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Abstract— The digital age has made embedded control a
key component to user-oriented, portable, and the Internet
of Things (IoT) devices. In addition, with emergent complex
systems, there is a need for advanced optimization-based control
strategies such as model predictive control (MPC). However, the
unified implementation of these advanced strategies on hardware
remains a challenge. Designing complex control policies for
embedded systems is inherently an interwoven process between
the algorithmic design and hardware implementation, which will
require a hardware-software co-design perspective. We propose
an end-to-end framework for the automated design and tuning
of arbitrary control policies on arbitrary hardware. The pro-
posed framework relies on deep learning as a universal control
policy representation and multiobjective Bayesian optimization
(MOBO) to facilitate iterative systematic controller design. The
large representation power of deep learning and its ability to
decouple hardware and software design are a central compo-
nent to determining feasible control-on-a-chip (CoC) policies.
Then, Bayesian optimization (BO) provides a flexible sequential
decision-making framework where practical considerations, such
as multiobjective optimization (MOO) concepts and categorical
decisions, can be incorporated to efficiently design embedded
control policies that are directly implemented on hardware.
We demonstrate the proposed framework via closed-loop sim-
ulations and real-time experiments on an atmospheric pressure
plasma jet (APPJ) for plasma processing of biomaterials.

Index Terms— Cold atmospheric plasmas (CAPs), embedded
control, hardware—-software co-design, imitation learning, multi-
objective Bayesian optimization (MOBO).

I. INTRODUCTION

MBEDDED systems lie at the core of many online

control systems technologies, including autonomous
systems [1], Internet of Things (IoT) systems [2], [3],
and biomedical devices [4], [5], among others. Microcon-
trollers/microprocessors (MCUs) have played a major role
in enabling embedded control for portable devices [6]. Due
to their widespread availability and adoption, MCUs have
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been designed such that they can be easily programmed using
high-level programming languages, such as C and Python,
and can be deployed with relative ease [2]. Meanwhile,
emerging technologies have increasingly complex dynamics
and typically rely on advanced model-based control strategies,
such as model predictive control (MPC), that can handle
constraints. As a result, significant efforts have targeted the
development of automated software-based code generation
tools for fast numerical optimization on MCUSs. These tools
(e.g., ACADO [7], GRAMPC [8], and FORCES [9]) uti-
lize tailored implementations of structured formulations of
the underlying optimization problem to efficiently compute
the optimization solution for real-time control (e.g., using
sequential quadratic programming [10], nonlinear interior
point methods [11], or accelerated gradient methods [12]). The
structured formulation that these code generation tools require
can make the implementation of robust and learning-based
optimal control strategies more challenging, while the focus
on solely the software side implies that the form of hardware
implementation is also limited. Furthermore, the design of
embedded controllers relies on more than just the fast solution
of the optimal control problem. It also involves maintaining
numerical robustness at low computational accuracy, tolerance
against infeasibility, low code complexity, and low mem-
ory/resource utilization, among other considerations. Many of
these challenges require explicit knowledge of the hardware
specifications, as well as knowledge of how computations
are performed and accelerated on the hardware. As advanced
hardware technologies [e.g., graphics processing units (GPUs),
field-programmable gate arrays (FPGAs), and tensor pro-
cessing units (TPUs)] become commonplace, the principle
of hardware—software co-design will become an integral
consideration for the physical implementation of embedded
controllers [13]. Hardware—software co-design involves the
concurrent design of the control algorithm (software) and its
embedded implementation (hardware) [14].

Optimized control policy tuning is often a tedious and
cumbersome process, which is further exacerbated by the
extensive workflow to go from the programmatic control
policy design to embedded implementation. Control policy
auto-tuning (also known as calibration) is well established
for simple controllers [15], [16], but auto-tuning for generic
control structures has recently regained traction. One popu-
lar approach to auto-tuning uses principles of reinforcement
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learning (RL) [17], [18], [19]. To this end, policy-gradient
RL methods involve updating the control policy parameters
via gradient descent [20]. While policy gradient is a scal-
able approach, it can require many evaluations on the true
system and can be prone to getting stuck at local opti-
mizers. Another popular approach to auto-tuning relies on
data-driven optimization, particularly Bayesian optimization
(BO) [21], [22], [23]. Auto-tuning can be interpreted as a
black-box problem where the objective function is expensive
to evaluate, potentially nonconvex, and without closed-form
derivatives. BO is a “global” optimization method that takes
a probabilistically principled approach to reduce the number
of interactions with the real system [24]. Variants of BO for
auto-tuning are also emerging [25], [26], [27]; however, most
of these studies, except [26], do not consider the hardware
considerations for embedded control. Even still, the focus
of [26] remains on the hardware-constrained optimization
(i.e., real-time computations) of the software, rather than
hardware—software co-design.

The hardware—software co-design paradigm presents a new
take on the embedded control design problem. Formally,
we denote this new perspective of hardware—software co-
design as control-on-a-chip (CoC) design since we aim to
provide a unified workflow to place arbitrary control poli-
cies on arbitrary hardware. In this work, we pose the CoC
co-design problem as an optimization problem that incorpo-
rates a hardware feasibility constraint and multiple levels of
decisions to create an all-in-one framework. First, we establish
a flexible workflow that takes advantage of recent advances
in deep learning. Deep neural networks (DNNs) have played
a pivotal role in imitation learning of MPC policies [28],
[29], [30] and differentiable predictive control [31]. In this
work, we use the imitation learning perspective as it poses
two key advantages: 1) it provides a “physically interpretable”
control policy and 2) by virtue of 1), it reduces the design
parameter space. Thus, our proposed CoC workflow con-
sists in: 1) designing an expert control policy (based on
optimization-based control strategies); 2) using DNNs to rep-
resent the expert control policy; and 3) implementing the
DNN-based control policy on hardware. We then use mul-
tiobjective BO (MOBO) [32] to encapsulate the multistep
CoC design workflow to create an end-to-end optimization
framework. Solving a multiobjective CoC design problem
via MOBO entails finding an optimal set of control policies
rather than one single optimizer, which allows a practitioner to
choose the best design(s) according to the needs or preferences
of the application [33], [34]. Furthermore, BO offers flexibility
when incorporating design choices from each step of the CoC
workflow [35], [36].

This article is organized as follows. Section II presents a
mathematical foundation for the optimal CoC design frame-
work. Section III describes the role of deep learning as our
universal control policy representation. The unique advantages
of MOBO for an end-to-end CoC design are detailed in
Section IV. Section V demonstrates the key advantages of imi-
tation learning via deep learning using an illustrative example.
In Section VI, the proposed framework is applied to the CoC
design for an atmospheric pressure plasma jet (APPJ) with
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prototypical biomedical applications. Section VII concludes
this article.

II. PROBLEM FORMULATION

In this work, we seek optimal CoC policies that minimize a
set of closed-loop cost metrics subject to hardware constraints.
In general, CoC policies can be represented as a space of all
possible machine code instructions that can be executed on
a given choice of hardware. Since this is a complex design
space involving decisions made by human experts, the design
problem is often decomposed into two key steps: 1) choice of
a high-level control program 6 that must reside in the space
of possible programs ® (generally very high-dimensional
and complex) and 2) choice of a code generation strategy
that translates 0 into executable machine code, which has
its own set of design parameters denoted by y € I' (e.g.,
numerical representation and parallelization options). We can
formulate the search for an optimal pair of program and code
generation parameters (6* and y*) in terms of the following
multiobjective optimization (MOO) problem:

1(191in {Ji,..., Ju} (1a)
B2
st xpp1 = [, X0, up, wy) (1b)
u; =7m(x;50,y) (1o
wy ~ Pw, (x;, uyr) (1d)
T—1
Ji = E[zr,im) + D i, u, w,)} (le)
=0
g@,y)=1 (1)
@,y)e®xT
V(,i)e{0,..., T —1} x {1,..., M} (1g)

where (la) represents the set of M closed-loop performance
metrics; (1b) represents the system dynamics that describes
the evolution of the system state x;, in response to control
actions u, and disturbances w; at time ¢; (1¢) defines the CoC
policy m(x;; 6, y) that maps (measured or estimated) states
to control actions for a specific choice of program and code
generation parameters; (1d) is a stochastic disturbance that
evolves according some probability distribution Py, (x;, u;)
that is conditionally independent of previous disturbance real-
izations given the current states and actions; (1e) represents the
ith performance metric J; defined in terms of the closed-loop
system evolution given local stage cost £,; and terminal cost
£r,; functions over a finite time horizon 7; (1f) denotes
a hardware resource utilization constraint represented by a
binary function g : ® x I' — {0, 1} that indicates if the
high-level control program can be compiled and executed on
the available hardware (i.e., +1) or not (i.e., 0); and (lg)
represents the user-defined search space of control programs
and code generation strategies. The expectation E{-} in (le) is
taken with respect to the stochastic disturbance sequence of
the closed-loop system {wy, ..., wr_1}.

