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Abstract—Spectrum usage is increasing daily, necessitating
new methods for efficient utilization. Spectrum sharing allows
the coexistence of multiple wireless communication systems
in the same spectrum. Effective spectrum segmentation and
classification are essential for this, yet existing methods treat
them as separate processes and often focus on specific com-
munication techniques. Our application addresses these issues
by jointly segmenting and classifying narrowband signals in
wideband IQ samples. This demo paper presents the application,
demonstrating its end-to-end approach of spectrum segmentation
and classification. The application achieves an accuracy of 92.6%
on the over-the-air (OTA) wireless communication spectrum. This
represents an improvement of over 9% compared to the state-
of-the-art solution, highlighting its effectiveness.

Index Terms—spectrum sensing, cognitive radio, spectrum
detection, spectrum segmentation, modulation classification

I. INTRODUCTION

In today’s rapidly evolving wireless landscape, the demand

for efficient spectrum utilization has never been higher. Tra-

ditional methods of spectrum monitoring and management

often fall short in the complexities of real-world environments.

Existing solutions typically address spectrum segmentation

and classification as separate tasks and for classification,

assume the presence of a single signal with a fixed bandwidth.

These limitations restrict their applicability and effectiveness

in dynamic, real-world scenarios.

Detecting multiple signals with unknown parameters, such

as carrier frequency and bandwidth, within a wideband sample

is a significant challenge. Current methods often fail under

these conditions [1]–[5]. Additionally, modulation classifica-

tion techniques degrade when signal and channel parameters

change, a phenomenon known as domain shift [4]–[7].

Extracting signals from a spectrum sample is complicated

by unknown carrier frequency, bandwidth, and structural prop-

erties, rendering state-of-the-art solutions ineffective in end-to-

end workflows. Our spectrum segmentation and classification
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Fig. 1: Spectrum Segmentation U-Net Architecture.

application addresses these challenges by providing an end-

to-end solution. This application integrates spectrum segmen-

tation and classification into a single, cohesive application.

Unlike traditional methods, our application dynamically

adapts to multiple signals with varying bandwidths, enabling

robust and accurate spectrum management. This approach

allows for adaptation to errors in the spectrum segmentation

process, improving classification accuracy compared to us-

ing separately trained classifiers. Additionally, our solution

reduces the time spent sensing the spectrum by eliminating

the need to re-tune the radio to sample narrowband signals

separately.

This paper presents a practical demonstration of our applica-

tion, highlighting its ability to manage and utilize the spectrum

in diverse and dynamic wireless environments. The rest of the

paper is organized as follows: Section II describes the model

design, including the architecture used for segmentation and

classification. Section III presents the application, demonstrat-

ing its real-time capabilities and effectiveness with over-the-air

(OTA) data, and closes by concluding this paper.
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II. MODEL DESIGN

This application employs distinct models for two key tasks:

U-Net [8] for spectrum segmentation and Residual Network

(ResNet) [9] for modulation classification, each designed for

its specific role. Features are extracted with a pre-processing

step using Fast Fourier Transform (FFT) to utilize in these

models.

A. Segmentation with U-Net

For the segmentation task, we use a one-dimensional U-

Net architecture. The U-Net consists of an encoder-decoder

structure that captures both contextual and detailed informa-

tion. The encoder path is composed of several convolutional

layers followed by max-pooling layers. These progressively

downsample the input, capturing the broad context of the

signals. The decoder path up-samples the feature maps and

combines them with high-resolution features from the encoder

path through skip connections, maintaining spatial accuracy.

Fig. 1 shows the U-Net structure for spectrum segmentation.

The segmentation model is trained using the Focal Loss

function to address the class imbalance problem inherent in

spectrum segmentation tasks. Focal Loss improves the model’s

ability to detect signals by reducing the impact of easily

classified examples and focusing more on hard-to-classify

spectrums.

The Focal Loss is particularly beneficial in this scenario

because it dynamically scales the loss associated with each

example, increasing the importance of misclassified signals

during training. This approach ensures that the model remains

sensitive to less frequent but critical segmentation instances.

