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ARTICLE INFO ABSTRACT
Keywords: Electroencephalography (EEG) based Brain Computer Interface (BCI) systems play a significant role in
EEG decoding facilitating how individuals with neurological impairments effectively interact with their environment. In

Continual learning

real world applications of BCI system for clinical assistance and rehabilitation training, the EEG classifier
Online Learning

often needs to learn on sequentially arriving subjects in an online manner. As patterns of EEG signals can be
significantly different for different subjects, the EEG classifier can easily erase knowledge of learnt subjects after
learning on later ones as it performs decoding in online streaming scenario, namely catastrophic forgetting. In
this work, we tackle this problem with a memory-based approach, which considers the following conditions:
(1) subjects arrive sequentially in an online manner, with no large scale dataset available for joint training
beforehand, (2) data volume from the different subjects could be imbalanced, (3) decoding difficulty of the
sequential streaming signal vary, (4) continual classification for a long time is required. This online sequential
EEG decoding problem is more challenging than classic cross subject EEG decoding as there is no large-scale
training data from the different subjects available beforehand. The proposed model keeps a small balanced
memory buffer during sequential learning, with memory data dynamically selected based on joint consideration
of data volume and informativeness. Furthermore, for the more general scenarios where subject identity
is unknown to the EEG decoder, aka. subject agnostic scenario, we propose a kernel based subject shift
detection method that identifies underlying subject changes on the fly in a computationally efficient manner.
We develop challenging benchmarks of streaming EEG data from sequentially arriving subjects with both
balanced and imbalanced data volumes, and performed extensive experiments with a detailed ablation study
on the proposed model. The results show the effectiveness of our proposed approach, enabling the decoder to
maintain performance on all previously seen subjects over a long period of sequential decoding. The model
demonstrates the potential for real-world applications.

1. Introduction interaction between game players (Thompson, Steffert, Ros, Leach, &

Gruzelier, 2008).

Emerging machine learning techniques enable the decoding of In real world applications of BCI system for clinical assistance and
brain activities based on electroencephalographic (EEG) recordings,
and serve an important role in current BCI systems (Schirrmeister

et al., 2017). The wide applications include different forms of clinical

rehabilitation training etc., the EEG decoder often needs to learn on
sequentially arriving subjects in an online manner, e.g. (1) the robotic

assistance such as autonomous robotic navigation (Iturrate, Antelis,
& Minguez, 2009), digital interface control assistance of phones and
tablets (Campbell et al.,, 2010), clinical event detection of seizures
etc. Gadhoumi, Lina, Mormann, and Gotman (2016), Moghimi, Kushki,
Marie Guerguerian, and Chau (2013). It has also been used for enter-
tainment purposes such as gaming control (Hafeez et al., 2021) and live

* Corresponding authors.

wheelchair at reception desk sequentially hosts different patients dur-
ing the day for clinical assistance purpose; (2) the gait training and
arm training BCI system at rehabilitation center utilized by different
patients sequentially in multiple sessions of the day. Given the non-
stationarity of the signal and the significant variance in signal patterns
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across the subjects, the model can easily forget the knowledge of previ-

ous subjects after adaptation to new subjects, namely the catastrophic

forgetting phenomenon. This makes it difficult for the model to retain
knowledge and maintain performance of learnt subjects during online
sequential decoding.

An effective approach for solving this issue is to keep samples of
previous subjects in a memory buffer and jointly train with current
subject. The recently emerged memory-based models in the field of
continual learning show promising result in tackling the catastrophic
forgetting problem (Aljundi et al., 2019; Chaudhry, Rohrbach, et al.,
2019). However the current widely used memory selection approaches
such as reservoir sampling may not achieve the desired performance for
sequential EEG decoding with imbalanced data volumes and varying
decoding difficulty, e.g. some subjects are producing data in signifi-
cantly higher volumes, for which the data in memory can easily be
skewed and only emphasize on certain subjects, or the selected signal
segments are not informative enough. We need to always keep data
in memory buffer balanced and representative for each subject, and this
need to be done on the fly with streaming EEG signal. The memory
update and replay mechanism should incorporate such requirements
and effectively retain knowledge on all previous subjects over a long
period of sequential decoding. Additionally, the subject identity and
shift boundary may be unavailable during sequential decoding in real
world scenarios. The model should work well in this more generalized
subject-agnostic scenario.

In this work, we tackle this challenging setting of online sequential
EEG decoding with a balanced memory selection and sampling ap-
proach. We need to consider the following two aspects for the proposed
approach: (1) how to determine the segments of data be moved into
memory and the data to be replaced, for which we propose a dynamic
memory allocation mechanism based on importance estimation at the
cluster level; (2) how to determine which segments to be sampled
from memory buffer for replay, for which we derive an effective sam-
pling approach that reduces gradient estimation variance and increases
model convergence speed, this helps to reduce the memory size needed.
Additionally, we consider the realistic subject-agnostic setting where
subject identity and shift occurrence are unknown to the decoder.
We propose a kernel based method on lower dimensional projected
space for subject shift detection. The detection method constructs a
distance metric that encodes the subject context information over a long
period of time and is robust to variance in the EEG signal. Then, the
distribution shift is estimated based on the reproducing kernel Hilbert
space (RKHS) constructed on adjacent distance metrics.

We develop several different benchmarks to mimic the real world
scenario of imbalanced EEG signals from different subjects being se-
quentially fed into the model. We evaluate model accuracy after se-
quential learning ends, and also measure the information on backward
transfer (BWT). We performed a detailed ablation study on the pro-
posed benchmarks including different imbalance ratios, different sub-
ject ordering, and varying number of sequential subjects, etc. This offers
an in-depth understanding on model performance, and demonstrates
the effectiveness of the proposed approach.

The contributions of this work are as following:

» We propose an effective memory based approach for online sequential
EEG decoding over long periods of streaming EEG signal from various
sequentially arriving subjects. The model preserves knowledge of
previous subjects after learning on later ones.

» We jointly consider the imbalance of data volume and informative-
ness of recorded signal from different subjects, and design a memory
update mechanism that tackles such imbalance issues. An effective
memory sampling approach for replay is proposed to increase con-
vergence speed. In addition, we developed a kernel based subject
shift detection algorithm, which enables the model to work in both
subject-aware and subject-agnostic settings.
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We introduce new benchmarks for model evaluation, with imbal-
anced data volumes and varying decoding difficulty for the sequential
arriving subjects. The benchmarks mimic real world scenarios of BCI
system usage.

We conducted extensive experiments and demonstrated the effec-
tiveness of the proposed method. Our approach achieved significant
margin on top of strong baselines. The proposed approach is ready to
be integrated into current widely used BCI systems.

2. Related work
2.1. EEG classification

Machine learning techniques have been the central part of BCI
systems, which have seen rapid progress in the past few years. A con-
tinued trend is on adopting deep learning techniques for extracting and
decoding EEG signals (Lawhern et al., 2018). Recent works in the field
have achieved promising results in terms of accuracy, interpretability
and usage in online streaming settings (Borra, Fantozzi, & Magosso,
2020; Mirkovic, Debener, Jaeger, & de Vos, 2015; Zhang, Yao, Chen, &
Monaghan, 2019).

