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ABSTRACT
While the open architecture, open interfaces, and integration of in-
telligence within Open Radio Access Network technology hold the
promise of transforming 5G and 6G networks, they also introduce
cybersecurity vulnerabilities that hinder its widespread adoption.
In this paper, we conduct a thorough system-level investigation
of cyber threats, with a speci!c focus on machine learning (ML)
intelligence components known as xApps within the O-RAN’s near-
real-time RAN Intelligent Controller (near-RT RIC) platform. Our
study begins by developing a malicious xApp designed to execute
adversarial attacks on two types of test data - spectrograms and
key performance metrics (KPMs), stored in the RIC database within
the near-RT RIC. To mitigate these threats, we utilize a distilla-
tion technique that involves training a teacher model at a high
softmax temperature and transferring its knowledge to a student
model trained at a lower softmax temperature, which is deployed
as the robust ML model within xApp. We prototype an over-the-air
LTE/5G O-RAN testbed to assess the impact of these attacks and
the e"ectiveness of the distillation defense technique by leveraging
an ML-based Interference Classi!cation (InterClass) xApp as an ex-
ample. We examine two versions of InterClass xApp under distinct
scenarios, one based on Convolutional Neural Networks (CNNs)
and another based on Deep Neural Networks (DNNs) using spec-
trograms and KPMs as input data respectively. Our !ndings reveal
up to 100% and 96.3% degradation in the accuracy of both the CNN
and DNN models respectively resulting in a signi!cant decline in
network performance under considered adversarial attacks. Under
the strict latency constraints of the near-RT RIC closed control loop,
our analysis shows that the distillation technique outperforms clas-
sical adversarial training by achieving an accuracy of up to 98.3%
for mitigating such attacks.
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1 INTRODUCTION
Emerging applications, such as augmented and virtual reality (AR/VR),
ultra-HD video streaming, autonomous vehicles, and industrial IoT,
demand wireless systems capable of delivering superior perfor-
mance in terms of high throughput, minimal latency, and high
reliability. This has led to the development of new #exible, pro-
grammable radio access network (RAN) architectures. One such
prominent RAN architecture gaining global traction is the Open
Radio Access Network (O-RAN), developed by the O-RAN Alliance.
O-RAN represents a groundbreaking approach that promises to
usher in the next generation of cellular networks. These networks
are envisioned to be open, interoperable, #exible, disaggregated,
and intelligent, thanks to the O-RAN paradigm. O-RAN’s architec-
tural design aims to empower network operators to build adaptable
and cost-e"ective networks that seamlessly accommodate a grow-
ing array of applications demanding high throughput, ultra-low
latency, and expansive bandwidths.

The core O-RAN architectural principle encompasses the utiliza-
tion of machine learning-driven closed-loop control, facilitated by
RAN Intelligent Controllers (RICs) [1, 2]. There are two types of
RIC, called, near-real-time (near-RT) RIC and non-real-time (non-
RT) RIC that respectively support 3𝐿𝑀 party microservices, called
xApps and rApps respectively. (Refer to Section 2 for an overview of
O-RAN and RIC platform.) These microservices, equipped with a di-
verse array of machine learning (ML) techniques, are instrumental
in various RAN applications such as scheduling, tra$c steering, in-
terference classi!cation, and network slicing. The e$cacy of these
applications has been substantiated through extensive research and
implementation in recent works [3–6].

Despite the many bene!ts that O-RAN brings, there is a growing
concern regarding the vulnerability of various components hosted
in the RICs and the vulnerability of the open interfaces [7–10].
O-RAN Alliance Working Group 11 (Security Working Group) in
[11] have done a comprehensive security analysis and identi!ed
various threat models that exist in O-RAN including threat agents,
threat surfaces, and threats for each O-RAN component and open
interfaces. Speci!cally, in [12], O-RAN Alliance Working Group
11 identi!ed various attack vectors and threat models that could
a"ect ML solutions hosted as xApps in the near-RT RIC. These
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threats could range from poisoning test data used by ML models
to altering a ML model and breaching ML data con!dentiality and
privacy. Table 1 provides a succinct summary of the various attack
vectors that impact the application of ML intelligence within O-
RAN, particularly concerning xApps and rApps. These !ndings
underscore the critical importance of safeguarding intelligence and
data deployed within the O-RAN system.

So far, the mentioned studies have only laid out potential threats
to O-RAN with no system-level study conducted to show the ex-
tent these threats can a"ect the performance of the system or the
network in general. Threats against ML models to cause misclassi!-
cation through carefully crafted perturbations have been studied in
the !eld of adversarial machine learning [14–16]. With the grow-
ing application of ML in the wireless domain, adversarial attacks
and threats have also been explored, particularly in the wireless
physical layer [17–20]. In [21], the authors gave the !rst and poten-
tially the only known work on investigating adversarial attacks on
xApps in O-RAN architecture. However, this work is limited in the
sense that (i) the work does not explore any defense techniques to
address the cyber vulnerabilities, (ii) the cellular network used in
their study is based on MATLAB simulations, and does not re#ect
the system-level study, (iii) the work is limited to spectrograms, and
has not explored KPMs which is mostly used by ML-based xApps
in current O-RAN systems.

Contributions. In this paper, we undertake an in-depth ex-
amination of the cyber vulnerabilities inherent in the intelligent
components of the O-RAN framework, speci!cally focusing on the
ML models deployed within xApps at the near-RT RIC, consider-
ing a systemic perspective. We illustrate our investigation using a
representative interference classi!cation xApp, designed to detect
whether the network is experiencing interference or not. It’s worth
noting that while we utilize this particular xApp as a case study, our
analysis is applicable to any xApp employing predictive models for
network control. Our speci!c area of concern centers around one
of the threat vectors highlighted in Table 1, where we manipulate
the test data employed by ML models within xApps in the near-RT
RIC. We delve into the repercussions of these threats on network
performance and subsequently explore techniques to counteract
such attacks in real time, ultimately aiming to maintain robust net-
work performance even in the presence of adversarial activities. In
summary, this paper makes the following key contributions.
•We conduct a comprehensive system-level investigation of cyber-
security threats, with a speci!c focus on adversarial attacks on the
intelligent components, called xApps hosted within the near-RT
RIC of O-RAN systems.
• We create a malicious xApp designed for the execution of adver-
sarial attacks on two di"erent types of test data – spectrograms and
key performance metrics (KPMs), stored in the RIC database in the
near-RT RIC. For our study, we leverage a ML-based interference
classi!cation (InterClass) xApp as the case study. For spectrograms
as input data, we utilize a CNN model for the InterClass xApp
(InterClass-Spec xApp), whereas we utilize a DNN model for Inter-
Class xApp (InterClass-KPM xApp) for KPM as input data.
•We leverage the distillation technique as a defense to mitigate the
cyber threats against intelligent components within the near-RT
RIC. This technique involves training a teacher model at a high
softmax temperature and transferring its knowledge to a student

