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ABSTRACT

The electrocardiogram (ECG) is a valuable signal used to
assess various aspects of heart health, such as heart rate
and rhythm. It plays a crucial role in identifying cardiac
conditions and detecting anomalies in ECG data. However,
distinguishing between normal and abnormal ECG signals
can be a challenging task. In this paper, we propose an ap-
proach that leverages anomaly detection to identify unhealthy
conditions using solely normal ECG data for training. Fur-
thermore, to enhance the information available and build a
robust system, we suggest considering both the time series
and time-frequency domain aspects of the ECG signal. As a
result, we introduce a specialized network called the Multi-
modal Time and Spectrogram Restoration Network (TSRNet)
designed specifically for detecting anomalies in ECG signals.
TSRNet falls into the category of restoration-based anomaly
detection and draws inspiration from both the time series and
spectrogram domains. By extracting representations from
both domains, TSRNet effectively captures the comprehen-
sive characteristics of the ECG signal. This approach enables
the network to learn robust representations with superior
discrimination abilities, allowing it to distinguish between
normal and abnormal ECG patterns more effectively. Fur-
thermore, we introduce a novel inference method, termed
Peak-based Error, that specifically focuses on ECG peaks, a
critical component in detecting abnormalities. The experi-
mental result on the large-scale dataset PTB-XL has demon-
strated the effectiveness of our approach in ECG anomaly
detection, while also prioritizing efficiency by minimizing
the number of trainable parameters. Our code is available at
https://github.com/UARK-AICV/TSRNet.

Index Terms— ECG, Anomaly Detection, Spectrogram

1. INTRODUCTION

The electrocardiogram (ECG) is a crucial time series data
that provides valuable insights into the detection and diag-

“Equal contribution

nosis of cardiac diseases. The morphology observed in each
lead of ECG provides insight into the electrical activity occur-
ring within specific segments of the heart. This information
proves invaluable in identifying abnormal myocardial condi-
tions [1, 2, 3, 4]. However, focusing solely on the classifi-
cation of specific diseases through ECG analysis may result
in the failure to detect various types of abnormal signals that
were not encountered during training. Therefore, our atten-
tion shifts towards the detection of anomalies in ECG signals,
a strategy with the potential to identify abnormal cardiac con-
ditions in patients, regardless of the diversity and rarity of
these conditions.

Unsupervised Deep Learning methods such as [5, 6,

, 8,9, 10, 11, 12] have demonstrated significant success
in the realm of time series anomaly detection. Currently,
BeatGAN [13], and Jiang et al. [14], which fall under the
restoration-based (also called reconstruction-based) category,
are primarily designed for ECG anomaly detection. Although
these methods have attained notable advancements, they
exclusively utilize the 1D ECG signals (i.e. time series do-
main), overlooking the potential of the 2D ECG spectrum (i.e.
time-frequency domain). The ECG spectrogram, which rep-
resents meaningful time-frequency representation, has been
successfully applied in ECG classification tasks [15, 2, 3].
Therefore, exploring the incorporation between time-series
and spectrogram offers an alternative avenue for tackling the
ECG anomaly detection challenge. As a result, this paper in-
troduces Multimodal Time and Spectrogram Restoration Net-
work (TSRNet), an unsupervised anomaly detection method
designed for ECG anomaly detection. TSRNet combines
both 1D ECG time series and 2D ECG spectrogram data us-
ing attention modules. The primary goals of our method are
to extract and fuse meaningful features from both domains
to robustly detect anomalies in ECG signals while maintain-
ing simplicity and parameter efficiency. Our contributions
include investigating the potential benefits of spectrograms
in ECG anomaly detection, developing the TSRNet model,
which incorporates a novel Peak-based Error, and evaluating
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its performance through multiple experiments on the PTB-XL
dataset [16].

Notably, TSRNet is trained exclusively on normal ECG
samples but is tested on both normal and abnormal samples.
Our network follows a reconstruction-by-inpainting anomaly
detection approach [17], where signals with a high restoration
error in the inpainting task are identified as anomalies.

2. METHODOLOGY

In this section, we introduce our unsupervised method, which
utilizes multi-lead ECGs (i.e. 12-lead) and their correspond-
ing time-frequency spectrogram. Specifically, our method
entails the design of a CNN-based model with cross-attention
enhancements, exclusively trained on multimodal normal
ECGs through a reconstruction task. Furthermore, we intro-
duce a novel inference method that enhances the accuracy of
distinguishing abnormal ECGs from normal ones in the infer-
ence phase, termed Peak-based Error. Our model is designed
in an unsupervised manner, and we will provide detailed
training and inference process as follows:

