥ ‖θ0(xi)−θ0(x j)‖2
2−2L2

γ
2−4Lγ‖θ0(xi)−θ0(x j)‖2

We can easily observe the result with γ ≤ 1
8L .

Remark: The above theorem illustrates that fine-tuning
based on a pre-trained model appropriately can preserve the
diversity in the pre-trained representations, which can avoid
the collapse of minor classes in a class imbalance problem. In
our pre-trained model, we aim to uniquely identify each night
of each patient. Therefore, for all night instances, we have

E∀i, j∈{1,...,n},i6= j[θ0(xi)
>

θ0(x j)] = 0

With this observation from NPRL to uniquely identify each
night of each patient, we have the bound as follows.

Corollary 1. Let θ(x) be L-Lipschitz in x and θ ∗ denote the
solution of Eqn. 3. If γ ≤ 1

8L and θ0 is pre-trained with NPRL
and ‖θ0(x)‖2 = ‖θ ∗(x)‖2 = 1, we have

E∀i, j∈{1,...,n},i6= j[θ
∗(xi)

>
θ
∗(x j)]≤ 0.37

Proof. Due to Jensen’s inequality, we have

E[‖θ0(xi)−θ0(x j)‖2]≤
√

E[‖θ0(xi)−θ0(x j)‖2
2] =
√

2

Then, we can take it back to the inequality by expanding ‖·‖2
2

as

∀i, j, ‖θ ∗(xi)‖2
2 +‖θ ∗(x j)‖2

2−2θ
∗(xi)

>
θ
∗(x j)

≥ ‖θ0(xi)‖2
2 +‖θ0(x j)‖2

2−2θ0(xi)
>

θ0(x j)

−‖θ0(xi)−θ0(x j)‖2/2−1/32

By applying the expectation on both sides, we have

E∀i, j∈{1,...,n},i6= j[θ
∗(xi)

>
θ
∗(x j)]

≤ E∀i, j∈{1,...,n},i6= j[θ0(xi)
>

θ0(x j)]+E[‖θ0(xi)−θ0(x j)‖2]/4

+1/64≤ 0+
√

2/4+1/64.

Then, we can easily observe the bound.

Explicitly, after fine-tuning based on the pre-trained model
by NPRL, although the representations are no longer or-
thogonal in expectation, the diversity can be well preserved.
That means the examples from the minor class will not be
dominated by those from the major class.

In summary, we propose to do nightly patient profile rep-
resentation learning, that is NPRL, in which we first conduct
a self-supervised representation learning to uniquely identify
each night of each patient. Then, the sepsis classification
model is initialized by the pre-trained model from NPRL
except the classification layer. Finally, the sepsis classification
model can be learned by fine-tuning the pre-trained model with
a small learning rate to alleviate the class imbalance problem.

IV. EXPERIMENTS

To demonstrate the proposed method, we evaluate it on
level-1 trauma center data described as follows.

A. Data Description

We were provided de-identified Electronic Health Record
(EHR) data pertaining to patients aged 16 years and older
admitted into the ICU of UW Medicine Harborview Medi-
cal Center following injury between the years of 2012 and
20191 [43]. In total, the data contains EHR data for 2,802
patients, 486 of which developed sepsis during their stay in
the ICU, making up approximately 17%. Sepsis is defined
according to the 2016 international guidelines, Sepsis-3 [44],
as a clinically suspected infection associated with worsening of
organ dysfunction. We restricted to include only infections
that were identified between hospital days 3 and 14, as this
is a period of time when patients are at risk for hospital
acquired infections [45] and still in the acute phase of
critical illness. Patients were labeled as having sepsis if they
met the following two criteria within three days of each other.

• Suspected of having an infection. Infection confirmed
with a positive culture sample or by chart review.

• Exhibits worsening organ dysfunction denoted by a 2
point or greater increase in Sequential Organ Failure
Assessment (SOFA) [46] (∆SOFA≥ 2).

The time of onset is determined by the time that the positive
culture sample was drawn from the patient due to it being
the most specific landmark for Harborview Medical Center
clinicians’ concern that an infection is present or developing.

The provided EHR data includes details about patients’
demographics, information about their injuries, physiological
signatures recorded hourly, therapeutics administered, and co-
morbidities. Although information about patient comorbidities
were available in the retrospective data and may contribute
to sepsis risk, these data are often not ascertained until after
the hospital course. Our intention was to develop a model
that could easily translate into the clinical setting; so we
intentionally omitted data that would not be reliably available
at the point of care. From this data, we constructed the
features into subsets. Each of these subsets encapsulated one
category of data identified as being a contributing factor to the
development of sepsis. Subset 1 is vital signs of the patient
aggregated each hour, subset 2 contains patient factors and
initial physiology from the first 48 hours, and subset 3 is
cumulative exposures treated as events accumulated over time.
Subsets 1 and 3 are temporal, while subset 2 is static. The
purpose of parsing the data into subsets is that subsets can be
dynamically isolated and combined to test their contribution to
prediction as well as their interaction with one another. Table I
summarizes the detailed feature information for each subset.