model trained at a lower softmax temperature. The robust model is
eventually deployed within the xApp.
• We employ an LTE/5G O-RAN testbed for the generation of
datasets and assessing the impact of adversarial attacks. Further-
more, we evaluate the e"ectiveness of defense techniques on both
model accuracy and network performance. Under the strict latency
requirements of between 10ms to 1s for the near-RT RIC closed
control loop, our experiments demonstrate that both the InterClass-
Spec xApp and InterClass-KPM xApp models perform admirably,
yielding accuracy rates of 98% and 97.9%, respectively. However,
when subjected to an adversarial attack with an epsilon value of 0.1
which is a hyperparameter that determines the magnitude of pertur-
bation added to the input data to generate an adversarial example,
we observe a substantial reduction in the accuracy of both mod-
els. Speci!cally, the InterClass-Spec model’s accuracy drops to 0%,
and the InterClass-KPM xApp model’s accuracy decreases to 3.7%,
resulting in network performance degradation. Notably, by employ-
ing the distillation technique as a defense mechanism, we managed
to restore the accuracy of both models. The InterClass-Spec xApp
model achieves an accuracy of 96%, while the InterClass-KPM xApp
model achieves an accuracy of 98.3% thereby improving the overall
network performances in terms of throughput and Block Error Rate
(BLER).

2 RELATEDWORKS
A key pillar of O-RAN architecture is the integration of intelli-
gence into every aspects of wireless networks, whether its deploy-
ment, operation or maintenance of the networks. Recent years
have seen an emergence of research papers that propose innova-
tive AI-powered RAN control functionalities. Notable examples
include: (i) LSTM-based RAN resource management xApp [22] - this
work is potentially the !rst work that proposes utilizing long short-
term memory (LSTM) recurrent neural network (RNN) to learn
and predict the tra$c pattern of a real-world cellular network us-
ing O-RAN networks - , (ii) ML-based spectrum sensing xApp [5] -
this work proposes ML-based spectrum sensing xApp that utilizes
an object detection ML model, called, YOLO, for detecting radar
signals present within the spectrograms in uplink LTE/5G com-
munications, (iii) AI-driven tra"c steering xApp [23] - this work
proposes a deep reinforcement learning (DRL) based tra$c steering
xApp to optimally control mobility procedures at a UE level, using
the centralized viewpoint of the RIC (using collected RAN KPMs),
(iv) DRL-based RAN slicing [3] - this work develops a set of DRL
agents as RIC xApps to optimize key performance metrics for di"er-
ent network slices through data-driven closed-control loops. These
are just a few examples of the innovative research in this domain.
There are numerous other works, such as DRL-based scheduling
xApps [24], ML-based mobility management solutions [25], ML-
based interference mitigation technique [26], and ML strategies
for tra$c steering xApp [27]. This surge in research re#ects the
growing interest and advancements within the O-RAN ecosystem.

Nonetheless, despite this impressive array of ML-based RAN
control contributions, a critical gap remains unaddressed. None
of the existing endeavors delve into the intricate terrain of poten-
tial cyber threats and privacy vulnerabilities posed by ML-driven
x/rApps, or the overarching AI/ML-infused closed-loop systems
within the O-RAN networks. Speci!cally in [12], O-RAN alliance

238



System-level Analysis of Adversarial A!acks and Defenses on Intelligence in O-RAN based Cellular Networks WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

Table 1: ML intelligence speci!c issues in xApps (as per O-RAN Alliance Security Working Group technical report on “Study of
Security for near-RT RIC and xApps” [13]).

Attack vector Security threats Consequence

ML model altercation, duplication or
inversion

Malicious/Compromised xApp - Malicious/compromised xApps misuse radio network data and control capabilities over RAN operations,
disrupt subscriber services, take advantage of UE identi!cation, locate UEs, and alter UE slice priority.

Con#icting xApp - A denial of service (DoS) attack occurs when an xApp purposefully makes decisions regarding the manage-
ment of radio resources that are in opposition to those made internally by the gNB or by other xApps.

Isolation between xApps - Utilize too many of the platform resources that are shared by all xApps, causing a noisy neighbor e"ect by
depleting the resources of other co-located xApps.

ML training or test data poisoning (Focus
of this paper)

Compromised ML data pipeline used in
near-RT RIC

Malicious attacker gains the ability to change some of the training (or test) data that may be used to develop the
ML models that xApps will use to produce predictions for a certain RAN control. This would lead to predictions
that will degrade network performances.

Privacy leaks in RAN database Sensitive RAN and UE-speci!c data stored
in near-RT RIC database

Allows unauthorized database activities and information manipulation by an intruder. This could a"ect
network service and performance. It also brings issues related to the privacy of users’ data.

working group 11 identi!ed some key ML-related security issues
in the near-RT RIC architecture, relevant interfaces, xApps and
application programmable interfaces (APIs). Authors in [28] pro-
vides a comprehensive review of the security and privacy risks
associated with the O-RAN architecture. They discuss potential
solutions, standardization e"orts, and unique solutions based on
blockchain and AI. They o"er a comprehensive identi!cation of
the threats associated with the O-RAN architecture but with no
comprehensive system-level analysis and validation on how some
of these attacks can be implemented in the O-RAN architecture.

3 O-RAN BACKGROUND
The O-RAN architecture, as depicted in Fig. 1, provides an overview
of the internal components within an O-RAN system. Here, we
brie#y discuss three integral internal components for better under-
standing of this work. (Please refer to [2] for a detailed understand-
ing of O-RAN architecture.)
3.1 RAN Intelligent Controller (RIC)
The RIC is a key component of the O-RAN architecture that pro-
cesses data and leverage ML algorithms to determine control poli-
cies that optimize the RAN. There are two major logical RIC con-
trollers that operate di"erent time scales. These are:
• Non-RT RIC: The non-RT RIC resides within the service man-
agement and orchestration framework (SMO) and handles control
loops at a time granularity of > 1s.
• Near-RT RIC: The near-RT RIC operates control loops between
10ms to 1s. It hosts third-party vendor applications called xApps.
These xApps act as intelligent components and run ML algorithms
that are used to determine control policies for optimizing the RAN
through the E2 interface. Other major components of the near-RT
RIC include the RIC database/SDL and internal messaging infras-
tructure which helps to connect multiple xApps and also ensures
message routing. This work focuses on security analysis of ML model
intelligence within xApps hosted in the near-RT RIC.

