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Abstract—The rise in the use of wireless communication has
led to the problem of spectrum scarcity in licensed bands. The
popularity of the Internet of Things (IoT) requires innovative
solutions that maximize the use of the available spectrum to
support the increasing number of connected devices. The ability
to detect and classify modulation of the signals efficiently can
enable a cognitive radio to monitor the spectrum activity in
real-time and utilize unused frequencies. In this work, Seek and
Classify, an end-to-end framework for joint spectrum segmen-
tation and classification for narrowband signals from wideband
IQ samples, is developed. Seek and Classify includes a novel
intersection of unions-based training methodology and machine
learning architectures that advances this unique area. Evaluations
performed through both synthetically generated radio signals
and over-the-air experiments with software defined radios reveal
that the proposed training strategy and models increase the
classification accuracy from 41% to 99%. Moreover, the end-to-
end framework reduces the sensing time for narrowband signals
by 2-10 times, depending on hardware capabilities. The extensive
evaluations provide guidance for the choice of training methods,
machine learning architectures, and preprocessing tools for the
most effective joint segmentation and classification performance.

Index Terms—spectrum sensing, cognitive radio, spectrum
detection, spectrum segmentation, modulation classification

I. INTRODUCTION

Automatic signal classification enables spectrum monitoring

and enforcement, as well as the development of cognitive

radios (CRs) that can opportunistically use idle spectrum

bands. Software-defined Radio (SDR) can capture multiple

signals within their bandwidth, but current work in modulation

classification often assumes a single signal per sample [1]–[6].

In practical workflows, extracting the signal from a spec-

trum sample faces challenges because the carrier frequency,

bandwidth, and structural properties may not be known in
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Fig. 1 Spectrum segmentation and multi-signal classification illustration.

advance, rendering state-of-the-art solutions ineffective in end-

to-end workflows.

To this end, in this work, we quantify this problem and

provide the following contributions: (1) We introduce Seek

and Classify, an end-to-end machine-learning (ML) based

framework to jointly and blindly segment and classify multiple

narrowband signals present in wideband samples. (2) We

show that Seek and Classify can adapt to the errors in the

spectrum segmentation process and, accordingly, improve the

classification accuracy from 41% to 99% when compared to

using a separately trained classifier. (3) While it is possible

to re-tune the radio to sample narrowband signals separately,

doing so increases the time spent in sensing the spectrum.

We show that Seek and Classify can reduce segmentation

and classification time by 2–10 times than a re-tuning and

re-sampling approach. (4) We create synthetic and over-the-

air datasets including wideband samples of multiple types of

signals. These datasets could be used for joint multi-signal

segmentation and classification in this unique area. We pledge

to make the datasets available if the paper is accepted.

Seek and Classify is shown to be capable of performing

high-fidelity spectrum sensing to efficiently use the unused

spectrum. The rest of the paper is organized as follows: The

related work in signal detection, segmentation, and classifica-

tion is discussed in Section II. The spectrum segmentation

and multi-signal classification problem is formally defined

in Section III. Seek and Classify framework is described in

Section IV, along with a novel training approach and ML

architectures. The solution is evaluated through experiments
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using synthetic and over-the-air datasets and compared to

state-of-the-art solutions in Section V. Finally, the paper is

concluded in Section VI.

II. RELATED WORK

Autonomous spectrum activity detection and classification

enable secondary users to find unused licensed band seg-

ments [7]–[9]. Standards like LTE-U, NR-U, and CBRS for

dynamic spectrum sharing [10]–[12] demonstrate CR technol-

ogy’s potential to utilize the available spectrum effectively.

The key tasks are signal detection and automatic modulation

classification (AMC).

A. Signal Detection

Spectrum sensing techniques range from those with a priori

knowledge of transmission parameters to completely blind

methods. Early solutions, like matched filtering [13], [14]

and cyclo-stationary feature detection [15], are impractical for

real-time detection due to long observation times [8]. Energy

detection (ED) methods do not require prior knowledge of

the signal [16], but are sensitive to noise estimate errors

[14]. Several approaches to noise level estimation have been

developed [17]–[20]. Recent approaches using deep learning

models improve detection accuracy compared to ED-based

methods for blind spectrum detection [21]–[24]. However, they

either use short-time Fourier transform (STFT) or the power

spectral density (PSD) as input, adding additional processing

time. The use of complex numbers obtained using fast Fourier

transform (FFT) for signal detection has not been explored.

