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Abstract—Brain computer interface (BCI) systems used for

clinical assistance purposes such as wheelchair control require

decoding of streaming brain signals i.e. electroencephalography

(EEG) signals over a long period of time with subject shift

in the middle. Numerous challenges arise during this online

continual brain signal decoding process: 1) the EEG decoder

needs to deal with streaming EEG signals from sequentially

arriving subjects, with no data available beforehand for large-

scale pretraining; 2) the EEG decoder should avoid catastrophic

forgetting on previous subjects after learning on a new subject; 3)

the EEG decoder should perform well on noisy signals with high

variance across subjects. We proposed a principled replay-based

approach for this general decoding scenario, forming a bi-level

optimization framework with stochastic neural transformation

for dynamic memory evolution, making them representative in

feature space and encouraging the model to generalize well.

The evolved signal segments are stored and replayed during

later decoding stages to achieve optimal model performance

on all previous subjects. The stochastic neural transformation

performed in inner sup of bi-level optimization significantly

enhances the diversity of stored signal segments and improves

model robustness during online continual decoding. We perform

detailed theoretical analysis on model’s generalization ability in

addition to the empirical evaluations. We construct multiple new

benchmarks to mimic real-world online sequential EEG decoding

scenarios with underlying subject shifts. The extensive evaluation

of the proposed approach shows it outperforms related strong

baselines by a large margin.

I. INTRODUCTION

Development of brain computer interface (BCI) systems for
clinical assistance purposes such as robotic wheelchair control
or digital interface interaction requires proper decoding of
electroencephalography (EEG) signals for a long period of
time [1], [2]. Given the non-invasive nature of EEG recording,
the signal usually endures significant noise and its patterns
differ significantly across different subjects. This poses chal-
lenge to the BCI system when it needs to sequentially decode
streaming EEG signals from different subjects.

Here, We formulate the problem as that of online continual
EEG decoding. The problem setting is characterized by the
following challenges: 1) the model decodes streaming EEG
signals in an online manner and no data is available for pre-
training; 2) the streaming signals are from sequentially arriving

Fig. 1: An overview of the replay-based ReSNT model for
online continual decoding of streaming EEG signals over a
long period of time with subjects shift. We propose to per-
form stochastic neural transformation on the stored segments
following the bi-level optimization target (eq. 6-7) to help the
model generalize to all previous subjects.

subjects with subject shifts; 3) the EEG decoder should not
forget knowledge of previous subjects after learning new ones,
aka. catastrophic forgetting, and achieve optimal performance
on all subjects after sequential decoding ends1.

Deep learning approaches have demonstrated effectiveness
for EEG decoding in general and achieved state-of-the-art
performance [3][4]. Prior efforts have focused mostly on
developing new model architectures [5][3][6] or exploring do-
main adaptation/transfer learning techniques [7][8] for classic
EEG decoding settings e.g. cross-subject EEG decoding, etc.
To the best of our knowledge, little exploration has been
made for the challenging online continual EEG decoding
problem. Recently, continual learning techniques emerged to
be promising for mitigation of the problem of catastrophic
forgetting [9], [10], with approaches including replay based
methods [11], regularization based methods [12] and dy-
namic expandable network architectures [13]. In this work,
we focus on replay-based approaches for continual decoding

1Classic cross subject EEG decoding models are not readily applicable
to this problem setting, as the signal is streaming in an online manner and
the data is not jointly available beforehand for large scale pre-training.
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Fig. 2: Illustration on the evolution of signal segments following the stochastic neural transformation. The divergence and drift
operations produce robust and diversified features for generalization, and the consistency regularization preserves similarity
between transformed signal and original signal.

across sequentially arriving different subjects. The proposed
approach is significantly different from existing methods, with
its emphasis on generalization improvement and overfitting
mitigation during online continual EEG decoding.