3.2 RIC Database and Shared Data Layer (SDL)
The RIC database serves as a repository for various data, includ-
ing lists of User Equipments (UEs) and associated information. It
also contains data related to the RAN, o"ering insights into access
network-related aspects in#uencing overall network performance.
The data stored in the RIC database may encompass KPMs such as
throughput and signal-to-interference-plus-noise ratio (SINR) char-
acterizing the quality of communication between UEs and RAN.

The SDL, on the other hand, functions as an API enabling xApps
to access and manipulate the information stored in the RIC database.
Through the SDL, xApps have the ability to read, write, and modify

Service Management and Orchestration Framework

E2

Non-RT RIC

Near-RT RIC

Internal messaging infrastructure

Database
E2 termination

A1

Radio Access Network (RAN)

rApp rApp rApp

xApp xApp xApp

SDL

Figure 1: Simpli!ed O-RAN architecture.

data stored in the database. The O-RAN software community (OSC)
in [29], provides documentation on the implementation of the SDL
API, which can be compiled within xApps, granting them access to
a Redis-based database.
3.3 Types of Data within RIC Database
Based on the split option used in the 5G network architecture, there
is a corresponding data type that can be obtained from the lower
network levels to the near-RT RIC.

Key Performance Metrics (KPMs): In line with the O-RAN
alliance’s split option 7.2x, which is speci!cally designed for Ultra
Reliable Low Latency Communication (URLLC) and near-edge de-
ployments, we need to take a crucial architectural consideration
into account. Split 7.2x e"ectively relocates the low-level Physical
Layer (PHY) functionality to the Radio Unit (RU). As a result of this
architectural shift, we encounter a limitation in terms of the data
we can leverage within the near-RT RIC.

In this scenario, our data sources are primarily constrained to
KPMs. These metrics provide valuable insights into the perfor-
mance of the network, which is especially relevant for URLLC and
near-edge use cases. While this architectural change streamlines
the processing of PHY-related data at the RU, it also underscores
the signi!cance of KPMs as the primary data source for informed
decision-making within the near-RT RIC.

I/Q Samples (or Spectrograms): Conversely, under the split
8 con!guration, the low-level PHY functionality remains within
the Distributed Unit (DU-low). This architectural choice provides
distinct advantages, particularly for data accessibility. With split 8,
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Figure 2: Overview of Interference Classi!cation xApp (with
Malicious xApp).

it becomes feasible to access a more extensive range of data types,
extending beyond KPMs.

Certainly, the inclusion of IQ samples/spectrogram data in split
8’s accessible data spectrum is a signi!cant advancement. This
expanded access to a diverse array of data types, even in the face
of potential latency and security considerations, holds immense
importance. It provides a more comprehensive dataset that proves
invaluable for in-depth analysis and informed decision-making.

Therefore, by preserving the low-level PHY functions within
the DU-low, split 8 e"ectively ampli!es the network’s adaptability
and the variety of data sources at its disposal. This heightened
versatility empowers the deployment of advanced use cases and
applications, underscoring the potential of this con!guration to
drive innovation and address complex network requirements.

4 EXEMPLARY INTERFERENCE
CLASSIFICATION XAPP

To study the threat and vulnerability of intelligent components
in the near-RT RIC, we design, develop, and deploy a ML-based
InterClass xApp that is used to detect a jammer transmitting an
interference signal in the uplink direction of the user tra$c. Our
models used for the xApp are trained on our dataset collected over
the air (OTA) using our LTE/5G O-RAN testbed detailed later in
Section 7.

4.1 Model Design and Development
In the design and development of our models utilized within the
InterClass-Spec xApp and InterClass-KPM xApp which use spec-
trogram and KPMs respectively, we encounter a unique challenge.
These models need to meet the stringent demands of the near-RT
RIC control loop, which operates at a timescale of less than a second.
To ensure seamless operation within this timeframe, it is impera-
tive that our models are not overly complex and burdened with an
excessive number of parameters. Such complexity can hinder the
speed of inference, which is a critical consideration in this context.

Hence, we !nd ourselves at a critical juncture where we must
carefully balance model accuracy with the e$ciency of inference
speed. This tradeo" is essential to strike the right equilibrium,
ensuring that our models deliver both the required accuracy and
the rapid decision-making capabilities necessary for the near-RT
RIC control loop.

Table 2: Spectrogram Dataset Model structure
Layers Properties
Conv2D !lters = 16, kernel size = (3,3), activation function = ReLU
Maxpool2D pool size = (2,2)
Conv2D !lters = 16, kernel size = (3,3), activation function = ReLU
Maxpool2D pool size = (2,2)
Conv2D !lters = 32, kernel size = (3,3), activation = ReLU
Maxpool2D pool size = (2,2)
Conv2D !lters = 32, kernel size = (3,3), activation = ReLU
Flatten -
Dense size = 32, activation = ReLU
Dense size = 2, activation = Softmax

No interference
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16 nodes32 nodes64 nodes
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Figure 3: KPMs model architecture.

4.1.1 CNN-based InterClass-Spec xApp. For the spectrogram dataset,
we leverage the CNN for training purposes to build our initial
model with input of shape (128,128,1) and having total parameters
of 163,922. Table 2 shows our model structure where the !rst two
conv2D layers have a maxpooling layer after it with pool size of
(2,2) while a #atten layer is introduced after the last conv2D layer.

4.1.2 DNN-based InterClass-KPMs xApp. For the KPMs dataset, we
leverage a DNN architecture as shown in Fig.3 having a total of
6546 parameters. To train the DNN-based model, we leverage the
metric values in the dataset which represent the features. In our
case, we consider (m) KPMs and collect (t) di"erent time windows
of metrics to stack together and form an extended array of input
before feeding into the network. Feeding multiple time windows
into themodel leads to better accuracy for interference classi!cation
compared to feeding a single time window to the model. For our
training purposes, we considered m=4 and t=15, which means our
input nodes would be 60 (15x4) in total resulting in an input shape
of (60,1). Each hidden layer has a ReLU activation function while
the !nal output has a softmax activation function.

