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Abstract— Machine learning (ML) models have gained 
prominence in solving real-world tasks. However, implementing 
ML models is both compute- and memory-intensive. Domain-
specific architectures such as Resistive Random Access Memory 
(ReRAM)-based Processing-in-Memory (PIM) platforms have 
been proposed to efficiently accelerate ML training and inference. 
However, existing ML workloads require a high amount of area 
and power for training. A major contributor to the area and power 
overheads is the Analog-to-Digital Converter (ADC). In this work, 
we propose a mixed pruning technique along with a novel 
reconfigurable ADC design to improve the power consumption 
profile. Overall, the pruned model with the reconfigurable ADC 
achieves ~50% reduction in power for training compared to 
existing state-of-the-art ReRAM-based architectures.    
Keywords—ReRAM, CNN training, Pruning, ADC  

I. INTRODUCTION  
Training machine learning (ML) models at the edge (on-chip 

training or on end-user devices) can address many pressing 
challenges associated with data privacy/security, increase the 
accessibility of ML applications to different parts of the world 
by reducing the dependence on communication fabric and the 
cloud infrastructure, and meet the real-time requirements of 
AR/VR applications. However, existing edge platforms do not 
have sufficient computing capabilities to support complex ML 
tasks such as training deep Convolutional Neural Networks 
(CNNs). ReRAM-based processing-in-memory (PIM) offers 
high-performance yet energy-efficient computing platforms for 
on-chip CNN training. This is due to their inherent capability to 
perform energy-efficient and high-throughput matrix-vector 
multiplication (MVM). Despite these advantages, deep CNNs 
with multiple layers require high power for training.  

Recent work has proposed quantization and pruning to 
reduce the storage and power overheads of implementing deep 
CNNs on ReRAM-based PIM platforms [1] [2]. However, they 
are mostly targeted toward CNN inferencing and are not suited 
for training at the edge. Unlike inferencing, we also need to store 
the intermediate activations (in addition to the weights) during 
training. Simply pruning/quantizing weights does not help to 
reduce the storage and power overhead for activations. 
Moreover, existing techniques do not adequately reduce the 
number of ReRAM peripherals (e.g., ADCs). The ADCs in 
particular contribute between 50-70% of the power in a 
ReRAM-based PIM accelerator [3] [4]. Since, the power cost of 
ADCs scales exponentially with their precision, reducing the 
precision of ADCs without compromising the accuracy is key to 
saving power.  

In this work, we achieve this by proposing a mixed-weight 
pruning technique that maximally prunes weights. In addition to 
the mixed pruning technique, we leverage dropout to further 

reduce the number of activations that must be stored in memory. 
The mixed pruning method involves a coarse-grained structured 
weight pruning where the granularity varies from filters to 
channels to index of the CNN weights. This is followed by fine-
grained unstructured pruning. Hence, we refer to this mixed 
pruning method as coarse-to-fine-grained pruning (C2F). As we 
show later, C2F also prunes some activations. Dropout is also 
used as a mechanism to sparsify activations further. The C2F 
pruning along with Dropout enables the reduction of both the 
number and precision of required ADCs.  

As we show later, different CNN layers achieve different 
levels of sparsity using C2F pruning and Dropout; this 
necessitates variable ADC precisions, which is not possible with 
conventional ADC designs. Hence, to support the mixed weight 
pruning (structured + unstructured) and Dropout, we propose to 
use a reconfigurable ADC. In this work, we propose a 
reconfigurable time-based ADC design [5]. The 
reconfigurability of the ADC stems from its ability to 
reconfigure the number of bits (precision) by disabling the lower 
LSB bits of the ADC. Hence, this approach enables a flexible 
and power-efficient design for ReRAM-based architectures with 
varying ADC requirements. The main contributions of this 
paper are:  

• We propose a weight pruning technique called C2F, 
which along with dropout, sparsifies both weights and 
activations thereby reducing the power required for CNN 
training on ReRAM-based PIM architectures. 

• We propose a reconfigurable ADC to efficiently support 
the C2F pruned CNN model during training to achieve 
greater power savings  

• Experimental results indicate that the proposed solution 
achieves significant power reduction compared to 
existing architectures for CNN training.   