The MOO problem (1) represents a very general framework
for CoC design. In fact, we can interpret virtually all end-
to-end control design procedures as a special case to (1).
However, approximations are necessary in practice due to the
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Fig. 1. Flow diagram of the standard CoC design process. First, a high-level
representation of the control policy is selected and evaluated using approx-
imate models or limited closed-loop data. Then, a code generation strategy
is selected and evaluated based on its ability to be successfully implemented
while matching the performance of the high-level program. In general, several
iterations may be needed at each stage of the design process until an acceptable
option is found. If any stage fails, then one must return to a previous stage
to repeat the process.

intractability of (1), which stems from two main challenges.
First, the program parameter space ® is abstract. To ensure
that it has sufficiently large representation power, the control
policy will typically be embedded in some high-dimensional
space ® C R”, where D can be very large. Furthermore, this
space may involve discrete and continuous variables that are
needed to represent logical relationships between different sets
of variables. Second, we often do not have exact knowledge of
the system dynamics f(-), disturbance distribution P, (x,, u,),
and the hardware utilization constraint function g(-), which
prevents the application of traditional MOO methods that
require equation-oriented forms for all objective and constraint
functions.

Standard control design approaches often proceed in the fol-
lowing steps that are illustrated in Fig. 1: 1) restrict the control
policy representation by constraining ® to describe a narrow
set of policies in a low-dimensional space; 2) independently
search for control program parameters 6 that approximately
minimize the closed-loop performance metrics either using
approximate models or (limited) closed-loop data; and 3)
search for code generation parameters y that enable the desired
6 to be executed on the available hardware. If step 3 fails, then
one must go back and repeat the process again for a narrower
set of more computationally tractable policies. For example,
complex control policy formulations as in optimization-based
control [e.g., as described in Section III-C, see (5)] may
require specific code libraries and/or routines that are not
easily implemented on low-resource hardware due to memory
restrictions or reduced accuracy due to quantized numeric rep-
resentation. Furthermore, the emergence of advanced hardware
(e.g., GPUs and FPGAs) to speed up computations requires
additional low-level code generation that requires specialized
knowledge of the device architecture. Separate design of 6

and y misses out on important interactions between high-level
program representation and code generation. In particular,
the hardware utilization constraint function g(-) represents
whether or not the policy can be embedded into the hardware
or can satisfy timing constraints. Examples of parameters
that influence this constraint include numeric representation,
a number of operations, parallelization options, and so on.
Without co-design, there is a much greater chance that CoC
policies cannot be implemented as knowledge of how the
algorithmic requirements are translated to the physical wires
in hardware is not generally accessible.

The main goal of this work is the development of an iterative
learning-based strategy capable of systematically tackling the
hardware—software co-design problem (1). The core structure
of our proposed strategy, which relies on deep learning to
simplify the policy and hardware utilization constraint, is pre-
sented in Section III. In Section IV, we then describe an
efficient multiobjective black-box optimization strategy that
takes advantage of this structure by searching over a reduced
set of parameters.

III. UNIVERSAL POLICY REPRESENTATION FOR
FEASIBLE COC SYSTEMS

The lack of an easy-to-search program space ® and known
structure for the feasibility constraint g greatly complicates
the traditional CoC design procedure (Fig. 1). In this section,
we show how both of these problems can be addressed by
working with DNN policies such that 6 = {6y, 64} can be
separated into continuous weight and bias parameters Oy and
architecture parameters 64 that can be discrete. This not only
helps us simplify the learning process for g but also allows
us to take advantage of prior knowledge to “train” Oy such
that we only consider a small subset of parameters when
optimizing closed-loop performance.

A. Deep Learning for Control Policy Representations

Deep learning is a generalized term for computational
structures/graphs characterized by multiple “layers.” Through
multiple layers, deep learning transforms an input represen-
tation to abstract representations until the ultimate output is
learned [37]. It is exactly many layers that allow deep learning
to extract (on its own) features from raw data that are relevant
to learning control policies [29], [38].

The key advantage of DNN policies is the surprisingly
robust ability to train such large structures using (stochastic)
gradient descent style methods. For simplicity of presentation,
consider a fully connected feedforward DNN control policy
Tann (x; 6) with L hidden layers and H nodes per layer, which
can be mathematically defined as follows:

Tann (X;0) =app10Broapo---Broaj(x) 2

where o;(x) = W;x + b; is an affine transformation of
the input, o;(z;—1) = W;z;—1 + b; are affine transformations
of the hidden layers for all I € {2,...,L + 1}, Bi(2)

are nonlinear activation functions (e.g., B;(z) = max{z, 0}
for ReLU activation functions) for all [ € {1,..., L}, and
Ow = {(Wy,by,...,Wry1,bry1} denotes the collection of
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weights and biases that parameterize the network for a fixed
architecture 64 (e.g., type of activation function, L, and H).
Due to their continuous representation, 8y can be trained by
minimizing a loss function that captures how well the DNN
performs on a given task. This process is known to work well
in practice under the assumption that the gradient of the loss
function with respect to Oy can be efficiently computed via
backpropagation [39]. This is not necessarily the case when
one attempts to use 74y, in (1) unless a differentiable structure
for the dynamics and cost functions is known.

Remark 1: Note that the DNN policy defined in (2) is just
one choice of architectural representation of artificial neural
networks. In fact, any deep learning architecture can be used
to approximate (2). For example, if the state or any other
exogenous signals involved image data, we could exploit a
convolutional neural network structure that is designed to
specifically exploit the regularity of image pixel patterns.

B. Learning Feasible Space of CoC Policies

Given that our ideal policy is represented by a DNN,
in addition to the program (i.e., software) (2), CoC policies
also require specification of the embedded version of the
program that can be run on the actual hardware. Although
this difference is not practically important in the absence of
resource limitations, it is very important in cases where there
are constraints on the number of real-time computations and/or
resource (memory or power) utilization [40]. A useful property
of DNN:Ss is that the resource utilization is the same for all Oy
given a fixed architecture 64. To see this, we can compute the
number of operations N, for a dense DNN of the form (2) as

Nop = (nin + DH + H(H + )L + (H + Dnowe ~ (3)

where nj, and ny, are the number of inputs and outputs,
respectively. Thus, by simply changing the architecture of the
DNN (e.g., reducing the number of nodes or layers), we can
lower the evaluation cost on hardware.

