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Retain and Adapt: Online Sequential EEG
Classification With Subject Shift

Tiehang Duan , Zhenyi Wang , Li Shen , Gianfranco Doretto , Donald A. Adjeroh ,
Fang Li , and Cui Tao

Abstract—Large variance exists in Electroencephalogram
(EEG) signals with its pattern differing significantly across
subjects. It is a challenging problem to perform online sequential
decoding of EEG signals across different subjects, where a se-
quence of subjects arrive in temporal order and no signal data is
jointly available beforehand. The challenges include the following
two aspects: 1) the knowledge learned from previous subjects does
not readily fit to future subjects, and fast adaptation is needed
in the process; and 2) the EEG classifier could drastically erase
information of learnt subjects as learning progresses, namely
catastrophic forgetting. Most existing EEG decoding explorations
use sizable data for pretraining purposes, and to the best of
our knowledge we are the first to tackle this challenging online
sequential decoding setting. In this work, we propose a unified
bi-level meta-learning framework that enables the EEG decoder
to simultaneously perform fast adaptation on future subjects and
retain knowledge of previous subjects. In addition, we extend to
the more general subject-agnostic scenario and propose a subject
shift detection algorithm for situations that subject identity and
the occurrence of subject shifts are unknown. We conducted
experiments on three public EEG datasets for both subject-
aware and subject-agnostic scenarios. The proposed method
demonstrates its effectiveness in most of the ablation settings, e.g.
an improvement of 5.73% for forgetting mitigation and 3.50%
for forward adaptation on SEED dataset for subject agnostic
scenarios.

Impact Statement—Decoding of EEG signals is useful for
translating brain signals directly into commands controlling
devices such as robotic arms and wheelchairs, etc. Classic EEG
decoding settings assume there is an ample amount of data
available for pretraining purposes. This is not always available in
real-world scenarios. Per our knowledge, this work is the first to
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tackle the challenging setting of online sequential EEG decoding
with subject shifts, where subjects arrive sequentially and no data
is jointly available beforehand. We propose a principled approach
that simultaneously tackles challenges of fast adaptation and
knowledge retaining during the process. The proposed model
has potential wide applicability in real-world scenarios such as
robotic arm navigation and rehabilitation training.

Index Terms—Brain–computer interface (BCI), continual
learning, EEG classification, transfer learning.

I. INTRODUCTION

BRAIN–COMPUTER interfaces (BCI) analyze human
brain activities through processing and decoding of

recorded brain signals [1]. The general method of acquiring
such signals is to use Electroencephalography (EEG) equip-
ment, with the privilege of being noninvasive, having high
resolution across the temporal axis, and relatively low cost to
equip and maintain. Analysis of EEG signal provides useful
information for translating it into control commands, and is
currently widely used in clinical applications to help individuals
with mild to severe motor disabilities including: 1) autonomous
navigation of mechanical devices such as robotic arms and
wheelchairs [2]; 2) control of digital interfaces such as mobile
phone apps and sensors of smart homes [3]; and 3) help detect
medical conditions related to irregular brain activity [4].

Classic cross-subject and intrasubject EEG decoding settings
assume there is an ample amount of signal data for pretraining
purposes. This is not always available in real-world decoding
scenarios as current EEG datasets only consist of a limited
number of classes (e.g., DEAP dataset has four different classes
of actions), while in real-world applications such as digital
tablet control or wheelchair control, the actions to be decoded
by the BCI system is much more. It is nearly impossible to
collect enough pretraining data for all the different actions.
It is therefore important for the BCI system to conduct online
decoding from a cold start. Additionally, previous explorations
have shown the patterns of EEG signal are significantly different
across different subjects [5]. This poses challenges to the model
to make accurate predictions when subject shift occurs during
the online decoding process.

We formulate the problem setting as online sequential EEG
classification, where the EEG decoder needs to make accurate
real-time predictions on different subjects arriving sequentially,
with underlying data distribution constantly changing. An il-
lustration of this scenario is shown in Fig. 1. This brought
significant challenges to the EEG decoder in terms of two
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Fig. 1. Illustration of the online sequential EEG decoding scenario, with subjects arriving sequentially and produce streaming EEG data to the BCI system.
The BCI system needs to simultaneously fast adapt onto future subjects and retain knowledge of previous subjects.

aspects: 1) with no data available for the model to jointly train
beforehand, the EEG decoder needs to quickly adapt previously
learned knowledge to newly arriving subject; 2) the decoder
needs to mitigate the catastrophic forgetting issue and retain
knowledge of previous subjects.

Direct utilization of previously proposed EEG decoding ap-
proaches are not feasible to this problem setting. Some earlier
works adopt participant-dependent model tuning and perform
calibration for each subject [6], [7]. A recent thread of research
focuses on building subject-independent EEG decoding mod-
els [8], [9], [10]. This alleviates the need for fine-tuning of
each subject at the cost of moderate performance downgrade
[11]. Moreover, these models function on the premise of a
fully constructed training dataset. In this work, we alleviate
this requirement and the model decodes streaming EEG data
from different subjects in an online manner. Per our knowledge,
we are the first to simultaneously tackle fast adaptation and
forgetting mitigation issues under this challenging setting.

Here, we propose a learning-to-learn approach using an
adaptive meta optimizer with bi-level mutual information max-
imization (AMBM) for tackling online sequential decoding of
EEG signals. The meta optimizer is formed as a bi-level opti-
mization process, with training performed in the unit of meta
episodes. Each episode consists of iterations of inner base loop
followed by the outer meta loop. In base loop, it maximizes mu-
tual information between original signal and extracted feature
for holistic feature extraction. In meta loop, mutual information
maximization between current subject and previous subjects is
performed for fast adaptation. The overall workflow of AMBM
model is shown in Fig. 2. Hyperparameter is adaptively up-
dated in meta loop to avoid forgetting previous knowledge.
It preserves parameters that are important to decoding previ-
ous subjects from being overwritten, by utilizing the gradient
information from the memory buffer and current streaming
data to decide the level of catastrophic interference between
current subject and previous subjects on model parameters.
We kept a small memory buffer to store data samples from

Fig. 2. Illustration on the workflow of AMBM model for simultaneous fast
adaptation and knowledge retaining during online sequential EEG decoding.

previous subjects, which is used for both fast adaptation and
forgetting mitigation.

For proper evaluation, we formulate benchmarks that mimic
real-world BCI applications of subjects sequentially arriving in
an online manner, with detailed ablation studies on different
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sequence formations. The proposed method is first applied to
the simplified sequential learning case that subject identity and
shift boundary are known. We then extend the method to the
more general subject-agnostic case, where subject identity is
unknown in the learning process. We propose a simple and
effective subject shift detection mechanism for this scenario.
Performance comparison of the proposed method with cur-
rent widely used baselines on the constructed online sequential
decoding benchmarks shows the model is significantly more
effective to sequentially decode EEG signal for a long period
of time, both for subject-aware and subject-agnostic settings.

The contributions of this work are summarized as following.
1) We propose an adaptive meta optimizer with bi-level

mutual information maximization to tackle the problem
of online sequential EEG classification, applicable to a
wide range of real-world scenarios.

