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Abstract

®

CrossMark

We apply the Migdal-Eliashberg theory of superconductivity to heavy-fermion and mixed
valence materials. Specifically, we extend the Anderson lattice model to a case when there exists
a strong coupling between itinerant electrons and lattice vibrations. Using the saddle-point
approximation, we derive a set of coupled nonlinear equations which describe competition
between the crossover to a heavy-fermion or mixed-valence regimes and conventional
superconductivity. We find that superconductivity at strong coupling emerges on par with the
development of the many-body coherence in a Kondo lattice. Superconductivity is gradually
suppressed with the onset of the Kondo screening and for strong electron-phonon coupling the
Kondo screening exhibits a characteristic re-entrant behavior. Even though for both weak and
strong coupling limits the suppression of superconductivity is weaker in the mixed-valence
regime compared to the local moment one, superconducting critical temperature still remains

nonzero. In the weak coupling limit the onset of the many body coherence develops gradually,
in the strong coupling limit it emerges abruptly in the mixed valence regime while in the local
moment regime the f-electrons remain effectively decoupled from the conduction electrons.
Possibility of experimental realization of these effects in Ce-based compounds is also discussed.

Keywords: superconductivity, heavy fermions, Eliashberg theory,

strongly correlated electronic systems

1. Introduction

Since the discovery of the first heavy-fermion system CeAl;
[1] along with the subsequent discoveries of unconventional
superconductivity in heavy-fermion compounds UBe;s [2]
and CeCu,Si, [3], which serve as the very first examples of
this remarkable phenomenon in solid state systems, heavy-
fermion materials continue to provide an indispensable plat-
form for developing novel physical concepts [4—11]. In heavy-
fermion materials strong hybridization between itinerant and
quasilocalized f-electrons leads to an emergence of competing
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the title of the work, journal citation and DOI.

interactions as well as drastic changes in the single-particle
properties, including an increase of the effective mass of the
carriers exceeding by several orders of magnitude bare elec-
tron mass, g ~ 100+ 1000m.. Renewed interest to these
systems has been motivated by the discovery of the topo-
logically protected metallic surface states [12] and quantum
oscillations in samarium hexaboride [13], discovery of the
topological Weyl-Kondo semimetals [14] and, most recently,
experimental and theoretical studies of unconventional super-
conductivity in UTe, [15-18].

Emergence of unconventional superconductivity in heavy
fermion systems is usually attributed to either existence of
the enhanced magnetic fluctuations due to partially screened
magnetic moments [9, 10, 19, 20] or due to strong valence
fluctuations on f-sites [21-24]. However, there is a number
of Ce- or Yb-based heavy-fermion systems such as CeRu3Si,
and its alloys Ce;_,La,RusSiy, CeRu,, CeNiyGe, in which
superconductivity seems to be ‘inherited’ from their respective

© 2024 The Author(s). Published by IOP Publishing Ltd
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homolog counterparts LaRu, and LaNi,Ge, correspondingly
[25-30]. Since homologs do not contain atoms with partially
filled f-orbitals, superconductivity in these materials is most
likely conventional and, therefore, must be mediated by the
electron—phonon interactions.

To the best of our knowledge, Barzykin and Gor’kov were
the first ones to address the question of whether the phonon-
mediated superconductivity can be completely excluded as
a possible microscopic mechanism of superconductivity in
heavy-fermion materials [31]. They have employed weak-
coupling (BCS) theory [32] and studied the conditions for
the emergence of the superconducting state under assump-
tion that Kondo lattice coherence temperature is larger than
critical temperature of the superconducting transition. It was
found that in a narrow range of the model parameters describ-
ing the f-electron subsystem, superconducting critical temper-
ature remains finite. In other words, already within the frame-
work of the BCS theory the short answer to the question above
is negative.

In this paper we will generalize Barzykin—Gor’kov the-
ory to a case when electron-phonon coupling is strong. In
particular, we consider the emergence of superconductivity
at strong coupling along with the emergence of the heavy-
fermions on equal footing. As it was early noted by Eliashberg
[33], the hybridization between itinerant and predominantly
localized f-electrons leads to renormalization of the spectrum
of the conduction electrons and is analogous to a Migdal
renormalization [34] due to electron—phonon interaction. It is
therefore of special interest to us to investigate an interplay
between these two physical phenomena without making any
specific assumptions on the relative values of the hybridiza-
tion and strength of the electron-phonon coupling.

