2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) | 979-8-3503-1175-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ISLPED58423.2023.10244258

Energy-Efficient ReRAM-based ML Training via
Mixed Pruning and Reconfigurable ADC

Chukwufumnanya Ogbogu', Mohapatra Soumen', Biresh Kumar Joardar?, Janardhan Rao Doppa!, Deuk Heo!, Krishnendu Chakrabarty?,
Partha Pratim Pande!. 'School of EECS Washington State University, Pullman WA, USA. 2University of Houston, Houston TX, USA, 3Arizona
State University, Tempe AZ, USA.

Abstract— Machine learning (ML) models have gained
prominence in solving real-world tasks. However, implementing
ML models is both compute- and memory-intensive. Domain-
specific architectures such as Resistive Random Access Memory
(ReRAM)-based Processing-in-Memory (PIM) platforms have
been proposed to efficiently accelerate ML training and inference.
However, existing ML workloads require a high amount of area
and power for training. A major contributor to the area and power
overheads is the Analog-to-Digital Converter (ADC). In this work,
we propose a mixed pruning technique along with a novel
reconfigurable ADC design to improve the power consumption
profile. Overall, the pruned model with the reconfigurable ADC
achieves ~50% reduction in power for training compared to
existing state-of-the-art ReRAM-based architectures.

Keywords—ReRAM, CNN training, Pruning, ADC

I. INTRODUCTION

Training machine learning (ML) models at the edge (on-chip
training or on end-user devices) can address many pressing
challenges associated with data privacy/security, increase the
accessibility of ML applications to different parts of the world
by reducing the dependence on communication fabric and the
cloud infrastructure, and meet the real-time requirements of
AR/VR applications. However, existing edge platforms do not
have sufficient computing capabilities to support complex ML
tasks such as training deep Convolutional Neural Networks
(CNNs). ReRAM-based processing-in-memory (PIM) offers
high-performance yet energy-efficient computing platforms for
on-chip CNN training. This is due to their inherent capability to
perform energy-efficient and high-throughput matrix-vector
multiplication (MVM). Despite these advantages, deep CNNs
with multiple layers require high power for training.

Recent work has proposed quantization and pruning to
reduce the storage and power overheads of implementing deep
CNNs on ReRAM-based PIM platforms [1] [2]. However, they
are mostly targeted toward CNN inferencing and are not suited
for training at the edge. Unlike inferencing, we also need to store
the intermediate activations (in addition to the weights) during
training. Simply pruning/quantizing weights does not help to
reduce the storage and power overhead for activations.
Moreover, existing techniques do not adequately reduce the
number of ReRAM peripherals (e.g., ADCs). The ADCs in
particular contribute between 50-70% of the power in a
ReRAM-based PIM accelerator [3] [4]. Since, the power cost of
ADCs scales exponentially with their precision, reducing the
precision of ADCs without compromising the accuracy is key to
saving power.

In this work, we achieve this by proposing a mixed-weight
pruning technique that maximally prunes weights. In addition to
the mixed pruning technique, we leverage dropout to further

This work was supported, in part by the US National Science Foundation
(NSF) under grants CNS-1955353, and CNS-1955196.

979-8-3503-1175-4/23/$31.00 ©2023 IEEE

reduce the number of activations that must be stored in memory.
The mixed pruning method involves a coarse-grained structured
weight pruning where the granularity varies from filters to
channels to index of the CNN weights. This is followed by fine-
grained unstructured pruning. Hence, we refer to this mixed
pruning method as coarse-to-fine-grained pruning (C2F). As we
show later, C2F also prunes some activations. Dropout is also
used as a mechanism to sparsify activations further. The C2F
pruning along with Dropout enables the reduction of both the
number and precision of required ADCs.

As we show later, different CNN layers achieve different
levels of sparsity using C2F pruning and Dropout; this
necessitates variable ADC precisions, which is not possible with
conventional ADC designs. Hence, to support the mixed weight
pruning (structured + unstructured) and Dropout, we propose to
use a reconfigurable ADC. In this work, we propose a
reconfigurable  time-based ADC  design [5]. The
reconfigurability of the ADC stems from its ability to
reconfigure the number of bits (precision) by disabling the lower
LSB bits of the ADC. Hence, this approach enables a flexible
and power-efficient design for ReRAM-based architectures with
varying ADC requirements. The main contributions of this
paper are:

e We propose a weight pruning technique called C2F,
which along with dropout, sparsifies both weights and
activations thereby reducing the power required for CNN
training on ReRAM-based PIM architectures.

e We propose a reconfigurable ADC to efficiently support
the C2F pruned CNN model during training to achieve
greater power savings

e Experimental results indicate that the proposed solution
achieves significant power reduction compared to
existing architectures for CNN training.