2) We apply the proposed model to both subject-aware
and subject-agnostic setting, depending on whether sub-
ject identity is known, and propose an efficient subject
shift detection algorithm for the more general subject-
agnostic setting.

3) We form proper benchmarks on top of public datasets
for evaluation of the proposed method. We demonstrated
the effectiveness of proposed approach with extensive
empirical evaluation. The AMBM model achieved sig-
nificant performance improvement compared to related
strong baselines.

II. RELATED WORK

A. EEG Classification

Signal processing methods are the classic way of decoding
EEG signals [12]. A common approach is to go through band-
pass filters and then perform feature extraction for decoding,
e.g., [6] performed data preprocessing with filter bank (FB)
and then extracted common spatial patterns for classification.
Jatupaiboon et al. [13] extracted features based on frequency
information from power spectral density (PSD), and performed
classification with support vector machines (SVM). Covari-
ance matrix is widely used in a large portion of the works as
it provides relational information between the different EEG
channels [14], [15], this can be useful for identifying patterns
across the spatial distribution of brain signals. The performance
of EEG decoding could be further improved by incorporating
closed-loop neuro-modulation techniques [16], [17], which en-
ables the subjects to perform adaptive reinforce or control of
their brain activities.

Recently, researchers proposed neural EEG decoding ap-
proaches based on deep learning, which is formed with novel
neural network structures for automatic feature extraction.
EEGNet [18] is formed with three convolutional layers tailored
for EEG decoding. It has low computational cost and is versatile
across different BCI paradigms. CTCNN [19] is another state
of the art EEG classifier formed with CNN which proposed
a novel cropped training strategy. Zhang et al. [20] combines
the cascade and parallel CNN structures by training multi-
ple CNNs in parallel for improved performance. Explorations

toward these directions largely focus on different types of
model architectures and enable the decoding model to achieve
state-of-the-art performance for classic decoding settings such
as intrasubject decoding and cross-subject decoding, but less
exploration is made to the more challenging online sequen-
tial decoding settings where no large-scale dataset is available
for pretraining.

B. Continual Learning

Continual learning models [21], [22] aim to retain knowledge
during learning from a sequence of different and dynamically
evolving data distributions. The major challenge of this problem
setting is known as catastrophic forgetting, where adaptation to
a new data distribution deteriorates the model’s performance
on previous data distributions. The models in this field can
be categorized into three categories: 1) Memory replay based
methods [23], which stores a small amount of previous data
in a memory buffer for joint consideration with current data.
Aljundi et al. [24] proposed to replay samples that have the max-
imum interference with foreseen parameters update. Lopez-
Paz and Ranzato [25] comes up with gradient episodic mem-
ory that effectively minimizes negative backward transfers. 2)
Regularization based methods [26], which utilize regularization
terms to preserve previously learned information. Kirkpatrick
et al. [27] performs Bayesian estimation on the importance
of model parameters and penalizes update of parameters that
are important to previous tasks. Li and Hoiem [28] utilizes
knowledge distillation as an additional regularization term and
allows the model to work well on both old and new tasks. 3)
Dynamic expandable networks [29], which expand the network
with additional subnet architectures on the fly during the learn-
ing process (network size and memory cost are unknown at
the beginning). Rusu et al. [30] proposes progressive network
which instantiates a new column in the network for each new
task. Yoon et al. [31] proposes to dynamically expand network
capacity by splitting and duplicating existing network structures
as learning progresses. The previous explorations for forgetting
mitigation were mostly based on empirical study with the usage
of memory buffer, expandable architecture and adoption of
regularization terms. In this work we proposed a principled
approach for forgetting mitigation by formulating it as an op-
timization problem on adaptive hyperparameters. Additionally,
previous explorations mostly focus on either classic computer
vision tasks (such as continual image deraining [32] and depth
estimation [33], etc.) or natural language processing tasks (such
as continual sentiment classification [34] and dialogue gen-
eration [35]). To our knowledge, little exploration has been
made on its effectiveness to tackle subject shifts for clinical
prediction tasks.

C. Meta Learning

Meta learning [36] offers promising solutions for a neural
network to perform fast adaptation on an unseen task after
learning across similar tasks. Specifically, [37] learns a metric
space and fast adaptation is performed by computing distance
toward prototype representations of each class. Finn et al. [38]
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proposes a simple and effective approach for model and task
agnostic meta-learning leveraging a double loop optimization
structure. Rusu et al. [39] proposes to learn latent represen-
tation of model parameters conditioned on task data, which
enables task-specific initialization of meta parameters for fast
adaptation. Online meta learning [40] is proposed recently for
better performance on tasks arriving in sequential order. Most
previous works on meta learning is for nonevolving data distri-
butions. Its effectiveness in sequential learning scenarios over
multiple domains is currently under-explored. Additionally, its
effectiveness for sequential subject adaptation in clinical pre-
diction tasks remains largely unknown.

To the best of our knowledge, we are the first to tackle the
challenging setting of online sequential EEG classification. As
no dataset is available to pretrain the EEG decoder, traditional
intrasubject and cross-subject EEG classifiers are not feasible to
this challenging setting. Different from existing EEG decoding
models with domain adaptation techniques, this work effec-
tively tackles both challenges of fast adaptation and forgetting
mitigation during online sequential EEG classification, utilizing
a unified bi-level meta learning framework. Compared to clas-
sic continual learning approaches, the proposed method does
not involve explicit memory replay and the hyperparameter
adaptation functions in meta loop which only performs once
for each meta episode, effectively reduces the computational
complexity. Additionally, the proposed approach seamlessly
integrates the bi-level mutual information maximization into
the bi-level optimization loops and more effectively leverages
the rich information at feature level, enabling faster adaptation
compared to other meta learning approaches.

III. METHODOLOGY

A. Problem Setup

The definition of online sequential EEG classification is
as follows:

Definition 1: Online Sequential EEG Classification. A se-
quence of subjects, S1, S2, . . . ,SJ , arrive sequentially and pro-
duce streaming EEG data to the BCI system. Each subject Si

produces a labeled sub dataset {(xk, yk)}Bi
k=1 with Bi labeled

datapoints, where xk is the signal segment and yk the corre-
sponding label. The subjects change over time which brings
data distribution shift, and the EEG decoder should be able to
detect and adapt to this distribution change in real-time while
preserving previously learned knowledge.

We leverage the framework of model agnostic meta learning
(MAML) for formulation of our approach. MAML is a general
purpose gradient based meta learning approach for fast adap-
tation of tasks. It involves a bi-level structure, with the lower
level or base loop targets on gradient accumulation of noisy
data and higher level or meta loop for fast adaptation. As we
described below, adopting this framework is beneficial for both
fast adaptation to future subject and also preserving information
of previous subjects.

We consider both subject-aware and subject-agnostic sce-
narios, with subject identity and subject shift boundary un-
known for the latter case. The model is formed with a shared

CNN-based network for feature extraction of all subjects, with
the flexibility to expand a prediction head formed with a sin-
gle layer for each arriving subject. Please note this network
expansion operation shares similarities with previous meth-
ods such as [31], [41]. The purpose of keeping this predic-
tion head is to: 1) create different views on subjects for bi-
level mutual information maximization in forward adaptation,
as detailed in Section III-B; and 2) avoid forgetting previous
domain knowledge.