2.1. Training Process

Overall Architecture. Given a multi-lead ECG signal z..q €
RP*N where D is the signal length and N is the number
of leads (N = 12 in our case). We employ Short Time
Fourier Transform (STFT) [18] on x4, resulting in the time-
frequency spectral signal zspe. € RPXNXHXW = To intro-
duce randomness as well as learn important signal patterns,
both ¢ and pe. undergo a Masking-Out procedure (Sec-
tion 2.1) to be randomly masked-out. Subsequently, they are
separately fed into a 1D-CNN and a 2D-CNN encoders to ex-
tract meaningful features fe., and fspec, respectively. Next,
a shared weight two-layer cross-attention module is tailored
to fuse the features fecq and fope. from the two different do-
mains to form a fused feature fryseq. Finally, the fused fea-
ture fyyseq is processed by a 1D-CNN decoder to reconstruct
the original ECG signal and predict the uncertainty, which
implies the difficulty of reconstructing each data point. The
overall architecture of the model is depicted in Figure 1.
Masking-Out In this work, we apply a simple yet efficient
unsupervised learning approach called inpainting [19]. This
approach involves partially masking the input data to encour-
age the model to learn crucial signal patterns from the training
dataset. For 1D time series data, we apply masking across the
sequence by uniformly randomly choosing 30% data points
of each lead. For the 2D spectrogram, instead of masking
pixels or square patches, we use the striping approach. That
means, we only choose 20% time intervals, and masking out
all values belonging to those intervals. It is noteworthy that
the same mask is applied to all the leads. The masked times
series and spectrogram are denoted by x;’ggsked and x’g;‘;iked,
respectively.

CNN-based Encoder We employ a 1D CNN encoder ¢ to
distill features from the masked time series data z25*** and
a 2D CNN encoder 6 to extract frequency-related information

masked
from the masked spectrogram z7;¢¢

f&Cg = d)(;['gégsked) and fspec = g(l.gzgiked) (1)

In particular, different leads are treated as different channels
of the input. We do not apply padding in the 2D CNN encoder
since padding introduces too much noisy information, making
the model perform poorly, whereas padding is still used in the
ID CNN encoder. Each encoder consists of 5 convolutional
blocks, including one convolution layer, leaky ReLU activa-
tion function, and batch normalization layer. At the end of
0, we add a 1D convolution layer to transform the 2D latent
feature maps into 1D latent feature maps in such a way that
the time dimension is preserved. Therefore, the latent fea-
tures from both the encoders can be treated as sequences of
features.

Cross-Attention Fusion To combine information from time
series and spectrum domains extracted by the encoders ¢ and
0, we introduce an innovative cross-attention fusion module
to learn robust and informative features as shown in Figure 2.
First, we concatenate the two features fecq and fspec, result-
ing in feature f.,ncqt- Then we apply two shared weight self-
attention layers along with skip connections. The motivation
to duplicate the attention layers is to enhance the capacity of
the model but not too much so that the model is able to learn
the necessary long-range relationship but not too strong to at-
tain generalization ability. Finally, the processed sequence is
channel-wise refined into a shorter sequence by a linear layer
F. This can be considered as a regularization technique, pre-
venting the model from reconstructing even noises.

fconcat - COTLCCLt(fng, fspec

fal‘t fcon(,at + att(fcorbcat

3tt = att + att( tt

)
)

2

) (2)
ffused ( )

In this context, F comprises normalization and a ReLU acti-
vation function. The resulting sequence f,cq possesses the
same length as that of f..,.
CNN-based Decoder and Objective Function In the final
stage, the 1D CNN decoder w takes ffyscq as the input and
returns the reconstructed ECG signal y, accompanied by an
uncertainty o as a measurement of difficulty of reconstructing
each data point, i.e. (y,0) = w(ffused)

In the training procedure, we optimize the model with the
uncertainty-aware restoration loss [14] as follows:

>, eap(—o)

x (y" — ‘récg)2 + 0 (3)

L= o)

Intu-
2

Here, D is the number of data points in time-series.
itively, we can consider the first term exp(—o") x (y' —2%,,)
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Fig. 1. The overall of our proposed TSRNet framework: Starting with a 12-lead ECG time-series signal x.4, We generate a
time-frequency spectral signal x5, using Short Time Fourier Transform (STFT). Both x4 and z .. undergo a Masking-Out
procedure before being processed by a 1D-CNN encoder ¢ and a 2D-CNN encoder 6, resulting in fe.q and fspec, respectively.
A shared-weight two-layer cross-attention module is proposed to fuse these features, creating a fused feature ffyseq. Finally, a
1D-CNN decoder w processes the fused feature ff,scq to generate the reconstructed ECG signal y and the uncertainty o.
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Fig. 2. Tllustration of Cross-Attention Fusion. Two fea-
tures, fecq and fspe., are concatenated to form feoncar. Sub-
sequently, this concatenated feature undergoes processing
by two shared-weight self-attention layers. €D denotes the
element-wise addition.
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Fig. 3. Visualization of Peak-based Error in the ECG signal.
We only consider the R-peaks when detecting the anomaly
signal, which is marked by the pink segments.

as a constraint on the relationship between the uncertainty o
and the squared error (y — @ecq)?: if the error is big, then the
uncertainty must be also big to mitigate the error. In addi-
tion, optimizing the second term o encourages the model to
reconstruct the original signal more accurately.