The present work has also been motivated in part by the
recent experimental results on Ce-based cage compounds
CeNi,Cdyg and CePd,Cd,o which do not exhibit long-range
order down to a millikelvin temperature range [35, 36].
Given the large separation between Ce ions, both the super-
exchange interaction and Ruderman—Kittel-Kasuya—Yosida
(RKKY) interaction are [37-39] are substantially suppressed
which is supported by the analysis of the temperature depend-
ence of magnetic susceptibility. Since in these systems the
Kondo lattice coherence temperature is also fairly low, upon
further cooling these systems may also develop superconduct-
ivity mediated by the electron-phonon interaction.

This paper is organized as follows. In the next section
we formulate a problem and provide the qualitative discus-
sion based on the recently developed pseudospin formulation
of Migdal-Eliashberg theory. In section 3 we formulate the
microscopic model and derive the main equations within the
saddle-point approximation for the effective action. Section 4
is devoted to the discussion of the results which follow from
the self-consistent solution of the saddle-point equations. In
section 5 we provide the main conclusions that one can draw
from the present work. Necessary technical details, which are
needed to follow the technical part of this paper, are summar-
ized in appendix.

2. Qualitative discussion

A problem of an interplay between s-wave superconductivity
and Kondo screening [40] dates back to 1970s [41, 42]. In a
dense Kondo lattice an interplay between BCS superconduct-
ivity and Kondo screening of magnetic impurities leads to a
phenomenon of re-entrant superconductivity: at when super-
conducting critical temperature T, > Tk (T is a single impur-
ity Kondo temperature) superconductivity is suppressed as the
number of impurities is increasing. When 7. becomes com-
parable to Tk suppression becomes so strong that supercon-
ductivity is destroyed until it recovers at much lower T, < Tx
since at that temperatures the paramagnetic moments are fully
screened. It is worth mentioning that similar phenomenon of
re-entrant superconductivity was also discussed in the context
of the charge Kondo alloys Pb;_,T1,Te [43, 44].

Let us now turn our attention to a case of superconduct-
ivity mediated by strong electron-phonon interaction com-
monly known as Migdal-Eliashberg theory [45]. It has been
recently shown that Migdal-Eliashberg theory can be eleg-
antly formulated in terms of the normalized pseudospin vari-
ables S, = (S%,8,8%) in the Matsubara frequency represent-
ation with the components which satisfy the normalization
condition 5,21 =1 [46]. The subscript refers to the fermionic
Matsubara frequency w, =7 T(2n+1) (n =0,£1,£2,...).If
one considers the effects of the Kondo lattice within the large-
N approximation than the results of [46] can be easily general-
ized for the case of a Kondo lattice as well. The corresponding
expression for the Hamiltonian is (see appendix):

2
14 Z = Z QZ
Hon ==2_wn (1 * w+,,> T2 e S )
)]

Here Ay = [(wn — wm)? /2% +1]71, Q is the frequency of the
optical phonon, g is dimensionless parameter determined by
the strength of the electron-phonon coupling, parameter v is
the hybridization with the Kondo lattice and &y is the single
particle energy of a localized f-electron renormalized by the
hybridization between the conduction and f-electrons (¢f is
usually associated with the Kondo lattice coherence temper-
ature Tx [22, 47]). Clearly, as it follows from the first term (1)
in the spin representation Kondo lattice effects amount to the
renormalization of the Matsubara frequencies.

We can now consider the case when all f-electrons are
occupying states with energy ep (i.e. f-levels form a flat band).
These levels are all singly occupied, so we assume that local
moments are formed and we will also assume that interac-
tions between the local moments are extremely weak [35, 36].
As temperature is lowered, hybridization between the conduc-
tion and f-electrons, which ultimately leads to an onset of
the many-body coherence, competes with the superconduct-
ing pairing. When g is small enough, the system is in the
weak coupling regime and naturally when v is increasing the
superconductivity will be gradually suppressed [31]. With an
increase in g, however, the situation analogous the one for
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the Kondo impurity, which we discussed above, may arise.
Specifically, for a given value of g we may find two distinct
configurations S, each realized for a given pair of v and &f:
one would correspond to a state with v/ < 1, while another
to a case when v/Q ~ 1.