Upon model creation, we utilize the model in the InterClass
xApp which is deployed in the near-RT RIC of our O-RAN system
as shown in Fig.2.

4.2 InterClass-Spec xApp - A Walkthrough
We discuss the step-wise working of InterClass-Spec xApp. Also
refer to Fig. 2 for illustration.
Step 1) I/Q samples collected OTA are stored in a bu"er at the RAN
during communication. After an E2 request is sent from the internal
messaging infrastructure (IMI)/policy controller, a connection is
established between the near-RT RIC components and the RAN.
The request from the policy controller is in the form of an indication
message to request for the I/Q samples stored in the bu"er at the
RAN. These I/Q samples are then collected through the E2 inter-
face from the RAN to the policy controller. For our experimental
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purposes, we periodically collect the last 10 ms segments of I/Q
data from the bu"er, equivalent to the length of one LTE/5G frame.
Step 2) The last 10 ms I/Q samples are forwarded to an auxilliary
data processing microservice that processes and converts the I/Q
samples into spectrograms.
Step 3) The data processing microservice then forwards the com-
puted spectrogram to a database that stores computed spectrograms
that can be accessed by other xApps deployed in the near-RT RIC
that require the data for di"erent RAN control functionalities.
Step 4) The InterClass-Spec xApp queries the database to get the
latest spectrogram and uses it to determine if a signal is interfered
or not.
Step 5) The decision/prediction of InterClass-Spec xApp is sent to
the policy controller.
Step 6) The policy controller sends a control message to the RAN.
The control message contains the control decision made by the
xApp based on the model’s decision. Based on this decision, we
dynamically control the RAN. The RAN can be controlled to either
use the highest achievable MCS if there is no jammer detected but
if a jammer is detected, there are several mitigation approaches
that could be implemented such as adaptive MCS, change of carrier
frequency or perform some intelligent scheduling approaches such
as resource blocks blanking based on the location of the jamming
signal detected. In our case, we use the adaptive MCS technique as
the mitigation approach for negating the impact of interference on
the network performance.

4.3 InterClass-KPM xApp - A Walkthrough
InterClass-KPM xApp works similarly to that of InterClass-Spec
xApp with the only following di"erences.

In Step 1, unlike I/Q samples, here the requested KPMs are sent
as the indication request message to the policy controller when
requested. In Step 2, KPMs are forwarded to the data processing
microservice to perform certain processing before it is stored in
the RIC database. After this, Step 3-6 work in a similar fashion
however using KPMs as the test data instead of spectrograms.

5 O-RAN INTELLIGENCE THREAT MODEL
In our O-RAN system, as illustrated in Fig. 2, our focus within
the threat model centers on the O-RAN intelligence components,
xApps operating within the near-RT RIC. Speci!cally, our research
delves into potential threats targeting the test data employed by
ML models within these xApps for inference, and the potential
repercussions on network performance.

In the broader O-RAN context, ML models are integrated into
xApps to facilitate the management of the RAN within a time
range of 10ms to 1000ms, relying on the decisions made by these
models. Despite the speci!ed time scale for control, these models
are susceptible to generating inaccurate predictions when faced
with adversarial attacks that aim to manipulate the data used by
the models. Numerous xApps can be developed within the near-RT
RIC, each serving di"erent use cases such as tra$c steering, slicing,
resource allocation, and interference classi!cation. The models
employed in these scenarios may necessitate data presented in
formats like KPMs or spectrograms. The accuracy and e$ciency of
these models can be compromised by adversarial attacks during the

testing phase. The impact of these attacks on network performance
varies depending on the speci!c scenario. For instance, in the case
of an xApp designed for slicing and resource allocation, incorrect
predictions from the models could result in subpar quality of service
and decreased data rates for users requiring additional resources.

For our study, we have implemented an ML-based InterClass
xApp designed to detect the presence of jammers in the network.
This xApp utilizes either spectrograms or KPMs data stored in the
RIC database. Simultaneously, we’ve created a malicious xApp that
coexists within the shared near-RT RIC, assuming access to the
same database due to the openness of O-RAN system. Thismalicious
xApp can be crafted usingwell-known adversarial attack algorithms
to manipulate the data stored in the shared database either during
test time or in real-time. The objective of this malicious xApp in
this scenario is to ensure that the data used for inference by the
legitimate xApp during test time is altered. The intention is to
compel the legitimate xApp to make incorrect predictions, thereby
degrading network performance. The network performance metrics
considered include throughput and Block Error Rate (BLER)

Similar to the work in [21], for the malicious xApp, we leverage
two well known adversarial attacks called (i) the fast gradient
sign method (FGSM) attack [30] and (ii) the projected gradient
descent (PGD) attack [31].

FGSM a!ack. We !rst leverage the FGSM to create adversarial
samples to perform targeted attacks. FGSM is a one-step gradient-
based attack where the adversarial attack 𝜴𝑁𝑀𝑂 is generated to
minimize the loss function L(𝜶 , 𝜴,𝐿𝑃𝑁𝐿𝑄𝑅𝑃 ) where 𝜶 is the model’s
parameters, 𝜴 is the input to the model, and 𝐿𝑃𝑁𝐿𝑄𝑅𝑃 is the target
label that the adversary is aiming to fool. In our case, since we are
performing a targeted attack the adversarial xApp aims to fool Inter-
Class xApp to classify as signal of interest (SOI) even in the presence
of jammer signals. To minimize the loss function, the adversarial
attack can be expressed as 𝜷 = 𝑀 ↑ sign(↓𝜴L(𝜶 , 𝜴,𝐿𝑃𝑁𝐿𝑄𝑅𝑃 )), where
↓𝜴L(𝜶 , 𝜴,𝐿𝑃𝑁𝐿𝑄𝑅𝑃 ) is the gradient of L(𝜶 , 𝜴,𝐿𝑃𝑁𝐿𝑄𝑅𝑃 ) with respect
to the input data 𝜴 and 𝑀 is the power scaling factor of the attack
which controls how far the input data can be modi!ed while still
remaining similar to the original data. The adversarial example that
is put into the database is represented as 𝜴𝑁𝑀𝑂 = 𝜴 + 𝜷 .