B. Fast Adaptation Toward Future Subjects

We perform bi-level mutual information maximization in the
meta optimizer to learn features that are holistic and applicable
to future subjects for online decoding.

For loss functions currently widely used for EEG decoding
such as cross-entropy, it suffices for the model to learn discrimi-
native features that properly separate different classes of current
subject. There is no incentive for the model to learn features
that are versatile and applicable to future subjects. Every time a
new subject arrives, the model parameters need to be modified,
resulting in slower adaptation. Here, we utilize mutual infor-
mation for the model to learn holistic representations from the
signal and increase versatility across subjects.

The process involves two phases. The first phase is to maxi-
mize the mutual information between signal data and extracted
features. This is performed in base loop of meta optimization.
The second phase maximizes the mutual information between
different views of current and previous subjects. This happens
in meta loop of the optimization.

The bi-level optimization can be formulated as

Alg(θ,Dt) = θ − α∇θ{Lce(θ, Dt) − I(Dt; Fs(Dt))} (1)

θ∗ :=argmin
θ∈Θ

{
1
m

TE+m∑

t=TE

L(Alg (θ, Dt) , D)

−I(Fs(D), F(s−k):(s−1)(D))

}
, where D = {Dt, Dm} (2)

where Dt is streaming data of current subject and Dm is sam-
pled from memory buffer (summary of variable notations is
provided in Table I). m is the number of base loop iterations
for each meta episode. Lce(·) is the cross entropy loss and
Alg (θ, Dt) is the updated parameter of base learner, which
is initialized as meta parameters θ∗ of the last meta episode.
I(Dt; Fs(Dt)) is the mutual information between signal seg-
ments and feature maps for holistic feature extraction, with
Fs(·) being the network formed with prediction head of sth
subject. I(Fs(D), F(s−k):(s−1)(D)) is the mutual information
aligning the different views of sequential subjects, for which we
kept the most recent k prediction heads for adaptation purpose.
We maintain a small memory buffer for data samples from
previous subjects, with details as follows:

1) Memory Buffer Update: The model maintains a mem-
ory buffer (small in size) to keep samples of data from learnt
subjects. The memory utilizes reservoir sampling, where each
batch of EEG data has an equal probability of being selected.

For a memory buffer of size M , the first batches of EEG
signal will be stored sequentially in the buffer until it is full.
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TABLE I
SUMMARY OF VARIABLE NOTATIONS

Notation Description

Dt Streaming data of current subject
Dm Sampled data from memory buffer
Lce(·) The cross entropy loss
Fs(·) Decoding network with prediction head of sth subject
I(·) Mutual information operator
θ Parameters of base learner
θ∗ Parameters of meta learner
α Learning rate of parameters
M The size of memory buffer
Φ(·) Batch normalization operation
B Training batch size
λ Learning rate of hyperparameters
et Extracted feature map at time step t
Et Moving average of feature maps at time step t
dt Distance metric vector at time step t
St Denotation of the subject at time step t
lSt Run length of subject St

U(!) Constant function depicting the prior of subject shift

For later batches of EEG data xk arriving, a random number
i is generated between 1 and k. If i < M , then xk will be
selected into memory and replace the data currently at ith place
in memory. The memory kept data of size M from previous
subjects in this way.

The memory buffer serves to: 1) extract versatile features
across different subjects for fast adaptation; and 2) maintain
performance of previous learned subjects with memory re-
play. More tailored design on memory data selection could
potentially improve model performance, which we leave for
future work.

2) Holistic Feature Extraction in Base Loop: The goal of
this phase is for the feature extractor to extract useful infor-
mation from source signal, namely holistic for its preserving
of maximum information and reducing feature bias (with its
measurement introduced in Appendix C). The maximization
is performed between current signal segment X ∈ Dt and the
features extracted F (X) = Φ(fθ(X)), with Φ(·) being the nor-
malization operation.

It should be noted that directly computing this target is in-
tractable, and following [42], we resort to maximizing its lower
bound: mutual information on features extracted from different
augmented signal data. Let X ′ be an augmented version of
input data X created from data augmentation operations (details
specified in Appendix B). Then we have

max
θ

I(X; F (X)) ≥ max
θ

I(F (X ′); F (X))

≥ log B + InfoNCE(g(·); F (X); F (X ′))
(3)

where B is the batch size, InfoNCE is the contrastive loss
function with

g(F (xi), F (x′
j)) = exp

(
F (xi)T F (x′

j)

r

)

InfoNCE(g(·);F (X); F (X ′))

=
1
B

B∑

i=1

log
g(F (xi), F (x′

i))∑B
j=1 g(F (xi), F (x′

j))
. (4)

Algorithm 1 Online Sequential Adaptation
1: REQUIRE: Streaming EEG data from a sequence

of subjects {D1, . . . , DN1 ; . . . ; DNi+1, . . . , DNi+1 ;
. . . ; DNJ−1+1, . . . , DNJ }; where {Ni, i = 1, 2, · · · , J − 1} are
change of subject occasions; memory buffer M

2: for t = 1 to NJ do
3: sample Dm from M, form training batch D = {Dt, Dm}
4: for iters of base loop do
5: optimize θ based on minθ{Lce(θ, Dt) − I(Dt; Fs(Dt)}
6: end for
7: optimize θ∗ based on minθ∗{ 1

m

∑TE+m
t=TE

L(Alg (θ, Dt) , D)
−I(Fs(D), F(s−k):(s−1)(D))}

8: Reservoir sampling, M ← M ∪ Dt if sampled on Dt

9: end for

g(·) can be seen as a similarity function with r a scaling factor.
For proof of this lower bound please see Appendix H.

The equality to maxθI(F (X ′);F (X)) is achieved when
B →∞ [43]. This suggests we can optimize model perfor-
mance with increased batch size. However, for online streaming
scenario of EEG decoding, it would cause delay in decoding as
longer wait is needed to form a batch. A solution to this is to
perform augmentation operations of the data in each batch, with
more discussion provided in Appendix B.

3) Subject Adaptation in Meta Loop: After the model
finished training in the base loop, the model is able to ex-
tract informative features of source signal. In meta loop,
we want the model to learn to generalize and make predic-
tions that are accurate across all subjects, both for adapta-
tion and knowledge retaining purpose. The current stream-
ing data Dt and samples from memory buffer Dm are jointly
trained in meta loop. We add a lightweight prediction head
formed with a single output perceptron layer for each subject,
and the most recent k prediction heads are kept for adapta-
tion purpose. We maximize I(Fs(D), F(s−k):(s−1)(D)), with
I(Fs(D), F(s−k):(s−1)(D)) =

∑k
i=1 I(Fs(D), F(s−i)(D)) and

D = {Dt, Dm}. This helps the model to make accurate predic-
tions on all subjects by aligning across the different subjects
and improves the model’s generalization ability. We provide the
details of the adaptation mechanism in Algorithm 1.