It is worth mentioning here that in the context of the under-
lying interactions between the localized and itinerant elec-
trons, there several regimes which must be distinguished. In
the Kondo lattice regime ep lies well below the bottom of the
conduction band and, as a consequence the transitions between
the f states and conduction band states are purely virtual. In
this regime |ef| > v¢ V2, where v is the single particle dens-
ity of states at the Fermi level and V is the hybridization amp-
litude, so that parameter v < 1. In the mixed valence regime
lep| ~ veV? and v ~ 1. We therefore expect that two distinct
spin configurations will most likely exist in the mixed valence
regime, since in this regime the f-electron occupation number
may significantly decrease below its value in the Kondo regime
ny ~ 1. Furthermore, since there are no ‘hidden’” symmetries in
the problem, it is clear that free energies corresponding to two
solutions will differ. This implies that the onset of the screen-
ing in the Kondo lattice may develop abruptly as the first-order
transition. In what follows below by using the saddle-point
approximation for the Anderson lattice model with electron—
phonon interactions, we will show that indeed, in the mixed
valence regime there exists a possibility for a s-wave super-
conductivity at strong coupling to emerge from the many-body
coherent state which is, in turn, formed by a strong hybridiza-
tion between the conduction and localized f-electons.

3. Model

We consider a system which includes itinerant electrons inter-
acting with predominantly localized electrons and also with
the lattice vibrations. The model Hamiltonian can be written
as a sum of two terms

H =Ham + He-ph- 2

The first term is the Anderson lattice model Hamiltonian
which describes the interactions between the itinerant (¢) and
quasilocalized (f) electronic degrees of freedom:

Ham =Y el e + 60 Y fofio
ko ko
+ VZ (f]tgcka + C]];U ko’) + Uﬁ‘Z n{Tn{i (3)
ko i

Here clta(ckg) and ﬁw (fyo) are the fermionic creation (anni-
hilation) operators for the conduction and f-electrons with
momentum k and spin projection o correspondingly, ex =
k*/2m — D is the single-particle energy for the conduction
electrons taken relative to the half of the conduction band
width D, m is an electron’s mass, €p single particle energy
for the localized electrons, V is the hybridization amplitude
which without loss of generality is assumed to be local

and n’;U = ﬁgﬁg. Lastly, Uy is the local Coulomb interaction
between the f-electrons and we assume that Uy > max{D, V}.
The second term in (2) accounts for the lattice excitations and
their interactions with the conduction electrons:

Heph = prbTb +g2cp+q «Cpo (bT_q +bq) .

Pq,0

“

Here wy, is the phonon dispersion, bjl, bgq are bosonic creation
and annihilation operators and g is the electron—phonon coup-
ling constant.

Since the repulsion between the f-electrons serves as the
largest energy scale in the problem, we will consider the limit
Uy — oo. In this case one can omit the last term in (3) and
introduce the projection (slave-boson) operators by replacing
fio H.)j-[,p; [48-53]. In addition to having slave-boson operat-
ors, one needs to introduce the constraint

2
0= fifie+plpi=1 )
o=1

This constraint is needed in the large-N formulation of the the-
ory to keep the same size of the Hilbert space as in the original
one with spin-1/2 particles as well as to ensure that f-sites are
not doubly occupied. In addition, in what follows we will con-
sider a case of an interaction with the single Einstein (optical)
harmonic oscillator with frequency 2.

3.1. Saddle-point approximation

With these provisions we may follow the avenue of [22, 46,
47, 54, 55] to derive a set of saddle-point equations in the
Matsubara representation. These equations are obtained by
finding an extremum of the effective action (see appendix for
details). The Eliashberg equations for the Matsubara compon-
ents of the pairing field ®(7) and self-energy X(7) are

zz — ) O
TVF Wi wrznzigz (gk - Efo'm) + |q)m‘2 )
w— W) Wi
Z Z ) G
” wzzz — o)+ |2