II. RELATED PRIOR WORK 
ReRAM crossbars are well-suited for performing efficient 

MVM operations, which are predominant in CNN workloads 
[6]. Recent work has proposed ReRAM-based architectures for 
CNN inference. However, these architectures cannot efficiently 
support CNN training especially as the CNNs grow larger. Some 
ReRAM-based PIM architectures for CNN training have been 
proposed [7] [8]. However, they require a high bandwidth 
memory hierarchy for off-chip activation storage, which results 
in high latency and power costs [3].   

Pruning is a popular technique for removing redundant 
weights and effectively reducing the computation and memory 
costs of CNN training and inferencing. Unstructured pruning 
does not result in a commensurate area or power savings 
compared to the amount of sparsity. Recent work has proposed This work was supported, in part by the US National Science Foundation 
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crossbar-aware pruning methodologies that remove weights in 
regular (or structured) shapes to enable more hardware savings 
[4] [9] [10]. These existing pruning techniques when applied 
naively to ReRAM-based architectures, prune out only the CNN 
model weights and do not sparsify activations during training. 
Existing pruning strategies also do not reduce the hardware 
overhead due to peripheral circuit components such as ADCs [4] 
[1]. As a result, ADCs with high power and area overheads are 
still required for ReRAM crossbars even after pruning.  

Recent work has proposed ADC-aware optimization 
techniques for ReRAM crossbars [4] [11] [2]. However, they 
assume lower but uniform ADC precision requirements across 
CNN layers. This can lead to accuracy loss when low-bit ADCs 
are used for precision-critical CNN layers as we show later. 
Recently, a load balancing optimization technique for CNN 
inferencing was proposed, which leverages a reconfigurable 
ADC design for ReRAM-based accelerators [12]. However, the 
load balancing-based method is also focused on inferencing and 
is not suitable for the input-dependent nature of activations 
during CNN training. Therefore, it is important to explore 
peripheral-circuit-aware techniques that efficiently accelerate 
CNN training on ReRAM-based architectures without any 
accuracy loss.  In this work, we address these limitations by 
proposing the C2F pruning technique with Dropout, which 
along with the reconfigurable ADCs reduces power.  

III. JOINT WEIGHTS AND ACTIVATIONS PRUNING  
In this section, we discuss the important features of the 

coarse- to fine-grained pruning technique (C2F). Also, we 
complement C2F with dropout specifically for activation 
pruning. Overall, we aim to enable training CNN models at the 
edge. CNN training requires storing both weights and 
activations. The C2F pruning requires several training iterations 
to generate the pruned model. Hence, we implement the C2F 
pruning offline (i.e., on GPUs) to first obtain the pruned but 
untrained CNN model as shown in Fig. 1.   However, activations 
are input-dependent and cannot be implemented offline. Hence, 
we implement the dropout-enabled activation pruning online 
during the training with the pruned CNN model on the ReRAM-
based architecture. We implement Dropout using Linear 
Feedback Shift Registers (LFSRs), which require little area and 
power. Next, we present more details about sparsifying both 
weights and activations.  

A. Coarse- to Fine-grained (C2F) Pruning Technique 
As mentioned earlier, existing pruning methods can be 

categorized as either structured or unstructured. Unstructured 
pruning can remove more weight than the structured 

counterpart, but it is oblivious to the underlying crossbar 
structure. Hence, it often does not translate to a significant area 
or power savings [4]. On the other hand, structured pruning does 
not achieve the same level of sparsity as the unstructured 
counterpart, but it saves more area and power than unstructured 
pruning. C2F synergistically combines both structured and 
unstructured pruning and hence is more effective.  

The C2F technique achieves this by adopting an iterative 
magnitude pruning approach to find a highly sparse and 
trainable model following the Lottery Ticket Hypothesis (LTP) 
[13]. Figs. 2 (a)-(d) show the overall C2F pruning process. C2F 
prunes (in order) (a) filter-wise, to reduce the number of 
columns across multiple ReRAM crossbars required for storing 
weights, (b) channel-wise to ensure that columns within a 
ReRAM crossbar are reduced, (c) index-wise, which prunes 
entries along rows of a crossbar, and (d) element-wise (finest 
pruning) which prunes individual weights in an unstructured 
fashion to maximize sparsity. The filter-, channel-, and index-
wise pruning constitute the structured part of the C2F pruning. 
C2F prioritizes filter-wise pruning as it reduces both the weights 
and activations. As shown in Fig 2(b), pruning out an entire filter 
from a CNN layer ensures that an entire column is pruned in all 
four crossbars. This produces sparse output (activations) from 
the crossbars. However, the relatively coarse granularity of 
pruning does not lead to significant sparsity without accuracy 
loss. Once C2F fails to prune filter-wise without significant 
accuracy drop, it switches to channel-wise, followed by index-
wise, and then finally unstructured pruning (Fig. 2(c)-(d)) to 
maximize sparsity with less than 1% accuracy drop. As 
mentioned earlier, the iterative C2F pruning process is 
implemented on conventional computing platforms such as 
GPU/CPU offline. This pruning phase is a one-time process. 