C. Retain Knowledge of Previous Subjects

The proposed bi-level mutual information maximization al-
lows the EEG decoder to fast adapt and achieve decent perfor-
mance on current subject. However, such adaptation during on-
line sequential learning results in erasing of model knowledge
on previous subjects, also known as catastrophic forgetting. As
illustrated in Fig. 3, the EEG decoder quickly forgets knowl-
edge on subjects before A07 after sequential learning ends on
all nine subjects. Here, we propose hyperparameter update in
meta loop for the EEG decoder to dynamically adapt learning
rate toward the parameters based on the learning progress of
different portions of the network, which allows the model to
preserve learned knowledge during online adaptation.

Classic way of optimizing neural networks for decod-
ing streaming EEG data is through gradient descent
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Fig. 3. Trial run of sequential EEG decoding on BCI IV-2a dataset reveals
the catastrophic forgetting issue. Acc. (i, i) is the validation accuracy evaluated
immediately after learning a subject, and Acc. (N, i) is the testing accuracy
on ith subject after learning of all N subjects. The testing accuracy shows
quick deterioration for subjects before A07 after finished learning of all nine
subjects.

θ = θ − λ(∂Lθ(xt, yt)/∂θ) at step t, where θ is the
model parameter, Lθ(xt, yt) is the loss of current time step
and λ is the learning rate. In standard setting, the learning
rate is the same for all model parameters, however this would
incur forgetting on portions of network that are important in
decoding previous subjects. Here, we propose hyperparameter
update in meta loop for the EEG decoder to dynamically adapt
learning rate toward the parameters based on the learning
progress of different portions of the network. Intuitively,
parameters that are important to proper decoding of previous
subjects will be adapted more gently and parameters with
less influence will learn faster for efficient adaptation onto
current subject. We utilize sampled data from memory buffer
to measure the importance of parameters toward previous
subjects. The interference of current data toward knowledge
of previous subjects is then computed, with details below.

Defining ∇t
θ = (∂Lθ(xt, yt)/∂θ) as the gradient at time

step t. For two data points at time step i and j, the sign of
dot product ∇i

θ · ∇j
θ = (∂Lθ(xi, yi)/∂θ) · (∂Lθ(xj , yj)/∂θ)

indicates the potential interference between the two data points,
e.g. ∇i

θ · ∇j
θ < 0 suggests there is catastrophic interference

between data of these two time steps, where learning on one
will erase knowledge of the other; and ∇i

θ · ∇j
θ > 0 suggests

knowledge transfer and inheritage is possible. We utilize this
information in design of the meta optimizer, where we per-
form the computation between the current streaming data and
memory data, and make learning rates learnable for individual
parameters based on this computation.

With LM (θ) the loss to optimize on generalization of mem-
ory data Dm and LC(θ) the loss to optimize on current stream-
ing data Dt, the update of learning rate is as follows:

∂LM (θ)

∂λ
=

∂LM (θ)

∂θ′
∂θ′

∂λ
= −∂LM (θ)

∂θ′ · ∂LC(θ)

∂θ

with θ′ = θ − λ
∂LC(θ)

∂θ
. (5)

θ′ is the updated parameter by one step on current loss and
λ is the learning rate for adaptation. λ is updated following the

Algorithm 2 Online Sequential Knowledge Retain and Adaptation
1: REQUIRE: Streaming EEG data from a sequence

of subjects {D1, . . . , DN1 ; . . . ; DNi+1, . . . , DNi+1 ;
. . . ; DNJ−1+1, . . . , DNJ }; where {Ni, i = 1, 2, · · · , J − 1} are
change of subject occasions; Initialize learning rates λ0 and
model parameters θ; η is the hyper parameter for adaptation on
learning rate.

2: for t = 1 to NJ do
3: sample Dm from M, form training batch D = {Dt, Dm}
4: for iters of base loop do
5: optimize θ based on minθ{Lce(θ, Dt) − I(Dt; FS(Dt)}
6: end for
7: optimize θ∗ based on minθ∗{ 1

m

∑TE+m
t=TE

L(Alg (θ, Dt) , D)
−I(Fs(D), F(s−k):(s−1)(D))}

8: λt+1 = λt − η ∂LM (θt)
∂λt

9: Reservoir sampling, M ← M ∪ Dt if sampled on Dt

10: end for

derivation in (5) to be

λ = λ− η
∂LM (θ)

∂λ
. (6)

The RHS of (5) matches the intuitive explanation of catas-
trophic interference. With ∂LM (θ)/∂θ′ being the gradient on
memory data and ∂LC(θ)/∂θ the gradient on current stream-
ing data, their dot product being positive refers to the case
that direction of ∂LM (θ)/∂θ′ aligns with ∂LC(θ)/∂θ, and
offers knowledge transfer and inheritance. Otherwise, catas-
trophic interference happens and the learning rate is reduced for
the parameter.

D. Subject Shift Detection for Subject Agnostic Setting

Here, we consider the more general setting that subject
identity and corresponding subject shift are unknown, namely
subject-agnostic setting. The major challenge in this setting is
to detect the subject shift occurrences and properly expand the
prediction heads on the model arch, which requires accurate
subject shift detection with little latency. Here the challenges
lie: 1) the volatile nature of EEG signals and their signifi-
cant variance; and 2) different degrees of similarity across the
subjects. Approaches such as directly setting up a threshold
on the loss do not work based on our study. We adopt a
Bayesian probabilistic approach in latent feature space to tackle
this problem.

We denote the extracted feature map at time step t as et.
For streaming data of past p steps, moving average on the
feature is Et =

∑t
i=t−p(αiei) with

∑t
i=t−p(αi) = 1, this re-

duces the variance in the signal. A distance metric vector is
then formed based on most recent m steps of Et, denoted as
dt = (d(et, Et−1), d(et, Et−2), · · · , d(et, Et−m))), with d(·)
the distance metric. This encodes information for character-
izing the subject across a wider range of time spans in a
compressed manner.

We utilize the encoded vector dt for subject shift detection.
With St the current subject at time t, we want to get the posterior
estimation on current run lengths lSt . lSt = 0 suggests subject
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shift happens and lSt = τ > 0 suggests the continued signal
stream of current subject. The process is detailed as follows:

P (lSt |d1:t)

∝
∑

lSt−1

P (lSt |lSt−1)P (dt|lSt−1 , d1:t−1)P (lSt−1 , d1:t−1). (7)

With the first term being the prior of lSt , formed as

P (lSt |lSt−1)=

{
U(lSt−1 + 1), lSt =0

1 − U(lSt−1 + 1), lSt =lSt−1 + 1
(8)

where U(!) is constant function. The upper term suggests sub-
ject shift and lower term denotes continuing on current subject.
When subject shift happens, a prediction head is added onto the
shared arch, and we perform the update St+1 = St + 1.

IV. EMPIRICAL EVALUATIONS

We evaluate the performance of proposed model by applying
it to three different public EEG datasets, which are BCI IV-2a1

[44], DEAP dataset2 [45] and SEED dataset3 [46], [47], for both
subject-aware and subject-agnostic settings. The performance is
evaluated in terms of two aspects: 1) fast adaptation to current
subject; and 2) forgetting mitigation on previously learned sub-
jects. We illustrate on construction of benchmark and metrics
used for evaluation below.