B. Automatic Modulation Classification

Automatic Modulation Classification (AMC) techniques

classify modulation types of samples. In [25], a CNN trained

on raw IQ signals is shown to perform 2.5− 5dB better than

feature-based classifiers at lower signal-to-noise ratios. Other

deep learning architectures like LSTM ( [2]), ResNet [1] and

complex-valued neural network [3] are also implemented for

signal classification tasks. However, baseline models trained

on fixed parameters like channel, sampling frequency, roll-

off factor, and over-sampling factor suffer from significant

performance drops when these parameters change, a phe-

nomenon known as domain shift [26]. Recent studies have

focused on creating generalized models that maintain accuracy

despite domain shifts [4], [5], [27]. In blind spectrum sensing

scenarios, classifiers trained on data from a single transmitter

with a known center frequency experience domain shifts due to

multiple signals and signal detector imperfections. The impact

of domain shifts from imperfect extraction of signals from

wideband samples remains unexplored in the current literature.

Despite significant contributions to blind spectrum detection

and AMC separately, integrated systems solving these prob-

lems end-to-end are lacking. Our work aims to fill this gap.

Notably, a multi-signal detection and classification framework

using a sliding window-based technique and separately trained

Complex-ResNet for classification is developed [28]. However,

this framework relies on a fixed threshold that works well

with its dataset, reducing domain shift. We investigate the
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Fig. 2 Seek and Classify framework.

domain shift effects of using separately trained classifiers in

Section V and show that joint training is necessary. Existing

modulation classification techniques require SDR re-tuning for

each signal. We show in Section V that re-tuning the radio and

resampling increase the time taken by up to 10 times. To the

best of our knowledge, Seek and Classify is the first end-to-

end framework that provides joint spectrum segmentation and

multi-signal classification.

III. PROBLEM DEFINITION

Considering N transmitters transmitting narrowband sig-

nals, the composite signal received at a receiver is given by:

r(t) =

N
∑

i=1

si(t) + n(t), (1)

assuming an additive white Gaussian noise (AWGN) channel,

where si(t) is the signal transmitted from a transmitter i and

n(t) is the noise. Let fi be the center frequency, bi the band-

width, Pt,i the TX power, and mi ∈ M the modulation type of

signal si(t), where M is the set of possible modulation types.

The relation between fi, bi and si depends on the modulation

type mi. For the problem definition, we assume: (1) All the

signals are in the frequency range of the receiver, where fr
is the center frequency of the receiver and F is the sampling

rate. (2) There is no overlap between the narrowband signals

in the frequency domain. The first assumption is relaxed in

practice through windowed sampling of much wider signals.

The second assumption follows the licensing mechanism in

wireless systems and holds true for most practical cases.

Consider that a CR collects discrete IQ samples of r(t). If r(t)
is sampled at the receiver for a time Ts, the total number of

samples received at the receiver is Z = Ts×F . The collected

sample s is a sequence of Z complex numbers representing

the IQ components. Using discrete Fourier transform (DFT),

the maximum resolution that can be achieved per frequency

bin is F/Z = 1/Ts and the number of bins is Z.

Accordingly, the joint spectrum segmentation and multi-

signal classification problem can be framed as follows:

Given Z samples, sampled at a rate F , find the set T =
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{(f b
i , f

e
i ,mi) : ∀i ∈ {1, ..., N}}, where f b

i and fe
i are the first

and last frequency bins and mi is one of the modulation types

in M for the ith narrowband signal and N is the total number

of narrowband signals present in the wideband sample. An

illustration of the joint spectrum segmentation and multi-signal

classification problem is shown in Fig. 1. The captured IQ

samples (left) contain mixed signals that cannot be separated

in the time domain. The desired outcome (right) shows signals

separable in the frequency domain, with their positions and

modulation types marked. Next, we present Seek and Classify.

IV. SEEK AND CLASSIFY

Combining a spectrum segmentation method with a sep-

arately trained signal classification method results in poor

detection accuracy. This is because the distribution of input

data to the classifiers shifts from that of the training data

due to impurities in segmentation, resulting in a covariate

shift. The effect of covariate shift for joint segmentation and

classification is illustrated in Section V, showing that when

classifiers are trained separately, end-to-end accuracy falls

drastically to below 45%. Employing joint training improves

accuracy by up to 56.7 percentage points (from 42.45% to

99.15%). To this end, we devise an end-to-end architecture and

a novel methodology to train classifiers using the segmented

signals.