(a) Unpruned  (b) Filter-wise Pruning  

      
         (c) Channel-wise Pruning         (d) Index-wise & element-wise pruning 

        
Fig. 2: Illustration of the C2F Pruning method. 
Algorithm	1.	C2F Pruning 
Input: Unpruned CNN model, pruning percentage p 
Output: C2F Pruned CNN model 
Algorithm: 
1: Initialize:    ;  
2: While	itr < N and no accuracy_drop	do 
3:  Train for E epochs 
4:  Prune	p% of filters based on magnitude (||)	
5:  If	new_accuracy	<	Baseline_accuracy	do 
6:   Undo last pruning step 
7   Switch to finer pruning strategy (Channel-wise 

-> Index-wise -> element-wise pruning) 
8: 	 Reinitialize	remaining weights with   
9: Return	Hardware-friendly	C2F	Pruned	Model	 
 

 
Fig. 1: Overview of the C2F pruning enabled energy-efficient deep CNN 
training/inference on ReRAM-based PIM platforms. 
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Once the pruned model is obtained, it can be reused since LTP-
enabled pruned models are largely dataset-agnostic [14]. Here, 
we deploy the previously pruned model to the ReRAM 
accelerator as shown in Fig. 1 for future training tasks with any 
dataset [14], thereby amortizing the cost (time/energy) for the 
offline C2F pruning itself.    

Algorithm 1 presents the high-level details of the C2F 
pruning strategy. We start by initializing the CNN weights () 
using Xavier or Kaiming initialization (line 1) [7], then we train 
the CNN for E epochs. Next, we first prune the p% of the low 
magnitude CNN weights using coarse filter-wise pruning, and 
progressively switch to finer punning strategies (channel-, 
index-, and element-wise pruning), with <1% accuracy loss 
(lines 4-7). Finally, the C2F pruned (but untrained) model can 
then be used to train on resource-constrained edge devices with 
little area and power.  

B. Activation Pruning using Dropout 
Weight pruning does not automatically result in activation 

sparsity. Only the filter-wise pruning in C2F introduces some 
sparsity in the activations. To further sparsify the activations, we 
incorporate the dropout method on the activations. Dropout 
introduces unstructured sparsity without loss of accuracy.  
Dropout is a well-known regularization technique for CNN 
training which solves the overfitting problem and improves the 
model’s generalizability to unseen data [15]. Dropout randomly 
prunes (temporarily) output activations of layers, which can be 
leveraged to save power as well. Traditionally, dropout is 
applied to the activations of the last few fully connected layers 
of CNNs only [15]. However, activation sizes typically decrease 
as the input passes through the various CNN layers. The last few 
CNN layers have a few activations. Hence, dropout only on 
these layers does not result in any hardware savings. 

 In reality, the initial layers of the CNN produce most of the 
activations stored on-chip during the pipelined training of CNNs 
on the ReRAM architectures [7]. For example, in VGG11 the 
output activations of the first two layers make up more than 70% 
of the total activations required for training as we show later. 
This happens because the initial layers process larger-sized 
activations. In addition, due to the pipelined execution of CNN 
training on ReRAM-based platforms, the memory requirement 
is especially high for the first few layers [6] [7]. The memory 
required for activation storage of a given CNN layer at depth (l) 
for pipelined training is multiplied by a factor of 2–  +  1 
(where L = number of CNN layers) [7]. As is clear from the 
equation, the initial layers need much more storage for 
activations compared to the later layers. Hence, in this work, we 
apply dropout on these first few layers to significantly sparsify 
activations. As typically done in practice, we also incorporate 
dropout on the last fully connected layers to prevent overfitting 
and improve prediction accuracy. However, adding dropout to 
the last few layers does not help with reducing activation storage 
significantly. 