2.2. Inference with Peak-based Error

In our training phase, the model exclusively learns from
normal ECG signals. Consequently, during the inference
phase, any signals associated with anomalies (i.e., unknown
classes) will exhibit higher reconstruction errors compared
to those from normal signals. As a result, we can directly
use the aforementioned uncertainty-aware restoration loss as
an indicator of signal anomalies. In other words, the larger
the restoration loss L is, the more likely the signal has an
anomaly. However, recognizing that anomalies are often de-
tected around the R-peaks, we introduce a Peak-based Error,
defined as follows:

EiEmask exp(—ai) X (yt - xécg>2 + Ui
[|mask||

5:

“

Here, the variable mask is defined as a window around R-
peaks as shown in Figure 3. The efficacy of this Peak-based

Error strategy is proved by the ablation study shown in the
Section 3. The classification of an input ECG signal as normal
or abnormal is contingent upon £.

3. EXPERIMENTS

A. Dataset and Evaluation Metrics.

Dataset: We conduct the experiments on PTB-XL dataset
[16], including 12-lead ECGs that are 10s in length for each
patient. For a fair comparison, we follow the data splitting
from the previous work of Jiang et al. [14], which utilizes
8,167 normal ECGs for training, and 912 normal with 1,248
abnormal ECGs for testing.

Metrics: We evaluate the network’s accuracy using the area
under the Receiver Operating Characteristic curve (AUC),
while the network’s complexity is measured by the number of
trainable parameters (params), and inference time (second).
C. Performance Comparison.

We compare our TSRNet with several SOTA methods in time
series anomaly detection, e.g. DAGMM [5], MAD-GAN [6],
USAD [7], TranAD [12], Anomaly Transformer [8], Zheng
et al. [20], BeatGAN [13], and Jiang et al. [I14]. All the
performance results are excerpted from Jiang et al. [14].
Those SOTA methods belong to the unsupervised time se-
ries anomaly detection approach with the same setting as our
method. As a result, we regard them as the most suitable
options for comparison in order to highlight the effectiveness
of our proposed method.

Analyzing the results presented in Table 1, it is evident
that our TSRNet outperforms other SOTA methods while
keeping its model size compact. It is worth highlighting that
our model achieves the same peak performance as Jiang et
al’s [14]. However, our model is not only designed as a sim-
pler framework but also requires fewer learned parameters.
Consequently, our model boasts significantly faster inference
speeds (more than x6), as demonstrated in Table 2. It’s worth
mentioning that the inference time results are averaged over
three runs for each method.

4. CONCLUSION

In this study, we introduced TSRNet, a simple and real-time
framework designed for ECG anomaly detection. TSRNet
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Table 1. ECG anomaly detection comparison on PTB-XL

dataset.
Methods | AUC 1
DAGMM (ICLR’18) [5] 0.782
MAD-GAN (ICANN’19) [6] 0.775
USAD (SIGKDD’20) [7] 0.785
TranAD (VLDB’22) [12] 0.788
Anomaly Transformer (ICLR’22) [8] | 0.762
Zheng et al. (MICCAT’22) [20] 0.757
BeatGAN (TKDE’22) [13] 0.799
Jiang et al. (MICCAI’23) [14] 0.860
TSRNet (Ours) 0.860

Table 2. Detailed comparison between two closely-matched
performance methods, i.e. our TSRNet and Jiang et al. [14]
on number of trainable parameters (M) and inference time (s).

Inference
Methods AUC1T Params(M)]  Time(s) |
Jiangetal. [14] | 0.860 7.09 0.19
TSRNet (Ours) \ 0.860 4.39 0.03

is rooted in a restoration-based approach and trained in an
unsupervised manner using inpainting mechanism. Notably,
TSRNet introduces an innovative perspective by emphasizing
the substantial impact of both time-frequency and time-series
domains on ECG anomaly detection. Additionally, we intro-
duced an effective cross-attention mechanism to merge infor-
mation from both modalities, enabling the model to leverage
the valuable characteristics embedded in each. For efficient
inference, we proposed a Peak-based Error strategy, which
prioritizes R-peaks to classify an input ECG signal as either
normal or abnormal. The experimental results demonstrate
that TSRNet achieves SOTA performance (AUC = 0.860)
while maintaining real-time inference capabilities (33.3 fps)
and a compact model size (4.39M params).
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