An overview of the Seek and Classify (SnC) end-to-

end framework is shown in Fig. 2. SnC has three stages:

wideband sample preprocessing, spectrum segmentation, and

multi-signal classification. In the following, we describe the

novel SnC framework in each stage and the segmentation

and classification architectures. It is important to note that

SnC is an ML-architecture-agnostic framework, where future

neural network architectures could be embedded into the

segmentation and classification stages. SnC is evaluated in

comparison with the state-of-the-art solutions in Section V.

The input to the framework is a sequence S of IQ samples

and the goal is to predict the target T. Define T̂ as the esti-

mated target which consists of {f̂ b
i , f̂

e
i , m̂i} for i ∈ {1, .., N̂},

where f̂ b
i and f̂e

i are the beginning and end of the extracted

signal, si, defining both its position in the spectrum and its

bandwidth, m̂i is the estimated modulation of si, and N̂ is the

number of predicted signals.

In the framework, the prediction is done in three stages:

(1) The preprocessing stage takes s as input and produces a

preprocessed version, P, suitable for segmentation. (2) The

spectrum segmentation stage takes P as input and predicts N̂ ,

the number of signals, and F̂ = {(f̂ b
i , f̂

e
i )}, the set of start and

end frequency bins of the signals present in the sample. (3)

The classification stage takes s and F̂ as inputs and predicts

the set Ĉ = {m̂i} of modulation classes. Together, these form

the set T̂.

A. Preprocessing

Existing energy detection and deep learning approaches to

recognize received signals utilize the frequency domain infor-

mation of signals [20], [24], [29]. Our preliminary evaluations
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Fig. 3 SnC Segmentation (SnC-Seg) Architecture.

by using s directly also did not show good results. Hence, in

the preprocessing stage, the frequency domain representation

of s is calculated, producing P = {p1, ..., pL} where L is

chosen based on the detection method used.

We consider three preprocessing methods: complex FFT

(cFFT), absolute FFT (aFFT), and power spectral density

(PSD) calculated using Welch’s method [30]. For FFT-based

preprocessing methods, only the first L samples are taken. Un-

der the assumption of continuous transmission of narrowband

signals during the short sampling time, if L is sufficiently

large, the information of the narrowband signals is present in

L samples. For PSD, the size of the window is taken to be L
and the entire input of size Z is used.

B. Spectrum Segmentation

The output P of preprocessing is passed to the spectrum

segmentation stage to predict the set {(f b
i , f

e
i )}. This goal

can be modeled as predicting whether there is a signal in each

frequency bin. Depending on the segmentation model used,

the resolution of the model ρ is defined by ρ = Z/O, where

Z is the length of the signal and O is the length of the output

of the segmentation stage. So, the target output of the model

can be represented as B = {b1, .., bO}, where

bj =

{

1 if ∃(f b
i , f

e
i ) s.t. +f b

i /ρ, < j f +fe
i /ρ,

0 Otherwise
(2)

Then, a prediction of B̂ = {b̂1, ..., ˆbM} is made. The set of

start and end frequency bins, F, can be constructed by taking

the start and end indices of contiguous segments of ‘1’s in

B̂ and scaling the indices by ρ. This is the reverse of the

operation used to derive B from F in (2).

The mapping from P to B can be approached as a one-

dimensional semantic segmentation problem with two classes.

Semantic segmentation models predict each input value, mak-

ing the length output of the segmentation stage O the same as

the preprocessing stage, L. Models for semantic segmentation

have been modeled for spectrum detection [23], [24]. However,

they are usually trained with real-valued inputs. Semantic

segmentation has been investigated within the context of image

processing and U-Net-like architectures have been shown to
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Fig. 4 SnC Classifier (SnC-Clf) Architecture.

perform well [23], [31]. Given that spectrum signals are one-

dimensional, we propose a one-dimensional neural network

model for spectrum segmentation.

The architecture of the SnC spectrum segmentation stage

(SnC-Seg) is shown in Fig. 3. SnC-Seg can utilize any

preprocessing methods described in Section IV-A. For real-

valued inputs (i.e., PSD and absolute FFT), inputs are treated

as one-dimensional sequences with one channel. For complex-

valued inputs (i.e., complex FFT), the input is mapped as one-

dimensional sequences with two channels. Section V demon-

strates that using the same number of samples in preprocessing

shows an advantage in using the complex representation.

The learning task is to take P as input and predict B. The

model is trained using a training set of P and corresponding B

from the dataset, consisting of samples S and targets T. The

problem requires a binary class classification for each bi ∈ B.

Given the significant imbalance between bins with signals and

noise known as class imbalance problem, we use the Focal loss

function [32]. Focal loss improves detection performance by

0.5% over binary cross entropy loss [23].