A. Benchmark

We mimic the realistic BCI application scenario of subjects
arriving in sequence. The subjects show varying degrees of
similarity and difficulty, and we performed ablation study with
three different subject arrival orderings: 1) sequence ordering
based on id of subjects; 2) ascend ordering following the level
of difficulty in decoding; and 3) descend ordering following
the level of difficulty in decoding. The streaming EEG data is
processed into batches of t × n, with t the temporal span and
n the number of channels. Details on data processing for each
dataset are provided in Section IV-D.

B. Evaluation Metrics

For measuring the adaptation performance, we evaluate accu-
racy and AUC-ROC immediately after learning a new subject
during online learning. We then evaluate the accuracy for all
subjects after sequential learning ends, and use BWT to measure
the forgetting mitigation performance. BWT is the abbreviation
of backward transfer and measures the degree of catastrophic
forgetting on all previous subjects at the end of sequential learn-
ing. BWT = (1/N − 1)

∑N−1
i=1 aN,i − ai,i, with N being the

total number of subjects in the sequence, and aj,i the accuracy
on subject i after the model finished sequential learning on
subject j. Negative value of BWT reveals catastrophic for-
getting happens after learning the new subject, while positive
value shows learning on new subject improves performance of
previous subjects.

1http://bnci-horizon-2020.eu/database/data-sets
2https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html
3http://bcmi.sjtu.edu.cn/seed/downloads.html

C. Baselines

The baselines that are incorporated into comparison are from
three categories, including.

1) Lower and upper bound of model performance, with
the lower bound named classic sequential learning, where
base EEG decoder sequentially decodes the arriving subjects.
The upper bound of model performance is joint learning, where
data of all subjects are jointly available for the model to learn.

2) Domain adaptation techniques previously shown effective
to cross subject EEG decoding, including the following: MIDA-
EEG [48] creates a subspace with maximized independence
between subjects. TCA-EEG [49] learns a reproducing Kernel
Hilbert space (RKHS) across features of different subjects.
Deep-Transfer [50] formed a deep CNN-LSTM network for
transfer learning purpose. RA-MDRM [51] performs alignment
on covariance matrix of subjects.

3) Currently widely used continual learning approaches, and
combination of these approaches with proposed meta adapta-
tion. The averaged gradient episodic memory (A-Gem) [26]
constrain gradient directions to preserve learned knowledge.
HAL [52] utilizes hindsight to mitigate forgetting on a series
of previous anchor points. Experience replay (ER) [23] keeps
samples of data in learned tasks to train together with current
data. Gradient editing in memory (GMED) [53] makes stored
samples hard to remember and mitigates overfitting. Maximally
interfered retrieval (MIR) [24] replays examples with larger
estimated interference.

D. Settings

1) Data Processing: BCI IV-2a dataset consists of nine sub-
jects, with each subject went through a total of 576 trials. Each
trial is processed into 22 (channels) by 400 (temporal span)
segments. The adjacent segments have a stride size of 50 along
the temporal axis. The data is categorized into four different
classes following the four different types of motor imagery
movements, namely left hand, right hand, tongue and both feet.
We extracted the period of t = 3 to t = 6 s for each trial, within
which the subject is actively performing motor imagery. This
produces eight segments per trial at 250 Hz sampling rate.

For DEAP dataset, there are 32 subjects and each subject
conducted 40 trials. Following the quadrants depicted by va-
lence and arousal, the data is categorized into four different
classes including: 1) high arousal and positive valence (HAPV);
2) low arousal and positive valence (LAPV); 3) high arousal
and negative valence (HANV); and 4) low arousal and negative
valence (LANV). We extracted the last 50 s of each trial in our
experiment for improved data quality. Each trial is processed
into 32 (channels) by 768 (temporal span) segments. The ad-
jacent segments have a stride size of 128 and this produces 45
segments for each trial.

SEED dataset has a total of 15 subjects, with each subject
participated in three sessions generating a total of 2775 samples.
The recorded signals are labeled into three different classes,
indicating the elicited positive, neural and negative emotions
as subjects watching movie excerpts. The trials are processed
into 62 (channels) by 800 (temporal span) segments, the size of
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TABLE II
PERFORMANCE ON FORWARD ADAPTATION TOWARD SUBJECTS FOR DIFFERENT MODELS

Dataset BCI IV-2a DEAP SEED

Method Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC

Sequential 48.12±0.24 68.57±0.15 42.56±0.49 61.91±0.37 52.28±0.39 68.34±0.25
Joint training 79.63±0.47 91.29±0.34 71.36±0.63 84.82±0.44 84.70±0.20 91.29±0.16

MIDA-EEG 53.49±0.54 71.67±0.37 41.71±0.83 59.03±0.51 56.94±0.69 73.08±0.46
TCA-EEG 54.72±0.73 72.74±0.69 45.45±1.28 64.60±0.84 59.45±0.74 75.49±0.57
DEEP-Transfer 51.32±0.43 70.93±0.35 46.31±0.39 65.47±0.31 57.65±0.45 73.88±0.52
RA-MDRM 57.25±0.87 74.11±0.59 43.97±1.36 62.36±1.05 60.58±0.52 74.79±0.47

A-Gem 42.73±0.68 62.36±0.45 40.24±0.74 58.80±0.81 53.47±0.43 71.28±0.29
HAL 45.41±3.65 66.05±3.93 46.58±4.66 67.32±3.81 57.93±2.70 74.50±1.82
Meta + ER 56.37±0.83 70.54±0.69 49.21±0.96 71.18±0.64 65.74±0.58 78.66±0.43
Meta + ER + GMED 57.25±0.37 72.98±0.44 51.63±0.98 68.52±0.60 66.29±0.77 79.14±0.46
Meta + MIR 57.68±2.35 71.65±2.11 52.51±3.49 67.74±2.48 68.50±1.83 80.31±1.34
Meta + MIR + GMED 57.02±2.18 73.18±1.70 51.75±1.46 70.29±1.15 69.11±1.27 80.84±0.83

AMBM 59.50±1.33 76.47±0.92 54.93±1.79 72.66±1.33 72.61±0.96 82.78±0.65

Note: The accuracy and ROC-AUC are evaluated immediately after sequential learning of each subject.

stride is 100 for adjacent segments, resulting in 472 segments
per trial.

2) Model Settings: The model is implemented with Pytorch
and runs on a single TITAN-V GPU. The feature extractor is
a three layer CNN network. The first layer performs temporal
convolution to generate features with frequency information,
and the second layer performs depthwise convolution with spa-
tial filters. Zero padding is applied after each layer to keep
original data dimension. One layer of pointwise convolution
is appended on top serving as subject-specific prediction head
which has reduced computational cost compared to classic con-
volutional layers. We set filter size of first conv layer to be
(1, C), with C the number of underlying channels. The filter
size for second conv layer are fixed to be (2, 32) for all three
datasets. We keep k = 6 prediction heads as default during
online training for bi-level adaptation, and the last prediction
head is used for backward testing. The hyperparameter η is
set to 1e–3, and we performed clipping of –20 and 20 on the
gradient of learning rates, which helps stabilize the learning
process. A small memory buffer storing 200 data segments is
maintained by default, the memory cost of which is negligible
compared to the dataset size. With the assumption that training
data from the subjects is not available beforehand, we do not
use pretrained feature extractor and the model learns sequential
arriving subjects on the fly.

