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ABSTRACT

Transformers have revolutionized deep learning and generative
modeling to enable unprecedented advancements in natural
language processing tasks and beyond. However, designing
hardware accelerators for executing transformer models is
challenging due to the wide variety of computing kernels involved
in the transformer architecture. Existing accelerators are either
inadequate to accelerate end-to-end transformer models or suffer
notable thermal limitations. In this paper, we propose the design of
a three-dimensional heterogeneous architecture referred to as
HeTraX specifically optimized to accelerate end-to-end
transformer models. HeTraX employs hardware resources aligned
with the computational kernels of transformers and optimizes both
performance and energy. Experimental results show that HeTraX
outperforms existing state-of-the-art by up to 5.6x in speedup and
improves EDP by 14.5x while ensuring thermally feasibility.
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1 INTRODUCTION

Transformers have emerged as a focal point in the field of deep
learning [1]. However, the size of transformer models is
continuously increasing, driven by the pursuit of higher accuracy
and improved capabilities across various natural language
processing (NLP) tasks [1]. This trend of ever-increasing model
size has given rise to new challenges in terms of memory and
compute requirements. Conventional computing platforms, such as
GPUs, suffer from suboptimal performance due to the memory
demands imposed by the models with millions/billions of
parameters. Consequently, this has motivated the need to explore
and develop energy-efficient accelerators for transformers.

The transformer architecture is primarily characterized by a self-
attention mechanism and a feed-forward network [1]. Transformers

This work is licensed under a Creative Commons Attribution International 4.0 License.

ISLPED 24, August 5—7, 2024, Newport Beach, CA, USA
© 2024 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0688-2/24/08.
https://doi.org/10.1145/3665314.3670814

include multiple self-attention heads (multi-head attention), with
each head operating in parallel. Subsequently, the feed-forward
(FF) network is employed, which includes multiplication with the
trainable weights. The end-to-end transformer model also consists
of additional computations such as softmax, layer-normalization,
activation function, positional encoding, etc. These computational
kernels give rise to the heterogeneity of operations in the
transformer architecture. Recently, processing-in-memory (PIM)
has emerged as a promising approach to accelerate the
training/inference of deep neural networks (DNNs) [2]. Emerging
resistive  random-access memory (ReRAM)-based PIM
architectures can achieve higher performance and better energy
efficiency than GPU-based counterparts [2]. However, the attention
mechanisms of transformers, with the need for dynamic operand
multiplications, would necessitate a high frequency of write
operations to ReRAM cells. It is well known that ReRAM writes
are slow and suffer from limited write endurance [3]. Hence,
ReRAMs are not suitable for multi-head attention (MHA)
computation in transformers. Conversely, ReRAMs remain a viable
candidate for executing the FF network within transformers, which
perform multiplications with learned weights (stationary weights).
Considering the diverse nature of computational kernels, it
becomes necessary to consider appropriate heterogeneity in the
computing resources to develop manycore hardware accelerators
for transformers. Hence, we propose to use streaming
multiprocessors (SMs) along with the associated memory
controllers (MCs) for the computation of MHA and ReRAM-based
PIM for the FF network. This approach represents an allocation of
hardware resources well-aligned with the computational kernels of
transformers. It is a departure from the current practice where most
of the existing transformer accelerators utilize homogenous
hardware platforms (ReRAM-based PIM, DRAM, GPU, etc.)

Three-dimensional (3D) integration is a viable solution for
heterogeneous computing since it can support various types of
cores fabricated using different technologies in a single system.
Additionally, vertical links help to enhance the overall system
performance and concurrently reduce inter-core data transfer costs.
However, it is essential to recognize that 3D architecture introduces
significant challenges in terms of thermal management. Thus, a
thermal-aware approach becomes imperative during the design of
any such architecture. Additionally, the complex data flow in the
transformer model makes the underlying framework of integrating
the heterogeneous cores non-trivial, necessitating careful
optimization to facilitate efficient data exchange. In this work, we
propose a 3D-heterogenous architecture designed for low-latency
and energy-efficient transformer inference. Specific contributions
of this work are :

1.  We propose a 3D-heterogenous architecture referred to as
HeTraX that incorporates distinct planar tiers where each tier
is tailor-made for either MHA or the FF network.