Using preprocessing methods and the proposed model, the

SnC segmentation stage predicts the signal locations in a

wideband sample. The positional information is used to extract

signals for classification by converting the sample to the

frequency domain and isolating the signal:

S = FFTZ(s), and Ŝi = S[f̂ b
i , ..., f̂

e
i ], ∀i (3)

where Ŝi is the frequency domain representation of the ith

extracted signal and FFTZ is Z-point FFT operation. For

computationally efficient FFT operation, the number of IQ

samples, Z, is a power of 2. The classification stage is

described next.

C. Multi-Signal Classification

Existing deep learning solutions for modulation classifica-

tion (e.g., [1], [3]–[6], [25]) focus on single signal samples and

are unsuitable for an end-to-end framework for multiple signal

classification. Moreover, due to inherent errors in the spectrum

segmentation process, models need to be trained to classify the

modulation mi of the imperfectly extracted signals Ŝi from a

wideband sample. Hence, innovations in ML architecture and

training methodology are needed. We present the former in

the following and discuss the latter in Section IV-D.

Since extracted signals are obtained in the frequency do-

main, classifying them directly avoids the need for an inverse

Fourier transform as in [28]. However, the set of modulations

selected in [28] are distinctly different in the frequency do-

main. We show in Section V that classifiers using frequency

domain representation fail to distinguish amplitude and phase

shift keying modulation schemes such as QAM and PSK,

highlighting the benefits of time domain representation.

Before classification, the extracted signals Ŝi, are converted

to time domain representation using inverse fast Fourier trans-

form (IFFT), with zero-padding for computational efficiency

as:

zi = 2+log2(f̂
e

i
−f̂b

i
),, and ŝi = IFFTzi(Ŝi) (4)

where ŝi is the ith extracted signal in time domain and

IFFTzi is a zi-point IFFT operation. Despite possible distor-

tions by forward and inverse Fourier transforms, as discussed

in Section V, high accuracy is achievable.

The SnC classifier stage (SnC-Clf) architecture, shown in

Fig. 4 utilizes an 18-layer one-dimensional ResNet. Existing

ResNet [33] models perform well in signal classification [1],

[28] but are not trained to work on extracted signals. ResNet

adds the original input back to the result of two convolutional

operations, mitigating the vanishing gradient problem. For

complex signals, it is treated as 2-channel inputs, with one-

dimensional residual and convolution blocks.

The classifiers applied on each ŝi produce the modulation

label m̂i. To accommodate fixed-length input requirements,

each extracted signal is zero-padded. Inputs are sequences of

complex numbers, with real and imaginary parts as 2-channel

inputs. Models optimize cross-entropy loss for classification

[34], as J = −1/n
∑n

i=1

∑|M|
j=1 yij log(pij), where yij is the

target probability which is equal to 1 if the ith signal is of

jth modulation type, and 0 otherwise and pij is the predicted

probability.

D. IOU-based Multi-Signal Classifier Training

Next, we introduce a novel method to train the classifiers.

Due to imperfections in segmentation, classifiers trained on

signals extracted using target locations {(f b
i , f

e
i )} fail to

generalize when using predicted locations to generalize when

signals extracted using predicted locations {(f̂ b
i , f̂

e
i )}. The

classification accuracy of the classifiers decreases from 99% to

41% without joint segmentation and classification, as shown

in Section V.

To train the classifiers with extracted signals, we assign

labels by matching predicted signals to target signals, inspired

by end-to-end object detection methods [35]. Predicted signals

are assigned labels from matched target signals to maximize

the intersection over union (IOU) of matched pairs.
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TABLE I: Datasets.

Synthetic OTA

No. of signals, N 1 – 10 1 – 3

Sampling rate, F 20 MHz 20 MHz

Sample SNR [dB] (-10) – 10 (-16) – 12

Signal BW [MHz] 0.1, 0.2, 0.5, 1, 2

No. of samples 55,000 8,400

Modulation
QPSK, BPSK, 8-PSK, QPSK,

8-QAM, 16-QAM, BPSK,
GMSK, 2-FSK 2-FSK

IOU measures object detection performance in computer

vision. For one-dimensional (1D) frequency domain signals,

IOU between ith target and jth prediction is calculated as

IOU(i, j) =
min(f̂e

j , f
e
i )−max(f̂ b

j , f
b
i )

max(f̂e
j , f

e
i )−min(f̂ b

j , f
b
i )

(5)

Let G = {(i, j)} match ith target signal with jth predicted

signal. The optimal matching G∗ maximizes the IOU sum as:

G∗ = argmax
G

∑

i,j∈G

IOU(i, j) (6)

The optimal matching uses the modified Jonker-Volgenant al-

gorithm [36]. Unmatched predicted signals are labeled “none”.