E. Analysis on Forward Adaptation

Table II shows the performance of different models for fast
adaptation on current subjects, with the accuracy and AUC-
ROC evaluated immediately after learning on a subject. We ob-
served the proposed method significantly outperforms compar-
ison models by at least 1.82% on accuracy and 2.36% on AUC-
ROC for BCI IV-2a dataset. DEAP dataset is more challenging
in general. The proposed model has a significant improve-
ment of 3.18% on accuracy and 1.48% on AUC-ROC. Please
note that although the improvement is significant, the overall

performance is still low and further improvement is needed.
The adaptation task is easier for SEED dataset, with more than
half of the models reaching accuracy above 60% during the
sequential learning. The proposed model has a 3.50% improve-
ment on accuracy and 1.94% improvement on AUC-ROC com-
pared to best performing counterparts. We conducted detailed
examination of performance for the individual decoding tasks
in Fig. 4. It reveals the relative improvement of F1-score for the
individual decoding tasks in terms of forward adaptation, where
F1-score is evaluated immediately after sequential learning of
each subject. We observed the AMBM model outperforms other
comparison methods by a larger margin on specific tasks, e.g.,
an improvement of 5.07% on detection of tongue movement
and 3.81% on classification of HAPV emotions etc. The result
demonstrates the proposed model’s ability of fast adaptation
during online sequential decoding.

F. Analysis on Forget Mitigation

Table III shows the result of different models toward forget-
ting mitigation. Here, we evaluate the accuracy on all subjects
at the end of sequential learning and also BWT which measures
the backward transfer as defined in previous section. The pro-
posed model significantly outperforms these strong comparison
models. In particular, our methods outperform other approaches
by at least 4.10% on BCI IV-2a, 3.95% on DEAP dataset and
6.19% on SEED dataset in terms of accuracy. The gain on BWT
is also significant, with 1.85% on BCI IV-2a dataset, 3.01% on
DEAP and 1.86% on SEED dataset. Fig. 5 reveals the relative
improvement of F1-score for the individual decoding classes,
which is evaluated after all subjects finished sequential learn-
ing. The proposed model has a margin of at least 14.28% for
tongue movement recognition and 9.45% for the classification
of HANV emotions. In general, the model shows higher sensi-
tivity toward high arousal brain activity and the recognition of
negative emotions. Fig. 6 depicts the performance of individual
subjects and reveals the overall trend of model performance
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Fig. 4. Adaptation performance improvement relative to base decoder on individual classes in terms of F1-score. (a) BCI IV-2a dataset. (b) DEAP dataset.
(c) SEED dataset. The F1-score of individual classes is evaluated immediately after learning of each subject. In (b), HA/LA denotes the high/low arousal,
and PV/NV denotes positive/negative valence.

TABLE III
PERFORMANCE ON FORGETTING MITIGATION

Dataset BCI IV-2a DEAP SEED

Method Accuracy BWT Accuracy BWT Accuracy BWT

Sequential 35.83±0.36 −13.86±0.27 29.31±0.75 −14.90±0.58 36.85±0.43 −17.33±0.31
Joint training - - - - - -

MIDA-EEG 32.47±0.37 −23.61±0.32 30.24±0.59 −12.96±0.44 40.55±0.35 −18.58±0.26
TCA-EEG 31.71±0.39 −25.92±0.41 28.67±0.39 −18.93±0.50 40.87±0.27 −20.96±0.42
DEEP-Transfer 34.69±0.56 −18.84±0.31 31.51±0.68 −16.70±0.39 42.66±0.32 −16.94±0.27
RA-MDRM 30.32±1.20 −30.38±0.73 29.44±1.19 −16.35±0.96 39.78±0.74 −23.49±0.52

A-Gem 34.11±0.46 −9.74±0.53 31.62±0.68 −9.77±0.41 41.73±0.35 −13.26±0.28
HAL 38.57±2.79 −7.81±2.44 33.39±3.61 −14.90±3.22 43.82±3.48 −15.96±2.30
Meta + ER 44.95±0.28 −12.85±0.41 41.70±0.56 −8.41±0.37 54.67±0.49 −12.54±0.23
Meta + ER + GMED 46.32±0.43 −12.34±0.35 42.59±0.73 −10.21±0.66 56.38±0.51 −11.17±0.69
Meta + MIR 49.83±1.48 −9.96±1.29 45.81±2.31 −7.30±2.87 57.22±1.94 −12.78±1.72
Meta + MIR + GMED 50.25±1.37 −7.78±1.60 46.44±2.85 −8.27±2.47 59.52±1.76 −10.80±1.98

AMBM 54.35±1.02 −5.93±1.89 50.49±1.58 −5.26±2.13 65.71±1.49 −8.94±1.70

Note: Evaluation of accuracy and BWT are performed on all subjects at the end of sequential learning.

as sequential decoding progresses. We observed the perfor-
mance tend to improve for later subjects during the process,
as the catastrophic forgetting issue is more severe for earlier
subjects and the model retains relatively richer knowledge on
later subjects.

G. Performance With Subject Agnostic Setting

We perform experiments toward the more challenging
subject-agnostic setting. The result is presented in Table IV.
We observed the performance is slightly deteriorating com-
pared to the subject-aware setting. The proposed method has
an improvement of 2.63% on BCI IV-2a dataset, 1.75% on
DEAP dataset and 5.73% on SEED dataset in terms of accuracy.
We observed some comparison methods are on par or slightly
better than AMBM in terms of BWT. This is expected as BWT
is known to be noisy given it is influenced by both forward
adaptation and forget mitigation, and lower accuracy on forward
adaptation can result in a better BWT score. We performed de-
tailed analysis of the proposed subject shift detection algorithm
in ablation study.

H. Ablation Study

1) Influence From Size of Memory Buffer: We explored
the influence of memory buffer size on the proposed method
and other memory based continual learning methods including
ER, ER + GMED, MIR, MIR + GMED, the result is shown in
Table V. The performance on forgetting mitigation is improved
with larger memory size. We set memory size to be 200 by
default.

2) Subject Shift Detection: Here, we explore the perfor-
mance of the proposed subject shift detection algorithm for
the three datasets. The number of shifts is number of subjects
minus 1, and for each dataset we run the experiment repet-
itively for 10 times. We provide visualization on the proba-
bilistic distribution of run length in Fig. 7. The probability
of run length dropping to zero is consistent with the ma-
jority cases of subject shifts. The algorithm successfully de-
tected 63 out of the 80 occurrences for BCI IV-2a, 225 out
of the 310 occurrences for DEAP dataset, 122 out of the 140
occurrences for SEED dataset, rendering detection accuracy
of 78.8% for BCI IV-2a, 72.6% for DEAP and 87.1% for
SEED dataset.
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Fig. 5. Forgetting mitigation improvement relative to base decoder on individual classes in terms of F1-score. Here the F1-score of individual classes is
evaluated at the end after all subjects finished sequential learning. (a) BCI IV-2a dataset. (b) DEAP dataset. (c) SEED dataset.