For performance improvement, current approaches have explored
novel model architectures such as EEGNet (Lawhern et al., 2018),
CTCNN (Schirrmeister et al., 2017) and CRAM (Zhang et al., 2019), and
also proposed domain adaptation and transfer learning based models
to cope with differing patterns across subjects, and hence improve
the applicability of the models. For example, Fahimi et al. (2019)
proposed an inter-subject transfer learning framework built on top of
CNN model; Samek, Meinecke, and Miiller (2013) tackle the problem
of variability across subjects by transferring non-stationary information
in the data; Zheng and Lu (2016) and Lan, Sourina, Wang, Scherer, and
Miiller-Putz (2019) explored performance of multiple domain adapta-
tion methods including transfer component analysis (TCA-EEG), max-
imum independence domain adaptation (MIDA-EEG) and information
theoretical learning (ITL-EEG). Xie et al. (2023) proposes a new hard
parameter sharing mechanism which enables the model to transfer
knowledge across datasets and effectively tackles the cross-dataset
EEG classification problem. Lincong et al. (2023) utilizes Rieman-
nian geometry-based adaptive boosting and voting ensemble algorithm,
with the cross-session and cross-subject variations being efficiently
represented as Riemannian transformations of the covariance matrices.
Different from these models which focus on adapting to future subjects,
our approach aims to preserve learned knowledge during sequential
EEG decoding and maintain performance on previous subjects to miti-
gate catastrophic forgetting. It is worth noting that the performance of
sequential EEG decoding could be further improved by incorporating
neuro-feedback techniques during signal recording stage. Specifically,
the provided neuro-feedback assists subjects to control their brain
waves consciously (Marzbani, Marateb, & Mansourian, 2016) and en-
ables the subject to make real time adjustments, therefore improves the
quality of EEG recordings (Bhattacharyya, Das, Das, Dey, & Dhar, 2021;
Haugg et al., 2021; Wang, Luo, et al., 2021). It is a promising direction
to explore in future work.

2.2. Continual learning

Continual learning approaches (Chaudhry, Ranzato, Rohrbach, &
Elhoseiny, 2019; Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017a;
Riemer et al., 2019; Wang, Shen, et al., 2022; Yoon, Yang, Lee, &
Hwang, 2018) have been applied to tackle the problem of catastrophic
forgetting when sequentially learning across different tasks. Different
approaches have been recently proposed to achieve this. These can
be classified into three broad groups: (1) those that utilize a memory
buffer to store samples of previous data (Arani, Sarfraz, & Zonooz,
2022; Chaudhry, Rohrbach, et al., 2019; Lopez-Paz & Ranzato, 2017b;
PourKeshavarzi, Zhao, & Sabokrou, 2022; Shin, Lee, Kim, & Kim, 2017;
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Fig. 1. Illustration on the continual EEG decoding scenario, with different subjects arriving in sequential order, producing streaming EEG signal with imbalanced data volume and
varying decoding difficulty. The EEG decoder needs to retain knowledge and maintain performance on learnt subjects after adaptation to a new subject. MUDVI keeps a balanced

memory buffer and selects informative samples for replay purpose.

Wang, Duan, Fang, Suo, & Gao, 2021), and then perform sampling in
memory buffer for replay and jointly train with current data. To im-
prove the data selection process, Herding dynamic algorithm (Welling,
2009) is applied in ICARL (Rebuffi, Kolesnikov, Sperl, & Lampert,
2016) to emphasize on data closer to class means. GDumb (Prabhu,
Torr, & Dokania, 2020) proposed a greedy approach on selection of
samples from different classes; (2) those that use regularization terms
to guide the parameter update process (Kirkpatrick et al., 2017; Liu &
Liu, 2022; von Oswald, Henning, Grewe, & Sacramento, 2020; Zenke,
Poole, & Ganguli, 2017). The regularization approaches can further
be divided into data-focused (Li & Hoiem, 2018) and prior-focused
methods (Kirkpatrick et al., 2017; Wang, Fink, Van Gool, & Dai, 2022);
and (3) those that explore on expandable network structures for the
evolving data (Fern et al., 2017; Qin, Hu, Peng, Zhao, & Liu, 2021; Rusu
et al., 2016; Yoon et al., 2018), with size of the network dynamically
increasing as the training progresses.

Another related field of research is continual domain adaptation (Ros-
tami, 2021; Wang et al.,, 2022), which tackles domain adaptation
with continuous domain shift. IADA (Wulfmeier, Bewley, & Posner,
2018) performs continuous adaptation by aligning source and target
features through adversarial learning. Volpi, Larlus, and Rogez (2020)
continuously adapts to sequential visual domains while mitigating
the problem of forgetting on previous domains with a meta-learning
inspired regularization strategy.

3. Method

This work proposes to preserve learned information on previous
subjects during sequential EEG decoding. As illustrated in Fig. 2, the
EEG decoder can quickly forget information on subjects before A07
after sequential learning ends with AQ9, aka catastrophic forgetting.
Memory based approaches that keep a small memory buffer to train
together with current data have been shown to be relatively effective
in solving this problem. Yet, the current widely used memory update
methods such as reservoir sampling do not meet the need of challenging
scenarios in sequential EEG decoding with imbalanced data volumes
and varying decoding difficulty from the different subjects. In this

section, we first provide an introduction on the problem setting and
conventional reservoir sampling approach. Then, we present details of
our proposed memory update and sampling methods.

Definition 1 (Continual EEG Decoding). EEG decoder receives stream-
ing EEG signal input from sequentially arriving subjects S|, S,, ..., S;.
The model does not have information on subject identity or when the
subject shift happens. The EEG decoder needs to preserve knowledge
and maintain performance on learnt subjects after adaptation to later
subjects during online sequential decoding.

We adopt the memory based approach for tackling this problem
with a memory small in size for replay of previous data samples, with
the assumption that (1) previous data is not available to revisit unless
it is stored in memory buffer, (2) the sequential decoding of EEG signal
lasts for a long period of time and the total data volume is much larger
than memory buffer capacity. The conventional way to update memory
buffer is with reservoir sampling

Reservoir Sampling. For a memory buffer of size M, it will store
the first M data points until full. For later batch x* arriving, it will
generate random number i which is in [1, k]. And the sample will be
selected and replace the ith data in memory if i < M.

With imbalanced data volumes from different subjects, the samples
in memory would also be skewed. Furthermore, it is important to
select the most informative samples into memory that could bring
incremental knowledge to the model. To tackle these challenges, we
propose to actively detect subject changes during sequential learning,
and perform memory updates jointly considering data volume and in-
formativeness of different subjects accordingly. As illustrated in Fig. 1,
with sequentially arriving subjects producing imbalanced data volumes,
memory buffer with reservoir sampling would similarly be skewed on
S, and S;, and will lack representation of S,. Our proposed update
mechanism jointly considers data volume and informativeness, and
creates a balanced representation on all subjects.