Nonetheless, we cannot use N, to directly characterize
the feasible set of CoC policies, ie., F = {(0,y) €
® xTI : g,y) = 1}, since this set will depend on how
the operations written in a mid- or high-level programming
language (e.g., MATLAB, Python, and C) get translated to
low-level machine code (e.g., assembly language and binary),
compiled, and then packaged. Automatic code generation tools
aim to provide a streamlined means of performing such tasks
by abstracting the laborious translation process [41], [42],
[43]. As such, code generation serves as a bridge between
human-interpretable code and machine-interpretable instruc-
tions. In this work, we treat code generation as a black-box
function

7(;0,y) =CG(Tam(:; 0), ) 4

that takes as input a DNN policy and some parameters related
to the translation process y and returns a machine-interpretable
policy. Since changing 6y will not fundamentally change the
structure of the returned CoC policy m, the function g will
be independent of Oy and, thus, we only need to learn an
approximation of g(6a, y).
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One way to learn an approximation g &~ g is to run the
code generation process CG for a randomly generated DNN
for several values of (64, y) € ®4 x I', which is expected to
be a much lower dimensional space than ®y. The outcome
can be recorded as either a successful compilation 1 or failed
compilation 0. These labeled data can then be used to train
a binary classifier that is capable of predicting whether a
new choice of architecture and code generation parameters is
feasible or not. To this end, any classifier type can be used, for
example, support vector machines and DNN with a sigmoid
activation function at the output layer. We highlight that the
major advantage of this approach is that g can be trained
independently of the quality of the CoC policy. Not only can
this process be done fully offline, but also it does not require
any system data to be generated—all that is required is access
to the hardware and code generation process.

C. Accelerated Training of Hardware-Feasible DNN Policies
by Imitating Physics-Informed Expert Policies

In Section III-B, we presented an efficient way to verify
whether a CoC policy will be feasible. Yet, the original MOO
problem (1) can still be computationally intractable since 6y
remains a high-dimensional space with possibly thousands
or more independent parameters. The question we address
here is how the search over this space can be efficiently
performed without sacrificing the achieved closed-loop per-
formance. To this end, we rely on a class of control policies
that are implicitly defined in terms of a set of interpretable set
of equations [23]. Specifically, we look to use policies defined
by an optimization problem

Topt(X; A) =argmin V (x, u; \) (5a)
st hi(x,u; ) <0, i=1,...,k (5b)
gilx,u,N)=0, i=1,...,r (5¢)

where V : R™ x R™ x R" — R is the objective function;
hi:R"™ x R™ x R"™ — R are the inequality constraints for all
i =1,...,k gR™ x R™ x R"™ — R are the equality
constraints for all i = 1,...,r; and A € A C R™ are
tunable policy parameters. As discussed in [23], this represen-
tation captures a large set of policies, including approximate
dynamic programming and MPC. The key idea behind (5) is
that (5a) describes some type of value or reward function,
(5b) represents critical state and/or input constraints, and (5¢)
represents a (possibly physics-based) model of the system.
A significant advantage of the structure (5) is that it provides a
natural way for users to incorporate prior knowledge about the
system, when available, by properly selecting or constraining
the functions V, hy, ..., hy, and g1, ..., &

The central notion is that A can be much lower dimensional
than Oy such that we can derive an explicit value for the
DNN parameters that depend on A by minimizing the error
between the DNN policy mgn, and the “physics-informed”
expert policy mop

1 ng ‘ '
63y (1, 6) =arg min -~ > [ op(x: A) = amn (x: 6 04) &
v Yi=1

(6)
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where {(x©, 7op (x 3 N))}72 | represent a set of n, state—action
pairs acquired by solving the optimization problem (5) offline
for specific state values and fixed A values. This dataset can
be generated in a variety of ways, including random sampling
in the state space or using closed-loop “rollouts” from likely
initial conditions [38]. It is important to note that special
care must be taken in generating the dataset to train the
DNN as the approximation of (5) may reduce the robustness
properties ensured by implementing it directly depending
on the quality of the overall training process. In accordance
with the universal approximation theorem [44], there exists
a DNN that matches (5) exactly under some relatively mild
continuity assumptions. As such, given a sufficiently large
architecture and enough training data, we can ensure that
Tann (5 O (A, 04), 04) — Topi(+; A) for some 4.

Notice that the solution to (6) will depend on both the expert
policy parameters A and the DNN architecture hyperparame-
ters 6,4. Therefore, the proposed CoC policy has the following
unique structure:

Tcoc (3 X Oa, ¥) = CG(Tamn (3 O3y (X 04), 04).¥) (D)

which depends on three sets of parameters, mainly A, 64,
and y that all appear in different components of the CoC
framework. An illustration of the proposed CoC design process
is shown in Fig. 2, which is based on selecting (A, 84, and
y) € A x ®4 x I' to optimize closed-loop performance
metrics of interest. However, we do not have a closed-form
expression for how performance metrics depend on (), 6y,
and y). This is further compounded by the cost of collecting
closed-loop performance data since it requires: 1) training a
DNN policy; 2) executing a code generation process to run the
policy on embedded hardware; and 3) running hardware-in-
the-loop closed-loop experiments to collect performance data.
Next, we present an efficient procedure for searching over this
joint parameter space.

IV. PROPOSED MULTIOBJECTIVE OPTIMIZATION
FRAMEWORK FOR HARDWARE—-SOFTWARE CO-DESIGN

The system dynamics and CoC policy together form a
stochastic process due to the initial condition xy and distur-
bances {w;},;>¢ that are random variables

x,+1 =f(l,xt, M[, w[), l:O,l,... (Sa)
Uy = mcoc(Xr; §) (8b)
where & = (), 64, y) is the concatenation of all software

and hardware parameters that define the policy. A specific
choice of & can be judged according to the set of M expected
closed-loop performance metrics J;(§),i = 1, ..., M, defined
in (1) with the state and input sequences generated by (8).
Since J; are defined as expectations over closed-loop tra-
jectories, they only depend on £ that is of much lower
dimensional than the original 6 space, as discussed above.
Thus, we now pose (1) as a more manageable MOO problem

Igéiél (1), ... Tu ()} €))

where B = {(\,04,7) € A X Oy x T : 2(04,y) = 1} is the
space of CoC parameters that can be compiled on the available
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Fig. 2. Flow diagram of the proposed CoC design process. As in Fig. 1,
CoC design is subdivided into two categories related to software (high-level
control program selection in light gray) and hardware implementation (in
dark gray). Our proposed workflow for CoC design is subdivided as follows.
Within the high-level control program selection, the first step is to select
and evaluate a “physics-informed” control design. In the next step, a deep
learning-based policy is created in pursuit of hardware compatibility. The
final step involves the hardware implementation and final evaluation. Note
that the “Exhausted Options” decision-marker is not present in this figure for
simplicity but still exists as part of the design process. We define this design
process as a framework for CoC design that can be used to search over the
joint software and hardware parameter space.

hardware. Since the functions {J,-}f‘i , are black box in nature,
we must resort to derivative-free optimization (DFO) methods
to approximately solve (9) in practice. In particular, the DFO
method must be able to handle noisy, expensive evaluations of
{J;}!L,. The evaluations are expensive due to the need to col-
lect hardware-in-the-loop data, as discussed previously. These
evaluations will also be subject to noise due to the expectation
operator that defines J;. In practice, we can approximate this
expectation using a random sampling technique (e.g., Monte
Carlo sampling) such that y; = J;(§) + ¢;, where ¢; is the
effective measurement noise in the i-th performance function.
Assuming that K independent random samples are used to
approximate the performance functions, then it is known that
&; approaches a zero-mean Gaussian random variable whose
variance decreases at a rate of 1/K by the central limit
theorem [45].

We briefly highlight the fact that the only major assump-
tion made in (9) is that we can generate independent
noisy measurements of the closed-loop performance functions.
We do not require any specific knowledge of the dynam-
ics, or uncertainty distribution, which makes the proposed
hardware—software co-design approach broadly applicable.
However, the more knowledge that we can exploit in the
specification of the expert policy (5), the better the choice of
the & € E space, which can simplify the process of solving (9).
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Diagram of the data-driven optimization framework. The optimization framework consists in: 1) an inner learning procedure that represents a

templated workflow to design a single CoC policy (black dashed box) and 2) an outer optimization stage that suggests new CoC designs via closed-loop
evaluations (yellow dashed box). The inner learning procedure 1) is similar to Fig. 2, but rather than iteratively optimizing between steps as in Fig. 2, the
outer optimization 2) allows us to select parameters from each step (A, 84, and y) concurrently.