II. RELATED PRIOR WORK

ReRAM crossbars are well-suited for performing efficient
MVM operations, which are predominant in CNN workloads
[6]. Recent work has proposed ReRAM-based architectures for
CNN inference. However, these architectures cannot efficiently
support CNN training especially as the CNNs grow larger. Some
ReRAM-based PIM architectures for CNN training have been
proposed [7] [8]. However, they require a high bandwidth
memory hierarchy for off-chip activation storage, which results
in high latency and power costs [3].

Pruning is a popular technique for removing redundant
weights and effectively reducing the computation and memory
costs of CNN training and inferencing. Unstructured pruning
does not result in a commensurate area or power savings
compared to the amount of sparsity. Recent work has proposed

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



z O O
& 0.0 — o0
\ A ! 4 p ("
g o O F L~ '~ £ c2F Pruned but
s O ~ Prunin - i
5 o {) g ,O untrained CNN
a AL “
c ()
£ O

]
3m G
SEENESsANE
-l HEZEE

B .

Training/inference on ReRAM-
based Accelerator with Dropout

Fig. 1: Overview of the C2F pruning enabled energy-efficient deep CNN
training/inference on ReRAM-based PIM platforms.

crossbar-aware pruning methodologies that remove weights in
regular (or structured) shapes to enable more hardware savings
[4] [9] [10]. These existing pruning techniques when applied
naively to ReRAM-based architectures, prune out only the CNN
model weights and do not sparsify activations during training.
Existing pruning strategies also do not reduce the hardware
overhead due to peripheral circuit components such as ADCs [4]
[1]. As aresult, ADCs with high power and area overheads are
still required for ReRAM crossbars even after pruning.

Recent work has proposed ADC-aware optimization
techniques for ReRAM crossbars [4] [11] [2]. However, they
assume lower but uniform ADC precision requirements across
CNN layers. This can lead to accuracy loss when low-bit ADCs
are used for precision-critical CNN layers as we show later.
Recently, a load balancing optimization technique for CNN
inferencing was proposed, which leverages a reconfigurable
ADC design for ReRAM-based accelerators [12]. However, the
load balancing-based method is also focused on inferencing and
is not suitable for the input-dependent nature of activations
during CNN training. Therefore, it is important to explore
peripheral-circuit-aware techniques that efficiently accelerate
CNN training on ReRAM-based architectures without any
accuracy loss. In this work, we address these limitations by
proposing the C2F pruning technique with Dropout, which
along with the reconfigurable ADCs reduces power.

II1. JOINT WEIGHTS AND ACTIVATIONS PRUNING

In this section, we discuss the important features of the
coarse- to fine-grained pruning technique (C2F). Also, we
complement C2F with dropout specifically for activation
pruning. Overall, we aim to enable training CNN models at the
edge. CNN training requires storing both weights and
activations. The C2F pruning requires several training iterations
to generate the pruned model. Hence, we implement the C2F
pruning offline (i.e., on GPUs) to first obtain the pruned but
untrained CNN model as shown in Fig. 1. However, activations
are input-dependent and cannot be implemented offline. Hence,
we implement the dropout-enabled activation pruning online
during the training with the pruned CNN model on the ReRAM-
based architecture. We implement Dropout using Linear
Feedback Shift Registers (LFSRs), which require little area and
power. Next, we present more details about sparsifying both
weights and activations.

A. Coarse- to Fine-grained (C2F) Pruning Technique

As mentioned earlier, existing pruning methods can be
categorized as either structured or unstructured. Unstructured
pruning can remove more weight than the structured

counterpart, but it is oblivious to the underlying crossbar
structure. Hence, it often does not translate to a significant area
or power savings [4]. On the other hand, structured pruning does
not achieve the same level of sparsity as the unstructured
counterpart, but it saves more area and power than unstructured
pruning. C2F synergistically combines both structured and
unstructured pruning and hence is more effective.