3.1. Memory update based on volume and informativeness

The proposed Memory Update on Data Volume and Informativeness
model (MUDVI) estimates on the probability of current data x’ moving
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Fig. 2. An example sequential EEG decoding trial run on BCI-IV 2a dataset. Acc. (i, i)
denotes the accuracy evaluated immediately after learning on each subject, and Acc.
(N, i) is the accuracy evaluated on each subject after finished sequential learning on
all N subjects. The decoder quickly forgets knowledge on subjects before A07 after
sequentially learning on all subjects.
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Fig. 3. Illustration on the memory update process. The colored circles are clusters
formed on different subjects. Data to be moved out of memory is determined first at
the cluster level and then sampled in the cluster.

into memory and also determines the data to be replaced in memory.
The update process considers both data volume imbalance and varying
decoding difficulty. As illustrated in Fig. 3, for efficiency improvement,
we keep a hierarchical architecture in memory where data points are
organized into clusters, with each cluster corresponding to a subject.
The subject identity is detected with proposed kernel based subject
shift detection algorithm for subject-agnostic scenarios, as detailed in
Section 3.3. The sample to be replaced in memory is determined first
at cluster level based on the following:

nc
AC X —(1 - 7)1(: (l)
A,
C_ e’c
Pt T k=L,—1 Ay (2)
k=1 €

where I is the importance score of cluster C defined in Section 3.2. nc
is the number of data samples in cluster C. The data to be replaced in
cluster C is sampled based on -I;,i € C, with I; the gradient norm
of x;. The intuition for Eq. (1) is that the data is more likely to be
removed in memory if there exists large number of similar data from
same subject in memory, or if the data is less informative.

For current streaming EEG data x/, we compute the probability
of it moving in memory. The intuition is to select more informative
ones with incremental knowledge to the memory buffer. The average
importance of samples in M is I, = LL, Zf;] "TCZC, where L, is the
number of subjects at time step ¢, n. is the number of data in cluster
C and n is the total number of data in memory. With the gradient
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norm of x' being 7,, denote J, = (1 — %)It which jointly considers
the prevalence of current subject in memory and the informative level
of current data, the probability of moving x’ into memory is

pin — L 3)
L delm 4 e

where A is a hyperparameter, We provide the complete algorithm on

this memory update mechanism in Algorithm 1.

Algorithm 1 Memory Update based on Volume and Informativeness

Require: streaming EEG data D,; maintained memory buffer M; the number
of subjects L, detected at time ¢.

1: if subject shift detected L, = L,_, + 1 then

2:  create new cluster in memory M, = {}

3: end if

4: if memory M has free space then

5 My <M UD,

6: else

7: if D, is selected into memory based on Eq. (3) then

8: compute moving-out probability for the clusters

9: determine cluster C based on Eq. (1) and (2).

10: sample data from M and replace it with D,
11:  end if
12: end if

13: return memory buffer M

3.2. Adaptive sampling for joint training

During sequential learning, we perform sampling on memory to
joint train with each batch of current data. The commonly adopted uni-
form sampling neglects the varying importance among the samples, and
previous work has shown it also introduces unwanted variance which
makes training less stable (Arnold, Manzagol, Babanezhad, Mitliagkas,
& Roux, 2019). Here we propose a sampling approach based on the
informative level of the data. The approach renders more effective mit-
igation of catastrophic forgetting, and also reduces gradient estimation
variance.

To improve efficiency, the sampling is also at cluster level. A small
number of R data is randomly obtained from each cluster for computing
cluster importance I, which is the average gradient norm of these R
representatives. Then the probability to sample on cluster is

[ = kZiIC “)
Z k=1 ! ny Ik

with L, being the number of detected subjects at time step r. The

proposed approach increases convergence speed and reduces the mem-

ory size needed. With the model convergence speed can be effectively

represented as

V =-E,[1l6, - 6°[15 - 116, — 6"[I5] )

0, and 6,_, are the model parameters of two consecutive time steps,
6" is the optimal parameter. q, is the data distribution at current time
step.

Eq. (5) can be expanded as (proof is available in Appendix A)

V =29(6, - 62 - n* Q" Q - B’ Tr(V [2]) (6

where # 1is the learning rate, 2 is the expected gradient
Q=Eyp)VeLo(D). Vq, [2] is the covariance matrix on £ and Tr(Vq’ 2D
is the trace of the matrix.

From Eq. (6), the convergence speed can be improved by min-
imizing on Tr(Vqt [€]). This is achieved with (proof is available in
Appendix B)

(D)l Vg, L6, D)l
JpP(D)IVg, Lo, (D)l dp,(D)’

with p,(D) being the data distribution in M and q;(D) the optimal
sampling distribution. We can see our sampling approach in Eq. (4)
is an approximation of this distribution (see Fig. 4).

()

q; (D) =
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Fig. 4. Illustration on the workflow of proposed approach. Kernel based subject shift detection functions on the streaming EEG signal and guides the memory update process.

Samples from memory buffer jointly train with current data for forgetting mitigation.

3.3. Reliable subject identity detection

We propose a reliable subject identity detection algorithm for con-
structing the clusters in memory. Based on our initial experiment, the
naive way of setting a threshold on loss function does not work well in
this case given the high variance and pattern difference in the signal.
The proposed approach utilizes kernel methods to perform detection in
a projected lower dimensional space.

We compute the moving average on the extracted features with
e, = af,+(1-a)e,_,. And a distance metric d, with dimensionality being
m is computed between f, and e of previous m steps d(f;, e,_;)i0:m—1-
d, captures context over longer period of time and is robust to variance
in EEG signal.

For distributions of two adjacent batches of distance metric " and
Vwith {d, »p.d; 541, dip1} ~ VU, {d;_p.d;_pyy,....d;} ~ P, here
B is the batch size, we utilize maximum mean discrepancy (MMD) to
measure the distance between these two distributions.

MMD([V, V] := ﬁur; {Eyer [/ ] = E, p[f@)]} (8)
€

Similar to Gretton, Borgwardt, Rasch, Scholkopf, and Smola (2012),
we utilize U-statistics for its estimation
B
1
5§ =MMD?*[U, V] = ———— Y h(u;,u,,v;,0;

)
withw,u; € V' and v;,v; €V
h(-) is formed with the RKHS kernel as follows
h(u;,u;,v;,v;) = k(u,w)) + k(v;, v;) — k(u;, v;) — k(u;,v;) (10)

here k(-) follows a normal distribution
k(x,x") = exp(—|lx — x'||*/26%)

Intuitively, the data distribution shift is more significant and more
abrupt when subject change happens, comparing to distribution drift
within the same subject. Therefore, U" and V deviate from each other
and § significantly increases when subject identity changes. Hence, a
threshold 4 can be placed on 6 to detect a change in subject identity.
Each processed data x' is associated with subject identity L,, starting
from L, =1, and the following rules apply

{ L,=L_, ifs <h

. an
L=L_;+1ifés>h

With the signal pattern and variance changing drastically across
subjects, choosing a fixed threshold does not perform well in our
exploration. Here we propose a dynamic scaling mechanism on the
threshold. It is reasonable to deem §, to have a normal distribution
based on Vaart (1998) and the fact that §, converges to a linear
combination of normal distributions. (See Appendix C for details). We
perform adaptive estimation of its y, and o,, viz:

e == pp_y + p(6,)

1P =1 = ) + (5, 12)

2
or=\u? ~u

And h = y, + ac, with a being the desired quantile on the distribution.
4. Experiments

In this section, we construct various benchmarks for sequential EEG
decoding with imbalanced data on three publicly available datasets,
namely, BCI IV-2a (Tangermann et al., 2012),! SEED dataset (Duan,
Zhu, & Lu, 2013)? and DEAP dataset (Koelstra et al., 2012).> We first
describe benchmark construction and evaluation metrics. Then, we
discuss the detailed experimental setting, followed by in-depth analysis
and ablation study on model performance.