A. BO Approach to Co-Design

Since {Jl-}ﬁ‘i , are noisy, expensive functions defined over a
relatively low-dimensional space & € &, BO is a natural choice
of DFO framework for (9) since it is specifically designed
for such cases. Furthermore, BO has been shown to surpass
state-of-the-art performance in real-world controller tuning
applications with a variety of policy types [23]. BO falls under
the paradigm of active learning, meaning that it translates
the optimization task into an iterative learning task. There
are two major components in BO. First, we must construct
a probabilistic surrogate model, typically a Gaussian process
(GP) [35], to provide a posterior distribution P{J|D,} over
the unknown true vector-valued function values J(§) =
(J1(€), ..., Ju(§)) given a prior dataset D, = {(&;, y,)}I_,.
Second, we must define an acquisition function o, : E — R
that uses the surrogate model to assign a utility value to
the future candidate points at which we can evaluate the
true function. Thus, for a well-designed «,, we would like
to preferentially sample at a point that produces the highest
possible value. The active learning process is then defined by

'i:nJrl = arg max Oln(é)' (10)

E€E

Since the surrogate approximation of J is expected to be
much cheaper than the true function, we can (approximately)
solve (10) using established optimization algorithms.

Remark 2: While GPs are the standard surrogate model-of-
choice for BO, they are known to scale poorly with the number
of data points D, requiring O(D?) floating-point operations
for exact inference, and a higher number of data points
may be required to obtain representative models for higher
dimensional problems. However, there are recent advances that
reduce the computational cost at the cost of accuracy (e.g.,
[46], [47]). Additional ways to address large data problems,
including using a different type of surrogate model, are an
active area of open research [48], [49].

Since we are interested in MOO, we do not have a single
best solution and instead would like to provide the control
practitioner with an estimate of the set of Pareto optimal

—~

solutions. A point & € E is considered to be Pareto optimal
if improvement in one objective means deteriorating one or
more of the others. The so-called Pareto frontier is the set of
Pareto optimal points, which is mathematically defined as

P ={J®: A cEstJE)>JE) (D

where J(&') > J(&) implies that the point & dominates the
point &, which occurs if J;(§') > J;(§) foralli =1,..., M.
To derive «,, we would like to select points that grow our
understanding of P*. Following previous work [30], [50],
[51], we use the expected hypervolume improvement (EHVI)
acquisition function defined as follows:

a,(§) = EHV(PU{J (&)}, r) —HV(P,r} (12

where HV(P, r) denotes the hypervolume of a finite approx-
imate Pareto set P and a reference point r € RM that bounds
P from below. The HV can be computed exactly as the
M-dimensional Lebesgue measure

q
HV(P.r) =l [r. ] (13)

i=1
where P = {y",..., y@} is composed of a finite set of ¢

points. EHVI is notoriously difficult to optimize since it has
a relatively higher computational cost compared to standard
single-objective BO acquisition functions (such as expected
improvement) when evaluated using box decomposition. How-
ever, as shown in [50], one can more efficiently compute EHVI
and its gradients exactly (up to a Monte Carlo integration
error) using the inclusion—exclusion principle [52], making the
solution of (10) tractable.

An illustrative summary of the complete hardware—software
co-design framework is provided in Fig. 3.

B. Kernel Selection for Multiobjective Controller Tuning

The choice of the covariance (or kernel) function in the GP
model for J is a critical parameter in the proposed MOBO
approach. A particular challenge is the fact that £ may consist
of ordinal and categorical variables. Ordinal variables are
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those with some type of natural ordering such as continuous
(e.g., weight parameters in the control policy) and integer
variables (e.g., the number of nodes/layers in the DNN policy).
Categorical variables, on the other hand, are best described
as a collection of unordered categories such as the choice
of parallelization option in the code generation tool. The
standard way for dealing with categorical variables in GP
models is to apply one-hot encoding (i.e., converts a c-category
variable into ¢ new binary variables). The main challenge with
one-hot encoding is that it can lead to a large increase in the
dimensionality of the search space as well as complicate the
acquisition optimization process. As such, we pursue a mixed
kernel function approach [36] that combines separate kernels
for the ordinal and categorical variables. For every element of
J, we focus on independent kernels of the following form:

k (5, E ,) = kclat (SCat’ éc/at) kérd (Eﬂfd’ Ec,)rd)
+ kczat (Ecat’ Sc/al) + k(z)rd (SOTd’ So/rd)

where &, and &,4 denote the categorical and ordinal com-
ponents of &, respectively; and k!, k%, k!, and k2, are
kernels associated with the categorical and ordinal variables,
each with their own set of hyperparameters. The k!, and k!,
kernels are associated with a product in (14), so we can capture
the joint impact of both types of variables. The k2, and k2,
kernels are associated with a summation in (14), so we focus
on independent impacts of each type of variable.

Based on the idea of Hamming distances, the categorical

kernel is selected as follows:

ki (e, y) = viexp(—=d(x, )/ 1),

where d(x, y) is meant to represent the distance between
categories (equal to 0 if x = y and 1 otherwise) and v; is
a variance hyperparameter related to the magnitude of the
function and /; is a lengthscale hyperparameter related to
how fast the function can vary with distance. For the ordinal
variables, we focused on a Matérn-5/2 kernel that has similar
variance and lengthscale hyperparameters, though this choice
could easily be replaced with any other established kernel
(see [35] for details on kernel choices and properties).

(14)

ief{l,2} (15)

V. HARDWARE CONSIDERATIONS WITH DEEP LEARNING:
AN ILLUSTRATIVE EXAMPLE

As a first look into the complexity of the embedded control
problem, we examine the benefits offered by using deep
learning as a bridge between hardware and software. A major
consideration in embedded control is whether or not the
proposed control policy can be implemented on hardware,
which is related to the hardware constraint (1f), and can
be a factor of the online computational complexity of the
control policy. This section examines the online evaluation
of various control policies to illustrate the need for hardware
considerations during the software policy development.

Consider a system of masses attached by springs as given
in [53]. In general, for a system of m masses, the system
can be described by a linear state-space model with the m
positions and m velocities of each mass as the states and
applied force to m — 1 masses as the inputs. Due to hardware

considerations,' we use a simplified two-mass system. A first-
order hold discrete-time model with a sampling time of 0.5 s
is derived from the continuous-time dynamics such that the
plant is of the form

Xi+1 = Ax; + Bu, + Gw, (16)

for fixed (A, B, G) matrices given in [53]. We assume that
the disturbances w; are independent uniform random variables
acting on each mass with each element between —0.5 and 0.5.
We can then derive a nominal MPC policy whose goal is to
keep the system at rest starting from an initial condition of
xo = 0 by solving the minimization problem

N-1
: T T
min_ E Xy QX + Uy Rug,
{m bz k=0

St X1y =Axk|,—|—Buk‘,, k=0,...,N—1
k=1,...,N
k=0,...,N—1

Xmin = Xk|r = Xmax

a7

Umin = Ugjr = Xmax,

where Q = diag(1l,1,1,1) and R = 1 are the state and input
weight matrices, respectively, and the state and input bounds
are given by xpnin = [—4, =4, =4, =417, xpax = [4,4,4,4]7,
Umin = —0.5, and up = 0.5.

We evaluate the embeddability of three control policies: an
implicit MPC, an EMPC, and a DNN approximation to MPC.
Implicit MPC refers to the online solution to optimization
problem (17). We use CasADi to formulate the problem as a
quadratic program and solve using QRQP [54]. EMPC subdi-
vides the state-space into polytopic regions with precomputed
controller gains. EMPC can typically be readily embedded
on hardware since the control law is reduced to a lookup
table [55]. The optimization problem is created with the MPT-
3 toolbox [56] by using the MPCController () function,
which is the equivalent to the implicit MPC created using
CasADi. An explicit control policy is then created by calling
the toExplicit () function, which solves a multiparamet-
ric programming problem to determine the piecewise affine
(PWA) function that replaces the online optimization problem.
The evaluation of the explicit control policy is performed
by conducting sequential search on the returned set of gains
for the PWA representation. Note that when the EMPC is
exported to C-code, the search is conducted via more efficient
binary search trees [56]. Finally, the DNN-based approximate
MPC is trained using data generated offline by solving the
implicit MPC law [see (17)]. The DNN is trained following the
procedure described in Section III-C using n;, = 5000 samples
with MATLAB’s feedforwardnet function. Note that the
choice of n; and the quality of the training data must be done
with respect to the desired accuracy and robustness, where the
choice of n; = 5000 was done empirically by performing some
initial training, validation, and testing results on randomly
selected architectures.