Specifically, the proposed replay-based approach stores a
small number of representative signal segments from previous
subjects for replay purpose. Given that the amount of stored
segments are very limited, overfitting could be a major prob-
lem and cause the model not generalize well on previous data.
As explored in previous work, the diversity of training data
is a major factor for model’s generalization ability [14]. We
form a bi-level optimization framework with stochastic neural
transformation on signal segments to keep them diverse and
representative for replay purposes. The transformation process
consists of two aspects: 1) diffusion and drift operations that
evolve the memory data to improve generalization ability. 2)
consistency regularization that enforces similarity with original
data and produces smooth model response, which allows the
model to achieve optimal performance on testing data. The
neural transformation process can be depicted as stochastic
neural ordinary differential equations, which enable the data
to go through an infinite number of stochastic transformations
and improve data diversity in the process.

The contribution of this work is summarized as follows:
• We propose a replay-based approach with dynamic mem-

ory evolution for online continual decoding of streaming
EEG signals over a long period of time with subject shifts.

• The proposed approach performs bi-level optimization
with memory evolution depicted as a stochastic process.
The evolution process is regularized with consistency
constraints to preserve similarity with original signal.

• We developed online sequential EEG decoding bench-
marks, and performed extensive evaluation on the model
performance. The results show the proposed approach
outperformed strong baselines by a significant margin.

II. METHOD

We first offer a high-level description of the problem setting
and form the overall target function, then provide details of the
proposed online continual decoding approach named Replay
with Stochastic Neural Transformation (ReSNT) under the bi-
level optimization framework.

A. Preliminaries

For decoding over a long period of streaming EEG signals
with subject shift in the middle, decoding performance can
quickly deteriorate on previous subjects after learning on
later subjects. Here we seek to achieve optimal decoding
performance on all previously learnt subjects and mitigate
forgetting during online sequential EEG decoding. Note we
assume there is no jointly available data from the subjects for
pretraining beforehand, which suits to real world scenarios of
BCI applications.

We adopt the replay based approach, which keeps a small
memory buffer M to store representative data samples of
previous subjects and replay in later decoding stages. With
streaming EEG signal from different subjects S1,S2, . . . ,SJ

sequentially input into the EEG decoder, the memory buffer
adopts the reservoir sampling mechanism for sample selection,
which has an equal probability of selecting incoming signal
segments. It stores the first M samples until it is full, after
which for data xk arriving, it generates a random number i in
the range of [1, k]. If i < M , then the i th data in memory
will be replaced by xk.

B. Method Overview

The training target for the replay based approach can be
formulated as

min
8✓2⇥


L(xi, yi,✓) + E

(xm,ym)⇠M
L(xm, ym,✓)

�
, (1)



where xi, yi is the current streaming data and xm, ym is
the stored data in memory. When we only keep a small
amount of data in memory, the conventional replay will be
less effective when sequentially learning over a longer period
of time, as the model would easily overfit onto the limited
memory data and may not successfully generalize to previous
subjects. Here we utilize the stochastic neural transformation
with consistency constraints to achieve improved diversity in
stored signal segments for effective replay.

C. Stochastic Neural Transformation during Replay

The proposed stochastic neural transformation creates di-
versified data with the diffusion and drift operations that
depict the evolution of a stochastic dynamic system. With
�� : [0, G] ⇥ Rd ! Rd⇥w being the diffusion term and
µ� : [0, G]⇥Rd ! Rd being the drift term, both generated by
a network parameterized with � and G is the transformation
intensity, the stochastic neural transformation process can be
formulated as

dXt = µ�(Xt)dt+ ��(Xt) � dWt, (2)

where Xt is the distribution of transformed data at t, with
t 2 [0, G]. and Xt 2 Rd. Wt ! Ww is a w-dimensional
variable following Brownian motion, with the property that
Wt+r � Wr follows a Gaussian distribution with variance t.
The initial state of the neural transformation is the original
stored segments. The transformed data can be expressed as

XG = X0 +

Z G

0

µ�(Xt)dt+

Z G

0

��(Xt) � dWt (3)

The � operation between ��(Xt) and dWt denotes the
Stratonovich integral.