This strategy creates a training set of extracted signals and

modulation labels for the modulation classifiers.

V. PERFORMANCE EVALUATIONS

We evaluate the performance of Seek and Classify using

synthetic and over-the-air (OTA) data. Evaluations are in three

parts: First, we compare S&C with other solutions for spec-

trum segmentation and signal classification. Then, we evaluate

end-to-end joint segmentation and classification. Synthetic

data evaluations control channel impurities and SNR range,

while OTA experiments reveal impacts of real-life radios and

channels. We use a two-stage training process, transferring

the network trained on synthetic data (AWGN channel) to a

network trained on experimental data (real channel) for OTA

experiments.

A major contribution is creating synthetic and OTA data for

wideband samples with multiple signal types for joint multi-

signal segmentation and classification.

A. Evaluation Setup

1) Synthetic Dataset: We use Matlab to create a representa-

tive dataset for spectrum segmentation and signal classification

tasks. We ensure all signals are within the receiver’s frequency

range with a guard band bg between the narrowband signals

in the frequency domain. Generated signals are interpolated,

shifted to correct center frequencies, and combined into sam-

ples. These samples and their generating values are saved as

labels for training deep learning models.

Due to multiple signals, labeling a single signal-to-noise

ratio (SNR) value to a sample is impractical. However, it is

necessary to test the framework in different conditions. To

this end, two metrics are used to study channel conditions: (a)

Sample SNR and (b) Signal SNR. Sample SNR is the SNR

TABLE II: Spectrum Segmentation Methods.

Name
Preproc.
Method

Sample length
(Z)

Input
(L)

SnC-Seg(PSD) Welch 16,384 1,024

SnC-Seg(cFFT) FFT 1,024 1,024

SnC-Seg(aFFT) |FFT|2 1,024 1,024

ResNet(cFFT) FFT 16,384 16,384

ResNet(aFFT) |FFT|2 16,384 16,384

LAD(PSD) Welch 16,384 1,024

LAD(aFFT) |FFT|2 1,024 1,024

of the signal with the lowest power in the wideband spectrum

sample. The transmit power is randomly chosen. We define

Sample SNR and use it to calculate the noise power for the

AWGN channel such that NP = Pt,min − Sample SNR. The

Signal SNR is then defined for each signal as Signal SNRi =
Pt,i − NP (all in dB). The parameters used to simulate the

dataset are shown in Table I.

2) OTA Dataset: The OTA dataset is collected using a

software-defined radio testbed setup as shown in Fig. 5.The

testbed includes three Ettus USRP B200 transmitters, each

with a sub-6 GHz wideband antenna transmitting BPSK,

QPSK, and 2-FSK signals. A USRP B200 receiver with a sub-

6 GHz wideband antenna captures the concurrently transmitted

signals. The transmitters utilize generated IQ samples using

MATLAB and then transmit them in the 900–920 MHz In-

dustrial, Scientific, and Medical (ISM) band with bandwidths

ranging from 0.1 MHz to 2 MHz with the parameters shown

in Table I. The receiver collects the transmitted OTA dataset

with a sampling rate of 20 MHz. The OTA dataset is similar to

the synthetic dataset but includes real channel effects. Noise

power is measured from samples when transmitters are off.

Signal power is collected from known segmented signals, and

SNR is calculated for each signal.

Fig. 5 Seek-and-Classify USRP testbed setup.

3) Evaluation Setup: Evaluations are performed on a server

with two Intel Xeon Silver 4110 CPUs, an NVIDIA Tesla

V100 GPU, and 187 GB of memory. Datasets are split into

training, validation, and testing sets at an 80%-10%-10% split.

Models are trained on the training set until validation loss does

not increase for 10 consecutive epochs. The initial learning rate

is 0.01, reduced by a factor of 10 if validation loss does not

improve for 3 epochs. Performance graphs are generated using

the testing set.

We first evaluate segmentation and classification separately.

Then, Seek and Classify framework is evaluated end-to-end.

Performance metrics are explained in each section.
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Fig. 6: Spectrum segmentation performance under different SNR conditions.

B. Spectrum Segmentation Performance

We evaluate SnC segmentation stage (SnC-Seg)

performance and compare with two state-of-the-art methods.