The C2F technique achieves this by adopting an iterative
magnitude pruning approach to find a highly sparse and
trainable model following the Lottery Ticket Hypothesis (LTP)
[13]. Figs. 2 (a)-(d) show the overall C2F pruning process. C2F
prunes (in order) (a) filter-wise, to reduce the number of
columns across multiple ReRAM crossbars required for storing
weights, (b) channel-wise to ensure that columns within a
ReRAM crossbar are reduced, (c) index-wise, which prunes
entries along rows of a crossbar, and (d) element-wise (finest
pruning) which prunes individual weights in an unstructured
fashion to maximize sparsity. The filter-, channel-, and index-
wise pruning constitute the structured part of the C2F pruning.
C2F prioritizes filter-wise pruning as it reduces both the weights
and activations. As shown in Fig 2(b), pruning out an entire filter
from a CNN layer ensures that an entire column is pruned in all
four crossbars. This produces sparse output (activations) from
the crossbars. However, the relatively coarse granularity of
pruning does not lead to significant sparsity without accuracy
loss. Once C2F fails to prune filter-wise without significant
accuracy drop, it switches to channel-wise, followed by index-
wise, and then finally unstructured pruning (Fig. 2(c)-(d)) to
maximize sparsity with less than 1% accuracy drop. As
mentioned earlier, the iterative C2F pruning process is
implemented on conventional computing platforms such as
GPU/CPU offline. This pruning phase is a one-time process.

(a) Unpruned (b) Filter-wise Pruning

rr o
©) Channel-v:;:f:uning % T % %

OF srern
TRt

Fig. 2: Illustration of the C2F Pruning method.
Algorithm 1. C2F Pruning
Input: Unpruned CNN model, pruning percentage p
Output: C2F Pruned CNN model
Algorithm:
Initialize: 8! € 0;;1iq1

7
T

i,
=y

While itr < N and no accuracy_drop do

Train for E epochs

Prune p% of filters based on magnitude (|6'|)
If new_accuracy < Baseline_accuracy do

Undo last pruning step

N oy kwh R

Switch to finer pruning strategy (Channel-wise
-> Index-wise -> element-wise pruning)
Reinitialize remaining weights with 0;,;;;4;
9: | Return Hardware-friendly C2F Pruned Model

@

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



Once the pruned model is obtained, it can be reused since LTP-
enabled pruned models are largely dataset-agnostic [14]. Here,
we deploy the previously pruned model to the ReRAM
accelerator as shown in Fig. 1 for future training tasks with any
dataset [14], thereby amortizing the cost (time/energy) for the
offline C2F pruning itself.

Algorithm 1 presents the high-level details of the C2F
pruning strategy. We start by initializing the CNN weights (6)
using Xavier or Kaiming initialization (line 1) [7], then we train
the CNN for E epochs. Next, we first prune the p% of the low
magnitude CNN weights using coarse filter-wise pruning, and
progressively switch to finer punning strategies (channel-,
index-, and element-wise pruning), with <1% accuracy loss
(lines 4-7). Finally, the C2F pruned (but untrained) model can
then be used to train on resource-constrained edge devices with
little area and power.

B. Activation Pruning using Dropout

Weight pruning does not automatically result in activation
sparsity. Only the filter-wise pruning in C2F introduces some
sparsity in the activations. To further sparsify the activations, we
incorporate the dropout method on the activations. Dropout
introduces unstructured sparsity without loss of accuracy.
Dropout is a well-known regularization technique for CNN
training which solves the overfitting problem and improves the
model’s generalizability to unseen data [15]. Dropout randomly
prunes (temporarily) output activations of layers, which can be
leveraged to save power as well. Traditionally, dropout is
applied to the activations of the last few fully connected layers
of CNNs only [15]. However, activation sizes typically decrease
as the input passes through the various CNN layers. The last few
CNN layers have a few activations. Hence, dropout only on
these layers does not result in any hardware savings.

In reality, the initial layers of the CNN produce most of the
activations stored on-chip during the pipelined training of CNNs
on the ReRAM architectures [7]. For example, in VGG11 the
output activations of the first two layers make up more than 70%
of the total activations required for training as we show later.
This happens because the initial layers process larger-sized
activations. In addition, due to the pipelined execution of CNN
training on ReRAM-based platforms, the memory requirement
is especially high for the first few layers [6] [7]. The memory
required for activation storage of a given CNN layer at depth (/)
for pipelined training is multiplied by a factor of (2(L-1) + 1)
(where L = number of CNN layers) [7]. As is clear from the
equation, the initial layers need much more storage for
activations compared to the later layers. Hence, in this work, we
apply dropout on these first few layers to significantly sparsify
activations. As typically done in practice, we also incorporate
dropout on the last fully connected layers to prevent overfitting
and improve prediction accuracy. However, adding dropout to
the last few layers does not help with reducing activation storage
significantly.