In order for the transformed data to be consistent with
the original data, we utilize the Jenson-Shannon divergence
regularization to produce smooth model response on the
transformed data, which functions between the posterior dis-
tribution of transformed data and original data.

pmean = (px0 + pxG)/2 (4)
JS(xG,x0)=(KL(px0 ||pmean)+KL(pxG ||pmean))/2 (5)

where KL is the KL divergence, px0 and pxG are the
network output probability of classifying the original and
transformed data into different classes.

Parameters of the stochastic neural transformer � is learned
in an end-to-end manner together with the model parameters
✓ with bi-level optimization. Here, the target loss function can
be expressed as

min
✓

[L(xi,yi,✓) + L(xm(G),ym,✓,�⇤)] (6)

s.t. �⇤ =argmax
�

[L(xm(G),ym,✓,�)

� L(xm,ym,✓,�)� �JS(xm(G),xm)] (7)

where xm(G) and xm are the transformed and original
stored segments respectively. The minimization target of eq. 6

performs optimization on model parameter ✓, and the stochas-
tic neural transformation parameter � is optimized with eq. 7,
which diverges the transformed data not to be memorized by
model and at the same time being consistent and semantically
similar to original data.

To perform proper update on ��(Xt) and µ�(Xt) based on
the target function specified in eq. 7, we perform the following:

With At = dL(Xt)
dXt

, the relationship between At and
��(Xt), µ�(Xt) can be expressed as

dAi
t = �Aj

t

@µj
�(Xt)

@Xi
dt�Aj

t

@�j,k
� (Xt)

@Xi
� dW k

t (8)

where i, j, k are the index of matrix At and ��(Xt).
The gradient on � can be obtained accordingly based on
eq. 8. Different from conventional data augmentation and
evolution approaches which rely on empirical evaluation for
the effectiveness to tackle overfitting, the proposed approach
offers a principled formulation that enables theoretical analysis
on its generalization improvement. Details omitted for brevity.

D. Algorithm

Our overall approach is summarized in Algorithm 1. The
learning algorithm alternates between update of EEG decoder
paramters ✓ and neural transformation parameters �. We use
reversible Heun method [15] to perform update on �.

Algorithm 1 Replay with Stochastic Neural Transformation

1: REQUIRE: EEG decoder parameters ✓, stochastic neural
transformation parameters �, EEG decoder learning rate ⌘, neural
transformation update rate �; transformation intensity G at each
iteration, stored signal segments for replay M;

2: for i = 1 to K do

3: current signal segment (xi, yi) input to model.
4: retrieve stored signal segment for replay, i.e., (xm, ym) ⇠ M

5: perform stochastic neural transformation xm(G) =
Transform(xm, 0, G) (Eq. (3))

6: update � with gradient ascent on
max�[L(xm(G),ym,✓,�) � L(xm,ym,✓,�) �
�JS(xm,xm(G))]

7: replay of (xm(G),ym) and jointly train with (xi,yi) for
update of model parameters ✓:
✓i+1 = ✓i � ⌘r✓[L(✓i,xm(G), y) + L(✓i,xi, yi)]

8: update memory M by reservoir sampling (RS), M =
RS(M, (xi, yi))

9: end for

III. EMPIRICAL EVALUATION

We constructed numerous sequential EEG decoding bench-
marks for the problem setting on top of three large public
datasets (BCI-IV 2a[16] 2, DEAP[17] 3 and SEED[18] 4),
which mimics the real world scenario of online sequential EEG
decoding. Detailed ablation studies are performed in terms
of transformation depth, memory size and different subject

2http://bnci-horizon-2020.eu/database/data-sets
3https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
4http://bcmi.sjtu.edu.cn/⇠seed/downloads.html

http://bnci-horizon-2020.eu/database/data-sets
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
http://bcmi.sjtu.edu.cn/~seed/downloads.html


TABLE I: Performance on accuracy and BWT evaluated after decoder finished sequential learning on all subjects.