EHR being a large, heterogeneous data format is susceptible
to large amounts of missingness and sparsity. Another benefit
of our prediction setup is a short observation window. In
this case, it is often reliable to apply Last Observation Carry
Forward (LOCF) to impute missing values, except for Mean
Arterial Pressure that was calculated from Systolic and Di-
astolic Blood Pressure as MAP = (2DBP+SBP)/3 following

1E-mail corresponding author for access to this dataset.
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TABLE I
FEATURE SUBSETS. * INDICATES THAT THEY ARE COLLECTED FROM AND
AGGREGATED OVER THE FIRST 48 HOURS OF THE PATIENT’S ADMISSION.

Subsets Features
Subset 1 Heart Rate

Diastolic Blood Pressure (DBP)
Mean Arterial Pressure (MAP)

Respiratory Rate
Temperature

Fraction of Inspired Oxygen (FiO2)
Subset 2 Age

Sex
Mechanism of Injury

Was Transferred from Another Hospital?
Has Head Injury?

First Systolic Blood Pressure in ED
Reverse Shock Index
Max Base Deficit*

Max Lactate*
Total Red Blood Cell Units Transfused*

Total Intravenous Crystalloid Volume (L) (Not in OR)*
APACHE II

Antibiotic Exposure*
Number of Surgeries*

Emergency Department Disposition
Subset 3 IV Fluid Bolus Volume

Red Blood Cell Units Transfused
Ventilator Days

Number of Surgeries
Surgery Duration

[47]. Thereafter, SBP is no longer used due to the redundancy,
and DBP and MAP being more clinically relevant [48].

B. Instance Extraction and Inclusion

After cleansing the data and parsing the features into
subsets, we extract instances from the nighttime window to
train and evaluate our proposed method. For each visit, we
extract the temporal features between the hours of 10 p.m.
and 6 a.m. for each night the patient is in the ICU for days 3
through 14. Day 1 and 2 are excluded, since hospital acquired
infections develop after 48-72 hours of hospitalization [45].
Infections before day 3 are considered to be acquired from
the community or associated with healthcare; therefore it is
not a problem of the trauma population. Windows after 14
days are also excluded as after 14 days, patients are no
longer considered acutely ill but instead are considered to
have chronic critical illness, which has different phenotype
from sepsis in the acute recovery phase. In addition, instances
containing any null values after LOCF are also excluded. For
each visit, the static features are identified and added to each
instance.

Lastly, above instances are labeled according to if the first
occurrence of sepsis onset occurs within 24 hours after the
observation window. While sepsis recidivism is a big problem
as well, our setup targets the first sepsis event for the purpose
of early prediction. Therefore, instances after the first onset for
septic patients were excluded. This results in a total of 25,952
instances with 471 positive ones and 25,481 negative ones,
where the serious class imbalance problem can be observed
(< 2% for sepsis).

C. Experimental Setup

To fairly evaluate the performance without bias, 5-fold
stratified cross validation was used such that there are five
folds of approximately 5,190 instances. Multiple iterations of
training and testing are done so that each fold would be used
as a test fold once while the other four folds are used for
training. The folds are stratified to preserve the original class
distribution. In addition, due to the class imbalance between
negative and positive instances, the majority class would
dominate the empirical risk minimization during the training.
In this case, the model would learn to always predict negative.
Therefore, during the training of the sepsis vs. non-sepsis
classification except for experiments with class-balanced loss,
we under-sampled the negative instances and over-sampled the
positive instances for the training data only, each with 2,600.

We compare the proposed method NPRL with several
existing state-of-the-art methods as follows.

• XGBoost [49]: the state-of-art traditional machine learn-
ing method with all available features flattened and con-
catenated as a long feature vector.

• LSTM w/ Attention [21]: an existing RNN model that
can do daily prediction but can only use temporal data.

• Multi-Modal RNN without NPRL: In GRU, each unit
expands the representation of the T features to a 256-
dimensional vector such that the output dimension of
this layer is 9x512; The hidden state of each recurrent
unit is passed further down the network to incorporate
information from each hour of the observation. As such,
a flattening layer is used to flatten the hidden state from
the recurrent layer to form a 4608-dimensional vector
so it can be combined with hidden state from the static
component. Static features are processed through a deep
neural network comprised of an input layer, followed
by three dense layers consisting of 16, 8, and 1 hidden
unit(s), respectively. The results of each component are
then combined via a concatenation layer that concatenates
the hidden states together to form a 4609-dimensional
vector that can then be used for classification.

• Multi-Modal RNN with Class Balance Loss from [24].