Other activation pruning methods such as magnitude-based
activation pruning can also be used too. However, we show later
that magnitude activation pruning leads to a significant accuracy
drop during training. Similarly, applying dropout to every CNN
layer also leads to significant accuracy degradation. Therefore,
to effectively reduce the number of activations stored on the

ReRAM crossbars during CNN training without accuracy loss,
dropout should be applied to a few initial layers only. This
reduces the ADC precision requirements for ReRAM crossbars
that store the activations of the first few layers.

C. ADC Design for C2F Pruned CNNs on ReRAM Platforms

An ADC is necessary to interface between the ReRAM
crossbar and the digital peripherals. The minimum ADC
precision (ADCpyecision ) Tequired for a ReRAM crossbar is
determined by the number of rows activated (r), the number of
input bits processed per cycle (v), and the number of weight or
activation bits (w) stored per ReRAM cell. The required ADC
precision (following [6]) is computed as follows [6]:

ADCprecision =v+w+log,(r) —2 (1

Following equation (1), a ReRAM crossbar of size 128X 128
(r=128), with 1-bit input per cycle (v = 1), and 2-bits stored per
cell (w = 2), would require an 8-bit ADC in an unpruned
scenario. It is well known that large ADCs (e.g., 8-bit) are
power-hungry and this problem must be addressed. Besides the
precision, having too many ADCs incurs significant power
overhead. A single ADC is often shared by multiple ReRAM
columns (one ADC is shared by 128 columns as in [6]).
Therefore, it follows that the number of ADCs required for ¢
ReRAM columns is given by: [128/c].

The structured pruning part of C2F removes (prunes) all the
weights mapped to selected columns while leaving all the
weights in other columns intact, i.e., structured pruning reduces
the value of ¢ only. This enables us to use fewer ADCs.
However, it does not affect the precision of ADCs. Hence, we
will have a few, but high precision ADCs with structured
pruning. On the other hand, unstructured pruning removes
weights from every column but may not prune all the weights in
a column i.e., unstructured pruning reduces the effective value
of r. This allows us to use ADCs with lower precision. However,
it does not reduce the number of ADCs required. Hence,
unstructured pruning results in many but lower precision ADCs.
C2F combines the benefits of both these pruning techniques and
maximizes power savings by reducing both the number and size
of ADCs.

In addition, dropout can be seen as a form of unstructured
pruning. Hence, we can further reduce the precision of ADCs
for activations following equation (1). For example, if only 8 out
of 128 weights or activations are left on a column after C2F
pruning and dropout, this effectively activates only 8 rows (r =
8). Thus, a 4-bit ADC can be used instead of an 8-bit ADC (as
in the unpruned model) for the computation. This is a non-trivial
reduction in peripheral power as the ADC power increases
rapidly with the bit precision [3]. The power consumption
increases by approximately 1.5-2X for every additional bit of
resolution. Overall, C2F pruning combined with dropout can
reduce both the precision and the number of ADCs required.

However, the amount of pruning varies with each CNN
layer. The first few layers in the CNN have few weights that
cannot be easily pruned, while the later convolution layers can
be pruned to a greater extent [13]. As a result, C2F (and other
pruning techniques) achieve different levels of sparsity for
different CNN layers. This necessitates ADCs with different
precisions for each layer. Hence, we propose to incorporate a

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



N
OV— Delay Pulse ||Time,_ -
in le Generation Generator .. -
Linear |
v TDC | [VIN]
Delay -
Tracking Circuit -

reconfigurable ADC design (discussed next), that can enable
different precisions as needed.

D. Time-Based ADC Design for ReRAM Crossbars.

Existing Successive Approximation Register (SAR) and
Flash ADC architectures have been adopted for the ReRAM-
based accelerators [3]. SAR ADCs are commonly used for
ReRAM crossbars due to their relatively simple structure and
low area/power overhead compared to Flash ADCs [3].
However, SAR ADCs do not scale with technology, due to their
analog sub-block circuits. On the other hand, Flash ADCs
provide higher conversion speed, but they suffer from limited
precision, which is not suitable for CNN training.

Time-based ADCs offer superior time resolution and
scalability, making them attractive for designing complex PIM
systems [16] [17]. The time-based ADC design is composed of
two primary blocks, namely the voltage-to-time converter
(VTC) and the time-to-digital converter (TDC). The analog
input signal is sampled and processed by the VTC to produce an
output pulse width that corresponds to the input voltage. This
timed signal is subsequently converted to the digital domain by
the TDC, as illustrated in Fig. 3. In this context, a timed signal
implies a time-delayed signal where differently delayed clock
signals are generated based on the input voltage.