 Other activation pruning methods such as magnitude-based 
activation pruning can also be used too. However, we show later 
that magnitude activation pruning leads to a significant accuracy 
drop during training. Similarly, applying dropout to every CNN 
layer also leads to significant accuracy degradation. Therefore, 
to effectively reduce the number of activations stored on the 

ReRAM crossbars during CNN training without accuracy loss, 
dropout should be applied to a few initial layers only. This 
reduces the ADC precision requirements for ReRAM crossbars 
that store the activations of the first few layers.   

C. ADC Design for C2F Pruned CNNs on ReRAM Platforms 
An ADC is necessary to interface between the ReRAM 

crossbar and the digital peripherals. The minimum ADC 
precision ( ) required for a ReRAM crossbar is 
determined by the number of rows activated (r), the number of 
input bits processed per cycle (v), and the number of weight or 
activation bits (w) stored per ReRAM cell. The required ADC 
precision (following [6]) is computed as follows [6]:  

     =  +  + log ! − 2           (1) 

Following equation (1), a ReRAM crossbar of size 128×128 
(r = 128), with 1-bit input per cycle (v = 1), and 2-bits stored per 
cell (w = 2), would require an 8-bit ADC in an unpruned 
scenario. It is well known that large ADCs (e.g., 8-bit) are 
power-hungry and this problem must be addressed. Besides the 
precision, having too many ADCs incurs significant power 
overhead. A single ADC is often shared by multiple ReRAM 
columns (one ADC is shared by 128 columns as in [6]). 
Therefore, it follows that the number of ADCs required for c 
ReRAM columns is given by: ⌈128/c⌉. 
The structured pruning part of C2F removes (prunes) all the 

weights mapped to selected columns while leaving all the 
weights in other columns intact, i.e., structured pruning reduces 
the value of c only. This enables us to use fewer ADCs. 
However, it does not affect the precision of ADCs. Hence, we 
will have a few, but high precision ADCs with structured 
pruning. On the other hand, unstructured pruning removes 
weights from every column but may not prune all the weights in 
a column i.e., unstructured pruning reduces the effective value 
of r. This allows us to use ADCs with lower precision. However, 
it does not reduce the number of ADCs required. Hence, 
unstructured pruning results in many but lower precision ADCs. 
C2F combines the benefits of both these pruning techniques and 
maximizes power savings by reducing both the number and size 
of ADCs.  

In addition, dropout can be seen as a form of unstructured 
pruning. Hence, we can further reduce the precision of ADCs 
for activations following equation (1). For example, if only 8 out 
of 128 weights or activations are left on a column after C2F 
pruning and dropout, this effectively activates only 8 rows (r = 
8). Thus, a 4-bit ADC can be used instead of an 8-bit ADC (as 
in the unpruned model) for the computation. This is a non-trivial 
reduction in peripheral power as the ADC power increases 
rapidly with the bit precision [3]. The power consumption 
increases by approximately 1.5-2× for every additional bit of 
resolution. Overall, C2F pruning combined with dropout can 
reduce both the precision and the number of ADCs required.  

However, the amount of pruning varies with each CNN 
layer. The first few layers in the CNN have few weights that 
cannot be easily pruned, while the later convolution layers can 
be pruned to a greater extent [13]. As a result, C2F (and other 
pruning techniques) achieve different levels of sparsity for 
different CNN layers. This necessitates ADCs with different 
precisions for each layer. Hence, we propose to incorporate a 
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reconfigurable ADC design (discussed next), that can enable 
different precisions as needed.  

D. Time-Based ADC Design for ReRAM Crossbars.  
Existing Successive Approximation Register (SAR) and 

Flash ADC architectures have been adopted for the ReRAM-
based accelerators [3]. SAR ADCs are commonly used for 
ReRAM crossbars due to their relatively simple structure and 
low area/power overhead compared to Flash ADCs [3]. 
However, SAR ADCs do not scale with technology, due to their 
analog sub-block circuits. On the other hand, Flash ADCs 
provide higher conversion speed, but they suffer from limited 
precision, which is not suitable for CNN training.  