4.1. Benchmark

We mimic the real-world scenario of subjects arriving in sequen-
tial order with data volumes varying for each subject. We created
benchmark datasets based on sequence ordering of subjects, for both
data balanced and imbalanced settings. For the imbalanced setting, we
randomly select half of the subjects and downsample to 20% of the
original volume. Detailed ablation study is conducted on the relation-
ship between model performance and imbalance ratio, different subject
ordering etc. The streaming EEG data is processed into batches of t x n,
with ¢ the temporal span and » the number of channels. Details on data
processing for each dataset are provided in Section 4.3.

1 http://bnci-horizon-2020.eu
2 http://bemi.sjtu.edu.cn/~seed/downloads.html
3 https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
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Accuracy evaluated on all subjects after sequential learning ends, with both data imbalance and balanced scenarios. We performed Dunn’s post hoc test between MUDVI and
baselines, with p-value provided in brackets following the result. Overall, the proposed model shows less deterioration when data becomes imbalanced. This is achieved with the

more balanced data kept in memory for the proposed approach.

Dataset BCI IV-2a DEAP SEED

Mean + SD (p-value) Mean + SD (p-value) Mean + SD (p-value)
Method Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced
sequential 32.51+1.08(1.08e-11) 36.40+0.51 (1.01e~14) 28.46+2.28(6.51e-09) 32.57+0.84(1.28¢-12) 36.21+1.45(1.03¢-12) 38.72+0.80 (4.76¢~15)

joint training 77.540.61 (<1e-20) 79.63+0.47 (<1e-20)

67.82+0.79 (2.08¢-15)

71.36+0.63 (2.67¢~16) 82.54+0.63(7.81e~16) 84.15+0.42(<1e-20)

EWC 37.95:1.83(1.11e-07) 42.69+1.27 (7.87¢-09)
UCB 36.37+0.92(5.30e-11) 41.4310.62(3.37e-12)
ER 39.24+135(3.59-08) 45.96+0.83 (2.74¢-08)
ER+GMED 40.39+2.17 9.63¢-06) 47.53+1.49(1.38¢—04)
MIR 42.53+1.15(2.76e-06) 48.57+0.74 (2.74e-05)
MIR+GMED 42.80+1.71(1.17e-04) 49.13+1.250.010)

36.24+1.51 (2.42¢-07)
35.80+2.16 (2.73¢-06)
37.47+132(537e-07)
39.61+0.70 (3.59¢-07)
38.34+1.49(7.62¢-06)
40.15+2.02 4.26e-03)

41.38+2.13 (4.80e—05)
39.14+1.21(1.45¢-08)
42.59+1.78 (1.31e-04)
44.34.42.13(0.026)
43.20+0.96 (5.47¢—06)
44.71+1.82(0.039)

45.62:+1.47 (1.14¢-10)
46.40+1.18 (2.67e-11)
51.75+0.43(3.35¢-13)
52.39+1.21 (6.81e-09)
55.26+0.82 (1.80e-08)

47.49+0.81(3.47¢-13)
49.514+2.06(5.33¢-09)
56.24+1.57(3.30e-07)
57.06+2.49 (4.63e-05)
59.87+1.64(5.60e-04)

56.53+1.05 (2.62¢-06) 61.18+1.960.051)

MUDVI 45.98+183(-) 50.24+1.67(-)

42.29+181(-)

45.85+223(-) 59.70+1.34(-) 62.31:072(-)

4.2. Evaluation metrics and baselines

We evaluate the accuracy for all subjects after sequential learning
ends to measure the performance in forgetting mitigation. We also
measure BWT for information on backward transfer. The definition
of BWT is given as follow: BWT = ﬁ 2,111_1 ay; — a;;, with N the
number of subjects, and a;; the accuracy evaluated on subject i after the
model finished sequential learning on subject ;. Negative value of BWT
reveals the occurrence of catastrophic forgetting after learning the new
subject, while positive value shows learning on new subject improves
performance of previous subjects.

We compared to widely used strong baselines in the experiment,
with details as follows:

(1) Top and bottom bound of model performance. The bottom
bound is named classic sequential learning, where the subjects data
arrive sequentially on base model. The top bound is joint training with
data of all subjects jointly available.

(2) The continual learning models that are used for comparison
includes regularization-based models, such as EWC (Kirkpatrick et al.,
2017), UCB (Ebrahimi, Elhoseiny, Darrell, & Rohrbach, 2019), and
memory-based models, such as ER (Chaudhry, Rohrbach, et al., 2019),
MIR (Aljundi et al., 2019) and GMED (Jin, Sadhu, Du, & Ren, 2020).
Elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) performs
dynamic adjustment on learning progress for important parameters. Un-
certainty guided continual Bayesian neural networks (UCB) (Ebrahimi
et al., 2019) adapt the parameter update speed based on uncertainty
in the weights. Experience replay (ER) (Chaudhry, Rohrbach, et al.,
2019) stores a small subset of data from previous tasks with reservoir
sampling to train together with current data. Gradient editing in mem-
ory (GMED) (Jin et al., 2020) makes stored samples hard to remember
and mitigates overfitting. Maximally interfered retrieval (MIR) (Aljundi
et al., 2019) replays examples with larger estimated interference.

4.3. Settings

Data Processing The processing on each dataset is as follows:

(1) BCI IV-2a: Each trial is divided into segments of size 400 x 22,
with 22 channels and temporal span of 400. The step size is 50 for
adjacent segments. In each trial, the period betweent =3 sandt=6s
is extracted for decoding. This produces 8 data samples per trial with
250 Hz sampling rate.

(2) DEAP dataset: Trials are processed into 768 x 32 segments,
with adjacent segments having a step size of 128. We used the last
50 s of each trial. With downsampling rate of 128 Hz this produces
45 segments per trial.

(3) SEED dataset: Trials are separated into segments of 800 x 62
with a step size of 100. The data is downsampled to 200 Hz, producing
472 segments per trial.

Model Settings

We used a single Titan-V GPU for model training. The base model
is a three layer convolutional neural network. The first layer performs
temporal convolution for frequency information extraction, with fil-
ter size being (1,C), C is the number of channels. The second layer
performs depthwise convolutions with temporal specific spatial fil-
ters, with filter size being (2,32) across all three datasets. Third layer
performs pointwise convolution operations for improvement on com-
putational cost. Zero padding is added between neighboring layers to
keep the data dimensionality. We set the hyperparameter i to be 1.
Further performance improvement is possible with additional fine tune
on A. We set R = 6 for estimation of cluster importance in memory.
The context window size of distance metric is m = 8 by default, with
detailed analysis in Appendix G. In terms of subject shift detection, the
averaging factor p is set to 0.2 by default, with significant level a = 1.96
and confidence interval of 95%. For our problem setting, training data
from the subjects is not available beforehand. We do not use pre-trained
feature extractor and the model learns sequential arriving subjects on
the fly.