The proposed ADC features a new VTC with a low-power
consumption, process, and temperature-insensitive design, high
linearity, and dynamic range [16]. The VTC consists of three
main components: a sampler, a delay generation circuit with
self-tracking, and a pulse generator. The sampler generates a
discrete-time voltage signal from the input voltage, which is
then used by the delay generation circuit to produce a delayed
pulse width modulation (PWM) signal. The proposed VTC
design, with its delay generation circuit featuring self-tracking,
achieves superior linearity. This makes it highly effective,
regardless of temperature or other environmental factors. We
reduce this ADC architecture's dynamic power consumption by
limiting the ramp signal, making it a power-efficient solution.
Furthermore, the delay increases linearly with the sampled input
voltages, ensuring accuracy and stability in detecting input
signals. Incorporating a self-tracking circuit and limiting the
ramp makes the proposed ADC architecture a highly effective
solution for ReRAM-based architectures.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate the C2F pruning method on the CIFAR-10
dataset using diverse CNN models: VGG-11 (V11), VGG-19
(V19), ResNet-18 (R18), ResNet-34 (R34), and GoogleNet
(GN) [13]. The C2F pruning is implemented on an NVIDIA
Titan GPU with 24GB of memory. The C2F pruning is offline
and it results in a pruned but untrained CNN, which is then

TABLE L RERAM-BASED PIM ARCHITECTURE SPECIFICATIONS
16 PEs, 4 tiles per PE
96 Time-based ADCs, 128%96 DACs (1-bit), 96
. crossbars, 128x128 crossbar array, 2-bit/cell
ReRAM Tile resolution, 0.34W, 0.38 mn” [19]
1 Programable LFSR (16-bit)
TABLE II. TIME-BASED ADC POWER REQUIREMENTS
ADCprecision 3-bits 4-bits 5-bits 6-bits 7-bits 8-bits

Power (mW) 0.18 0.20 0.24 0.31 0.46 0.77

mapped to a ReRAM-based PIM architecture and trained with
dropout for 50 epochs and a learning rate of 0.01 as an example.
In this work, we simulate the on-chip training process on the
ReRAM-based architecture using NeuroSim [18]. We follow the
hierarchical ReRAM tile configuration presented in [6]. Each
ReRAM tile consists of multiple 128X 128 crossbar arrays that
can be used for storage and computation with both weights and
activations [6]. The weights and activations are stored using 16-
bit fixed-point precision. Each tile contains a 16-bit
reconfigurable LFSR operating at 1GHz for implementing
dropout, which consumes less than 1% of the ReRAM tile area
and power [19]. We summarize the hardware specifications of
the ReRAM-based PIM architecture in Table I.

ADC Power and Area: The power consumption of the
proposed time-based reconfigurable ADC is shown in Table II
for various bit precisions obtained through Cadence simulations.
The proposed Time-based reconfigurable ADC operates at a
1.2GHz sampling frequency and occupies an area of around
0.0013mm? in the TSMC-28nm technology node. The VTC’s
size and power consumption are independent of the number of
bits, as only the number of TDC increases based on the number
of bits and its area. Therefore, the power behavior is not linear
with respect to the number of bits. The proposed VTC
architecture, along with the constant field scaling and time
interleaving, offers a promising solution for reducing the power
consumption of ReRAM-based architectures while maintaining
high accuracy and performance.

Baseline Pruning: To ensure a fair and thorough evaluation,
we consider the unpruned CNN model as a baseline (BL). We
benchmark the performance of the C2F pruned models trained
with dropout, with two existing techniques. We consider the
existing standard LTP method as the representative unstructured
pruning method [13], and a recently proposed crossbar-aware
structured pruning (CSP) technique [10]. The CSP
method utilizes a multi-group LASSO algorithm to prune groups
of weights that would otherwise be mapped along a column in a
ReRAM crossbar. We implement iterative pruning (as shown in
Algorithm 1) in all the methods to ensure that maximum sparsity
can be achieved without incurring significant accuracy loss.

B. Accuracy of C2F Pruned Models with Dropout

As mentioned earlier, we must prune weights and activations
as they both must be stored on-chip for training. C2F inherently
prunes weights and some activations. We further increase the
sparsity on the activations using Dropout to reduce ADC
precision and number; this step leads to high power savings.
Dropout is applied to the fully connected layers to improve
inferencing accuracy. However, the last fully connected layers
generate fewer activations than the initial convolution layers.
Hence, having dropout only on the last few layers is not very
useful for reducing storage requirements.