PGD a!ack. The FGSM can be further improved by running
a more thorough optimization using an iterative algorithm where
this multi-step iterative algorithm based on FGSM is called PGD
attack [31]. PGD attack performs FGSMwith a small step size 𝑁 and
projects the perturbed input onto the 𝑂↔-ball around the original
input. The iterative method for 𝑃 -step PGD attack is de!ned for
𝑄-th iteration as follows

𝜴0 = 𝜴

𝜴𝑆 = clip[𝜴,𝑇 ] {𝜴𝑆↗1 + 𝑁sign(↓𝜴𝐿↗1L(𝜶 , 𝜴𝑆↗1,𝜸))}
𝜴𝑁𝑀𝑂 = 𝜴𝑈 , (1)

where clip[𝜴,𝑇 ] (·) is elementwise clipping to [𝜴 ↗ 𝑀, 𝜴 + 𝑀] so that
the outcome stays in 𝑂↔𝑀↗neighborhood of 𝜴 .

In our threat model, we consider a white-box attack scenario in
which the adversary possesses unrestricted access and complete
knowledge of the model. This approach is highly practical and
aligns with the vulnerabilities and openness inherent in the O-RAN
architecture, as discussed in Section 1.
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In this scenario, the attacker, manifesting as an adversarial xApp,
not only has access to the database but also acquires detailed knowl-
edge about the model employed by the legitimate xApp. Leveraging
the adversarial attack methods previously outlined, the attacker
carries out targeted attacks in real-time. The primary objective is to
manipulate the legitimate xApp’s behavior, compelling it to classify a
speci!c class erroneously. This is achieved by modifying the original
data within the database, deceiving the legitimate xApp into making
incorrect inferences.

5.1 Impact of Adversarial Attacks on
InterClass-Spec/Interclass-KPMs xApp

Following a comprehensive examination of our system-level threat
model, we have obtained initial results indicating that the attacks
on our models resulted in a degradation of network performance.
Prior to these attacks, the accuracy of our models, one built with
spectrograms and the other with KPMs, stood at an impressive 98%
and 97.9%, respectively. However, under the described attacks with
varying perturbation budgets 𝑀 ranging from 0.01 to 0.1, with the
FGSM attack being one-step while the PGD being !ve-step, the
accuracy performances of our models are severely impacted and
are depicted in Fig. 4.

Fig. 4(c) present spectrograms and KPMs before and after the
attacks at a perturbation budget of 0.03. The altered spectrogram
exhibits clear visual di"erences, discernible to the human eye. How-
ever, these distinctions may not be apparent to the vulnerable model.
Likewise, in the case of KPMs, we observe the change in KPM values
resulting under adversarial attacks which cause misclassi!cation.

6 DISTILLATION-BASED DEFENSE
Drawing upon a state-of-the-art defense paradigm, namely the
distillation-based defense, we present our approach to safeguard the
integrity of intelligent components, speci!cally the xApps, against
adversarial intrusions in the O-RAN system. This method forms
a pivotal component of our comprehensive security framework,
enhancing the resilience of O-RAN infrastructure while upholding
the integrity and reliability of network functionalities.

Distillation was formally proposed by Hinton et al [32]. Distill-
ing the knowledge in a neural network is a technique that helps
to improve model e$ciency, generalization, and regularization by
reducing the size of neural network architecture thereby reducing
the computing resources needed. In knowledge distillation, we have
two neural networks architectures, one is called the teacher and
the other is the student. The teacher is usually a larger architec-
ture with more parameters and complexity while the student is
usually of a smaller architecture. The motivation behind this is that
distillation extracts the knowledge from the probability vectors
of the teacher model and transfers it to the student model during
training thereby maintaining comparable accuracy and improving
generalization capabilities. In [33], Papernot et al. proposed using
the distillation technique not just for the transfer of knowledge
between architectures, but also to make a model more resilient
to adversarial examples. Their intuition was that this would also
help in improving the generalization capabilities of the architecture
while maintaining accuracy and increasing resilience to adversar-
ial examples. A key di"erence between the approach of [32] and

[33] is that in using distillation as a defense technique, the size of
the original/teacher architecture and the distilled architecture for
training the student are kept the same. The student and teacher
model architectures are kept the same in order to ensure that the
knowledge transfer from the teacher to the student is e"ective and
the student model can learn from the teacher’s predictions and
mimic its behavior more accurately. This helps in improving the
generalization capabilities of the student model and reducing the
impact of adversarial samples. This method has also been applied
in the wireless domain [34] where it was used to defend against
attacks against channel estimation models.

For our studies, aside from keeping both teacher and student
models the same, we !rst trained the teacher model with a high
temperature (𝑅𝑃 ) to soften the softmax probability outputs of the
model, which makes the probability distribution of the generated
softmax function more uniform. Softmax function can be shown as

𝑆 (𝑇,𝑅 ) = 𝑈𝑉𝑀/𝑊∑𝑋
𝑌=1 𝑈

𝑉 𝑁 /𝑊
for 𝑇 = 1, 2, . . . ,𝑉 (2)

where 𝑆 (𝑇,𝑅 ) is the softmax probability output for the 𝑇th class
scaled with temperature parameter (scaling factor)𝑅 , 𝑊i is the unor-
malized logit for the 𝑇th class, and 𝑉 is the number of classes. The
loss function for the teacher model with temperature 𝑅𝑃 becomes

Lteacher (𝑅𝑃 ) = ↗ 1
𝑃

𝑈∑
𝑌=1

1(𝐿i = 𝑋)𝑆 (𝑇,𝑅𝑃 )

= ↗ 1
𝑃

𝑈∑
𝑌=1

1(𝐿i = 𝑋) 𝑈𝑉𝑀/𝑊𝑂∑𝑋
𝑌=1 𝑈

𝑉 𝑁 /𝑊𝑂
. (3)

Unlike the case of the temperature of the teacher model, the
temperature we utilize for training the student is very low where
the loss function to train the student model is de!ned as

Lstudent (𝑅𝑍 ) = ↗ 1
𝑃

𝑈∑
𝑌=1

1(𝐿i = 𝑋) 𝑈𝑉𝑀/𝑊𝑃∑𝑋
𝑌=1 𝑈

𝑉 𝑁 /𝑊𝑃
, (4)

where 𝑅𝑍 is the temperature which is a very low value in the case
of our student loss, 𝑅𝑍 = 1 .