B. Classification with ResNet

For classification, we employ an 18-layer one-dimensional

ResNet, well-suited for deep learning tasks that require com-

plex pattern recognition. ResNet’s use of residual connections

mitigates the vanishing gradient problem, allowing for the

training of deeper networks. Fig. 2 shows the ResNet structure

for spectrum classification.

Our ResNet classifier processes the segmented narrowband

signals to classify their modulation types accurately. We

evaluated the model with both time and frequency domain rep-

resentation of the signal. We found that the time domain signal

has robustness against variations in phase and amplitude.

The ResNet architecture’s ability to learn hierarchical features

makes it particularly well-suited for identifying the complex

patterns associated with different modulation schemes.

The classification model is trained using cross-entropy loss,

which is effective for multi-class classification problems. This

loss function helps the model distinguish between different

modulation types with high accuracy. Cross-entropy loss mea-

sures the performance of a classification model whose output

is a probability value between 0 and 1, making it ideal for our

multi-class setup.

The ResNet architecture is chosen for its efficiency in

handling deep learning tasks that involve recognizing complex

patterns. The residual connections in ResNet allow the model
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Fig. 2: Spectrum Classifier ResNet Architecture.

to learn more effectively by enabling deeper network structures

without the risk of vanishing gradients. This capability is

crucial in modulation classification, where the model needs

to differentiate between subtle variations in signal patterns.

C. IoU-based Multi-Signal Classifier Training

To enhance the performance of the classifier, we devised

an Intersection over Union (IoU) based training method.

This method involves assigning labels to predicted signals by

matching them to target signals to maximize the IoU. IoU

measures the overlap between the predicted and target signals,

ensuring that the classifier is trained to handle the imperfec-

tions in signal extraction that occur during segmentation.

Existing classification methods assume perfect segmentation

of signals, which is not realistic in practical scenarios. Our

end-to-end approach makes it crucial to incorporate IoU-based

training to ensure the classifier can effectively manage the

variability and inaccuracies in segmented signals. By focusing

on the real segmentation signal, the classification model learns

to be more resilient to segmentation errors, thereby improving

overall performance.

The IoU-based allows the model to be trained in a more

realistic setting where perfect segmentation is not guaranteed,

ensuring better performance in real-world applications.

By adopting this comprehensive model design, our appli-

cation effectively addresses the challenges of spectrum seg-

mentation and classification in dynamic wireless environments.

The integration of U-Net and ResNet architectures, combined

with advanced training methodologies, provides a robust and

accurate solution for real-time spectrum management.

D. Dataset and Training

The training process for the demonstrating application in-

volves two stages: pretraining on synthetic data and transfer

learning with real-world data.

Initially, the model is pretrained on a synthetic dataset

consisting of 55,000 samples, each containing between 1 and

10 narrowband signals within a 20 MHz wideband sample.
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Fig. 3: Accuracy comparison on OTA data

This dataset includes various modulation types (BPSK, QPSK,

8-PSK, 8-QAM, 16-QAM, GMSK, and 2-FSK) and Signal-to-

Noise Ratio (SNR) values ranging from -10 dB to 10 dB.

The dataset’s diversity ensures comprehensive coverage of

potential real-world scenarios.

After pretraining, the models are trained using transfer

learning on an OTA dataset collected from real-world environ-

ments. The OTA dataset, comprising 8, 400 samples, is gath-

ered using Ettus USRP B200 transmitters transmitting three

modulation types (BPSK, QPSK, and 2-FSK) and a USRP

B200 receiver. The OTA dataset captures real-time wideband

IQ samples in the 900 − 920 MHz Industrial Scientific and

Medical (ISM) band. SNR values ranging from −16 dB to 12

dB, reflecting the complexities and imperfections of real radio

channels. Fig. 4 shows the USRP B200, which was used to

collect OTA dataset.

Fig. 4: Ettus USRP B200 used for collecting OTA dataset.

III. SPECTRUM SEGMENTATION AND CLASSIFICATION

Our application is unique due to its end-to-end approach,

integrating both segmentation and classification into a seam-

less process. This integration improves overall performance

and reduces processing time compared to traditional methods

that treat these tasks separately. The application is robust to

variations in signal parameters and environmental conditions.

This robustness is achieved through a combined pretraining

process with synthetic datasets and transfer learning on OTA

datasets.