Each method was evaluated across 1000 replicate simu-
lations with 100 time steps each resulting in 100000 total

The exact system described in [53] (12-state, 3-input) is computationally
challenging for standard explicit MPC (EMPC) tools, taking more than five
days to generate the solution offline and using more than 30 000 lookup values.
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TABLE I

COMPARISON OF CONTROL POLICIES IN THE ILLUSTRATIVE EXAMPLE
ON GENERAL-PURPOSE CPU: MPC, STANDARD EMPC, AND NEURAL
NETWORK APPROXIMATION OF MPC (DNN)

Computation Memory
Stage Cost Time (ms) (kB)
File Max
Average Average Max  Min Size  Heap
MPC 4.77+£5.74 055+0.11 191 037 242.5 5.0
EMPC 481+£592 1.40+0.13 276 132 5600.0 6.8
DNN 4.76 £5.67 0.01£0.01 038 0.01 18.0 5.0

time steps. Disturbance realizations were consistent for each
controller but varied in each replicate simulation. To mimic
embedded implementation, each control policy was converted
to C-code and compiled into MEX functions. Each of CasADi,
MPT-3, and MATLAB has a routine to convert the m-code
into C-code. Once the C-code is generated, each program
is compiled into a MEX function. A MEX function is the
MATLAB function that calls a C program, acting as an
interface between a high-level programming language (i.e.,
MATLAB) and a low-level one (i.e., C). Settings and the
procedures used in the compilation process are detailed in the
Appendix.’

Table I compares three metrics of interest for each con-
trol policy: closed-loop performance, computational time, and
memory requirements. The closed-loop performance is given
as the average stage cost computed over the 100000 steps
of the system. In addition, Fig. 4 depicts the distributions of
the stage cost for each controller. The computational time is
given as the average time taken to compute an input using a
compiled C-program (via MEX function) on a general-purpose
laptop CPU (2.3-GHz 8-Core Intel i7 processor).® The memory
requirements are given in two forms: one related to the general
storage of the program (executable file size) and one related to
the random access memory (RAM) required during computa-
tion (maximum heap utilization). The closed-loop performance
between the three controllers is similar, if not the same.
However, when considering hardware constraints/utilization,
standard EMPC takes the longest computation time and
greatest memory consumption. In general, standard EMPC is
ill-suited for this problem since even the implicit solution
can outperform EMPC. Regardless, the DNN can offer an
order-of-magnitude improvement in computation speed and
memory utilization compared to the MPC. The gap between
MPC implementations and DNN implementations can be sig-
nificantly widened in specialized contexts, e.g., in cold plasma
bioprocessing/medicine, where the dynamics are nonlinear and
the control context requires safety considerations.

2All code and additional documentation (including those for the results
and discussion of the case study in Section VI) may be found at
https://github.com/Mesbah-Lab-UCB/HW-SW_CoDesign4CoC.

30n a less powerful device and/or on specialized hardware, the results in
Table I would show even larger differences.
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Fig. 4. Distributions of the stage cost for three control policies used in the
illustrative example: implicit MPC, standard EMPC, and DNN approximation
to MPC (DNN).

VI. APPLICATION TO ROBUST PREDICTIVE
CONTROL OF APPJs

To illustrate the complete proposed design framework
illustrated in Fig. 3, we investigate the CoC design for
cold atmospheric plasma (CAP) devices. CAPs have recently
found promising use in a variety of applications, including
(bio)materials processing [57] and plasma medicine [58], [59],
[60]. CAPs, a low-temperature (partially) ionized gas, can be
generated by applying electric fields to a noble gas, typically
argon or helium. The synergistic effects of CAPs, including the
generation of reactive chemical species and ions, ultraviolet
radiation, low-level electric fields, and thermal effects, are
posited to induce therapeutic and practical outcomes [61], [62].
CAP devices, such as APPJs [63], can facilitate direct CAP
treatments by providing a portable, point-of-use solution to
deliver plasma effects in a directed manner. However, APPJs
pose unique challenges in control and rely on cutting-edge
control formulations [38], [64], most of which have no unified
embedded techniques. This section will extensively cover the
description of the APPJ system and demonstrations of a CoC
design study.

A. Description of the APPJ Testbed

We use a kilohertz-excited APPJ in helium that consists
of a copper ring electrode wrapped around a quartz tube,
which serves as a dielectric barrier and the gas flow channel.
A schematic of the APPJ is shown in Fig. 5. Helium gas
flows through the tube, and plasma ignition is achieved by
applying a high-frequency, alternating current (ac) voltage
to the copper electrode. The generated plasma is directed
out of the tube onto a grounded, glass-covered metal plate
at a distance of 4 mm below the tip of the tube. In this
testbed, the applied power P in watts and the helium flow
rate g in standard liters per minute (s..m.) are the manipu-
lated inputs. The maximum surface temperature 7 in degrees
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Fig. 5. Close-up image (left) and schematic (right) of the kilohertz-excited
APPJ in helium (He). The manipulated inputs are denoted along the black
dotted arrows, and the controlled outputs are denoted in red.

Celsius and the total optical intensity of the plasma [/ in
arbitrary units (arb. units) at the plasma-surface incident
point are the measured outputs made available every 0.5 s.
In the experimental testbed, the applied power is implemented
using an embedded proportional—-integral (PI) controller on a
microcontroller (Arduino UNO) that manipulates the applied
voltage. Furthermore, the applied voltage signal is created by
generating a sinusoidal waveform at a specified frequency
using a function generator (integrated circuit, XR-2602CP).
This signal is amplified using an amplifier (TREK 10/40A-HS)
before being sent to the copper electrode. Surface temperature
is measured through a radiometric infrared thermal camera
(Lepton FLIR 3) and optical plasma intensity is measured via a
fiber optic cable connected to an optical emission spectrometer
(Ocean Optics USB2000+). Additional information on this
testbed may be found in [65]. Data acquisition is implemented
and managed via USB connection to any standard CPU
using Python. DNN-based CoC policies were implemented
on an FPGA (the programmable logic side of a Zybo Z7,
XC7Z020-1CLG400C). The programming files for the FPGA
were generated automatically using MathWorks HDL Coder
(included with MATLAB R2021a) and Xilinx Vivado 2020.1.
FPGA-in-the-loop simulations and experiments were facili-
tated by MATLAB on a standard laptop CPU, rather than the
Zybo Z7’s onboard processor.*

B. Modeling for Control of APPJs

A critical challenge in the development of model-based
optimal control policies lies in the modeling of the CAP and
its interactions with the target surface. CAPs are notoriously
difficult to model since they exhibit nonlinear dynamics that
are distributed over multiple length and time scales. Modeling
difficulty is further exacerbated by the intrinsic variability
in the plasma and sensitivity of the APPJ to exogenous
disturbances. Moreover, the use of theoretical models [66],
[67], [68] is ill-suited for real-time control of plasma effects
that occur on the millisecond-to-second time scale. Instead,
a common solution is to resort to data-driven modeling of the
APPJ [69], [70].

“Note that the communication time between devices can play a role in
effective hardware implementation. Further investigation into using a system-
on-chip architecture provided by the Zybo Z7 is left for future work.