Time-based ADCs offer superior time resolution and 
scalability, making them attractive for designing complex PIM 
systems [16] [17]. The time-based ADC design is composed of 
two primary blocks, namely the voltage-to-time converter 
(VTC) and the time-to-digital converter (TDC). The analog 
input signal is sampled and processed by the VTC to produce an 
output pulse width that corresponds to the input voltage. This 
timed signal is subsequently converted to the digital domain by 
the TDC, as illustrated in Fig. 3. In this context, a timed signal 
implies a time-delayed signal where differently delayed clock 
signals are generated based on the input voltage.  
The proposed ADC features a new VTC with a low-power 

consumption, process, and temperature-insensitive design, high 
linearity, and dynamic range [16]. The VTC consists of three 
main components: a sampler, a delay generation circuit with 
self-tracking, and a pulse generator. The sampler generates a 
discrete-time voltage signal from the input voltage, which is 
then used by the delay generation circuit to produce a delayed 
pulse width modulation (PWM) signal. The proposed VTC 
design, with its delay generation circuit featuring self-tracking, 
achieves superior linearity. This makes it highly effective, 
regardless of temperature or other environmental factors. We 
reduce this ADC architecture's dynamic power consumption by 
limiting the ramp signal, making it a power-efficient solution. 
Furthermore, the delay increases linearly with the sampled input 
voltages, ensuring accuracy and stability in detecting input 
signals. Incorporating a self-tracking circuit and limiting the 
ramp makes the proposed ADC architecture a highly effective 
solution for ReRAM-based architectures.  

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
We evaluate the C2F pruning method on the CIFAR-10 

dataset using diverse CNN models: VGG-11 (V11), VGG-19 
(V19), ResNet-18 (R18), ResNet-34 (R34), and GoogleNet 
(GN) [13]. The C2F pruning is implemented on an NVIDIA 
Titan GPU with 24GB of memory. The C2F pruning is offline 
and it results in a pruned but untrained CNN, which is then 

mapped to a ReRAM-based PIM architecture and trained with 
dropout for 50 epochs and a learning rate of 0.01 as an example. 
In this work, we simulate the on-chip training process on the 
ReRAM-based architecture using NeuroSim [18]. We follow the 
hierarchical ReRAM tile configuration presented in [6]. Each 
ReRAM tile consists of multiple 128×128 crossbar arrays that 
can be used for storage and computation with both weights and 
activations [6]. The weights and activations are stored using 16-
bit fixed-point precision. Each tile contains a 16-bit 
reconfigurable LFSR operating at 1GHz for implementing 
dropout, which consumes less than 1% of the ReRAM tile area 
and power [19]. We summarize the hardware specifications of 
the ReRAM-based PIM architecture in Table I. 

ADC Power and Area: The power consumption of the 
proposed time-based reconfigurable ADC is shown in Table II 
for various bit precisions obtained through Cadence simulations. 
The proposed Time-based reconfigurable ADC operates at a 
1.2GHz sampling frequency and occupies an area of around 
0.0013mm2 in the TSMC-28nm technology node. The VTC’s 
size and power consumption are independent of the number of 
bits, as only the number of TDC increases based on the number 
of bits and its area. Therefore, the power behavior is not linear 
with respect to the number of bits. The proposed VTC 
architecture, along with the constant field scaling and time 
interleaving, offers a promising solution for reducing the power 
consumption of ReRAM-based architectures while maintaining 
high accuracy and performance.  

Baseline Pruning: To ensure a fair and thorough evaluation, 
we consider the unpruned CNN model as a baseline (BL). We 
benchmark the performance of the C2F pruned models trained 
with dropout, with two existing techniques. We consider the 
existing standard LTP method as the representative unstructured 
pruning method [13], and a recently proposed crossbar-aware 
structured pruning (CSP) technique [10]. The CSP 
method utilizes a multi-group LASSO algorithm to prune groups 
of weights that would otherwise be mapped along a column in a 
ReRAM crossbar. We implement iterative pruning (as shown in 
Algorithm 1) in all the methods to ensure that maximum sparsity 
can be achieved without incurring significant accuracy loss.  

B. Accuracy of C2F Pruned Models with Dropout 
As mentioned earlier, we must prune weights and activations 

as they both must be stored on-chip for training. C2F inherently 
prunes weights and some activations. We further increase the 
sparsity on the activations using Dropout to reduce ADC 
precision and number; this step leads to high power savings. 
Dropout is applied to the fully connected layers to improve 
inferencing accuracy. However, the last fully connected layers 
generate fewer activations than the initial convolution layers. 
Hence, having dropout only on the last few layers is not very 
useful for reducing storage requirements.  