For the distillation process meaning transferring the knowledge
of the teacher to the student, we are going to combine two di"erent
losses, one is the student loss and the other is the Kullback-Leibler
(KL) divergence or cross-entropy loss. The student loss computes
the di"erence between the student predictions and the ground-truth
labels, while the other computes the di"erence between soft student
predictions and soft teacher predictions by using the Kullback-
Leibler (KL) divergence or cross-entropy loss between the teacher’s
and student’s probability distributions. The KL divergencemeasures
the di"erence between two probability distributions, here the idea
is to minimize this di"erence during the distillation process to the
point that the knowledge from the teacher has successfully been
distilled to the student. The KL divergence loss can be de!ned as

LKL = 𝑌KL (𝑆teacher (𝑇,𝑅𝑃 ) | |𝑆student (𝑇,𝑅𝑍 ))

=
∑
𝑎

𝑆teacher (𝑇,𝑅𝑃 ) log
(
𝑆teacher (𝑇,𝑅𝑃 )
𝑆student (𝑇,𝑅𝑍 )

)
. (5)

From Equation 5, we can observe that the cross-entropy loss is
calculated between the softmax probability outputs of the teacher
and student models at a very low temperature𝑅𝑃 and𝑅𝑍 greater than
1. Then, the !nal loss Ldistillation used for the distillation process
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(a) (b) (c)

Figure 4: Impact of attacks on the models’ performances – (a) InterClass-Spec xApp accuracy, and (b) InterClass-KPMs xApp
before and after the two attacks at various epsilon values, and (c) Example of original and perturbed spectrograms/KPMs under
adversarial attack at 𝑀 = 0.03.

is computed as a combination of both the student loss and the KL
divergence loss and is given by

Ldistillation = 𝑁 ↑ Lstudent + (1 ↗ 𝑁) ↑ LKL, (6)

where 𝑁 is a weight parameter between 0 and 1. For our perfor-
mance evaluation, we select 𝑁 = 0.1 to give more importance to the
distillation loss.

Fig. 5 shows an overview of the whole distillation technique ex-
plained so far. Both the teacher and student models are structured
similarly to what has been de!ned in Table 2 and Fig. 3. However,
we have di"erent loss functions for the teacher (Lteacher) and the
student (Lstudent). These functions allow us to adjust the scaling of
the logits with di"erent temperatures where we use a high temper-
ature for the teacher and lower temperature for the student.

6.1 Baseline Defense: Adversarial training
Adversarial training is a well-established technique for enhancing
the robustness of models against adversarial attacks. Notably, in
works such as [15] and [31], researchers have addressed the issue
of adversarial attacks by advocating for robust optimization tech-
niques. In [31], the authors presented a theoretical framework that
formulates security against adversarial attacks as a saddle point
problem, providing a principled approach to addressing this chal-
lenge. Adversarial training involves augmenting the training dataset
with adversarial samples, and this method has demonstrated e"ec-
tiveness in the !eld based on their research !ndings. The intuition
behind this is that by having training data with some adversarial
examples will help to improve the generalization capabilities of
the model and also improve accuracy. To this end, we also employ
adversarial training by augmenting the training samples with data
generated from our attacks, speci!cally at an epsilon value of 0.02.

7 O-RAN TESTBED AND DATASET
GENERATION

In this section, we present the implementation details of our OTA
LTE/5G O-RAN testbed. Subsequently, we discuss how the testbed
is utilized to generate both the spectrogram and KPM dataset for
performance evaluations in Section 8.

7.1 O-RAN Testbed Implementation
In Fig. 6, we provide an overview of our O-RAN testbed, which is
composed of key elements including a RAN/Core network which

are co-located on the same desktop, UE, jammer, and !nally the
near-RT RIC.

The RAN/Core and UE are implemented using the open-source
srsRAN cellular software stack (version 21.10), which is speci!cally
designed for building LTE/5G cellular networks [35]. Each of these
are equipped with an ubuntu release 20.04 OS and running on an
intel core i7-8700 having 6 CPU cores, 16GB RAM, 12 threads and
running at a clock speed of 3.2GHz. The srsRAN software stack
is a #exible and customizable platform for software-de!ned radio
(SDR)-based RANs and UEs. To adapt srsRAN for the testbed’s re-
quirements, certain modi!cations were made to the codebase. These
modi!cations include the creation of a bu"er to store collected I/Q
samples and the addition of speci!c RAN control capabilities such
as switching between adaptive or !xed MCS. Both the RAN and UE
are equipped with USRP B210 SDRs to handle the radio frequency
(RF) front-end operations. SDRs are essential for the #exibility and
programmability required in the O-RAN environment.

The near-RT RIC is hosted on a rack server and has the capacity
to serve multiple RANs. The server hosting the near-RT RIC is an
AMD EPYC™ 7443P with 24 CPU cores, 48 threads, 64GB RAM and
a base clock speed of 2.85GHz. It acts as an intelligent controller for
the RAN. The near-RT RIC interfaces with the RAN via an E2-lite
interface, allowing it to make decisions and control RAN functions
based on real-time data and network conditions. For the near-RT
RIC, we developed lightweight internal components to facilitate
our experiments and analysis, including:
• Lightweight E2 Interface (E2-lite): The interface we have
adopted supports the essential closed-loop communication between
the near-RT RIC and the RAN, playing a crucial role in the orches-
tration of O-RAN functions. Our interface design aligns with prac-
ticality and implementation e$ciency, wherein we have opted for
an E2-lite interface built upon the SCTP protocol. This approach
closely parallels the functionality of the full E2 interface, enabling
the exchange of control and report messages vital to the O-RAN
system’s operation. In the traditional E2 standard, RAN Functions
are pivotal in de!ning service speci!cations and behavior facili-
tated through the E2 interface where RAN Functions inform the
RIC about the capabilities supported by the RAN, laying the founda-
tion for collaborative network operations. However, in the E2-lite
interface, the process is streamlined, as it does not require explicit
communication of RAN Functions. This simpli!cation simpli!es the
connection setup and forgoes the need for subscription processes
or inherent message di"erentiation between E2-lite nodes.
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Figure 5: Overview of the distillation-based defense.

Figure 6: O-RAN testbed. Left image shows RAN, UE, and the
jammer USRPs. Right image shows the rack server hosting
near-RT RIC that hosts InterClass xApp.