Here w,,Z,, = wp (1 + 0y) + Xy, v is the single-particle dens-
ity of states at the Fermi level, w, = 7 T(2n+ 1) are fermi-
onic Matsubara frequencies, &k = ex — u, 4 is the chemical
potential, o, = a},/(wy, +£7), asw=V(p), & is the renor-
malized position of the f-electron energy level and D(w,) =
A2 /(w? + Q?) is the propagator of an optical phonon with
being dimensionless electron—phonon coupling constant [56—
58]. In equations (6) we have neglected the effects associated
with absence of the particle—hole symmetry. In fact, we have
verified that this approximation does not affect our subsequent
results in any substantial way.
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In equations (6) we can perform an integration over £ by
extending the limits to infinity, which yields

D@y
o \/[wm(1+am)+2m]2+|¢’m|2’
Dy [ (14 0) + 2]
o \/[wm(1+am)+2m]2+|¢’m|2’

®,=T

S, =T 7)

where D,,, = D(w, —w,,). We immediately note that the
Kondo lattice lattice effects enter into these equations through
the function o, only, so that the equation for ®, has exactly the
same form as in the Migdal-Eliashberg theory. Consequently,
in order to analyze these equations we use the following para-
metrization for the pairing fields: ®,, = A,,Z,,.

If the values of ay, and f are known then equation (7)
can be solved by iterations. Both parameters ¢y and ay, are
computed self-consistently from the slave-boson mean-field
equations (see appendix for details):

Ef—€p = Z E (E2k) —F (Elk) +0F {i q;}
k /(e — 5f)2 +4d%,

=3 (e = &) [ (Baw) — 1 (Eu)] 5 [i‘f)} ’

k (e —7)” +4d,
mne =Y e (En) + e (B +075 [£,8], @)
k

where we have omitted the normalization pre-factors in front
of momentum summations for brevity, Y and & are vec-
tors with the Matsubara components ¥, and ®,, correspond-
ingly, ng(e) = {exp[(e — u)/T] + 1}~ is the Fermi distribu-
tion function and we introduced

1
Eiox = 3 <6k +erk m) . )

Note that in (9) we take the value of &; relative to the chem-
ical potential, i.e. we formally replace ef — & — p. Functions
6 F, = Fu%,®] — F,[% = 0,8 = 0] vanish identically when
Y, = ®, = 0. Lastly, the chemical potential needs to be com-
puted self-consistently from the particle number conservation
ne + Ny = Ny (see appendix).

The effective mass m = (372 /+/2)?/3 /2D of the conduc-
tion electrons is obtained from the condition that the total num-
ber of particles (per spin) equals one:

D
/ V(Ek)dek =1.
-D

In this formula v(e) = (3/4v2D)\/e/D+1 is the single-
particle density of states for the non-interacting system and D
is the half-width of the conduction band. In what follows we
will limit out calculations to the case when the particle occupa-
tion number of the conduction band (per spin) equals to 0.375,
so that the chemical potential will remain in the lower of the

(10)

two hybridized bands and the total particle occupation num-
ber per spin will be fixed to n =0.875. Therefore, in order to
compute the momentum summations we will use the follow-
ing expression:

D
(...)= | v(e)(...)dex. (11)

Thus, in order to determine the system’s ground state, we have
to solve five nonlinear equations self-consistently.

4. Solution of the saddle-point equations

We solve the system of saddle-point equation (7) by iterations
for a given set of the slave-boson parameters which are used
at each step to solve (8). In our numerical calculations we pur-
posefully choose all the remaining energy scales to be of the
same order, i.e. D ~ ) =~ V. We present our results in figure 1.
We find that when A ~ 1 there is a region in parameter space
when there two sets of solutions. The first set corresponds to
a smaller slave boson amplitude while for the second set the
slave boson amplitude has much larger values. Remarkably,
when \ ~ 1, the slave-boson mean-field equations do not have
solution in the parameter range corresponding to the local
moment regime and it appears as if at very low temperat-
ures two electronic subsystems are completely decoupled from
each other. On the other hand, when |ep| < mvg|V|?, we see
that the solution for A # 0 is close to the one for the normal
metal, i.e. deep in the mixed-valence regime superconductiv-
ity will be completely suppressed by the valence fluctuations.

In figure 2 we present fully self-consistent solution of the
Eliashberg equation for the function A,. We observe that a
state with higher maximum value of A, corresponds to the
case when (p) is small, which is expected. Note that A,
reaches its maximum value for n # 0 and in the dependence
of A,—o on €y we verified that it indeed approaches its value
for V=0.