4.4. Analysis on balanced vs. Imbalanced data

Result on performance comparison is shown in Table 1. We per-
formed comparison for both data balanced and imbalanced settings.
Overall, the proposed model shows less deterioration when data be-
comes imbalanced. For BCI IV-2a dataset, the accuracy of proposed
approach reduced by 4.26% after data becomes imbalanced, while
memory based comparison models have a reduction of at least 6.04%.
Similar improvements are observed for DEAP and SEED datasets. For
data imbalanced scenario, the proposed model has a margin of at
least 3.18% on BCI IV-2a dataset, 2.14% on DEAP dataset and 3.68%
on SEED dataset over baselines in terms of testing accuracy. This is
achieved with the more balanced data kept in memory for the proposed
approach. Currently the performance gap between online sequential
decoding and the top bound of joint training is still large, given the fact
that online sequential decoding setting is significantly more challenging
in the following two aspects: (1) the inter-subject variability causing the
EEG decoder to lose information of previous subjects after learning on
later subjects; (2) with no data jointly available for pre-training, the
knowledge learned from previous subjects does not readily fit to future
subjects. Further performance improvement is needed in future work.

4.5. Analysis on subject aware vs. Subject agnostic

We performed comparison on model performance with the subjects
identity either known or unknown to the decoding model, with the
former referred to as subject-aware and latter referred to as subject-
agnostic. The subject-agnostic setting is more challenging for balanced
memory data selection and we performed detection on underlying
subject distribution shift. The performance comparison between the
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Model performance evaluated with both subject aware and subject agnostic settings. In general, there is a modest deterioration on model performance when subject identity

becomes unknown and needs detection.

Dataset BCI IV-2a DEAP SEED
Mean + SD (p-value) Mean + SD (p-value) Mean + SD (p-value)
Scenario Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced
Subj. Agnostic 45.98+1.83(0.023) 50.24+1.67(0.135) 42.29+1.81(0.005) 45.85+2.23(0.078) 59.70+1.34(0.034) 62.31+0.72(0.305)
Subj. Aware 47.31£137(-) 50.86+0.92(-) 44.1521.66(-) 46.94+1.80(-) 60.58+0.96(-) 62.43+1.25(-)
Table 3

Influence of memory size on model performance. The performance of forgetting mitigation is improved with larger memory size. MUDVI needs a smaller memory to achieve

comparable performance to other memory-based baselines.

Dataset BCI IV-2a DEAP SEED

Memory Size 100 200 500 100 200 500 100 200 500

ER 37.47+0.69 39.24+135 47.60+0.81 34.65+0.83 37.47+132 45.23+1.60 46.02+0.76 51.49+131 56.74+0.63
ER+GMED 38.82x+1.61 40.39+2.17 47.52+1.29 35.92+1.59 39.61+0.70 46.49+0.98 47.85+134 52.66+2.18 58.17+1.72
MIR 38.33+134 42.53+1.15 48.87+2.08 36.17+226 38.34+1.49 47.04£1.32 48.30+1.78 55.51+074 60.54+1.29
MIR+GMED 39.58+0.70 42.80+1.71 51.13+154 37.94+130 40.15+2.02 47.96+2.19 50.43+2.49 56.17+0.40 61.15+2.16
MUDVI 43.14+1.49 45.98+1.83 52.05+236 39.53+135 42.29+1.81 49.80+1.43 52.71+2.64 59.85+1.63 63.29+0.98

two scenarios is presented in Table 2. In general, there is a modest
deterioration in terms of model performance when subject identity
becomes unknown and distribution shift needs to be detected. For
example, BCI IV-2a sees the performance reduced by 1.33% and 0.62%
for imbalanced and balanced data respectively. DEAP dataset shows
higher sensitivity towards subject identity, with performance deterio-
rating by 1.86% for imbalanced setting and 1.09% for balanced setting.
On SEED dataset, the model performance has a slight decrease of
0.67% and 0.29% for imbalanced and balanced settings respectively.
We performed detailed analysis of the proposed subject shift detection
algorithm in ablation study.

4.6. Ablation study

Evaluation on Memory Size

The influence of memory size on the proposed method is eval-
uated in Table 3. The performance on forgetting mitigation is im-
proved with larger memory size. We observed the proposed method
is able to achieve comparable performance as baselines with less data,
e.g. MUDVI with memory size of 100 achieved similar performance as
baselines using 200 data points. We used memory size of 200 as default
setting in our experiments.

Subject Shift Detection

We performed analysis on the performance of the subject shift
detection algorithm. For each trial of experiment, the number of shifts
is the number of subjects minus 1. Running the subject shift detection
algorithm for 10 times on each dataset, it successfully detected 58 of
the 80 shift occurrences for BCI IV-2a dataset, 196 of the 310 shift
occurrences for DEAP dataset and 117 out of the 140 shift occurrences
for SEED dataset. This implies accuracy of 72.5% on BCI IV-2a, 63.2%
on DEAP and 83.6% on SEED. The task of shift detection is in general
easier for SEED dataset, probably due to its data being less noisy.
With the assumption of normal distribution on §, we can plot out the
probability of run length at each time step based on the estimated
adaptive mean and variance. Example plot of a trial run for each dataset
is shown in Fig. 7. We observed the majority of subject shift occurrences
match with a new peak along the run length axis, indicating that the
algorithm successfully detected the underlying subject shift.

Performance with Different Memory Selection Functions
Alternative memory selection functions exist for balanced data se-
lection in addition to the proposed approach. In this section, we per-
form ablation study on the different memory selection approaches
and their influence on model performance, including Ag) = -1l

(nc+1)
and Ag) = ——I¢ . These two alternatives offer different levels of
exp(nc)

emphasis between volume balance and informativeness of data. The
comparison result is shown in Table 5. We observed Ag) suffers modest
performance deterioration. A achieves the best performance among
the three options, with proper balance between data volume and its
informativeness.

Performance with Different Levels of Volume Imbalance

We explored model performance with different levels of volume
imbalance. We randomly select half of the sequential subjects to per-
form downsampling on data volume, with downsampling ratio ranges
between [10%, 90%]. The result is shown in Fig. 5. We observed the
model performance gradually increases with the increase of downsam-
pling ratio for DEAP and SEED datasets. For BCI IV-2a dataset, the
performance first decreases and then increases with the increase of
sampling ratio. A possible reason is that lower sampling ratio makes
the sequence shorter and easier to remember, while higher sampling
ratio offers more data for the model to learn and also keeps data more
balanced.

Effect of Subject Ordering on Model Performance

Different subjects have varying decoding difficulty and also shares
different levels of similarity with each other. The arriving order of
sequential subjects thus could influence model performance. In this
section we perform ablation study on three different subject ordering
scenarios: (1) sequential order based on subject id, (2) ascending order
based on decoding accuracy of individual subjects and (3) descending
order on decoding accuracy of the individual subjects. The result is
summarized in Table 4. With variances exist in the performance, in
general, ascending ordering of subjects based on decoding accuracy
achieved better performance than the other two scenarios.

Performance on Individual Decoding Tasks

We performed analysis on model performance towards the individ-
ual tasks, as illustrated in Fig. 6. The model shows different levels
of effectiveness in terms of relative improvement on F1 score for the
individual recognition tasks. For example, the model is more effective
on decoding foot movements compared to other approaches in terms
of the BCI IV-2a motor imagery tasks, and it performs better in de-
tecting negative valence (HANV and LANV) emotions for the emotion
recognition tasks of DEAP dataset.