Here, we identify a linear, time-invariant model using the
n4sid function in MATLAB using input—output data of
the APPJ. Input—-output data were gathered by performing
multiple-step tests in the inputs # = [P, g]" and recording
the outputs y = [T, al]", where a is a scaling factor to scale
the total intensity to the same order of magnitude as surface
temperature. Furthermore, the data were centered around nom-
inal operating conditions [ P*, qS]T =[1.5W, 3.5s.l.m.]T and
[T*, I°]" =[33.3°C, 7.7 intensity units]", where superscript
s denotes the nominal condition. The model follows the
discrete-time state-space form:

Xi+1 = Ax; + Bu,
i = Cx; + Du,

(18a)
(18b)

where ¢ > 0 is the discrete-time step; x € R™ is the
vector of states; u € R™ is the vector of manipulated inputs;
y € R™ is the vector of measured outputs; and A, B, C,
and D are the state-space matrices identified using subspace
identification [71]. The state-space model is defined in terms
of deviation variables around the nominal operating condition,
ie,y=[T—=T%, @l —I)]" andu = [(P—P*), (g—q*)]".
In this case, we assume an observable canonical form of (18),
where C = I and D = 0 (see Appendix A for a detailed
description of model matrices). In the closed-loop simulation
studies, the true system model is treated as having a white
noise term added to (18)

f@, xu, w) = x4 = Ax; + Buy + wy (19)

where w; is generated from a uniform distribution with all
elements bounded in [—1, 1].

Plasma treatment not only depends on the current state
of the plasma itself but also on quantification of the deliv-
ered plasma effects to a surface. While quantification of
plasma effects is generally cumbersome and application depen-
dent [72], we take inspiration from hypothermia treatments to
quantify the delivery of a desired thermal effect (also known
as a thermal dose) [73]. A thermal dose metric is quantified
in terms of cumulative equivalent minutes (CEMs), which
describes the accumulation of thermal effects on a target with
respect to a reference temperature. The CEM is described by

CEM, | = CEM, + 0.5T="T)5¢ (20)

where Tr = 43 °C is the reference temperature and §¢
is the sampling time. This definition of the thermal dose
is cumulative, in that plasma effects delivered cannot be
removed, and nonlinear due to the exponential dependence
on temperature. Our control objective is to deliver a desired
“dose” of thermal effects given by a target CEM value.

C. Scenario-Based MPC

Since we have no way to remove thermal effects once
delivered, we need to be cautious in the face of uncertainty.
Therefore, we select scenario-based MPC [74], or sMPC
for short, to provide a controller that is robust to uncer-
tainty, especially in the presence of safety-critical constraints.
Specifically, SsMPC assumes that the system uncertainty can
take on a finite number of s scenarios at every time step.
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Whenever the uncertainty is time varying in the sense that
it can take on new values at every time step, the system
evolution can be represented by a scenario tree of S = sV
unique combinations of uncertainty values where N denotes
the prediction horizon [75]. The sSMPC policy then solves the
following minimization problem at every time step:

S N-1
min Za)j |:Z L(xk,j‘t,uk_ﬂ,) +Lf(XN_j|t):| (21a)

Uk, jit .
j=1 k=0

St Xpt1,jir = Axk,j‘, + Buk’j‘, + Wy, jir

(k. jie> ux jir) € X x U (21b)
N

> EjUj =0 Q2lc)
j=1

X0,j|lt = Xt

Vkef0,...,N—1} Vje{l,...,8) (21d)

where the subscript (-) ji; denotes the j-th scenario pre-
dicted k steps ahead of the current time f; w; is the
probability of occurrence of the j-th disturbance sequence
Wi = (Wo_jis» -+ -» Wn—1,j)); X and U are the state and input
constraints, respectively, that must hold for all uncertainty
realizations; L and L, are the stage and terminal cost func-
tions, respectively; and (21c) enforces the nonanticipativity
constraints, which ensure that states that branch from the same
parent node have the same control input. As shown in [76],
these constraints can be written in terms of known matrices
(E j}le that impose structure on the vector of control inputs
for the jth scenario, i.e., Uj; = (4o jji, - -, Un—1,jj;)- To limit
the exponential growth in the scenario tree, we use the idea of
the robust horizon N, < N from [75], which stops branching
after N, steps with N, usually equal to 2 or 3 (often sufficient
in practice to achieve constraint satisfaction).

In (21), the control objective is given by a terminal
cost of Ly(xy) = (CEMy, — CEMN|,)2, where CEMj,
is the desired CEM value. We use a prediction hori-
zon of N = 5 and a robust horizon of N, = 2.
We consider a set of three scenarios at each time step,
mainly {(_ﬁ}bound’ _ﬁ)bound)’ (0’ 0)’ (ﬁ)boundv lz}bound)}a which
correspond to low, middle, and high values for the uncertainty
for a tuning parameter Wyouna- The inputs are constrained by
the hardware to satisfy P € [1.5,5.0] W and g € [1.5,5.0]
s.l.m. The outputs are constrained by the following limits T €
[25,45] °C and I € [0, 80] intensity units. The optimization
problem (21) was formulated using CasADi [54] and solved
with [POPT [11] in a receding-horizon fashion.

Although sMPC provides an effective robust control strat-
egy for the APPJ, it poses a significant challenge for CoC
design since, to the best of the author’s knowledge, there are
no known off-the-shelf embedded implementations of (21).
As such, sMPC is an ideal test case for our proposed frame-
work since it provides a useful expert control policy that can
be imitated by a DNN on embedded hardware.

D. Optimized CoC Design

Now, our goal is to embed the sMPC policy defined
by (21) on specialized hardware, mainly an FPGA (i.e., the
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TABLE I
EXAMPLES OF DESIGN PARAMETERS IN THE COC DESIGN PROCESS

CoC Design Step Examples

prediction horizon (IN), robust horizon (/NVy),

Scenario-based .
back-off parameters, uncertainty bounds

MPC (A -
) (Whound)
DNN number of layers (L), number of nodes (H),
Approximation activation function(s) ({al}le),
Ba) training/optimizer parameters
Hardware. numerical representation (e.g., total/fraction
[mplementation length/bit representation), parallelization options
(FPGA) () £ P P P

programmable logic side of the Zybo Z7). We can select CoC
design parameters at each stage of the proposed framework—
we list several possible parameters in Table II. We selected the
following closed-loop performance metrics to define the MOO
problem (9) that provides the basis for selecting the complete
set of software and hardware design parameters &

T

Ji(E) = IE[ > (CEM,, — CEM, &, W))2] (22a)
t;o

h(E) = E[Z([T,@, W) — Tmaxr)z] (22b)
t=0

where W = (wy, ..., wr_1) is the set of random uncertainty
values over the horizon T, [a]* = max{a, 0}, and the expecta-
tion is taken over W. Here, J; represents the deviation from the
desired setpoint of CEMy, = 1.5 min and J, is a temperature
constraint violation metric given Tp,x = 45 °C.

We select the following CoC design parameters and their
bounds: maximum possible uncertainty realization Wi poyng €
[0, 10], the number of nodes per hidden layer in the DNN
H € [2,10], and the fixed-point word length when generating
code wl € [10, 32].

1) Hardware Feasibility Classifier Results: As mentioned
in Section III-B, the constraint function g(04,y) can be
learned prior to any optimization routine. As such, we pre-
select a range of H and wl to learn a binary classifier
g(H,wl) — {0,1}. Data D, = {(H,wl), g(H,wl)} were
generated by creating DNNs with randomly initialized weights
and passing them through the code generation process CG.
Feasibility was recorded with each combination of parameters.
Using D,, a neural-network-based classifier was trained using
MATLAB’s fitcnet function with an 80/20 training/test
split.

Remark 3: While the generation of training data for the
hardware feasibility classifier is performed independently of
the CoC design optimization, the process of generating the
data itself can be costly due to the time required to run the code
generation step (i.e., the FPGA synthesis). To reduce the cost
of gathering training data, optimization methods, such as BO,
can be used to determine the boundaries of feasible/infeasible
points instead of searching over the entire parameter space of
®4 and T,
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Fig. 6. Confusion matrix of the hardware feasibility classifier. Recall that
0 represents an infeasible CoC design, while 1 indicates a feasible design.