In order to get further insight into the nature of the ground
state, we have computed the dependence of the slave boson
amplitude (p) on temperature for ey ~ —3D/2 which corres-
ponds to the boundary region between the local moment and
mixed valence regime. The results are presented in figure 3.
We observe that for small values of the electron-phonon coup-
ling we find a typical temperature dependence of (p)? ~ 1 —
T/Tcon, where T is the Kondo lattice coherence temperat-
ure. However, as the value of the electron-phonon coupling
is increased, in the fairly wide range of values of the bare f-
energy level g we find that temperature dependence of (p) has
a characteristic nonmonotonic shape: at low temperatures the
slave-boson condensation may happen with both small ({p) <
0.1) and large values ({p) ~ 0.1) of the amplitude. When A ~ 1
the condensation will only be possible when the system will
be in the mixed-valence regime ((p) > 0.1), since there are no
solutions for (p) when |ep| > mvg|V|* at low temperatures and
also ny will significantly deviate from an integer value. We may
also interpret our results in figure 3 as a suddent emergence of
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0.6

Figure 1. Results of the self-consistent solution of the saddle-point
equations (7) and (8) for the slave-boson amplitude (p) as a function
of the bare f-electron energy €p. When the electron—phonon
coupling is strong enough we find that there are two regimes in
which superconductivity co-exists with the onset of the Kondo
lattice coherence: in the first regime the conduction electrons are
weakly coupled to f-electrons ((p) < 1), while in the second regime
the coupling between conduction and f-electrons is much stronger
({p) ~ 1/2). The existence of these two regimes is very similar to
the phenomenon of the re-entrant superconductivity in dense Kondo
alloys. As it follows from our calculation, two solutions for (p) and
A, for the same value e are possible provided that A ~ 1 and also
when the system is neither in the local moment regime,

lep| > | V]2, nor in the mixed valence regime, |ep| < 7re|V|*.

I 4 ) i 1

T T T T
— - <p>=0.05
— <p>=0.20

e
N
T

0.3f

Figure 2. Results of the self-consistent solution of the saddle-point
equations (7) and (8) for the pairing function A,—¢ computed for
wo = 7 T (main panel). The inset shows the dependence of A, on wy,
for two different values of the slave-boson amplitude corresponding
to two solutions with ¢g = —1.105D and A = 1.05.

the many-body coherence when the value of the slave-boson

amplitude changes abruptly from zero to some finite value.
Existence of the two solutions for the fixed value of €p

brings forth the question of whether for these solutions the free

0.3_— 8ﬂ)=-].502D —

T

0.25

\
|
004 006 0.8

1/D

Figure 3. Results of the self-consistent solution of the saddle-point
equations (7) and (8) for the slave boson amplitude as a function of
temperature. Notably, with an increase in the values of the
electron—phonon coupling, the Kondo lattice coherence may
develop in the mixed-valence regime only, while the crossover to the
local moment regime is strongly suppressed.

energy will have the same value or not. To answer this question
we derived the following expression for the free energy, which
is given relative to the free energy of the normal state with no
hybridization between the conduction and f-electrons:

oFen=2((p = 3) (=

2
TZ Zn (WS + ZnAZ)

(@2 + A2) 22+ (G —om)’
wm + <C"f
—T) 1
Z 0g < 2 + 6]0)
A2 Zz _ " 2
. TZ IOg wm + ) (gk Efo ) )
km Wn + gk

12)

The first two terms in this expression describe the free energy
due to bosonic degrees of freedom. The third one is the
change in the energy of the f-electrons due to hybridization
with the conduction band, while the last term accounts for
the change in the free energy of the conduction electrons. In
figure 4 we show the dependence of the free energy correc-
tion, equation (12), as a function of €y in the region when
we find two solutions of the self-consistency equations. This
means that when the values of the electron—phonon coup-
ling are strong enough and the position of the bare f-level is
closer to the mixed-valence region, the many-body coherence
in the Kondo lattice will indeed develop abruptly, i.e. similar
to the iso-structural valence transitions in metallic cerium and
YbInCuy [59, 60]. One however needs to keep in mind that the
slave-boson condensation in the Kondo lattice is a crossover
phenomenon and not a true phase transition.
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N -
(3] B

Free Energy (units of D)
>

Figure 4. Free energy (12) dependence on the position of the
f-electron energy level ¢y plotted in the region corresponding to two
solutions of the self-consistency equations (figure 1) for A =1.05
and 7 = 0.005D. The black solid line corresponds to the upper
branch, while the red dashed line corresponds to the lower branch.
As expected, the lower (i.e. ‘re-entrant’) branch of that solution has
a higher free energy. This result implies that development of the
many-body coherence will happen abruptly rather than gradually.