Furthermore, the preprocessing methods described in

Section IV-A are included, resulting in seven combinations of

preprocessing and spectrum segmentation methods (Table II).

1) Comparison Set:

a) ResNet: ResNets trained for modulation classification

[1], [28], cannot be directly used for spectrum segmentation

due to output averaging [33]. For segmentation, we predict

the presence and absence of signals in each frequency domain

section. A 2-layer fully connected network is applied to each

element across the length. The convolutional part produces a

1024×512 output, and the fully connected network producing

1024 predictions. The network, trained with complex and

absolute FFT preprocessing, uses L/0 = 16 for frequency

resolution.

b) Energy Detection: We use an existing ED-based

method called localization algorithm based on double-

thresholding (LAD) [20], [29]. Since LAD cannot use the

complex input directly, it uses energy values.

These approaches are trained and evaluated using the wide-

band dataset. Performance is evaluated across a range of

sample SNR and signal SNR conditions using sample metrics,

signal metrics, and timing metrics.

2) Evaluation Metrics: (1) Accuracy: Accuracy for a single

sample is the fraction of bins that are correctly predicted,

1/M
∑M

i=1[bi = b̂i]. The values for multiple samples can be

averaged to get an aggregate value.

The rest of the metrics evaluate performance by matching

predicted and target signals. The matching is selected to

maximize the sum of IOU scores. IOU, recall for signals, and

extracted signals per target are the signal metrics. Let σ be

the set of all the target signals and σ̂ be the set of all the

segmented signals in all the samples being considered. Now,

consider Q to be the set of mapping between elements of σ and

σ̂. The signal-based metrics are defined as: (1) Average IOU

as: Average IOU = 1/|σ|
∑

(i,j)∈Q IOU(σi, σ̂j). IOU metric

shows the quality of extracted signals. (2) Recall for signals

metric shows the fraction of target signals that are extracted

with a certain quality threshold. Quality of signal prediction

is measured with IOU and the threshold is represented by θ

so that Recall at θ = 1/|σ|
∑

(i,j)∈Q[IOU(σi, σ̂j) > θ]. In the

experiments, θ values of 0.5 and 0.90 are used.

The execution time for preprocessing and segmentation

steps are analyzed for all combinations. The deep learning

models are evaluated at batch sizes of 1 and 32. A batch size

of 1 is useful for real-time scenarios, while a batch size of 32
is useful for scenarios where batches of S can be collected

before predicting the entire batch.

3) Evaluation Results: The segmentation performance in

different sample SNR conditions is shown in Fig. 6. The SnC-

Seg(PSD) model shows an overall accuracy of 99.8%, and an

average IOU score of 0.93. The scores are consistent across

different sample SNR conditions in the simulated dataset.

SnC-Seg(cFFT) model shows an overall accuracy of 97.5%.

However, the slight change in accuracy results in an 18%

reduction of the IOU score. The PSD calculation requires

16 times more samples than FFT to reduce the variance due

to noise showing performance improvement. SnC-Seg(aFFT)

model has an accuracy of 94.0% and an IOU score of 0.60,

indicating a 20% reduction in the IOU score compared to using

the complex values directly. SnC-Seg can perform better with

complex values that retain the phase information lost when

calculating absolute values.

The ResNet(cFFT) has 5% lower accuracy than SnC-

Seg(cFFT), but it has a higher IOU score of 0.84 compared to

0.76. ResNet suffers a 10% IOU score reduction when absolute

values are used instead of complex numbers.

The difference between SNR vs recall at 0.5 and 0.9
threshold (Fig. 6c and Fig. 6d) for all cases shows the difficulty

in creating segmentation solutions that perfectly extract target

signals from a wideband sample. The SnC-Seg(PSD) shows a

recall of 99.9% at a threshold of 0.5 but it drops to 79.61% for

the threshold of 0.9. The model-driven LAD performs poorly

compared to data-driven solutions at a threshold of 0.9. The

recall for ResNet(cFFT) drops from 83.8% to 41.8% when the

threshold is changed from 0.5 to 0.9. The 50% drop is due to

the tendency of the model to break target signals into multiple

signals, only one of which is matched during the evaluation.