Delay
Generation

Pulse
Generator Linear

TDC
Delay

Tracking Circuit

Time
CLK

Vin
S/H

V[n]

 
Fig. 3: The Proposed Time-based ADC Architecture [5] 

TABLE I.  RERAM-BASED PIM ARCHITECTURE SPECIFICATIONS 
16 PEs, 4 tiles per PE 

ReRAM Tile 

96 Time-based ADCs, 128×96 DACs (1-bit), 96 
crossbars, 128×128 crossbar array, 2-bit/cell 

resolution, 0.34W, 0.38 mm2 [19] 
1 Programable LFSR (16-bit) 

TABLE II.  TIME-BASED ADC POWER REQUIREMENTS 
ADCprecision 3-bits 4-bits 5-bits 6-bits 7-bits 8-bits 
Power (mW) 0.18 0.20 0.24 0.31 0.46 0.77 
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Fig 4(a) shows the distribution of activations across layers 
during the pipelined training of VGG11 on the ReRAM-based 
architecture. As mentioned earlier in Section IIIB, the first layer 
of VGG-11 generates ~50% of the activations during pipelined 
training on the ReRAM-based architecture, while the last few 
layers generate less than 2%, as shown in Fig. 4(a). Hence, 
simply applying dropout to just the last few fully connect layers 
only is insufficient. Applying dropout to all layers leads to 
diminishing returns as the majority of the activation storage is 
used to store the data from the first CNN layer. Hence, we apply 
a dropout ratio of 0.5 on the activations of the first layer 
(DL1=0.5) while training the C2F pruned model on the ReRAM-
based architecture. We set the dropout ratio in the first layer to 
be 0.5 (DL1=0.5), as this is sufficient to ensure a 1-bit reduction 
in the ADC precision requirement.  

We compare the accuracy of this selective Dropout with two 
other activation pruning methods (a) pruning activations using 
simple magnitude-based pruning (MAP) and (b) a Dropout of 
50% is incorporated in all CNN layers (Drop_All). Both MAP 
and Drop_All include C2F for weight pruning. Fig. 4(b) shows 
the accuracy of the C2F pruned model trained on the ReRAM-
based architecture with different activation pruning methods 
incorporated. As shown in Fig.4(b), pruning activations using 
MAP causes the CNN model to train poorly (<30% accuracy). 
Moreover, implementing MAP on-chip requires sorting of the 
activations based on their magnitude, which requires additional 
hardware overhead. It is also evident that Drop_All leads to 
poorer training performance compared to the baseline unpruned 
model (BL). Hence, in this work, we use dropout in the first 
layer (DL1=0.5), which is a simple and effective method to prune 
activations without drastic accuracy degradation. Following 
existing work, we also apply dropout on the last fully connected 
layers to prevent overfitting and ensure no accuracy loss [15]. 
C2F reduces both the number of weights and activations and 
Dropout reduces the number of activations further. Overall, this 
leads to significantly lower energy requirements. Henceforth, 
we refer to the C2F pruned model with dropout as C2FD. In all 
the subsequent analyses, we employ C2FD as the overall 
pruning method.  

Fig. 4(c) and Fig. 4(d), compare the effectiveness of the 
C2FD in terms of the prediction accuracy and the achievable 
sparsity respectively with other pruning methods. The CNN 
models are pruned using each pruning technique (LTP, CSP, & 
C2F), and then we map the pruned CNNs to the ReRAM-based 
platform for the training evaluation. The goal of the iterative 
pruning approach (Algorithm 1) is to find the sparsest model that 

can be trained from scratch with minimal accuracy loss (<1%). 
As shown in Fig. 4(c), the C2FD pruned model achieves 
comparable accuracy with other pruning methods for all CNN 
models. In Fig 4(d), we show the percentage of weights pruned 
(sparsity) using each method (UP, CSP, & C2F). LTP achieves 
the highest sparsity (99.20%) due to its unstructured nature, 
while CSP achieves the least sparsity because of its structured 
pruning (94.60%). C2FD combines both unstructured and 
structured pruning to achieve high sparsity (98.40%) as shown 
in Fig 4(d).  Moreover, as discussed earlier, in addition to 
pruning the weights, C2FD also prunes activations due to its 
filter-wise pruning and dropout. For example, in V19, C2FD 
achieves an average activation sparsity of 53.27%, while LTP 
and CSP achieve a lower activation sparsity of 30.25% and 
33.41% respectively. Next, we present the power savings when 
training the C2FD-enabled CNN on the ReRAM-based PIM.  