4.1. Solution for real frequencies

In order to determine the dependence of the pairing gap on
€p and temperature we need to either solve the Eliashberg
equations for real frequencies by using the method of analytic
continuation from Matsubara to real frequencies or use Pade
approximation. Given the form of the Eliashberg equations,
we will use the analytic continuation since it seems to us as
more straightforward. The pairing gap A will then be given
by the root of equation w = A(w). Following the procedure
outlined in [56, 58], we immediately observe that the equation
for A(w) in our case will coincide with the corresponding
equation in [56]:

o0

DVHTIA'TI
2@AW) =rT ), =
tind A(w—Q)[np () +np (2 )/]
“w—Q+M) — A2 (- Qﬂ
A (w+Q) [ng () +np (24 w)]

+

S s e (13)
[(uH—Q—&-lO) —-A (w+Q)}

Here parameter A = \Q2/2, ng(w) = [exp(w/T) — 1]~ ! is the
Bose distribution function and np(w) = [exp(w/T) + 1]~ ! is
the Fermi distribution function. Conversely, given the presence

Figure 5. Plot of the temperature dependence of the pairing gap A
(units of D) and slave-boson amplitude (p) when A =1.05. The
position of the bare f-level has been chosen in the region when two
solutions exist. The solid lines correspond to the solution with lower
free energy. Inset: temperature dependence of A in the absence of
hybridization.

of the self-energy correction due to Kondo lattice effects, the
equation for the function Z(w) becomes

az itT & w,
Z(w)=1+ sb Dot _
@) (w—i—iO)z— 2 w—l—lO Z ,/wz +A2
tind (w=90)[ng (Q) +nr (2 —w)]

“w—Q+ﬂf—A%w—mrﬂ

(W + Q) [np () +1r (2 +w)]
2 1/2
[(w—FQ—HO) —Az(w—i—Q)}

(14)

Expressions (13) and (14) give correct analytic continuation
of the equations (7) in the upper half plane, so that Z(w)
is analytic in the upper half-plane and has multiple poles
given by £n) + A(w £ n2) and ¢ in the lower half plane of
complex w.

In figure 5 we show the results of the iterative solution of
the Eliashberg equations (13) and (14) for A=1.05 and e =
—1.105D. As we have already discussed above, as temperature
is lowered out solutions indicate that there is a “first-order-like’
transition into a heavy-fermion state, when (p) acquires a finite
value, while the pairing gap decreases slightly from its value
for V=0 (see inset in figure 5). Note that as temperature is
lowered the system will go into an unscreened state at 7" ~
0.015D and then into a coherent state again as the temperature
approaches zero. As far as we know, this is the first example
when the development of the many-body coherence exhibits
such a ‘re-entrant’ behavior.
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5. Conclusions

In this paper we have studied the onset of the many-
body coherence in the Kondo lattice in the presence of the
electron—phonon interaction. We have derived a system of
nonlinear equations using the saddle-point approximation.
When the electron-phonon coupling is strong enough, we find
two solutions which have different values of the free energy.
This result implies that at strong coupling the many body
coherence emerges abruptly and upon further decrease in tem-
perature becomes re-entrant.

As it is well known, the large-N Kondo lattice theory has a
serious limitation which appears due to the fact that one needs
to satisfy the constraint condition for the occupation number
on the f-level. As a result, if one fixes the phase of the slave-
boson field like it happens at the saddle-point level, the uncer-
tainty in the particle number becomes essentially infinite, so
that the phase fluctuations act to restore the broken symmetry
of the system and as a result (b) = 0 which renders the saddle-
point approximation to work poorly at temperatures of the
order of Kondo lattice coherence temperature. In this regard,
the development of the coherence in the Kondo lattice bears
analogy to the Kosterlitz—Thauless transition. Nevertheless, at
the impurity level the saddle-point approximation works well
at very low temperatures and therefore, we expect our results
to hold at temperatures well below Kondo lattice coherence
temperature.