The preprocessing and prediction time for different segmen-

tation models is shown in Fig. 8. Due to the lower preprocess-

ing time, SnC-Seg(cFFT) is evaluated in 0.35 ms compared to

1.94 ms for SnC-Seg(PSD). The time difference is only for

evaluation - since SnC-Seg(PSD) utilizes more samples, the

sampling time would also be increased. The ResNet models
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Fig. 7: Spectrum classifier performance.
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utilize the same number of samples as SnC-Seg(PSD) and take

1.14 ms and 1.75 ms, respectively. Overall, SnC-Seg(cFFT) is

the fastest among the evaluated segmentation methods, while

SnC-Seg(PSD) has the highest accuracy, with the choice of

preprocessing techniques striking a balance between delay and

accuracy. Next, we discuss the classification performance.

C. Multi-Signal Classification

We evaluate the SnC classifier stage (SnC-Clf) using time

and frequency domain representation of the signals, justifying

the introduction of IFFT in the end-to-end framework (Fig. 2).

Models are trained using a synthetic dataset containing sam-

ples with a single signal. We first discuss the comparison set,

evaluation metrics, and results.

1) Comparison Set - CNN: SnC-Clf is compared with a

state-of-the-art CNN developed in [1]. CNN consists of 13
1D convolution layers followed by two fully connected layers.

Classifiers with frequency domain representation inputs are

identified with ‘(cFFT)’.

2) Evaluation Metrics: Classification performance is mea-

sured using accuracy across different signal SNRs and

confusion matrices. (1) Classification Accuracy: Accu-

racy over a set of signals {S1, ..., SN} is given by

Classification Accuracy = 1/N
∑N

i=1[mi = m̂i]. (2) Confu-

sion Matrix: Normalized confusion matrix CM is calculated

as: CMij =
∑N

n=1[mn = i ' m̂n = j]/
∑N

n=1[mn = i].
3) Evaluation Results: Classification accuracy across dif-

ferent signal SNR is shown in Fig. 7a. The SnC-Clf has

100.0% accuracy at 10dB SNR, decreasing to 63.4% at

TABLE III: End-to-end Evaluation Models

Name Segmentation Classifier

SnC SnC-Seg(PSD) SnC-Clf

SnC(cFFT) SnC-Seg(cFFT) SnC-Clf

CNN SnC-Seg(PSD) CNN

CNN(cFFT) SnC-Seg(cFFT) CNN

−10dB. On the other hand, when frequency domain input

is utilized, SnC-Clf(cFFT) the accuracy reduces to 70.6% at

10dB. Overall accuracy for SnC-Clf is 90.1%. In comparison,

CNN accuracy drops from 99.8% at 10dB SNR to 64.8% at

−10dB with an overall accuracy of 88.65%. The frequency

domain input results in a drastic decrease in CNN(cFFT)

accuracy of 42.6% at 10dB.

Confusion matrices in Fig. 7 provide insight into decreased

performance with FFT input. SnC-Clf(cFFT) has 100% and

94% recall on 2-FSK and GMSK modulations. SnC-Clf(cFFT)

shows 81% accuracy for BPSK, but misclassifies 66% of

QPSK and 16-QAM signals as 8-QAM. With time domain

samples, recall for 2-FSK remains 100%, GMSK accuracy

improves to 98%, and recall for other modulations is above

72%. Improved performance with time domain input in fre-

quency and amplitude/phase modulations (e.g., FSK, PSK,

QAM) demonstrates the need for IFFT.

SnC outperforms compared models in segmentation

and classification separately. However, classification models

trained on sanitized datasets do not perform well in an end-

to-end workflow, highlighting the need for the novel method

in Section IV-D. Next, we evaluate the end-to-end framework.

D. End-to-End Evaluations

Integrating separately trained models into an end-to-end

workflow drastically reduces performance due to imperfec-

tions in the segmentation process. Novel training methods are

needed, as discussed in Section IV-D. To evaluate end-to-end

SnC performance, we compare IOU-based training with model

architectures. We introduce perfect segmentation, using true

segmented signals to train the classifier stage, representing

state-of-the-art training approaches [4], [5], [27]. Then, SnC-

Clf and comparison sets are evaluated. Finally, we introduce

IOU-based training in the end-to-end workflow and evaluate

its impacts.
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Fig. 9: End-to-end results.

1) Perfect Segmentation Training: We train and validate

two classifiers with true segmented signals: SnC-Clf∗ and

CNN∗. Note that SnC∗ is distinct from the SnC in Section

IV because the classifier is trained using perfect segmentation

instead of IOU-based training. The true segmented signals are

extracted with prior knowledge of the positions of the signals.

The classifiers are then evaluated using SnC-Seg. The accuracy

of classifiers on classifying perfectly segmented signals is as

high as 99.9% for SnC-Clf∗ and 85% for CNN∗. However,

when a practical segmentation method is used, the accuracy

plummets to 37%− 41%, irrespective of the ML architecture.