• Internal Messaging Infrastructure (IMI)/Policy controller:
This component enables coordination among various elements
within the near-RT RIC. OSC implementation of this is the RIC
message router. For our implementation, we develop a light weight
version that is able to forward data from the RAN to the RIC data-
base and is also able to relay control decisions from the xApps to
the RAN. We implement the connections using the stream control
transmission protocol (SCTP).
• RIC Database and Shared Data Layer (SDL): As mentioned in
Section 3.2, this serves as a repository for storing RAN information,
which xApps utilize for making di"erent inferences. Using the OSC
documentation [29], we implement the RIC database which is redis-
based and the SDL API for enabling multiple xApps to assess the
database.

The jammer component is responsible for generating jamming
signals that interfere with the uplink signal from the UE. These
jamming signals are transmitted OTA and are an essential part of
testing the network’s resilience to adversarial interference. MAT-
LAB is used to generate and transmit the jamming signals. Addi-
tionally, the O-RAN software community’s open-source codebase
is employed to implement the near-RT RIC. The source code for the
near-RT RIC is compiled on the server to establish communication
with the RAN.

In summary, the O-RAN testbed combines open-source software
stacks, SDRs, and custom code modi!cations to create a #exible
and programmable environment for testing and evaluating O-RAN
network performance under various conditions, including adver-
sarial interference generated by the jammer. The near-RT RIC plays
a crucial role in network control and decision-making, and the
system is designed to meet strict latency constraints, ranging from
10ms to 1s.

7.2 Dataset Generation
Spectrogramdata generation:Our initial dataset comprises 10,000
spectrograms, which have been divided into two distinct classes
for training purposes. Each spectrogram image is of the dimension
(128,128,1) representing a gray scale image of width 128 pixels,
height 128 pixels and 1 channel for intensity (grayscale). The !rst
class, consisting of 5,000 spectrograms, represents the uplink UE
SOI with no interference. These SOI spectrograms are derived from
data transmitted at an uplink carrier frequency of 2.56GHz. To
generate these spectrograms, we used 25 physical resource blocks
(PRBs), which correspond to approximately 5MHz of bandwidth,
necessitating a sampling rate of 7.68 Mega samples per second. We
also generated uplink TCP tra$c at a rate of 5MHz between the UE
and the RAN using iperf3. We set up an iperf3 server at the RAN
end, with the iperf3 client running on the UE.

The second class represents scenarios with interference, speci!-
cally continuous wave interference (CWI). These interference sig-
nals were generated at various gain values ranging from 30dB to
40dB. It is important to note that these gain values are relatively
high, primarily aimed at assessing the vulnerability of intelligent
components within the near-RT RIC to detect and handle interfer-
ence. There are 5,000 CWI spectrograms in total.

The SOI signals are transmitted OTA using the open-source
srsRAN stack, while the jamming signals are transmitted OTA on
the same carrier frequency as the SOI.We use aMATLAB-generated
script to generate the baseband I/Q samples for CWI signals and
then utilize another USRP to transmit these signals OTA. Following
the dataset generation, we perform various data processing steps
such as resizing the image and converting to grayscale to prepare
for model training. In Fig. 5, we can see the processed spectrograms
belonging to the two classes we have considered and used as input
dataset for the distillation procedure. The x-axis represents the time
duration of each spectrogram. In our case, this is 10ms representing
a LTE frame. The y-axis represents the frequency which tells us
the amount of bandwidth occupied by the signal. In our case we
used approximately 5MHz of bandwidth.
KPMs dataset generation: For the KPMs dataset, we use a total
of 25,286 KPMs, consisting of 15,032 KPMs for scenarios with no
interference (SOI) and 10,254 KPMs for cases with interference.

We employ the same experimental setup and parameters as used
for generating the spectrogram dataset. However, in this case, we
utilize KPMs obtained from the network to assess the presence
of a jammer. Our primary focus here is on uplink metrics that
could provide insights into the presence or absence of interference.
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Notably, we consider metrics such as uplink Signal-to-Interference-
and-Noise Ratio (SINR), network bitrate/throughput, Block Error
Rate (BLER), and Modulation and Coding Scheme (MCS). These
metrics are selected based on their ability to e"ectively represent
the presence or absence of an interference signal, supported by
domain knowledge and experimental observations.

The KPMs are collected at varying intervals, ranging from every
0.5 seconds to 1 second. Similar to the spectrogram dataset, we per-
form several data processing steps to prepare the KPM dataset for
training our models. Similarly, in Fig. 5, we can see the normalized
and processed KPMs belonging to the two classes we have consid-
ered and used as input dataset for the distillation procedure. Here,
m=4 is the number of metrics we consider and the metrics include
uplink SINR, bitrate, BLER, and MCS, while t=1 indicating just one
time window. All generated dataset used for the experiments can
be found in 1.

8 PERFORMANCE EVALUATION
In this section, we evaluate the impact of the adversarial attacks
and the distillation defense techniques on both InterClass-Spec and
InterClass-KPM xApps in terms of MLmodel performance, network
performance, and the overall O-RAN round-trip time (RTT).

8.1 ML Evaluation
We present the evaluation results of our robust ML models, consid-
ering the defense strategies outlined in Section 6. The performance
metric used for ML model evaluation is accuracy, de!ned as:

𝑍𝑎𝑎𝑏𝑐𝑑𝑎𝐿 =
𝑅𝑆 +𝑅𝑃

𝑅𝑆 +𝑅𝑃 + 𝑒𝑆 + 𝑒𝑃
.

Fig. 7 and Fig. 8 provide a comparative analysis of the scenar-
ios involving no attacks on the models, di"erent adversarial at-
tacks, and the two defense mechanisms we have explored. For the
InterClass-Spec model, as illustrated in Fig. 7, the results show that
adversarial training does not yield a substantial improvement com-
pared to the distillation approach. The distillation method achieves
accuracy comparable to those observed in the absence of attacks.
On the other hand, the InterClass-KPMs model depicted in Fig. 8,
demonstrates that adversarial training results in some level of im-
provement, although it does not match the performance achieved
through distillation.

Across both model types, the distillation approach consistently
proves to be the most e"ective, achieving accuracy akin to those
observed in attack-free scenarios for all epsilon values considered
in the experiments. Similar results can be seen in [33] and [34] for
distillation defense technique which achieve high performance.

It should be noted also that the adversarial attacks have more
impact on the spectrograms compared to the KPMs. This can be
attributed to the fact that the spectrograms data has a larger di-
mension size compared to KPMs. Larger spatial dimensions provide
more room for perturbations to be added without signi!cantly al-
tering the overall appearance of the input. This can make it easier
for adversaries to craft adversarial samples that can easily fool the
models. On the other hand, smaller dimensions can make it more
challenging to craft e"ective adversarial samples.