Our work provides the first example when the Kondo
screening in the Kondo lattice exhibits a re-entrant behavior
similar to the superconducting transition in superconducting
alloys contaminated with Kondo impurities. Our results can
also be used in the context of the related problem: an interplay
of the Kondo effect and strong coupling superconductivity in

diluted magnetic alloys. We leave this problem for the future
studies.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

We would like to thank Emil Yuzbashyan and Ilya Vekhter
for very useful discussions. This work was financially sup-
ported by the National Science Foundation Grant No. NSF-
DMR-2002795 (S A and M D) This project was started during
the Aspen Center of Physics 2023 Summer Program on ‘New
Directions on Strange Metals in Correlated Systems’, which
was supported by the National Science Foundation Grant No.
PHY-2210452.

Appendix. Effective bosonic action

At the level of the saddle-point apprxomation, the correspond-

ing saddle-point equations can now be obtained by find an
extremum of an action

St =veT Y _ (@7 D) 'y + Sy uDy ' 5]

nl

+ 2 (<p>2 — ;) (g7 — €p) — Trlog M. (A1)

T

Here vp is the single particle density of states at the
Fermi level, Dl_l is the Matsubara frequency component of

D7t —7') and

—i (wn + Zn) + ék q>n V<P> 0
~ _ D, —i(wy +3,) — & 0 —V{p)
M (k,wn) = V<p> 0 —iwn +<€f 0 ) (A2)
0 —V{p) 0 —iw,—e

where & = ex — u. Note that we are not including the bosonic
fields , [46] in our considerations since they are only nonzero
in the absence of the particle—hole symmetry. These fields will
be neglected in our discussion in the main text. Then we can
choose bosonic fields ®,, as purely real. In view of this approx-
imation, for the last term in (A2) it obtains

TrlogM = Zlog{ (w,zl Jrejzr)
nk

v {(wn (1+40,) +30)° 4+ P2+ (& — €f0n>2:| }

%27‘(‘VFZ \/[wn(l +Un>+2n]2+(1)% (A3)

and we introduced o, = a2 /(w? + 5)%), ag, = V(p). Although
integration over & is approximate, it allows us to use the

pseudospin representation for the Migdal-Eliashberg theory
to see how the presence of the underlying Kondo lattice
affects the superconducting properties. Indeed, introducing
variables

o,
[wn (14 0,) + S)* + @2

n 1 n Zn
5 = wy ( +0)+2 . (Ad)
[wn (14 0,)+ 2, + P2

24

Then the free energy at the saddle point (excluding the Kondo
lattice part) we readily obtain the expression (1) in the main
text.

Equation which determines the position of the chem-
ical potential can be conveniently written in terms of the
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single-particle propagators. The corresponding expressions
for them are given by:

Gec (iwmak)

a% — (iwm +€7) (iwm + iSm + &)
a (iwm + &) {[szz (&— Efffm)2 + \‘I’m|2]} ,
Gy (iwm, k)
— (iwom + &) [(wm + ) + & + [@nl*] — g, (ieom + iZm — &)
(wh+e7) {whZh+ (& — crom)” + 12u ]}

(A5)

In the limit when @, = 3, = 0, we readily recover the familiar
expressions

m — Ef

QC(B) (iwm y k) =

(iwm — &7) (iwp — &) — a%)’
B W, — &
G (iwn, k) = Gam— ) lom &)~y A9

Lastly, total particle number (per spin) is

TZ Z [gcc (iwmvk) =+ gﬁ"(iwmv k)] 0t = Ne + 1p = Nyot.
(A7)

Since we consider n, = 0.875 to be fixed, while ay, and & as
the free parameters of the theory, it will be more convenient
to re-write the second equation, so that the convergence of the
integral over K is facilitated. Next we introduce functions

o - [win (Wi + ) — erék + a3y
[E (I)} Twzmz <wm +ef ) {(wm + A7 )2;121 (fk - 5fo'm)2} ’

[ (W + ) + € +Z§,A31] — &l
7[5 - T;Z(w,,1+af){(wzn+Az,,)z,%+(5k—afam>2}’
Fs [i:ci]

=73 {Gee (itom, k) + Gy (itwm, k) % (A8)
to facilitate the convergence of the momentum summlations.
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