Dataset BCI-IV 2a DEAP SEED

Method Accuracy BWT Accuracy BWT Accuracy BWT

EWC 41.18±0.75 �12.64±1.03 40.63±0.98 �11.41±0.57 46.53±1.74 �13.68±0.73

UCB 40.72±0.66 �13.14±0.58 38.24±1.31 �12.16±2.42 47.55±2.67 �12.94±2.35

ER 43.21±0.49 �12.56±0.72 41.45±1.80 �8.28±1.73 54.21±0.90 �10.05±1.16

ER+GMED 46.57±0.73 �12.10±0.51 43.19±2.03 �9.41±0.96 56.25±2.41 �11.98±0.85

MIR 48.35±1.14 �9.43±0.87 43.68±1.27 �7.55±2.53 58.64±1.56 �9.75±1.47

MIR+GMED 49.42±1.53 �7.49±1.96 44.52±0.74 �8.08±2.35 59.97±1.45 �8.36±2.33

ReSNT 52.84±0.8552.84±0.8552.84±0.85 �6.13±1.24�6.13±1.24�6.13±1.24 46.20±1.9646.20±1.9646.20±1.96 �7.33±2.94�7.33±2.94�7.33±2.94 61.29±1.1861.29±1.1861.29±1.18 �6.95±1.34�6.95±1.34�6.95±1.34

sequential 36.46±0.39 �14.78±0.41 33.41±0.92 �16.46±0.90 38.53±0.27 �18.84±0.91

joint train 81.70±0.52 —- 71.57±0.69 —- 82.50±0.86 —-

(a) BCI-IV 2a (b) DEAP (c) SEED

Fig. 3: F1-score improvement for different classes, relative to the baseline of sequential learning directly on base decoder. The
x axis corresponds to different classes of decoding tasks. For DEAP dataset, the high/low arousal are abbreviated as HA/LA,
positive/negative valence are abbreviated as PV/NV, e.g. high arousal positive valence corresponds to ”HAPV”.

ordering, etc., which offers in-depth understanding of model
performance.
Baselines We incorporated a wide range of baselines for
comparison in the experiment, including: 1) upper and lower
bound: lower bound is sequential learning across different
subjects directly with base decoder, and the upper bound is
joint training with data from all subjects simultaneously avail-
able. 2) currently widely used continual learning approaches,
including both regularization approaches such as EWC [19],
UCB [20], and replay-based approaches including ER [11],
MIR [21] and GMED [22].

Benchmark and Metrics We created new benchmarks to
mimic the scenario of continual decoding over a long period
of time across sequentially arriving subjects. Three different
scenarios of subject ordering is explored in the ablation study,
including 1) sequential order based on subject id, which is
the default setting in experiments, 2) ascending order based
on decoding difficulty, and 3) descending order based on
decoding difficulty. We fed the streaming EEG signal of
different subjects sequentially into the decoder based on the
aforementioned subject ordering.

We evaluated the average testing accuracy on all subjects
after completion of sequential learning, and performed mea-
surement on the improvement of F1 score per individual
class. We also performed evaluation on backward transfer
(BWT). BWT is defined as BWT = 1

N�1

PN�1
i=1 aN,i � ai,i,

with aj,i being the accuracy evaluated on subject j after
sequential learning of subject i. N is the total number of

subjects. Negative value of BWT indicates the occurrence of
catastrophic forgetting, and positive value shows learning of
later subjects helps improve model performance on previous
subjects.
Model Settings We adopt the shallow ConvNet architecture
introduced in [3] to serve as base model for the decoding
task. We used a small memory to store 200 signal segments
by default for both datasets. The diffusion and drift network
for the neural transformation is formed with two layers of
ConvNet with filter size 4 ⇥ 4 for first layer and 2 ⇥ 2 for
second layer. We set the transformation intensity G to be 0.1
by default, with its influence on model performance studied
in ablation study. The memory size is 200 for BCI-IV 2a and
DEAP datasets, and we used a memory size of 500 for SEED
dataset due to it is significantly larger. We set the regularization
weight � to be 2.0 by default, and its sensitivity is also
examined in ablation study. Other hyperparameter settings
follow [3]. The reported results are repeated for 10 runs in
each setting.