Effect of Offline Pre-training on Model Performance

Pre-training offline on a disjoint set of subjects before online sequen-
tial decoding offers a nice tradeoff between online sequential decoding
from a cold start and joint training with all data available. We explore
the effectiveness of offline pre-training on performance improvement.
We allocate 1/3 of the subjects in each dataset for pre-training purpose,
and test the model performance of sequentially decoding through the
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Fig. 5. Model performance with different levels of volume imbalance. In this ablation study, we randomly select half of the subjects to perform downsample on data volume in
each run, thus incurring higher variance in the result. Each imbalance setting is repeatedly run for 10 times. The sampling ratio is in the range of [10%, 90%]. (a) BCI IV-2a
dataset, (b) DEAP dataset, (¢) SEED dataset.
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Fig. 6. Relative improvement of Fl-score compared to the baseline of sequential learning on base decoder. The rows from top to bottom shows performance on individual tasks
of the three datasets respectively.
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Fig. 7. visualization of -log(P) on run length with respect to the time steps in subject shift detection trial runs. The majority of subject shift occurrences match with a new peak

along the run length axis.

Table 4

The effect of different subject ordering on model performance. We study three different ordering scenarios, (1) sequential order based on subject id, (2) ascending order based on
decoding accuracy, (3) descending order based on decoding accuracy.

Dataset Scenario EWC UCB ER ER+GMED MIR MIR+GMED MUDVI
Sequential 37.95+1.83 36.37+0.92 39.24+135 40.39+2.17 42.53+1.15 42.80+1.71 45.98+1.83
BCI IV-2a Ascending 39.46+254 37.53x132 39.58x261 41.40+1.23 44.72+1.96 43.49+1.05 47.20+1.26
Descending 37.63+127 35.81+245 38.26+079 40.71+2.08 41.47+0584 42.56+0.90 45.63:+1.62
Sequential 36.24+151 35.80+2.16 37.47+132 39.61+0.70 38.34+1.49 40.15£2.02 42.29+1.81
DEAP Ascending 36.81+1.72 35.98+1.41 38.13+113 38.92+145 39.15+068 42.31+1.67 42.87+1.04
Descending 35.18+096 34.23+115 36.10+1.34 39.46+139 38.26+1.72 40.74+1.43 41.64+1.49
Sequential 44.83+1.08 46.32+1.54 51.49+131 52.66+2.18 55.510.74 56.17+0.40 59.85+1.63
SEED Ascending 44.61+2.14 46.67+1.89 52.63+0.75 53.82+129 56.14+1.60 56.52+129 60.56+2.17
Descending 45.59+1.35 45.54+093 51.06+1.82 52.31+174 55.27+113 55.74+095 59.52+121
Table 5
Model performance with different memory selection functions. The two alternatives Ag) and Ag’ offers different levels of emphasis on volume balance.
Dataset Func. ER ER+GMED MIR MIR+GMED MUDVI
Ac 39.24+135 40.39+2.17 42.53+115 42.80+1.71 45.98+1.83
BCI IV-2a A(C: 37.88+237 39.75+124 41.68+1.52 42.26+0.94 43.39+1.20
A2 3704098 38.91+071 40341229 41.15:233 42.52:2.14
Ac 37.47+132 39.61+0.70 38.34+1.49 40.15+2.02 42.29+1.81
DEAP A(C;) 36.65:+2.58 38.17+173 37.42+248 39.344350 41.63+2.44
A(C) 35.23+1.66 38.68+0.49 37.10+1.14 38.25+1.43 39.92+2.19
Ac 51.49+131 52.66+2.18 55.51+074 56.17+0.40 59.85+1.63
SEED AV 50.28:3.05 52,1551 53.72:13 54402262 56.52:324
A(CZ) 50.01+176 50.89+3.32 53.26+2.17 53.68+131 57.41+195
Table 6 average number of data samples per cluster. Please note with each time
Comparison on running time of MUDVI and other replay-based baselines. step, cluster metric update only takes O(1) in terms of time complexity
Methods BCI IV-2a (sec) DEAP (min) SEED (min) as we only need to update the changed clusters. It takes an additional
ER 120.2 13.4 96.7 O(L,) space to store the cluster information, with L, < n in most cases.
ER+GMED 167. 18. 158. . es
MI}RG 1%; 13 Z 1233 The model does not involve additional forward and backward propaga-
MIR+GMED 206.9 93.8 295.2 tion in its functionality. Its overall running time is comparable to GMED
MUDVI (Sbj. Aware) 1397 182 195.6 and MIR for subjec.t aware's?ttmgs.. For subqect a.gnostl'c settmgs,'we
MUDVI (Sbj. Agnostic) 243.8 26.3 211.0 also take computational efficiency into consideration with the subject

rest 2/3 of subjects. Specifically, first 3 subjects in BCI IV-2a, first
10 subjects in DEAP and first 5 subjects in SEED are utilized for pre-
training. For a fair comparison, the cold start scenario in this setting
also perform sequential decoding on the rest 2/3 of subjects. The result
is shown in Table 7.

Computation Cost

We evaluated the computational cost of the proposed approach
with detailed comparison to baselines in Table 6. Compared to other
replay-based methods, MUDVI adds a small overhead with the update
of cluster metrics such as cluster level importance, at the same time
it reduces the sampling cost from O(N) to O(L, + Ng”g ), with Ng”g the

shift detection algorithm. Specifically, the detection is performed with
the projected low dimensional distance metric d, and its computational
overhead is significantly less than operations directly on feature space.
Further improvement is possible if detection is performed with stride
size larger than 1 along the time axis. We also expect more speed up
on running time with more optimized implementation.

5. Conclusion

In this work, we proposed an effective memory based method for
continual decoding of streaming EEG signal from sequential arriving
subjects with consideration on data imbalance issues. The proposed
memory update and sampling approach jointly consider the volume
from different subjects and data informativeness, keeping a balanced
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Table 7

Evaluation of the effect of pre-training on model performance. We compare the two different scenarios of online sequential decoding either

another disjoint set of subjects.
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from a cold start or pre-trained on

Scenarios Dataset BCI IV-2a DEAP SEED
Method Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced
ER 43.57+1.72 48.24+0.95 39.73+1.14 43.82+2.09 54.15x0381 57.62+126
Cold Start MIR 45.41+1.20 49.93+1.78 40.85+2.38 45.15+0m 56.87+143 62.21+038
MUDVI 48.03+1.54 52.46+1.37 43.79+1.63 46.34+1.86 59.65+1.08 64.36+0.89
ER 57.31+0.96 61.72+1.40 50.48+1.14 52.90+1.67 70.12+0.65 71.97+1.23
Pre-trained MIR 59.39+051 61.97=0.83 52.16=0.40 53.35+1.712 72.08=0.84 73.20051
MUDVI 61.22+1.14 63.15:+0.62 54.21+239 55.04+1.25 73.33+1.27 73.86+0.79
memory for replay purposes. We design the memory sampling ap- Appendix B. Theoretical proof on sampling distribution
proach following the distribution that maximizes convergence speed
and reduce§ memory size.. We .cons.tructed challenging benchmarks g=F 5 Volo(D)
for sequential EEG decoding with imbalanced data on top of nu- (D) "0 0) D)
merous widely used datasets covering different BCI paradigms, and TrHV,[2)) = q(D)[( )Vo Lo(D) - g)(p_l)) VoLo(D)—g)] B.1)

conducted extensive analysis compared to related strong baselines. The
model achieved significant improvement in numerous different ablation
scenarios. The directions of future work include (1) exploration on
sequential EEG decoding of heterogeneous classes, (2) methods for
sequential EEG classification without usage of memory buffer.
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Appendix A. Derivation of convergence speed