2. HeTraX synergistically leverages the advantage of ReRAM-
based PIM to alleviate memory bottlenecks while preventing
frequent rewrites on ReRAM crossbars.
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3. HeTraX achieves up to 5.6X speedup and improves energy-
delay-product (EDP) by 14.5Xx when compared to existing
transformer accelerators. Notably, HeTraX exhibits versatility
across transformer architectures and shows consistent speedup
while being thermally feasible.

2 RELATED WORK

Several hardware architectures have been proposed to speedup
transformer inference. These architectures include a diverse range
of implementations including FPGA, PIM, and architectures using
different combinations of non-volatile memory (NVM)-based PIM
and SRAM blocks. TransPIM is a DRAM-based PIM accelerator
with compute units integrated within High Bandwidth Memory
(HBM) banks to accelerate transformer inference [4]. TransPIM
uses the host device connected via an interposer for non-matrix
computations (normalization, activation functions, etc.) that cannot
be performed within the DRAM itself. However, this off-loading
of computations adds latency overhead since the system is
periodically stalled. HAIMA is another DRAM-based accelerator
that adopts a hybrid strategy, incorporating SRAM units for
dynamic computations in self-attention and DRAM for
multiplications involving large weight matrices [5]. Similarly,
H3D-Transformer proposes a hybrid architecture consisting of
FeFET, SRAM, and TPU cores stacked vertically via TSV in a 16-
tier system [6]. However, it is important to note that HAIMA,
TransPIM and H3D-Transformer demonstrate performance gain
without taking into consideration the power density and the
associated thermal challenges of computing in memory specifically
in a 3D architecture. In contrast, HeTraX adopts a holistic view to
undertake joint performance-thermal-accuracy tradeoff study.

Alternatively, ReRAM-based PIM accelerators have been proposed
to accelerate transformer inference [7]. However, as mentioned
earlier, ReRAM-based PIM as a standalone solution is not suitable
for transformer inference given the write endurance problem when
used for self-attention computation. Xformer tries to address the
ReRAM write problem by introducing a hybrid accelerator that
uses ReRAM-SRAM arrays [8]. Xformer maps more frequently
updated computation kernels to SRAM arrays. However, Xformer
is specific to self-attention only and does not consider the end-to-
end transformer architecture. Some recent works also propose
approximation techniques such as pruning, and sparsification for
accelerating transformer inference [1]. However, these
investigations are agnostic to specific hardware platforms. To
summarize, existing accelerators fail to provide an end-to-end
system for transformer acceleration or suffer from notable
limitations in terms of system latency or thermal bottlenecks arising
due to high power density. In this paper, we fill this gap in the state-
of-art by proposing a heterogeneous 3D architecture to accelerate
end-to-end transformer models.

3 TRANSFORMER MODEL

In this section, we explain the computation kernels of transformers
and related architectural variations. The transformer architecture is
composed of multiple sequential layers of encoder/decoder blocks,
as shown in Fig.1. Each of these blocks consists of two major
functional modules: MHA and FF network [1].

Transformer Computation Kernel: The input text data to the
transformer model is initially tokenized, and subsequently mapped
to vectors within an embedding matrix to generate the word
embeddings (Iomp). The word embedding along with positional
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Fig. 1: Transformer model architecture consisting of encoder and
decoder stack of length V.

encodings of the input sequence serve as transformer-readable
inputs (X) to the MHA module in the model. The MHA
computation comprises four computing kernels, outlined in Table
1 (MHA-1,2,3,4). The positional encoded embeddings are first
multiplied by learned weight matrices (distinct for /# heads) to
obtain the Query Q;, Key K;, and Value V; matrices (MHA-1).
Afterward, the dot products of Q; and K; vectors are scaled and
transformed into attention scores (S;) using a softmax function
(MHA-2). The weighted sum of the V; vectors based on the
attention scores produces the context-aware representation (0;) for
each word (MHA-3). Finally, the outputs from different heads are
concatenated and linearly transformed with the weight matrix W©
to create the output (H,) for MHA (MHA-4). A layer
normalization is applied following MHA (L-I), to generate the
input (M) for the FF. The FF network consists of two computation
kernels, as shown in Table 1. The context-aware representation
computed through MHA is transformed using a learned weight
matrix (WF?1), followed by an element-wise activation function to
generate (X') output (FF-1). This computation is repeated with
another transformation using the (WF?2) weight matrix (FF-2).
Finally, the output of the FF network (X?) is layer-normalized to
ensure stability. The resulting output serves as the input
embeddings for the subsequent blocks in the model.