1https://www.nextgwirelesslab.org/datasets

Figure 7: Comparison of InterClass-Spec xApp accuracy vs
epsilon for di"erent attacks and defenses.

Figure 8: Comparison of InterClass-KPM xApp accuracy vs
epsilon for di"erent attacks and defenses.
8.2 Network Performance Evaluation
We present the results of our experiments using an attack budget
of 0.1 with our OTA test-bed setup, as previously described. We
evaluate the network performance under di"erent conditions: no-
attack, adversarial attacks, and the distillation defense technique.
Speci!cally, we employ the PGD attack, performing a !ve-step
gradient-based attack. To assess network performance, we initiate
uplink tra$c from the UE to the RAN, running for a total of 180
seconds. During the initial 90 seconds, the UE sends uplink tra$c
without any interference from the jammer. In the subsequent 90
seconds, we introduce 40dB OTA interference from the jammer.

From Fig. 9(a) and 9(b), we can observe the cummulative distri-
bution function (CDF) of the uplink throughput. We clearly see the
impact of these adversarial attacks on these models in test time
regardless of the closed loop latency constraints of the near-RT RIC
to the RAN of between 10ms to 1s. From observation, the through-
put of the network is clearly degraded under the two adversarial
attacks considered and we can see that FGSM degrades the network
performance slightly more than the PGD attack. This can be attrib-
uted to the fact that regardless of the FGSM attack being a one-step
attack compared to PGD which we have used !ve steps, it will
take slightly more time for the PGD to alter the most recent data
in the database compared to the FGSM attack. From the plots, we
can see that by using the defended models, we are able to achieve
throughput performances comparable to the case of no-attack.

We can also observe the impact of the adversarial attacks on the
uplink BLER in Fig. 9(c) and Fig. 9(d). Similarly, we can see how
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(a) Throughput (Spectrograms) (b) Throughput (KPMs) (c) BLER (Spectrograms) (d) BLER (KPMs)

Figure 9: CDF plots of Spectrograms and KPMs models for various scenarios (no attack, under attack, and after defense) for
throughput and BLER.

these attacks increase the BLER of the UE due to inability to classify
properly and we can also see an improvement on the BLER when
we utilize the defensive distillation model. This improvement is
relative to the scenario of no-attack.

8.3 O-RAN Timing Evaluation
To evaluate the performance of our O-RAN system, we have con-
ducted an analysis of the overall timing of various components and
steps in our system, particularly when using either spectrograms
or KPMs as input data.

For the InterClass-Spec xApp case, we observe that the total RTT
for the entire process is approximately 545.7ms, which is within
the 1s latency requirement for near-RT RIC operation. During this
process, a signi!cant portion, speci!cally 49.84%, of the time is
spent on receiving I/Q samples from the RAN. In our case, we are
collecting the last 10ms of I/Q samples from a 10ms LTE frame. This
corresponds to 76800 I/Q samples, which equates to 614400 bytes of
data. Each I/Q sample consists of 8 bytes. The data is then transmit-
ted over the SCTP connection. The second most time-consuming
operation is forwarding these bytes to the data processing microser-
vice for converting to spectrogram, accounting for approximately
24.31% of the total time. Other operational steps have also been
considered in this analysis, contributing to a total RTT in Table 3.

For the InterClass-KPMs xApp, the RTT, as observed in the
analysis, is a total of 55.8ms, again comfortably below the 1s latency
requirement. In this scenario, the time taken to receive the KPMs
is approximately 52.39ms. This reduced time can be attributed to
the fact that when using KPMs, we are sending only 4 features,
amounting to a total of 20 bytes. Each KPM is cast as an integer
before transmission over SCTP to the near-RT RIC.

In summary, comparing the RTT for both cases, we can con-
clude that using KPMs results in a signi!cantly lower RTT when
compared to using spectrograms.

8.4 Limitations and Future work
As outlined in Section 7.2, we utilize high gain values ranging from
30dB to 40dB for our jamming signals to allow signi!cant network
performance degradation when misclassifying the high interfer-
ence. However, further investigation and research are required to
enhance the detection capabilities in scenarios characterized by low
signal-to-noise ratio (SNR) or lower gain settings of the jammer
especially in situations where network performance degradation is
not the major concern but also identifying the presence of malicious
transmitters or eavesdroppers.

Table 3: Break down of system timing of overall processes

Step InterClass-Spec xApp InterClass-KPMs xApp
Receive I/Q samples or KPMs from
the RAN

272.0ms 52.39ms

Time to forward data for processing 132.68ms 22.82𝑏s
Data processing and storing in RIC
database

97.02ms 1.07ms

Model inference 44.03ms 2.35ms
Control decision to RAN 33𝑏s 13𝑏s
Total time 545.7ms 55.84ms

Furthermore, our exploration in the wireless context has been
limited to only two adversarial attack and defense techniques.
There is a scope for extensive comparative analysis involving other
prominent adversarial attacks, such as Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS), Jacobian-based Saliency Map
Attack (JSMA), and Carlini and Wagner’s C&W. Additionally, there
is potential for exploring detection methods like Distillation +
Bayesian Uncertainty and Local Intrinsic Dimensionality.
9 CONCLUSION
In this paper, we conducted the !rst system-level analysis of adver-
sarial attacks and defensive mechanisms targeting the intelligent
components integrated as xApps within the near-RT of an O-RAN
system. This analysis was carried out under the stringent latency
constraints, ranging from 10ms to 1s. Our approach began with a
thorough review of existing research that served as the foundation
for this investigation, particularly focusing on simulations. Subse-
quently, we delved into the diverse types of data that can be stored
in the RIC database, recognizing the key role this data plays in the
wireless and O-RAN ecosystem. We then proceeded to conduct a
systematic evaluation by creating two distinct ML models, each
integrated into an xApp. Leveraging our in-lab O-RAN testbed, we
rigorously assessed the impact of identi!ed adversarial attacks and
the corresponding defense mechanism on the overall network per-
formance. Our !ndings identi!ed the vulnerability of ML models to
adversarial attacks and the subsequent adverse e"ects on both the
models and network performance. Importantly, we demonstrated
that these e"ects persisted despite the system’s rapid RTT capabili-
ties to meet stringent latency constraints. Our analysis of the two
types of data also revealed the advantages and disadvantages of
each in terms of RTT speed, providing valuable insights for future
O-RAN system design and security considerations.
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