C. Overall Power Analysis 
It is well known that the high precision ADC peripheral 

circuits in ReRAM-based PIM architectures contribute 
significantly to the overall chip power consumption [3] [6]. 
Hence, the reconfigurable ADC design proposed in this work 
enables optimizations that focus on reducing the bit precision of 
ADCs, thereby reducing the overall power consumption. As 
discussed earlier, the C2F pruning approach leads to varying 
sparsity levels across different CNN layers as shown in Fig. 5(a). 
Highly sparse CNN layers tend to have fewer weights per 
ReRAM crossbar column left on average after pruning (smaller 
r in eqn. (1)). Hence, the ADCs required for such layers can be 
reconfigured to use a lower bit precision to save power. In Fig. 
5(a), we show the minimum ADC requirements and per-layer 
sparsity of the weights in the C2FD pruned VGG-19 CNN as an 
example. Here, we observe that the initial and final layers have 
less sparsity (i.e., more weights remaining), and hence require 
high-precision ADCs (8 bits). Meanwhile, the intermediate 
layers are significantly pruned and thus require low-precision 
ADCs (4-6 bits). This necessitates a reconfigurable ADC design 
for the ReRAM-based architecture as proposed in this work.  

Fig. 5(b) compares the power consumption of two types of 
ReRAM-based PIM architectures: with uniform 8-bit ADC 
design, and the proposed architecture with reconfigurable ADC 
design. Here, we map the VGG19 pruned model obtained using 
the offline pruning techniques (LTP, CSP, & C2FD) to both 
architectures. We observe that for each pruned model, the 
reconfigurable ADC design inherently consumes less power 
compared to the all 8-bit ADC counterpart. Moreover, the C2FD 

 
   (a)    (b)    (c)            (d)   
Fig. 4: (a) Distribution of activations across multiple VGG11 layers during pipelined training, (b) prediction accuracy of VGG-11 C2F pruned model with dropout 
on the first layer (DL1), all layers (Drop_All), magnitude pruning (MAP) compared to the baseline (BL), (c) Overall accuracy of pruned CNNs using LTP, CSP, & 
C2FD compared to the unpruned model BL, (d) average sparsity of pruned CNNs using LTP, CSP, & C2FD. 
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pruned model consumes the least power (<40%) when it is 
mapped to the reconfigurable ADC design.  

Fig. 6 shows the breakdown of the ADC precision 
requirements when the ResNet-18 CNN is pruned using all 
three methods (LTP, CSP, & C2FD) as an example. Each 
pruned version of ResNet-18 is mapped onto the ReRAM 
architecture with reconfigurable ADCs. As seen in Fig. 6, the 
LTP and CSP pruned models require more high-precision 
ADCs compared to C2FD. For example, 8-bit ADCs constitute 
55% and 62% of the total number of ADCs for LTP and CSP 
respectively, while for C2FD, this number is only 39%. This is 
because the finer-grained pruning in C2FD reduces the number 
of elements left in each ReRAM crossbar column, thereby 
reducing r (as in eqn. (1)) and the ADC precision. Moreover, 
the dropout incorporated in C2FD further reduces the number 
of 8-bit ADCs from 48% in C2F only to 39% as we show in Fig. 
6(c). Hence, the C2FD-enabled pruned model requires fewer 8-
bit ADCs and more lower precision ADCs (7bits, 6bits, etc.). 
This precision reduction leads to overall power savings.   

We evaluate the overall power consumption of the ReRAM-
based architecture with reconfigurable ADC design. Fig. 7 
presents the overall power consumption of the C2FD pruned 
model compared to other pruning methods for the different 
models considered in this work. The C2FD pruned model 
achieves ~50% reduction in power consumption compared to 
the unpruned model (BL). Moreover, the C2FD pruned model 
consumes ~10% and ~18% less power compared to the CSP 
and LTP methods respectively. Overall, the C2FD pruning 
enables significant power savings on the ReRAM-based 
architecture with the proposed reconfigurable ADC design.       