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



VGG-11 w/ Pipelining BL DL1=0.5
100 Drop_All MAP
100
80 4
2 75 A
560 - s
S0 | 250 1
3] g
;zo . ” 325 1
0 -nn-""--- <0 —T—T— T
13 5 7 9 1 1 8 15 22 29 36 43 50
CNN Layer (1) Epochs
(@) (b)

0IBL ELTP OCSP RC2FD

v N

Accuracy (%)

N

@LTP OCSP ®C2FD

=

00

] H g

o -

’ 1 [ Wk

2 2 o 2
0 S i 3 96 R N N 2
VRS IR I 2 1S Y R I
M N = 2 2 M 2 M
5 3 3 = N 3 N 3 N
\ N so 1N HN MN HR HN
N 3 g N UR UN HR MR
0 n N n - = = 92 !\ § !\ § k
Vil V19 R18 R34 GN V1l V19 R18 R34 GN

CNNs CNN
(© (d

Fig. 4: (a) Distribution of activations across multiple VGG11 layers during pipelined training, (b) prediction accuracy of VGG-11 C2F pruned model with dropout
on the first layer (D), all layers (Drop_AIl), magnitude pruning (MAP) compared to the baseline (BL), (c) Overall accuracy of pruned CNNs using LTP, CSP, &
C2FD compared to the unpruned model BL, (d) average sparsity of pruned CNNs using LTP, CSP, & C2FD.

Fig 4(a) shows the distribution of activations across layers
during the pipelined training of VGG11 on the ReRAM-based
architecture. As mentioned earlier in Section I1IB, the first layer
of VGG-11 generates ~50% of the activations during pipelined
training on the ReRAM-based architecture, while the last few
layers generate less than 2%, as shown in Fig. 4(a). Hence,
simply applying dropout to just the last few fully connect layers
only is insufficient. Applying dropout to all layers leads to
diminishing returns as the majority of the activation storage is
used to store the data from the first CNN layer. Hence, we apply
a dropout ratio of 0.5 on the activations of the first layer
(Dr=0.5) while training the C2F pruned model on the ReRAM-
based architecture. We set the dropout ratio in the first layer to
be 0.5 (Dr/=0.5), as this is sufficient to ensure a 1-bit reduction
in the ADC precision requirement.

We compare the accuracy of this selective Dropout with two
other activation pruning methods (a) pruning activations using
simple magnitude-based pruning (MAP) and (b) a Dropout of
50% is incorporated in all CNN layers (Drop_All). Both MAP
and Drop_All include C2F for weight pruning. Fig. 4(b) shows
the accuracy of the C2F pruned model trained on the ReRAM-
based architecture with different activation pruning methods
incorporated. As shown in Fig.4(b), pruning activations using
MAP causes the CNN model to train poorly (<30% accuracy).
Moreover, implementing MAP on-chip requires sorting of the
activations based on their magnitude, which requires additional
hardware overhead. It is also evident that Drop All leads to
poorer training performance compared to the baseline unpruned
model (BL). Hence, in this work, we use dropout in the first
layer (Dr;=0.5), which is a simple and effective method to prune
activations without drastic accuracy degradation. Following
existing work, we also apply dropout on the last fully connected
layers to prevent overfitting and ensure no accuracy loss [15].
C2F reduces both the number of weights and activations and
Dropout reduces the number of activations further. Overall, this
leads to significantly lower energy requirements. Henceforth,
we refer to the C2F pruned model with dropout as C2FD. In all
the subsequent analyses, we employ C2FD as the overall
pruning method.

Fig. 4(c) and Fig. 4(d), compare the effectiveness of the
C2FD in terms of the prediction accuracy and the achievable
sparsity respectively with other pruning methods. The CNN
models are pruned using each pruning technique (LTP, CSP, &
C2F), and then we map the pruned CNNs to the ReRAM-based
platform for the training evaluation. The goal of the iterative
pruning approach (Algorithm 1) is to find the sparsest model that

can be trained from scratch with minimal accuracy loss (<1%).
As shown in Fig. 4(c), the C2FD pruned model achieves
comparable accuracy with other pruning methods for all CNN
models. In Fig 4(d), we show the percentage of weights pruned
(sparsity) using each method (UP, CSP, & C2F). LTP achieves
the highest sparsity (99.20%) due to its unstructured nature,
while CSP achieves the least sparsity because of its structured
pruning (94.60%). C2FD combines both unstructured and
structured pruning to achieve high sparsity (98.40%) as shown
in Fig 4(d). Moreover, as discussed earlier, in addition to
pruning the weights, C2FD also prunes activations due to its
filter-wise pruning and dropout. For example, in V19, C2FD
achieves an average activation sparsity of 53.27%, while LTP
and CSP achieve a lower activation sparsity of 30.25% and
33.41% respectively. Next, we present the power savings when
training the C2FD-enabled CNN on the ReRAM-based PIM.