This result validates the key motivation of SnC: End-to-

end segmentation and classification require tailored training

methods because training based on sanitized datasets suffers

from imperfections in signal extraction during inference.

2) Seek and Classify: We train and validate two classifiers

with true segmented signals: SnC-Clf and CNN. The resulting

segmentation-classifier combinations are shown in Table III.

We evaluate SnC using synthetic and OTA data. For compar-

ison, CNN-based classifier with two preprocessing methods

(cFFT and PSD). In Fig 9a, the classification accuracy of

synthetic and OTA data is shown. Comparing CNN results

with SnC illustrates the ML-agnostic behavior of SnC, where

future ML frameworks could be integrated without significant

performance degradation. CNN results 9.98 p.p. degradation

compared to SnC (89.5% vs. 99.48%).

E. OTA Experiment Results

To illustrate the feasibility of SnC utilizing OTA signals, we

collect 8, 600 OTA signals featuring three modulation types:

BPSK, QPSK, and 2-FSK (Table I). Each model is trained

using transfer learning from a neural network initially trained

on synthetic data over an AWGN channel.

The results shows that SnC outperforms the comparison

models in terms of accuracy under real radio channel

conditions, as shown in Fig. 9b. SnC achieves the highest

accuracy of 92.6%, followed by SnC(cFFT) at 87.6%, CNN

at 83.3%, and CNN(cFFT) at 78%. Compared to synthetic

data results in Fig. 9a, accuracy degrades at lower SNR values

for OTA data. For example, at the SNR of −10dB, SnC

accuracy decreases by 4.31 p.p. (from 88.8%1 to 84.50%)

when synthetic and OTA datasets are compared.

The importance of IOU-based training is validated through

OTA data. SnC joint training improves classification accuracy

by 25.3 p.p. (from 67.3% to 92.6%). Furthermore, adaptation

to adverse effects of real environments is better. Specifically,

transfer learning and IOU-based training increase average

accuracy at low-SNR ([−15,−5]dB) by 21.81 p.p. (from

62.06% to 83.87%). OTA data results also indicate that FFT

preprocessing impacts performance by up to 5.89 p.p., which

could be traded off for delay (Fig. 8)

F. Delay Performance

Existing modulation classification approaches are not suit-

able for end-to-end workflow where signals extracted using

IFFT are to be classified. Instead, the results of the segmen-

tation stage can be used to change the center frequency and

sampling rate of the radio to align with each detected signal.

Using this resampling method enables existing modulation

classification approaches designed for single signals. We cal-

culate the overhead associated with the resampling method and

compare it to SnC.

The additional overhead for collecting narrowband signals

includes actual collection time and the time to retune the radio.

We measure radio retuning times of two SDR hardware: USRP

N310 and B200, using Python UHD API. Radio retuning times

for N310 and B200 are 118 ms and 13.47 ms, respectively.

Approximately 1 ms is required to collect samples in both

devices. Assuming an average of 5 signals in a wideband

sample, the total time for narrowband signal collection in N310

and B200 are 595 ms and 72.35 ms, respectively.

In SnC, FFT and IFFT are used for extracting the signals

(Fig. 2). The average time for FFT and IFFT across all samples

is approximately 5.5 ms. The average time for SnC over

synthetic data is 66 ms. The resampling method requires both

segmentation and classification, so the total time required is

654.6 ms for N310 and 131.95 ms for B210. SnC, which

takes only 66 ms, is around 2 times faster when using B210

and 10 times faster with N310. The saved time can be used

for communication purposes or sensing more frequently.

VI. CONCLUSION

In this study, we introduce Seek and Classify, an end-to-end

framework for joint spectrum segmentation and classification

of multiple signals within wideband spectrum samples. Seek

and Classify significantly outperforms existing approaches

where machine learning solutions are trained separately for

segmentation and classification, boosting the classification

accuracy from 41% to 99%. Additionally, Seek and Classify

offers speed benefits when classifying narrowband signals

directly instead of re-sampling. The utilization of Seek and

Classify in sensing leads to 2–10 times reduction in time

required for sensing, thereby providing additional time for

communication or improving the sensing frequency. When

evaluating signal segmentation using various preprocessing

methods, up to 20% improvement can be achieved in the

segmentation performance of deep learning models when

employing complex-valued FFT directly rather than using its

absolute value. The extensive evaluations reveal important

results for the choice of training methods, machine learning

architectures, and preprocessing tools for the most effective

joint segmentation and classification performance.
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