A. Performance Evaluation

Table I shows the performance in terms of test accuracy
and BWT on ReSNT and comparison baselines. The accuracy
is evaluated on all subjects after sequential learning finishes.
ReSNT outperforms the baselines by a significant margin on
all three datasets. The gain on accuracy is 3.42%, 1.68%
and 1.32% for BCI-IV 2a, DEAP and SEED respectively.
It has a margin of 1.36%, 0.75% and 1.41% on the three
datasets in terms of BWT. The model is better at maintaining



TABLE II: Ablation study on the influence of different subject
ordering towards replay-based approaches. We explored three
scenarios, 1) sequential order of subject id, 2) ascending
order of decoding difficulty, 3) descending order of decoding
difficulty.

Scenario ER ER+GMED MIR MIR+GMED ReSNT

BCI-IV 2a Dataset

Sequential 43.21±0.49 46.57±0.73 48.35±1.14 49.42±1.53 52.84±0.85

Ascending 43.56±0.72 46.44±1.25 48.69±0.92 49.51±0.87 53.10±1.39

Descending 42.75±1.08 46.10±0.51 48.13±0.76 49.24±1.08 52.43±0.61

DEAP Dataset

Sequential 41.45±1.80 43.19±2.03 43.68±1.27 44.52±0.74 46.20±1.96

Ascending 42.28±0.74 42.63±1.35 44.20±0.85 45.95±1.19 46.71±1.55

Descending 40.57±1.13 42.26±1.27 43.32±2.28 44.03±1.62 46.14±0.80

SEED Dataset

Sequential 54.21±0.90 56.25±2.41 58.64±1.56 59.97±1.45 61.29±1.18

Ascending 55.53±1.42 57.71±1.25 58.89±0.73 59.85±1.28 61.84±1.63

Descending 53.64±1.75 55.91±1.03 58.28±1.39 59.36±0.93 60.97±1.10

(a) BCI-IV 2a Dataset

(b) DEAP Dataset

(c) SEED Dataset

Fig. 4: Model performance on individual subject after sequen-
tial learning ends. The proposed model maintains relatively
good performance on earlier subjects with forget mitigation
mechanisms. (a) BCI-IV 2a dataset, (b) DEAP dataset, (c)
SEED dataset.

performance of previous subjects during sequential learning as
it produces more robust and diversified data in feature space
for effective replay. We performed further decomposition of
model performance at class-level, in terms of the different
motor imagery and emotion recognition tasks. The result
is summarized in fig. 3. The relative improvement in F1
score for the different classes shows the proposed model has
varying levels of effectiveness for the different recognition
tasks. Specifically, the model shows it is more effective
on capturing foot movement compared to other baselines

TABLE III: Effect of transformation intensity. We observed
the performance tend to converge with transformation intensity
G > 0.1.

Trans. Intensity G = 0.05 G = 0.1 G = 0.15 G = 0.2

BCI-IV 2a 52.25±0.92 52.84±0.85 53.29±1.31 53.36±0.62

DEAP 45.57±0.63 46.20±1.96 46.41±1.22 46.44±1.59

SEED 61.04±1.35 61.29±1.18 61.67±0.80 61.75±1.37

when performing motor imagery decoding on BCI-IV 2a. For
emotion recognition tasks, the model performs better than
baselines in detecting high arousal negative valence emotions.
We performed T-SNE visualization of transformed data, shown
in fig. 5. We observed the transformed data is in general
more scattered and shows a loosely mixed pattern in feature
space. Fig. 4 shows the performance of individual subjects
after the sequential decoding finished. The proposed ReSNT
model is better at maintaining performance of earlier subjects,
with more effective knowledge retaining during the sequential
decoding process.