Fig. 6 shows the confusion matrix of the resulting hardware
classifier learned from D,. The confusion matrix shows a
reliable estimation of how well we can predict the feasibility of
a particular hardware design. As shown in Fig. 6, the classifier
accurately predicts with an 85% test accuracy. This hardware
classifier can then be used during an optimization routine to
estimate which combination of H and wl are feasible. The
result is that we effectively reduce the search space prior to
performing full CoC design runs.

2) Multiobjective Framework Results: Five replicates of
MOBO are used to iteratively find the Pareto frontier according
to the two closed-loop performance metrics using a total of
50 iterations. Closed-loop FPGA-in-the-loop simulations of
the APPJ are performed in MATLAB. DNNs are trained with
feedforwardnet and ny = 2000. Again, the choice of ny
was done empirically. However, a nice feature of our CoC
framework is that the closed-loop validation process is able to
“catch” if poor performance is consistently achieved for a vari-
ety of design parameters £, which, in turn, may be indicative
of a poor training dataset. Since the CoC optimization is per-
formed offline (up until the real-system query), one can always
increase the size of ng at the cost of longer data generation
and training time. Results from the closed-loop simulations
are passed into the MOBO framework implemented in Python
using Ax [36]. MOBO is compared to random search (RS)
using a quasi-random Sobol sampling strategy [77], which is
a common benchmark for DFO methods. Each strategy was
initialized with one known, successful design, and one Sobol-
selected design.

Fig. 7 illustrates the observed closed-loop performance
metrics over the five replicates of MOBO and RS. In Fig. 7,
the blue circles indicate data points gathered from MOBO,
while red squares indicate data points gathered from RS. Black
dashed lines indicate “objective thresholds,” which are used in
Ax to “constrain” the search space to produce values within
a desired region-of-interest. Objective thresholds are chosen
such that the closed-loop performance metrics are representa-
tive of valuable or practical control policies. In other words,
in the case of the thermal dose metric, if the metric exceeds
100 (= CEMy, x 70 time steps), then this would mean that
the suggested CoC policy will take longer than the maximum
treatment time allowed and/or is incapable of achieving the
desired thermal dose. In the case of the temperature constraint
metric, if the metric exceeds 80 (= 1 °C x 80 time steps
or 10 °C x 8 time steps), then the policy is considered too

dangerous as it violates the constraint too often or at too high
magnitude. Objective thresholds can be chosen since MOBO
produces a surrogate model that relates the design parameters
to the performance metrics. The posterior model can be used
to estimate parameters that will produce performance metrics
that are likely to be in the defined region-of-interest. Since
the surrogate model in MOBO is probabilistic in nature, CoC
design parameters suggested by MOBO may still fall outside
of the region-of-interest in the initial iterations of MOBO. Note
that the RS has no notion of the objective threshold since no
surrogate model is created based on the previously observed
data. As such, RS explores significantly more designs outside
of the region-of-interest due to a less constricted parameter
space. The left subfigure shows all data encountered, while
the right subfigure shows a zoomed-in version with a truncated
x-axis, and it illustrates how RS encounters significantly more
points with a thermal dose metric greater than 100.

Furthermore, Fig. 8 shows the HV evolution over the
50 iterations of each method (MOBO in blue and RS in
red). The solid lines indicate the mean over five replicates,
whereas the shaded region indicates one standard error. Recall
that the HV is a measure of the quality of the Pareto frontier.
As seen in Fig. 8, the two methods begin in a similar fashion
at suboptimal Pareto frontier estimations over the first two
iterations, but MOBO quickly diverges within the immediate
next few iterations. MOBO’s increase in HV value in few
iterations is due to its ability to intelligently explore the
design space in search of the optimal tradeoff between the
two performance metrics. Meanwhile, RS is a naive approach
that explores many options that are not expected to improve
the HV, i.e., designs are selected with no knowledge of the
outcome. As such, it takes RS many more iterations to reach
an HV close to that of a “converged” MOBO.

Finally, Fig. 9 shows the closed-loop trajectories of the
states related to J; and J, (CEM and T, respectively). We use
Fig. 9 to illustrate the performances of various CoC designs
that are encountered at several snapshots of MOBO. Using
Fig. 9, we can see the variety of control policies that are
encountered, and how the observed Pareto frontier evolves
over time. From top to bottom, we show snapshots of one
replicate of MOBO at Iterations 5, 15, and 25. From left to
right, the subfigures in the left column are the closed-loop
trajectories of CEM for selected designs, the subfigures in
the middle column are the closed-loop trajectories of surface
temperature for selected designs, and the subfigures in the right
column are the observed metrics from the designs encountered
up until that iteration. We selected designs that a practitioner
may select based on the application’s needs. A “utopia” design
is determined based on the lowest combination (scaled sum)
of performance metric values

‘I/u=j1+j2

where J; are scaled values of J;. Bounds of the scaling are
fixed to [20, 100] for J; and [0, 60] for J>. A “control perfor-
mance preferred” design is determined based on a weighted
combination of J; and J,

~ 1.
\IJpZTJ]+—J2
T
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Fig. 7. Observed closed-loop performance metrics of plasma treatments during five replicates each of MOBO and RS via SOBOL sampling. Blue circles

indicate the metrics observed during MOBO; red squares indicate the metrics observed during RS. Black dashed lines indicate “constraints” on the closed-loop
performance metrics that are used to guide parameter suggestions to the region-of-interest. The left figure shows all data encountered in all optimization
routines, while the right figure illustrates a zoomed-in version (truncating the upper x-axis value at 120). Note that RS has no notion of the objective threshold
since no surrogate model is created based on previously observed data. As such, RS explores significantly more designs outside of the region-of-interest.

TABLE III

CONFIGURATIONS AND CLOSED-LOOP METRICS FOR REAL-TIME CONTROL EXPERIMENTS WITH THE APPJ TESTBED. METRICS ARE REPORTED AS
THE MEAN &+ THE STANDARD ERROR OF FIVE REPLICATES

Control Policy Parameters

Closed-loop Performance Metrics

Hidden  Hidden Fixed Point Loop Thermal Temperature

Configuration  Description Nodes Layers  Word Length Unrolling Dose Constraint

(i) Control Performance Preferred 5 2 13 UnrollLoops  35.66 4 0.59 2.12+£0.43

(ii) Constraint Satisfaction Preferred 8 2 18 LoopNone 39.53 +4.19 1.07 £ 0.40

(iii) Utopia 5 3 20 LoopNone 33.67 £ 2.03 1.78 £ 0.39
25001 selected designs were the first artificial point, then they are
2000 colored purple. At Iteration 5, MOBO has selected designs
o that improve the Pareto frontier such that a utopia design and
€ 1500/ control performance preferred design are different from the
? first design. The utopia point provides an indication of design
g 10007 with the most even tradeoff between the different metrics and
* 5001 __ Mutiobictive can also partially indicate the quality of the Pareto frontier.
& meston At Iteration 15, more designs have been explored such that
0] ~ Sampling new designs for the more extreme designs can be observed.
0 10 20 30 40 50 At Tteration 25, several more designs were explored but had

Iteration

Fig. 8. Hypervolume improvement of five replicates each of MOBO (blue)
and RS via SOBOL sampling (red) for the CoC design for APPJs. Solid lines
indicate the mean hypervolume and the shaded regions indicate one standard
error. MOBO on average reaches a higher hypervolume overall and earlier
than random sampling, which indicates that a meaningful Pareto frontier is
realized in fewer iterations of MOBO than random sampling.

where T = 3. A “constraint satisfaction preferred” design is
determined similarly, but with the weights switched, i.e.,

1. ~
—Ji+ /).
T

W

Designs are selected in this manner to avoid overly extreme
controller designs. Utopia designs are denoted by the color
green (and solid lines in the trajectory plots), control per-
formance preferred designs are denoted by the color orange
(dotted-dashed lines), and constraint satisfaction preferred
designs are denoted by the color brown. In addition, if any

little value in finding the Pareto optimal points and, as a result,
had no significant changes in Iteration 15.