For deep learning models, numerical features were each
scaled to [0, 1] using Min-Max scaling. Moreover, the static
component of the Multi-Modal RNN is excluded from the
architecture if no static features are included in the corre-
sponding configuration thus making it just an RNN. Lastly,
each of these experiments were evaluated using area under
the receiver operating characteristic curve (AUROC). AUROC
is often preferred for evaluating binary classification results
and is the most used metric to get a holistic understanding
of the performance of the classifier. However, it does not
provide any information about how the model is performing
for positive and negative classes separately. Therefore, we also
assess confusion matrix counts along with the sensitivity and
specificity. Each of these metrics are calculated for the data
in the test fold for each iteration of cross validation. In order
to consider all these evaluation metrics extensively, instead of
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TABLE II
PERFORMANCE OF XGBOOST AND MULTI-MODAL RNN USING DIFFERENT FEATURE SUBSETS. THE RESULTS ARE BASED ON THE AGGREGATION (I.E.,

NOT AVERAGE) OF 5 TEST FOLDS. THE BEST IS IN BOLD AND THE 2ND BEST IS UNDERLINED.

Feature Set AUROC True Positives True Negatives Sensitivity Specificity
XGBoost

Subset 1 0.7061 287 17577 0.6093 0.6898
Subsets 1+2 0.7130 296 17161 0.6285 0.6735
Subsets 1+3 0.7398 315 17632 0.6688 0.6920

Subsets 1+2+3 0.7429 317 17749 0.6730 0.6966
Multi-Modal RNN

Subset 1 0.7097 295 17710 0.6263 0.6950
Subsets 1+2 0.7100 300 17187 0.6369 0.6745
Subsets 1+3 0.7794 346 17793 0.7346 0.6983

Subsets 1+2+3 0.7716 332 18108 0.7049 0.7106

TABLE III
PERFORMANCE COMPARISON USING SUBSETS 1 AND 3. THE RESULTS ARE BASED ON THE AGGREGATION (I.E., NOT AVERAGE) OF 5 TEST FOLDS. THE

BEST IS IN BOLD AND THE 2ND BEST IS UNDERLINED.

Model AUROC True Positives True Negatives Sensitivity Specificity
XGBoost 0.7398 315 17632 0.6688 0.6920
LSTM w/ Attention [21] 0.7610 381 15222 0.8089 0.5974
RNN 0.7794 346 17793 0.7346 0.6983
RNN with Class Balanced Loss 0.7267 316 17480 0.6709 0.6860
RNN with Class Balanced Loss (Undersampling) 0.7733 325 18028 0.6900 0.7075
RNN with NPRL 0.7870 390 15602 0.8280 0.6120

averaging over 5 folds, we aggregated them into one result.
For example, when each fold is used as the test data, we have
the corresponding number of true positives. Then, the total
number of true positives is counted by the summation over
all five test folds and the ROC curve is the intercept of each
curve. It is mainly due to the reason that averaged values over
counts like true positives are hard to interpret. Our code is
available here2.

D. Performance Comparison

Before evaluating the efficacy of our proposed methodology,
we first assessed the contribution factor each feature subset
available in our data to identify an optimal combination
by applying two baseline models (i.e., XGBoost and Multi-
Modal RNN) to four different feature subset combinations
(i.e., Subset 1 only, Subset 1 + Subset 2, Subset 1 + Subset
3, and Subset 1 + Subset 2 + Subset 3).

Table II compares the performance of using different fea-
ture subsets. First, it can be observed from the comparison
between feature sets that accumulated features in subset 3
can significantly improve the performance for both models.
However, the contribution of static features is limited, which
may indicate that recent temporal progressing pattern during
the night is more useful to predict sepsis onset. Second, RNN
with the ability to capture the temporal progressing pattern
outperforms XGBoost that treats each feature independently,
especially for positive cases. This confirms the effectiveness
of temporal models on sepsis prediction as in the literature.
Without the loss of common practice, we also report the
average performance over the 5 test folds with the standard

2 https://github.com/ML4UWHealth/NPRL

deviation in Table IV, in which the similar phenomenon as the
aggregated results can be observed.

TABLE IV
AVERAGE PERFORMANCE OF XGBOOST AND MULTI-MODAL RNN USING

DIFFERENT FEATURE SUBSETS. THE AVERAGE PERFORMANCE OVER 5
TEST FOLDS WITH THE STANDARD DEVIATION ARE REPORTED, I.E., AVG

(STD). THE BEST IS IN BOLD AND THE 2ND BEST IS UNDERLINED.