C. Overall Power Analysis

It is well known that the high precision ADC peripheral
circuits in ReRAM-based PIM architectures contribute
significantly to the overall chip power consumption [3] [6].
Hence, the reconfigurable ADC design proposed in this work
enables optimizations that focus on reducing the bit precision of
ADCs, thereby reducing the overall power consumption. As
discussed earlier, the C2F pruning approach leads to varying
sparsity levels across different CNN layers as shown in Fig. 5(a).
Highly sparse CNN layers tend to have fewer weights per
ReRAM crossbar column left on average after pruning (smaller
r in eqn. (1)). Hence, the ADCs required for such layers can be
reconfigured to use a lower bit precision to save power. In Fig.
5(a), we show the minimum ADC requirements and per-layer
sparsity of the weights in the C2FD pruned VGG-19 CNN as an
example. Here, we observe that the initial and final layers have
less sparsity (i.e., more weights remaining), and hence require
high-precision ADCs (8 bits). Meanwhile, the intermediate
layers are significantly pruned and thus require low-precision
ADC:s (4-6 bits). This necessitates a reconfigurable ADC design
for the ReRAM-based architecture as proposed in this work.

Fig. 5(b) compares the power consumption of two types of
ReRAM-based PIM architectures: with uniform 8-bit ADC
design, and the proposed architecture with reconfigurable ADC
design. Here, we map the VGG19 pruned model obtained using
the offline pruning techniques (LTP, CSP, & C2FD) to both
architectures. We observe that for each pruned model, the
reconfigurable ADC design inherently consumes less power
compared to the all 8-bit ADC counterpart. Moreover, the C2FD

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



I Sparsity e ADC bits
100

[ ] A||18—bit ADCs B Reconfig. ADCs

75 - 8 508 -
& 50 A 2 506 -
£ 50 62 &
% 25 - 48 E04 1
© < 9 |
& 0 | LU 1, =02
1 4 7 1013 16 19 0 1
CNN Layers (1) TP CSP  C2FD

(a) (b)
Fig. 5: (a) ADC requirements and sparsity distribution for C2F pruned VGG19,
(b) Power consumption for LTP, CSP and C2FD pruned VGG-19 mapped to an
all 8-bit ADC design vs the proposed Reconfigurable ADC design, all
normalized w.r.t. the unpruned VGG-19 CNN model.

(a) LTP (b) CSP (c) C2FD

/ % % 4%
3%
5%

[ 8-bits [l 7-bits [ 6-bits [] 5-bits [I] 4-bits [ 3-bits
Fig. 6: Breakdown of ADC requirements for ResNet18 after pruning using; (a)
unstructured pruning (LTP), (b) Crossbar-aware structured pruning (CSP) (c)
the proposed coarse- to -fine- grained pruning with dropout (C2FD).

pruned model consumes the least power (<40%) when it is
mapped to the reconfigurable ADC design.

Fig. 6 shows the breakdown of the ADC precision
requirements when the ResNet-18 CNN is pruned using all
three methods (LTP, CSP, & C2FD) as an example. Each
pruned version of ResNet-18 is mapped onto the ReRAM
architecture with reconfigurable ADCs. As seen in Fig. 6, the
LTP and CSP pruned models require more high-precision
ADCs compared to C2FD. For example, 8-bit ADCs constitute
55% and 62% of the total number of ADCs for LTP and CSP
respectively, while for C2FD, this number is only 39%. This is
because the finer-grained pruning in C2FD reduces the number
of elements left in each ReRAM crossbar column, thereby
reducing 7 (as in eqn. (1)) and the ADC precision. Moreover,
the dropout incorporated in C2FD further reduces the number
of 8-bit ADCs from 48% in C2F only to 39% as we show in Fig.
6(c). Hence, the C2FD-enabled pruned model requires fewer 8-
bit ADCs and more lower precision ADCs (7bits, 6bits, etc.).
This precision reduction leads to overall power savings.