E. Real-Time Experiment Results

Finally, to show utility in the real system, we selected three
control policy designs from the Pareto frontier generated in
simulation. Note that, for ease of testing, we chose to modify
H, L, wl, and loop where a loop is a categorical option in
the code generation process that determines whether or not
to parallelize certain matrix computations. We used MOBO
offline to search for optimal CoC designs and transfer the
designs to real-time experiments. In principle, these optimal
design parameters obtained offline are sufficient for the exper-
iments as they primarily describe the capability of the CoC
policy in: 1) accurately representing the sMPC law and 2)
being feasibly implemented on the hardware device. Fig. 10
shows the observed data from three replicates of MOBO for
the new set of design parameters. Fig. 10 shows a similar
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Fig. 9. Closed-loop trajectories of CEM (left column) and surface temperature (middle column) at snapshots (at Iterations 5, 15, and 25) of one replicate

of MOBO. Selected designs (colored stars) were determined from the observed data (blue circles) in the metric space (right column). The selected designs
correspond to designs that an engineer may select based on the needs of a particular application. The “utopia” point/design (green solid) is selected based
on the lowest combination (scaled summation) of the metric values. The “control performance preferred” point (orange dotted-dashed) is selected based
on a weighted combination of the metric values where the thermal dose metric is weighted three times more than the temperature constraint metric. The
“constraint satisfaction preferred” point (brown dotted) is selected based on a weighted combination of the metric values where the temperature constraint
metric is weighted three times more than the thermal dose metric. In the CEM figures, the black dashed line represents the desired thermal dose. In the surface

temperature figures, the red dashed line represents the constraint.
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Fig. 10. Observed performance metrics during three replicates of MOBO
for CoC design based on design parameters chosen for the experimental case
study. Modifying different design parameters still shows a similar tradeoff
between the two closed-loop performance metrics.

tradeoff as in Fig. 7 even with different design parameters.
Real-time experiments using the CoC design parameters to
create embedded control policies for the APPJ were performed
in triplicates. Table III describes the controller parameters used
and the closed-loop metrics obtained on the APPJ testbed.
Due to the significant plant-model mismatch between the
linear models and the true system, the original SsMPC was
tuned based on a newly identified LTI model on the day of
experiments to achieve appropriate control performance before
testing CoC designs.’ From Table III, we can see several trade-
offs between control performance, hardware utilization, and
constraint satisfaction. A performance-dominated CoC design

SNew system parameters are provided in Appendix A.

[i.e., Configuration 1)] is typically comprised of a small-scale
DNN that can achieve the desired CEM dose quickly at the
expense of more constraint violations. A constraint-dominated
CoC design [i.e., Configuration 2)] is typically comprised of
a larger width DNN with a larger fixed-point word length.
This often leads to a more representative DNN that has
fewer constraint violations. Finally, a mixed CoC design [i.e.,
Configuration 3)] can offer a balance of the two extremes.

VII. CONCLUSION AND FUTURE WORK

This article presented an end-to-end CoC design framework
for the implementation of arbitrary control policies on arbitrary
hardware. We argued for deep learning as a unifying template
that connects the hardware and software aspects of embedded
control design. Furthermore, we presented a BO framework
for CoC design that can account for the multiobjective nature
of the control design problem, categorical design spaces,
and minimal interactions with the expensive design process.
We demonstrated the proposed CoC design framework for
CAP processing of biomaterials in closed-loop simulation
studies and real-time experiments. The framework was able to
efficiently and systematically determine tradeoffs in the CoC
design process, resulting in adequate estimation of the Pareto
frontier in only a few design iterations. Future work will focus
on extending the framework to online adaptation of control
policies and guaranteeing the robustness (i.e., safety) of the
resulting controllers.
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Fig. 11. Comparison of measured APPJ outputs and the model used in sMPC
[see (25)]. A new model was learned from new experimental data since the
configuration of the APPJ had changed since the data collection for (23)
and (24).

APPENDIX A
SUBSPACE IDENTIFICATION FOR THE APPJ TESTBED

As indicated in the main text, we used subspace identifi-
cation [71] to identify discrete-time state-space models from
open-loop data of the APPJ testbed. For the closed-loop
simulations described in Section VI-D, we used two sets of
identified matrices to simulate plant-model mismatch. The
following matrices were used in defining the control model

f(x,u):

A |:0.903 —0.220

—1.131]' @3)

The following matrices were used in defining the plant
model (19):

0.888
A= [0.094

0.132

0018]  , _ [0581
0243 © 7 |2.674

—0.174

0.055 B— 0.503
’ - —1.037

0.283 2.764 ] 24

In Section VI-E, a new state-space model was identified for
sMPC. The matrices for f(x, u) are given as follows:

L_[0845 0016] ,_ [0450
= [-0.060 0358 7 0713

—0.164
0.567 } (23)

Furthermore, the nominal operating conditions were given
as [P%,¢°]" = [3.5 W, 3.5 slm]'" and [T°, I]T
[49.6 °C, 29.7 arb. units]'. Fig. 11(b) shows a comparison
between the open-loop data collected (via multistep tests) and
the model learned from the open-loop data.

APPENDIX B
COMPILATION SETTINGS FOR GENERATING EMBEDDED
CONTROL POLICIES

This section describes the settings used in generating code
for hardware-based control policies. Most tools were used with
their default settings with the exception of those detailed in
this section.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

A. CasADi Code Generation

As mentioned in the main text, CasADi provides a
generate () function to create a C-code representation of
the optimization problem defined with CasADi’s symbolic
syntax. The optimization problem (17) from the illustrative
example in Section V is formulated using CasADi’s symbolic
syntax and used to generate a functional form of the control
law

(26)

I/t; = nmpc(xt)

where a call to 7y solves the implicit optimization prob-
lem defined by (17). The variable in which 7y is stored
is used with the generate (filename, opts) function
with these additional options (defined in as the structure
opts):

1) ‘main’: true;

2) ‘mex’: true;

3) ‘with_header’:
Then, the C-code generated under the filename variable
filename is converted to the MEX function for use
as the MATLAB function using the following command
(within MATLAB Command Window): mex filename
-largeArrayDims -outdir codegen/mex/mpc/
—output mpc_mex.

true.

B. MPT-3 Code Generation

As mentioned in the main text, MPT-3 provides several
methods to generate C-code for control policies defined using
MPT-3 syntax. In this work, we use the method that involves
the use of the MATLAB Coder toolbox. The procedure to do
so is as follows.

1) Define a control policy using the MPCController
object, which takes system and horizon as argu-
ments, where system is the linear model to be used
in the dynamics constraints and horizon is the pre-
diction horizon of the optimal control problem: ¢ =
MPCController (system, horizon).

2) Convert the control policy into an explicit control
policy using the toExplicit () function: ec =
c.toExplicit ().

3) Convert the explicit control policy to a functional repre-
sentation of the control law: ec.toMatlab (mfile,
‘primal’, ‘ob3j’), where the mfile is an m-code
representation of the control law

27)

I/t; = Tlempc (x1)

where the evaluation of ey, searches for the appropri-
ate gain from the PWA function that defines the explicit
control policy.

4) Use MATLAB Coder to create a MEX function: coder
mfile —-args {zeros(nx, 1)}, where nx is the
number of states.

C. DNN Code Generation

The DNN can be converted to C-code through a similar
method as the final step of the MPT-3 method. The DNN
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was created using the feedforwardnet function, which is
a part of the Deep Learning toolbox. In addition, the Deep
Learning toolbox provides a function genFunction that
converts a neural network to the MATLAB function, i.e., an m-
code representation of the DNN control policy

(28)

12; = ndnn(xl)

where the evaluation of mg,, is the forward pass of the
learned DNN. The DNN is converted with genFunction:

genFunction (net,

mfile, ‘MatrixOnly’,

‘ves’), where net is the DNN object generated after
calling feedforwardnet and mfile is the filename of
the m-code function that is generated. Finally, the same call to
MATLAB Coder from step 4 of the MPT-3 code generation
is called to create the C-code and MEX function.
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