V. CONCLUSION 
In this work, we demonstrate that coarse-to-fine weight 

pruning and dropout-enabled activation pruning enable us to 

reduce both the number and precision of power-hungry ADC 
circuits in ReRAM-based architectures for training CNNs. By 
incorporating a reconfigurable ADC architecture, we can reduce 
the ADC requirements (both number and precision) 
significantly without any noticeable loss in model accuracy 
while training the CNN models. This approach effectively 
reduces the overall on-chip power consumption by ~50% 
compared to the unpruned counterpart.  

REFRENCES 
[1]  G. Yuan et al., "FORMS: Fine-grained Polarized ReRAM-based In-situ 

Computation for Mixed-signal DNN Accelerator," in ISCA, 2021.  
[2]  S. Huang et.al, "Mixed Precision Quantization for ReRAM-based DNN 

Inference Accelerators," in ASP-DAC, 2021.  
[3]  K. Roy et al., "In-Memory Computing in Emerging Memory 

Technologies for Machine Learning: An Overview," in (DAC), 2020.  
[4]  G. Yuan et. al, "TinyADC: Peripheral Circuit-aware Weight Pruning 

Framework for Mixed-signal DNN Accelerators," in DATE, 2021.  
[5]  S. Mohapatra et al., "Low-Power Process and Temperature-Invariant 

Constant Slope-and-Swing Ramp-Based Phase Interpolator," IEEE 
JSSC, 2023.  

[6]  A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator 
with In-Situ Analog Arithmetic in Crossbars Ali," in ISCA, 2016.  

[7]  L. Song, X. Qian, L. Hai and Y. Chen, "PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning," in IEEE HPCA, 2017.  

[8]  A. Ankit et. al, "PANTHER: A Programmable Architecture for Neural 
Network Training Harnessing Energy-Efficient ReRAM," IEEE 
Transactions on Computers, 2020.  

[9]  C. Ogbogu et. al, "Accelerating Large-Scale Graph Neural Network 
Training on Crossbar Diet," IEEE TCAD, 2022.  

[10] J. Meng et al., "Structured Pruning of RRAM Crossbars for Efficient In-
Memory Computing Acceleration of Deep Neural Networks," IEEE 
Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, 
pp. 1576-1580, 2021.  

[11] Y. He et. al, "InfoX: An Energy-Efficient ReRAM Accelerator Design 
with Information-Lossless Low-Bit ADCs," in IEEE DAC, 2022.  

[12] D. Kim et. al, "SAMBA : Sparsity Aware In-Memory Computing Based 
Machine Learning Accelerator," IEEE Transactions on Computers , 
2023.  

[13] J. Frankle and M. Carbin, "The lottery ticket hypothesis: Finding sparse, 
trainable neural networks," in ICLR, 2019.  

[14] A. Morcos, Y. Haonan, M. Paganini and Y. Tian, "One ticket to win them 
all: Generalizing lottery ticket initializations across datasets and 
optimizers," NeurIPS, 2019.  

[15] N. Srivastava et. al, "Dropout: A simple way to prevent neural networks 
from overfitting," JMLR, 2014.  

[16] K. Ohhata, "A 2.3-mW, 1-GHz, 8-Bit Fully Time-Based Two-Step ADC 
Using a High-Linearity Dynamic VTC," IEEE JSSC, 2019.  

[17] M. Zhang et.al, "A 20GS/s 8b Time-Interleaved Time-Domain ADC 
with Input-Independent Background Timing Skew Calibration," in 
Symposium on VLSI Circuits, 2021.  

[18] X. Peng et al., "DNN+NeuroSim V2.0: An end-to-end benchmarking 
framework for compute-in-memory accelerators for on-chip training," 
arXiv:2003.06471, 2020.  

[19] A. Arka et al., "DARe: DropLayer-Aware Manycore ReRAM 
architecture for Training Graph Neural Networks," in ICCAD, 2021.  

 
Fig. 7: Overall power consumption for each CNN normalized with respect to 
their unpruned versions (BL). 
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Fig. 6: Breakdown of ADC requirements for ResNet18 after pruning using; (a) 
unstructured pruning (LTP), (b) Crossbar-aware structured pruning (CSP) (c) 
the proposed coarse- to -fine- grained pruning with dropout (C2FD).   
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Fig. 5: (a) ADC requirements and sparsity distribution for C2F pruned VGG19, 
(b) Power consumption for LTP, CSP and C2FD pruned VGG-19 mapped to an 
all 8-bit ADC design vs the proposed Reconfigurable ADC design, all 
normalized w.r.t. the unpruned VGG-19 CNN model.  
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