Feature Set AUROC Sensitivity Specificity
XGBoost

Subset 1 0.7061 (0.0265) 0.6093 (0.0382) 0.6898 (0.0289)
Subsets 1+2 0.7130 (0.0265) 0.6284 (0.0286) 0.6735 (0.0262)
Subsets 1+3 0.7398 (0.0297) 0.6688 (0.0399) 0.6920 (0.0233)

Subsets 1+2+3 0.7429 (0.0314) 0.6730 (0.0412) 0.6966 (0.0198)
Multi-Modal RNN

Subset 1 0.7097 (0.0271) 0.6264 (0.0478) 0.6950 (0.0721)
Subsets 1+2 0.7100 (0.0301) 0.6371 (0.0519) 0.6745 (0.0757)
Subsets 1+3 0.7794 (0.0350) 0.7344 (0.0617) 0.6983 (0.0219)

Subsets 1+2+3 0.7716 (0.0227) 0.7048 (0.0352) 0.7106 (0.0304)

With the above observations, in the following, we use only
feature subsets 1 and 3 to compare the proposal NPRL with
other baselines, which is also fair to LSTM w/ Attention [21]
that can only use temporal data. Table III shows the results.
We can first observe through AUROC that most RNNs can
outperform the traditional machine learning method XGBoost
with a large margin as observed in the literature by capturing
the temporal patterns. Except for RNN with the class-balanced
loss from [24], which is because our problem is too imbal-
anced to be alleviated by the balanced loss. As well, balanced
loss is often more helpful for multi-class classification. This is
further demonstrated by additionally applying undersampling
at first to bring the majority class to 2,600 instances, which
improves the performance of the class-balanced RNN signif-
icantly. However, we can observe that the model is biased
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TABLE V
AVERAGE PERFORMANCE COMPARISON USING SUBSETS 1 AND 3. THE AVERAGE PERFORMANCE OVER 5 TEST FOLDS WITH THE STANDARD DEVIATION

ARE REPORTED, I.E., AVG (STD). THE BEST IS IN BOLD AND THE 2ND BEST IS UNDERLINED.

Model AUROC Sensitivity Specificity
XGBoost 0.7398 (0.0297) 0.6688 (0.0399) 0.6920 (0.0233)
LSTM w/ Attention [21] 0.7610 (0.0260) 0.8088 (0.0605) 0.5974 (0.0705)
RNN 0.7794 (0.0350) 0.7344 (0.0617) 0.6983 (0.0219)
RNN with Class Balanced Loss 0.7267 (0.0318) 0.6710 (0.0417) 0.6860 (0.0761)
RNN with Class Balanced Loss (Undersampling) 0.7733 (0.0293) 0.6900 (0.0910) 0.7075 (0.0707)
RNN with NPRL 0.7876 (0.0198) 0.8280 (0.0558) 0.6123 (0.0772)

to non-sepsis cases, where the performance on true negatives
is significantly higher but the performance on true positives
is quite low. On the contrary, [21] significantly improves
the performance on true positives for sepsis instances, but
sacrifices too much on non-sepsis instances, which results in
lower AUROC.

Nevertheless, our proposal with nightly profile presentation
learning provides the best AUROC and further improves the
sensitivity of the model in predicting the target event sig-
nificantly, without sacrificing the performance on non-sepsis
cases that much. Considering that ICUs prefer to use machine
learning models as a pre-screening assistant, they care more
about missed positive cases (i.e., never being checked in-depth
by clinicians). We can also observe the similar results based on
the average performance of the 5 test folds reported in Table V.
This further demonstrates the efficacy of our proposed method
to address serious class imbalance problem for early sepsis
prediction.

V. CONCLUSION

In this study, we propose a novel prediction setup for
early sepsis onset anticipation by machine learning, which is
more applicable and deploy-able as a pre-screening assistant
in ICUs. To solve the problem of serious class imbalance
in the dataset, we propose to do nightly patient profile
representation learning that uniquely identify each patient at
each night. Based on such pre-trained model, the diversity
between different examples can be highly preserved, so as to
alleviate the problem of major class domination. The proposed
methodology demonstrates promising results in improving the
overall AUROC performance and model sensitivity in early
prediction of sepsis, which will assist ICU staff in intervening
early. In future work, we will also need to deploy the model
and evaluate its applicability in a live setting.

However, the high sensitivity comes from sacrificing of
the specificity, although the highest AUROC is achieved and
all trauma patients in the ICU will require attention during
morning rounds, where a false positive will impose only a
tiny amount of additional attention. One potential factor is
the over and under sampling procedure adopted, where certain
negative ones have been ignored. Therefore, a future work is to
eliminate the over and under sampling, but still addressing the
class imbalance problem using a new loss function inspired
by our theoretically analysis from NPRL. Moreover, data
augmentation on images is an essential technique for the

success of self-supervised learning in computer vision, which
will be explored for EHR data as our future work for further
improvement. Finally, we were not able to demonstrate our
proposal on public data like MIMIC III [50] due to the lack
of a precise sepsis onset timestamp, whose assignment is a
valuable future work.
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