B. Ablation Study
Influence of Different Subject Ordering

We explored the influence of different subject ordering on
model performance. We run the model with three different
subject ordering scenarios, ordered by 1) subject ID, 2)
descending of decoding difficulty, 3) ascending of decoding
difficulty respectively. The decoding difficulty is reflected as
decoding accuracy during test. We summarized the result in
Table II. Overall, the ascending order based on decoding
difficulty turns out to yield the best overall performance,
and descending order is the most challenging setting. This
shows the model benefits from learning harder subjects at the
beginning during the sequential decoding of different subjects.
Effect of Transformation Intensity

We performed evaluation of model performance with respect
to different transformation intensities depicted by G. The result
is provided in Table III. We observed the model performance
improves monotonically with the increase of G, this shows
the effectiveness of consistency regularization which helps
preserve the similarity between transformed data and original
data. The model performance is trending towards convergence
with G > 0.1. We used G = 0.1 as default setting in our
experiments.
Influence of Memory Size

We performed ablation study on different memory sizes for
all replay based approaches. The result is shown in Table IV.
The performance improves for the replay based approaches
with larger number of signal segments stored in memory. We
observed the ReSNT model has a larger margin compared to
comparison baselines in small memory settings, e.g. for BCI-
IV 2a dataset, ReSNT outperforms other baselines by at least
3.93% when only 100 segments are stored for replay, and this
margin gradually shrinks to 0.57% when 500 segments are
allowed in memory. This shows the ReSNT model suits better
to scenarios with smaller memory settings. We used a memory
size of 200 for BCI-IV 2a and DEAP datasets, and memory
size of 500 for SEED dataset as default settings.



(a) Original Segments (b) Transformed Segments

Fig. 5: TSNE visualization at feature level of (a) original
stored segments, (b) transformed segments in memory for the
different motor imagery classes of BCI-IV 2a dataset. The
stochastic neural transformation on stored segments produces
more diverse and robust features for model generalization
improvement.

TABLE IV: Model performance with respect to different
number of signal segments in memory. The model shows
improved avg. accuracy on all subjects with larger number
of segments stored in memory.

Mem. Size ER ER+GMED MIR MIR+GMED ReSNT

BCI-IV 2a Dataset

100 40.63±1.32 42.49±0.85 45.96±2.01 46.22±0.79 50.15±1.46

200 43.21±0.49 46.57±0.73 48.35±1.14 49.42±1.53 52.84±0.65

500 51.47±0.80 53.28±1.79 56.82±1.53 57.56±0.85 58.13±0.92

DEAP Dataset

100 35.80±0.76 37.64±0.95 39.56±2.89 40.10±3.24 42.63±1.70

200 41.45±1.80 43.19±2.03 43.68±1.27 44.52±0.74 46.20±1.96

500 48.64±0.59 50.42±0.39 52.26±2.16 53.97±1.91 55.15±1.34

SEED Dataset

200 54.21±0.90 56.25±2.41 58.64±1.56 59.97±1.45 61.29±1.18

500 63.51±1.25 65.17±0.57 66.69±2.04 67.36±2.73 68.53±1.45

800 68.82±1.62 69.39±0.94 71.82±1.59 72.28±2.52 72.71±1.74

IV. CONCLUSION

For clinical applications of BCI systems, it is necessary
for the system to perform decoding over a long period of
time on streaming brain signals for patient assistance tasks. In
this work, we propose a replay based approach for effective
brain signal decoding in this challenging scenario. The model
performs stochastic neural transformation on stored segments
to generalize well on previous subjects and avoids overfitting.
We formed a bi-level optimization framework for end to end
training of the stochastic neural transformer together with the
EEG decoder. Its effectiveness is evaluated on numerous newly
formed benchmarks that mimic real world prolonged decoding
scenarios. Further exploration is needed for the following
items: 1) decoding of subject sequences with heterogeneous
classes, 2) online continual decoding without usage of stored
signal segments in memory.
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