The application begins by capturing wideband IQ samples

from OTA sources using USRP B200 software-defined radios

(SDRs). The U-Net model segments the wideband spectrum,

isolating individual narrowband signals. This segmentation

process ensures accurate localization of signals, even in the

presence of noise.

Once the signals are segmented, the ResNet model classifies

the modulation type of each narrowband signal. This deep

learning model identifies complex patterns, ensuring high

classification accuracy.

The accuracy comparison shown in Fig. 3 highlights the

performance of our application. The comparison is based

on the average accuracy calculated from 15 data points

across SNR ranging from −16 dB to 12 dB. Time-domain

Segmentation and Classification (SnC) achieves an accuracy

of 92.6%, followed by Frequency-domain Segmentation and

Classification (SnC(FFT)) at 87.6%. Compared with state-of-

the-art CNN model [1] at 83.3%, and CNN(FFT) at 78%,

Our application shows over 9% improvement in accuracy.

Technical details and evaluation results of our segmentation

and classification model are available in [10].

IV. WHAT CONFERENCE PARTICIPANTS WILL BE ABLE TO

SEE DURING THE DEMONSTRATION

In this demonstration, we will showcase our application’s

capability to segment and classify signals within a wideband

spectrum using a setup of four Ettus USRP B200 devices. This

setup includes three transmitters (TX) and one receiver (RX).

A. Transmitters and Receiver Configuration

The three TX units will transmit up to three OTA signals

simultaneously, with each signal randomly occupying a band-

width between 0.1 and 2 MHz within a 20 MHz wide receiving

spectrum. The signals will vary dynamically, simulating real-

world conditions where multiple signals coexist in a shared

spectrum.

The RX unit will capture these transmitted signals and

record them as IQ samples. This recording process ensures

that the received signal accurately reflects the transmitted

signals’ characteristics, including their bandwidth, frequency,

and modulation type.

1) Preprocessing: The first stage involves applying an FFT

to the recorded IQ samples. This transformation allows

the detection of the bandwidth and features within the

signal.

2) Segmentation with U-Net: After preprocessing, re-

ceived spectrum is then passed through our U-Net-based

segmentation model. The U-Net model will identify

and segment the individual signals within the wideband

spectrum. This step ensures accurate localization of

signals, even when they overlap or are subjected to noise.

3) Modulation Classification with ResNet: After seg-

mentation, each identified signal segment is processed

through our ResNet-based modulation classifier. The
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(a) OTA Signal (b) Applcation output

Fig. 5: OTA signal and the application output.

ResNet model, trained on a diverse dataset of modu-

lation types, will classify each segment according to its

modulation scheme.

B. Output and Visualization

The results of the segmentation and classification processes

will be presented to the user through a visualization interface.

The primary visualization will show the input signal and

application output in Power Spectral Density (PSD), which

displays the frequency spectrum of the received signals. The

output interface will show:

• Received Signal: The overall power spectral density of

the received signals.

• Segmented Signals with mask: Highlighted segments

indicating the bandwidth and location of each segmented

signal.

• Modulation Classification result: Labels showing the

modulation type of each segmented signal.

Fig. 5 shows the output of our demonstration application.

V. CONCLUSION

Our spectrum segmentation and classification application

demonstrates an innovative approach to spectrum manage-

ment. This application provides an efficient and accurate tool

for visualizing the transmissions in the spectrum. By integrat-

ing U-Net for segmentation and ResNet for classification, this

end-to-end framework effectively addresses the complexities

of real-world wireless environments. It segments and classifies

multiple signals within a wideband spectrum.

The unique approach of combining segmentation and clas-

sification into a seamless process enhances the application’s

overall performance from state-of-the-art 83.3% to 92.6%.

This reduces processing time, making the application more

effective than traditional spectrum segmentation and classi-

fication applications. The robust training process, involving

synthetic pretraining and transfer learning on OTA datasets,

handles diverse and dynamic real-world wireless environ-

ments.

Overall, this application offers valuable insights into spec-

trum utilization and supports the development of enhanced

spectrum management strategies. This demonstration high-

lights its potential for various wireless communication scenar-

ios. It paves the way for advancements in intelligent spectrum

monitoring and management for spectrum sharing.
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