Fig. 6. Performance of individual subjects at the end of sequential learning. The AMBM method enables the model to achieve decent performance on earlier
subjects. (a) BCI IV-2a dataset. (b) DEAP dataset. (c) SEED dataset.

Fig. 7. Visualization on posterior distribution P (lSt |d1:t) during subject
shift detection, with x axis being the time step and y axis being the run
length. (a) BCI IV-2a dataset. (b) DEAP dataset. (c) SEED dataset.

We performed further analysis on our distance metric based
approach compared to direct usage of embedding from feature

extractor, based on the maximal information coefficient (MIC)
[54] and total information coefficient(TIC) [55] for evaluation
of correlation before and after the subject shift happens. These
two metrics are indicators of nonlinear dependencies between
variables. A smaller value means the variables are more inde-
pendent of each other, which is beneficial for the variable to be
used for subject shift detection as it filters out the overlapping
mutual information and makes it easier for the task. The result
is shown in Table VI. We observed the distance metric based dt

is significantly more independent of each other across different
time steps compared to direct usage of feature embedding et.
This illustrates the privilege of extracting distance metric infor-
mation from raw embeddings, which filters out the correlated
semantic information of the signal and reduces the overlapping
mutual information.

3) Module Ablation Settings: We performed a compre-
hensive comparison on the different ablation settings of the
proposed modules, with the result summarized in Table VII.
We observed the inclusion of mutual information maximization
across subjects in meta loop (MiM) contributes not only to the
improved performance of forward adaptation, but also achieves
significant performance gains for forgetting mitigation with im-
proved generalization across different subjects. The holistic fea-
ture extraction with mutual information maximization in base
loop (MiB) show benefits on the forward adaptation process
while the improvement on knowledge retaining is relatively
modest. On the other hand, the dynamic hyperparameter adap-
tation (HA) achieved notable gains for forgetting mitigation
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TABLE IV
PERFORMANCE WITH SUBJECT AGNOSTIC SETTING

Dataset BCI IV-2a DEAP SEED

Method Accuracy BWT Accuracy BWT Accuracy BWT

Meta + ER 44.95±0.28 −12.85±0.41 41.70±0.56 −8.41±0.37 54.67±0.49 −12.54±0.23
Meta + ER + GMED 46.32±0.43 −12.34±0.35 42.59±0.73 −10.21±0.66 56.38±0.51 −11.17±0.69
Meta + MIR 49.83±1.48 −9.96±1.29 45.81±2.31 −7.30±2.87 57.22±1.94 −12.78±1.72
Meta + MIR + GMED 50.25±1.37 −7.78±1.60 46.44±2.85 −8.27±2.47 59.52±1.76 −10.80±1.98

AMBM 52.88±1.73 −7.72±2.27 48.19±2.10 −7.84±2.36 65.25±1.24 −9.53±1.48

Note: The AMBM model functions on proposed subject shift detection algorithm. We observed the performance is slightly
deteriorating compared to the subject aware setting.

TABLE V
INFLUENCE OF MEMORY SIZE ON MODEL PERFORMANCE

Dataset BCI IV-2a DEAP SEED

Memory Size 100 200 500 100 200 500 100 200 500

Meta + ER 38.52±0.58 44.95±0.73 56.48±0.37 35.31±0.64 41.70±0.85 50.64±0.59 48.47±0.38 54.63±0.44 63.51±0.25
Meta + ER + GMED 41.63±0.45 46.39±0.60 57.96±0.32 37.24±0.74 42.58±0.66 52.42±0.39 50.89±0.41 56.35±0.58 65.17±0.27
Meta + MIR 45.73±1.34 49.84±1.68 59.39±0.85 39.51±2.73 45.80±3.09 54.26±2.16 51.34±3.33 57.28±2.75 66.64±2.04
Meta + MIR + GMED 45.95±1.85 50.22±2.47 59.14±1.53 40.79±3.70 46.41±2.44 55.97±1.91 51.95±3.20 59.56±2.50 67.36±2.73
AMBM 48.27±0.86 54.35±1.24 61.76±2.18 44.10±2.32 50.39±1.58 58.64±1.85 55.61±1.49 65.71±1.49 70.84±0.83

Note: The performance of forgetting mitigation is improved with larger memory size.

TABLE VI
NON-LINEAR CORRELATION TEST OF THE PROPOSED DISTANCE METRIC APPROACH COMPARING TO DIRECT USAGE OF FEATURE

EMBEDDING FOR SUBJECT SHIFT DETECTION

Dataset BCI IV-2a DEAP SEED

Non-linear Correlation MIC TIC MIC TIC MIC TIC

Feature embedding et 0.3348±0.0043 0.2133±0.0037 0.2919±0.0025 0.1962±0.0031 0.3493±0.0044 0.2274±0.0020
Distance metric dt 0.1931±0.0017 0.1057±0.0026 0.2045±0.0041 0.1183±0.0012 0.1975±0.0038 0.0981±0.0024

TABLE VII
DETAILED COMPARISON ON THE DIFFERENT MODULE ABLATION SETTINGS

Dataset BCI IV-2a DEAP SEED

Modules Adaptation Retaining Adaptation Retaining Adaptation Retaining

Base Model 48.12±0.24 35.83±0.36 42.56±0.49 29.31±0.75 52.28±0.39 36.85±0.43
Meta + MiB 55.30±0.87 37.51±0.62 47.72±1.15 33.26±1.40 64.23±0.54 42.51±0.96
Meta + MiM 58.73±1.44 46.29±0.95 52.38±0.74 43.85±1.03 69.40±1.27 56.94±0.70
Meta + HA 53.41±1.28 49.62±0.76 48.33±0.67 46.59±1.12 64.61±0.89 60.32±0.58
Meta + MiB + MiM 60.26±2.05 45.17±1.64 54.61±1.32 45.90±0.86 73.25±1.42 58.07±1.13
Meta + MiB + HA 56.58±0.61 51.05±1.47 49.24±0.96 46.44±1.54 66.82±0.93 61.60±2.08
Meta + MiM + HA 58.97±1.19 52.61±0.83 53.15±1.28 50.21±0.62 70.33±1.71 64.82±0.95
Meta + MiB + MiM + HA 59.50±1.33 54.35±1.02 54.93±1.79 50.49±1.58 72.61±0.96 65.71±1.49

Note: “MiB” denotes the mutual information maximization in base loop, “MiM” denotes the mutual information maximization
in meta loop and “HA” refers to the dynamic hyperparameter adaptation. We evaluated both the performance for subject
adaptation (evaluated immediately after learning of each subject) and knowledge retaining (evaluation performed on all
subjects at the end of sequential learning).

while having minor influence on subject adaptation. In Fig. 8,
we visualized the ratio of improvement relative to the margin
of AMBM model (compared to base decoder) for the different
module ablation settings.