Denote the convergence speed as S = -Ep, [||¢9,Jrl - 0*||§ -6, - €*||§]
and with Q the expected gradient of one time step, we have

§==Ep [(0 =0 (01 —0") — (6,—0")" (6,-6")]
=—Ep [0], 0,11 —20,,,0" — 676, +20,0"]

=By [(6,-12)" (0, - n2) + Q70" - 076,

=—Ep [-21(0, - 0") 2+ 2" Q]

=21 (6, — 0*) Ep, [2] = nEp, [ Ep, [2] -

7 Tr (V,,l [QJ)

(A1)

10

=E <D>[|| Veﬁe(D)ll 1- gl

By Jensen’s mequahty:

) p(D)

Eaolll {5y KD vgcgw)n 1> Eq(m[llmveﬁe(D)llz]z = By IV LoD)I1])

(B.2)

PD)IVoLoDlly

with the equality achieved at q* (D) = m

Appendix C. Convergence of 6% to linear combination of normal
distribution

Suppose z; drawn i.i.d. from distribution Q, with the assumption
that E,|lk(z, )|* < co. Define 4 ‘< Eyk(z,-) and Kz,2) < (k(z,) -
u, k(z',-) — u). With the following conditions satisfied for eigenvalue ¢
and eigenvectors ¢? of K: & > 0 and Ey¢? < oo such that K(z,2') =

Y1 Eb@¢ (@) and (b, ¢y) = 1,y Then,
s iﬂz.f,zf (D

1>1

d
the symbol — means converge in distribution. (Z;),5; is a collection of
independent normal random variables and # is a constant. The theorem
and proof follow from Keriven, Garreau, and Poli (2020), Serfling
(2009).

Appendix D. Performance evaluation on SSVEP and P300 paradigms

We performed detailed evaluation of model performance on SSVEP
and P300 tasks to gain deeper insights on model’s versatility to-
wards the different BCI paradigms. We utilized the SSVEP-benchmark
dataset (Wang, Chen, Gao, & Gao, 2017) for performance evaluation
on SSVEP paradigm, and also analyzed in detail of model performance
on P300 speller dataset (Won, Kwon, Ahn, & Jun, 2022). The SSVEP-
benchmark includes 35 subjects, with subject underwent 6 sessions
each containing 40 trials. The EEG signal is recorded with 64 channels
at sampling rate of 1000 Hz with a Synamps2 system. We adopted the
same pre-processing steps (downsample and filtering) as introduced
in Wang et al. (2017). The P300 speller dataset has a total of 55
subjects. EEG signal is recorded with 32 electrodes at sampling rate of
512 Hz using the Biosemi ActiveTwo system. During test the subjects
spells four words including “SUBJECT”, “NEURONS”, “IMAGINE” and
“QUALITY”. Please refer to Won et al. (2022) for detailed preprocess-
ing and feature extraction procedures. In accordance with the online
sequential decoding setting explored in this work, we set the number
of training repetitions to be 1 for the SSVEP-benchmark task and
also the number of letter repetitions to be 1 for P300 speller task
(the reason that there exists a large performance gap between online
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Evaluation of model performance on SSVEP and P300 paradigms, for both data imbalance and balanced scenarios. We performed Dunn’s post hoc test between MUDVI and
baselines, with p-value provided in brackets following the result.

Dataset SSVEP-Benchmark P300 Speller
Mean + SD (p-value) Mean + SD (p-value)
Method Imbalanced Balanced Imbalanced Balanced
sequential 46.16+1.80 (2.08¢-10) 50.48+0.94 (2.36e-12) 31.35+4.73 (5.53¢-07) 35.722.09 (7.45¢~10)
joint training 87.39+2.12(1.71e-11) 90.17:1.75 (2.40e-12) 79.41+2.66 (2.06e-11) 85.8343.20 (4.64¢—11)
EWC 50.83+2.95(3.18e-07) 53.10+131(2.97¢-10) 34.62+3.04(7.57¢-08) 36.57£5.85 (8.24¢-06)
UCB 50.27+0.64(2.76e—13) 55.54+0.89(8.34e—11) 36.27+2.18 (1.25¢-08) 38.91+4.36/(2.88¢-06)
ER 54.91+1.58(6.53¢-08) 57.32+2.40(3.29¢-06) 43.13+1.50(5.77¢-07) 46.04+2.23 (7.85¢-06)
ER+GMED 55.63+1.29(2.74¢-08) 57.86+1.73 (4.16e~07) 45.95+3.61(0.024) 49.82+2.78 (0.020)
MIR 57.02+2.46 (4.14e-05) 60.21+1.05(2.68¢-07) 44.4242.37(1.85¢-04) 50.20+3.190.061)
MIR+GMED 58.44+1.35 (4.31e-06) 61.93+2.26(3.85¢-03) 46.80+5.43(0.167) 50.31+3.54(0.092)
MUDVI 62.28+2.71(-) 64.37+3.14(-) 48.56+2.82(-) 51.93+1.75(-)
Table D.9 & EWe
Performance with subject agnostic and subject aware settings for SSVEP-benchmark and 0.81 & UCE
P300 speller tasks. V- ER
Dataset SSVEP-Benchmark P300 Speller a 0.71 -A- ER+GMED
Mean + SD (p-value) Mean + SD (p-value) © 4B MR
== ZZ AN =
Scenario Imbalanced Balanced Imbalanced Balanced a 0.6 ",” Y *- mlTJV?MED
R ‘ W%
Subj. Agnostic 62.28+2.71 (0.076) 64.37+3.14(0.047) 48.56+2.82(0.007) 51.93+1.75(0.096) <€ x .——-"'\t\ V
4t ~
Subj. Aware 63.62:1.49(-) 66.23+2.45(-) 51.24+1.68(-) 52.71226(-) $ 0.5 ‘-\.\z*-:‘::tx,—'-\
= ) “:::;—;:a ey
0.41 s
RN )
ik, ]

sequential decoding and joint training). We set the number of training
repetitions and letter repetitions both to be 10 for the joint training
setting following the settings in Won et al. (2022) and SSVEP-DAN:
A Data Alignment Network for SSVEP-based Brain Computer Interfaces
(2023).

The result for online sequential decoding performance on these
two datasets is summarized in Table D.8. It reveals the MUDVI model
is significantly more effective for forgetting mitigation compared to
other baselines. For SSVEP-benchmark, it outperforms other compar-
ison models by 3.84% for data imbalanced settings and achieves a
margin of 2.44% for data balanced settings. For P300 speller task, the
MUDVI model achieved improvement of 1.62% on accuracy for data
balanced setting compared to the best comparison model, while having
margin of 1.76% for data imbalanced settings. We further explored the
differences between subject-agnostic and subject-aware settings, with
the result provided in Table D.9. The model performance shows modest
deterioration when the subject identity becomes unknown. Specifically,
the accuracy reduced by 1.34% and 1.86% for data imbalanced and bal-
anced settings respectively on SSVEP-benchmark. The subject identity
information has more influence for P300 speller task, with performance
deteriorating by 2.68% for data imbalanced setting and 0.78% for data
balanced setting respectively.