We evaluate the overall power consumption of the ReRAM-
based architecture with reconfigurable ADC design. Fig. 7
presents the overall power consumption of the C2FD pruned
model compared to other pruning methods for the different
models considered in this work. The C2FD pruned model
achieves ~50% reduction in power consumption compared to
the unpruned model (BL). Moreover, the C2FD pruned model
consumes ~10% and ~18% less power compared to the CSP
and LTP methods respectively. Overall, the C2FD pruning
enables significant power savings on the ReRAM-based
architecture with the proposed reconfigurable ADC design.

V. CONCLUSION

In this work, we demonstrate that coarse-to-fine weight
pruning and dropout-enabled activation pruning enable us to

WBL @LTP OCSP ®C2FD

Normalized Power

o
\
=
§
§
\
‘\\\,.‘

Vi1 V19 R18 R34 GN
Fig. 7: Overall power consumption for each CNN normalized with respect to
their unpruned versions (BL).
reduce both the number and precision of power-hungry ADC
circuits in ReRAM-based architectures for training CNNs. By
incorporating a reconfigurable ADC architecture, we can reduce
the ADC requirements (both number and precision)
significantly without any noticeable loss in model accuracy
while training the CNN models. This approach effectively
reduces the overall on-chip power consumption by ~50%
compared to the unpruned counterpart.

REFRENCES

[1] G. Yuan et al., "FORMS: Fine-grained Polarized ReRAM-based In-situ
Computation for Mixed-signal DNN Accelerator," in ISCA4, 2021.

[2] S. Huang et.al, "Mixed Precision Quantization for ReRAM-based DNN
Inference Accelerators," in ASP-DAC, 2021.

[3] K. Roy et al, "In-Memory Computing in Emerging Memory
Technologies for Machine Learning: An Overview," in (DAC), 2020.

[4] G. Yuan et. al, "TinyADC: Peripheral Circuit-aware Weight Pruning
Framework for Mixed-signal DNN Accelerators," in DATE, 2021.

[5] S. Mohapatra et al., "Low-Power Process and Temperature-Invariant
Constant Slope-and-Swing Ramp-Based Phase Interpolator," [EEE
JSSC, 2023.

[6] A.Shafieeetal., "ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars Ali," in ISCA4, 2016.

[7] L.Song, X. Qian, L. Hai and Y. Chen, "PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning," in [EEE HPCA, 2017.

[8] A. Ankit et. al, "PANTHER: A Programmable Architecture for Neural
Network Training Harnessing Energy-Efficient ReRAM," IEEE
Transactions on Computers, 2020.

[9] C. Ogbogu et. al, "Accelerating Large-Scale Graph Neural Network
Training on Crossbar Diet," IEEE TCAD, 2022.

[10] J. Meng et al., "Structured Pruning of RRAM Crossbars for Efficient In-
Memory Computing Acceleration of Deep Neural Networks," [EEE
Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5,
pp. 1576-1580, 2021.

[11] Y. He et. al, "InfoX: An Energy-Efficient ReRAM Accelerator Design
with Information-Lossless Low-Bit ADCs," in IEEE DAC, 2022.

[12] D. Kim et. al, "SAMBA : Sparsity Aware In-Memory Computing Based
Machine Learning Accelerator," IEEE Transactions on Computers ,
2023.

[13] J. Frankle and M. Carbin, "The lottery ticket hypothesis: Finding sparse,
trainable neural networks," in /CLR, 2019.

[14] A. Morcos, Y. Haonan, M. Paganini and Y. Tian, "One ticket to win them
all: Generalizing lottery ticket initializations across datasets and
optimizers," NeurIPS, 2019.

[15] N. Srivastava et. al, "Dropout: A simple way to prevent neural networks
from overfitting," JMLR, 2014.

[16] K. Ohhata, "A 2.3-mW, 1-GHz, 8-Bit Fully Time-Based Two-Step ADC
Using a High-Linearity Dynamic VTC," IEEE JSSC, 2019.

[17] M. Zhang et.al, "A 20GS/s 8b Time-Interleaved Time-Domain ADC
with Input-Independent Background Timing Skew Calibration," in
Symposium on VLSI Circuits, 2021.

[18] X. Peng et al., "DNN+NeuroSim V2.0: An end-to-end benchmarking
framework for compute-in-memory accelerators for on-chip training,"
arXiv:2003.06471, 2020.

[19] A. Arka et al, "DARe: DropLayer-Aware Manycore ReRAM
architecture for Training Graph Neural Networks," in /CCAD, 2021.

Authorized licensed use limited to: Washington State University. Downloaded on September 29,2024 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.