4) Settings Toward Mutual Information Maximization:
Here, we study the different settings in mutual information

maximization for online adaptation of subjects. The model
computes mutual information on features of both current data
and memory data in meta loop. Two different approaches exist
for this, 1) perform feature concatenation and then perform MI
computation, which we denote as I{Ft,Fm}; and 2) perform
addition of mutual information at the end, which we denote
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Fig. 8. Visualization on the ratio of improvement relative to the margin of AMBM model (compared to base decoder) for the different ablation module
settings. The rows from top to bottom corresponds to subject adaptation and knowledge retaining performance respectively. The columns corresponds to the
three different datasets including BCI IV-2a, DEAP and SEED. (a) Adaptation on BCI IV-2a. (b) Adaptation on DEAP. (c) Adaptation on SEED. (d) Retaining
on BCI IV-2a. (e) Retaining on DEAP. (f) Retaining on SEED

TABLE VIII
MODEL PERFORMANCE WITH DIFFERENT MI SETTINGS

Dataset BCI IV-2a DEAP SEED

MI Setting I{Ft}{Fm} IFt I{Ft,Fm} I{Ft}{Fm} IFt I{Ft,Fm} I{Ft}{Fm} IFt I{Ft,Fm}

MI + ER 51.47±0.63 49.52±0.45 52.86±0.72 47.81±0.53 45.93±0.86 50.40±0.39 62.67±0.47 62.32±0.33 63.79±0.60
MI + MIR 52.10±2.48 50.97±1.34 55.25±1.51 49.58±1.26 46.21±2.07 51.34±1.66 63.59±1.34 62.83±2.58 64.16±2.02
AMBM 54.35±1.24 53.74±0.89 56.48±1.07 50.39±1.58 48.63±0.61 52.12±0.95 65.71±1.49 64.24±1.32 66.75±0.91

Note: Concatenating extracted features of current data Ft and memory data Fm before the MI computation renders best performance among
the three different settings.

TABLE IX
MODEL PERFORMANCE WITH DIFFERENT SUBJECT ORDERING

Dataset BCI IV-2a DEAP SEED

Ordering Sequential Ascending Descending Sequential Ascending Descending Sequential Ascending Descending

A-Gem 34.11±0.46 36.73±0.71 33.67±0.36 31.62±0.68 32.96±1.20 29.21±0.44 41.73±0.35 44.24±0.47 39.58±0.72
HAL 38.57±2.79 39.68±3.65 38.15±2.36 33.39±3.61 34.13±1.48 30.86±3.32 43.82±3.48 46.13±2.06 42.96±3.14
Meta + ER 44.95±0.28 46.11±0.43 43.60±0.62 41.70±0.56 43.73±0.78 39.57±0.31 54.67±0.49 56.82±0.63 51.79±0.24
Meta + ER + GMED 46.32±0.43 48.54±0.76 45.17±0.49 42.59±0.73 44.28±0.52 40.76±0.60 56.38±0.51 57.97±0.87 54.41±0.63
Meta + MIR 49.83±1.48 50.45±2.53 48.81±1.76 45.81±2.31 47.14±2.81 42.98±1.63 57.22±0.94 59.04±2.26 54.99±1.85
Meta + MIR + GMED 50.25±1.37 51.81±1.56 49.36±2.10 46.44±2.85 48.66±1.68 45.21±1.39 59.52±1.76 61.36±2.62 58.13±2.41
AMBM 54.35±1.24 55.75±1.43 53.23±1.85 50.39±1.58 51.54±1.71 48.61±1.93 65.71±1.49 67.47±0.86 63.92±1.15

Note: We conducted ablation study on three ordering settings: 1) ascend ordering based on id of subjects; 2) ascend ordering based on
decoding accuracy; and 3) descend

as I{Ft}{Fm}. And we also compare to only performing the
MI operation on features of current data Ft. Table VIII pro-
vides details on the comparison. We observed among the three

settings, the performance is worst when MI is only applied to
Ft. The concatenation of features Ft and Fm renders better
performance compared to adding MI outputs in the end.
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TABLE X
INFLUENCE OF CONTEXT SIZE ON MODEL PERFORMANCE FOR DOMAIN

AGNOSTIC SETTING, ON ALL THREE DATASETS

Context Size 2 4 6 8 10

Dataset ACC

BCI IV-2a 50.17±0.84 50.46±1.32 51.38±1.73 51.10±0.76 50.81±1.07
DEAP 46.15±1.53 46.44±1.89 46.96±1.29 47.19±2.10 46.54±1.48
SEED 63.76±0.87 64.24±1.62 64.65±1.24 64.38±1.45 63.91±1.06

5) Effect of Subject Ordering on Model Performance: The
level of difficulty in decoding differs across the subjects. For
example, subjects A02 and A04 are more challenging to decode
than A01 and A03 in BCI IV-2a dataset. Here, we explore
the different ordering of subjects toward model performance.
We study three different ordering scenarios, the first is sequen-
tial order, the second is ascending order based on eval accu-
racy, the third one is descending order based on eval accuracy.
We summarized the result in Table IX. The ascending order is
achieving the best performance among the three scenarios while
the descending order is most difficult to decode. This reveals
that forgetting is more severe when sequential learning begins
with easier subjects and ends with more challenging ones.

6) Window Size of Distance Metric: The window size
for distance metric calculation in Section III-D determines the
range of past time steps that is incorporated into consideration.
We performed ablation study on the effect of this window
size toward performance. The result is provided in Table X.
We found there is a tradeoff between window size and model
performance. For window size increasing from 2 to 10, the
performance improves at the beginning and then peaks and
deteriorates with larger size.

V. DISCUSSION AND CONCLUSION

In this work, we proposed a principled approach for online
sequential decoding of brain signals with the occurrence of
subject shifts, and simultaneously tackles the challenges of
fast adaptation and forgetting mitigation. The proposed method
forms a meta optimizer with bi-level mutual information maxi-
mization for fast adaptation on incoming subjects, which en-
ables effective alignment across different subjects and sig-
nificantly improves the generalization ability for fast adapta-
tion purposes. At the same time, the adaptive hyperparameter
update at meta loop effectively releases the potential of dif-
ferent portions of the neural network in retaining previously
learned knowledge and alleviates the catastrophic forgetting
issue. We formed challenging benchmarks for online sequential
EEG decoding on top of three different public EEG datasets.
The extensive empirical evaluation reveals the privilege of pro-
posed method, outperforming strong baselines in numerous
different ablation scenarios.

The limitations of the work include the following: 1) the
model maintains a small memory (for both subject alignment
and hyperparameter adaptation purposes), this increases the
memory cost to be slightly higher than base EEG decoder
(meanwhile comparable to continual learning baselines such as
ER and MIR); 2) Though the model achieved relatively large

improvement compared to baselines for the online sequential
decoding scenario, there is still a large performance gap from
the upper bound, further performance improvement is needed.

The model has wide applicability in real-world scenarios
such as robotic wheelchair control and rehabilitation training,
with new subjects arriving sequentially. Specifically, 1) fast
adaptation enables the model to achieve good performance on
newly arriving subjects; and 2) forgetting mitigation frees the
model from repeated training every time a new subject arrives,
instead it just needs to learn on the new subject and previous
knowledge is effectively retained by the model.

There are many directions for exploration of future work,
including: 1) exploration on sequence of subjects with het-
erogeneous classes; 2) thorough analysis on the correlation of
decoding accuracy with similarities of adjacent subjects; and
3) methods for online sequential decoding without usage of
memory buffer.
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