Appendix E. Detailed training setting for the joint training base-
line

For the joint training baseline serving as upper bound of model
performance, its training setting is as follows:

Data from each subject is split into training/testing sets, and the
EEG decoder are jointly trained on training sets of all subjects. For
BCI IV-2a dataset, we adopt the original dataset’s train/test setting
with AOXT files jointly used for training and AOXE files for testing, the
train/test split is approximately 1:1. For DEAP dataset, we generate the
train/test splits utilizing the train_test _split function of sklearn package,
with test_size set to 20% of processed data for each subject. For SEED
dataset, we combined the files of id_1.mat and id_2.mat to be training
data and id_3.mat is used for testing (the id in file name refers to
specific subject ids), this makes the train/test split approximately 2:1.
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Fig. E.8. Testing accuracy of sequential training with varying number of subjects for
BCI IV-2a dataset.

Appendix F. Performance on backward transfer

The model performance and its comparison with baseline in terms
of BWT is reported in Table F.10. We observed MUDVI outperforms
baselines in data imbalanced settings. MIR-based approach achieved
on-par or slightly better performance for balanced settings. Please note
that result on BWT is known to be noisy with relatively higher variance
given it is influenced by both forward adaptation and forget mitigation.

Appendix G. Window size of distance metric m

Here we explore the influence of window size m for distance metric
d, on model performance. The window size denotes the past context
that is put into consideration for distribution shift detection. The result
is shown in Table G.11. For m increasing from 2 to 10, the model
performance first increases and then peaks before slight decrease on
larger size. We set m = 8 by default in our experiments.

Appendix H. Performance with varying number of sequential sub-
jects

We performed study on the model performance with varying num-
bers of sequential subjects. Fig. E.8 shows the change in averaged
testing accuracy with different numbers of sequential subjects on BCI
IV-2a dataset. Here the accuracy is evaluated after sequential learning
ends. For each setting with number of subjects being N, we perform
20% downsample on randomly chosen int(N,/2) subjects. The proposed
model outperforms comparison models in most cases, especially for
larger number of subjects.
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Table F.10
Performance on backward transfer (BWT), with both imbalanced and balanced scenarios.
Dataset BCI IV-2a DEAP SEED
Method Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced
sequential 12.19s3.12 12.27+2.04 10.84+1.58 12.19+2.43 12.14+2.06 13.76+3.27
joint training - - - - - -
EWC 7.95x247 11.41+1.60 8.06+2.71 7.52+1.62 17.07+125 16.81+2.42
UCB 10.43+4.25 13.07+2.61 9.90+1.95 9.1643.17 15.28+3.32 15.64+1.85
ER 10.56+1.68 10.3443.44 8.83+3.36 6.61+2.38 9.91+1.69 9.95+2.61
ER+GMED 12.5143.39 9.67+1385 9.89+2.25 7.26+1.59 10.64+247 9.37+3.04
MIR 11.17+251 10.03+3.43 9.76+1.32 6.30+2.45 7.59+1.53 7.76+1.79
MIR+GMED 10.40+4.12 7.87+217 9.25+2.43 7.99+431 7.53+3.28 7.84+2.10
MUDVI 6.52:+183 8.26+2.56 7.91+226 7.05+2.74 6.45:1.41 8.114327
Table G.11
Influence of context size on model performance for all three datasets.
Value of m 2 4 6 8 10
Dataset Acc.
BCI IV-2a 44.87+1.39 45.06+2.40 45.98+1.83 45.72+225 45.31+1.46
DEAP 41.32+2.14 41.74+1.59 42175272 42.29:181 41.83+1.05
SEED 58.51+1.93 59.18x085 59.42+1.16 59.85:1.63 59.60+2.17
Table 1.12
Comparison on corruption error (averaged error rate across the different types of corruption operations) of online sequential EEG decoding.
Dataset BCI IV-2a (1) DEAP (]) SEED (1)
MUDVI 63.25+0.83 67.82+1.04 52.41+1.49
MUDVI+FT Surrogate 61.87=x131 66.16+2.25 50.030.90
MUDVI+BandStopFilter 63.63+1.52 67.44+071 51.62+036
MUDVI+DADA 60.10+2.48 65.23:+1.67 48.35:1.14
MUDVI+AugMix 59.46-1.23 65.58+2.10 49.76=0.61
Table 1.13
List of corruptions for robustness evaluation with detailed settings. The corruption operations are applied
to normalized source signal to test model performance.
Corruptions Description
Shot noise Discrete electronic noise, voltage V = 0.2, frequency f = 10%
Gaussian noise Gaussian signal noise, mean u = 0, variance ¢ = 0.1
Intensity The magnitude variation in EEG signal, reduction by 0.2
Zoom blur Disruption in scaling of signal with scaling factor 110%
Table 1.14

Model performance in terms of sequential decoding accuracy with different number of channels being blackout on BCI IV-2a dataset. We tested the integration of proposed approach
with a number of different denoising and data augmentation approaches for robustness improvement.

No. of blackout channels 0 4 8 12 16 20 22

MUDVI 45.98+1.83 44.51£236 43234252 43.11+1.97 41.80+2.79 40.25+2.23 25.14+0.86
MUDVI+FT Surrogate 47.20+2.17 45.19:072 45.45+1.94 43.76+3.28 43.32+1.43 43.58+271 24.93+0.42
MUDVI+BandStopFilter 43.71+1.05 44.28+2.60 42.26+0.49 41.99+225 41.67+1.84 40.92:+0.60 25.35:0.57
MUDVI+DADA 47.83+1.96 46.41+1.29 44.72+3.10 44.27+1.22 42.19:0.78 42.83+1.49 25.67+081
MUDVI+AugMix 47.32+2.48 45.56+095 45.13+238 4494176 42.73+2.15 41.30+0.74 24.71x125

Appendix I. Robustness for data corruption scenarios

The unknown variances and noise are important factors influencing
decoding performance for both classic decoding settings (e.g. cross sub-
ject classification) and proposed sequential decoding setting. Denoising
and data augmentation techniques are promising directions to tackle
such corruptions in the signal. We performed detailed evaluation on
integration of denoising and data augmentation methods with proposed
approach and tested their performance on different types of corruptions
including shot noise, Gaussian noise, zoom blur etc. (the detailed
setting is provided in Table 1.13). The result is provided in Table I.12.
It shows the model has moderate performance deterioration in the
occurrence of data corruptions in general. The different denoising and
data augmentation approaches integrated in the study shows varying
levels of effectiveness in improving model robustness.
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We also performed ablation study on the influence of bad sensors
and occurrence of channel blackout towards sequential decoding per-
formance. The result is provided in Table 1.14. It shows integration
with denoising and data augmentation methods is useful to mitigate the
performance deterioration in the occurrence of bad sensors. Another
observation is that the model could achieve performance much better
than random guess even with only 1-2 channels available for decoding.
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