The original transformer model with encoder-decoder blocks is
designed for machine translation tasks [1]. However, the
transformer architecture is continuously evolving with structural
variations tailored to other NLP tasks. Notable architectural
variations include transformers that are exclusively composed of
decoder or encoder blocks. This effectively divides the model in
half, leading to reduced computational requirements. Additionally,
numerous architectural refinements have also emerged within the

Table 1: Transformer Computational Kernels

INPUT X = Iy + Positional Encoding(Imp)
Multi-Head Attention (MHA)
MHA-1 Qi Ki, Vi = XW2, XW, xw;”
MHA-2 S; = Softmax(QKT™)
MHA-3 Oi = Vl Si
MHA-4 H,, = concat(0;)W°
L-1 M = LayerNorm(X + H,,)
Feed-Forward (FF)
FF-1 X' = GeLUMWT?)
FF-2 X2 = GeLU(X'WF?)




encoder/decoder block. One such advancement is the introduction
of Multi-Query Attention (MQA). MQA, unlike the standard
MHA, utilizes the same K and V values across heads while
assigning distinct Q vectors. MQA is specifically designed to
enhance the computational efficiency of attention mechanisms.
Another variation is the parallel attention framework, which
involves training the model with both the attention and FF layers
operating concurrently. We consider all the different variations
(encoder/decoder-only, MQA, and parallel attention) to propose a
model-agnostic accelerator for transformers.

4 HeTraX ARCHITECTURE

In this section, we introduce the proposed HeTraX architecture and
present the design optimization framework.

4.1 3-D Heterogenous Architecture

The HeTraX architecture consists of vertically integrated tiers, each
with either SM-MC or ReRAM cores. Fig. 2 shows the proposed
architecture. Through Silicon Via (TSV)-enabled vertical links are
employed to connect the planar tiers. The ReRAM cores consist of
crossbars and necessary peripheral circuits (ADC, DAC, eDRAM)
to perform matrix multiplication. SMs within the system have
tensor cores to enable mixed-precision computing. MCs control the
data flow to and from SMs and incorporate a last-level cache.
Additionally, MCs facilitate data exchange with DRAM. SM-MC
tiers perform the MHA computation since it involves computation
with dynamically changing K,Q,V values. The resulting
activations serve as the input for the FF network. We execute the
FF on the ReRAM tier, given the matrix multiplication with learned
weights WF! and WF? (stationary weights). Afterwards, the output
of FF network becomes the input for the subsequent block. The 3D
system helps facilitate the efficient data exchange between the
heterogenous cores and minimize the communication latency.

4.2 Performance Optimization

The overall achievable performance of the manycore architecture
depends on the computational kernel to core mapping and the
associated network-on-chip (NoC). We first maximize the core
utilization and determine the optimal core mapping. Subsequently,
we design the NoC for HeTraX.

The transformer inference necessitates a substantial memory
footprint. Hence, it is imperative to ensure that the architecture
under consideration is not underutilized and memory-bound.
Nearly two-thirds of the matrix multiplication operations involved
in transformer inference are attributed to the FF network [1]. This
is predominantly due to the size of the hidden layer, with
dimensions 4x larger than the dimensions of all attention heads
combined [1]. The adoption of ReRAM-based PIM for the FF
computation enables us to prevent the costly repeated off-chip
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Fig. 2: HeTraX architecture consisting of 3 SM-MC tiers and 1
ReRAM tier. This figure is for illustration purposes only.

memory accesses that would have been necessary if computation
were carried out on the SM cores. However, the FF weights stored
on ReRAM crossbars are updated once per layer. Consequently,
loading weights from DRAM and updating ReRAM crossbars can
take significant time and result in stalls, given the high write latency
of ReRAM cells. Therefore, the weight values are updated during
the execution of MHA, thereby hiding the write latency. Similarly,
MC loads the weights for the MHA during the FF computation. An
industry standard interface protocol (DFI) is utilized between the
DRAM and MCs [9]. It generates all handshake signals with
precise timing requirements necessary for interfacing.

MHA: We employ the classical technique of tiling for matrix
multiplication in SMs, where blocks of input data are loaded from
DRAM to MC. Each SM generates K, Q, V for a specific head with
the weight values accessed through MC. Further, we adopt the
method of fused score and softmax calculations. The SMs compute
score for input sequence blocks sequentially, and the output matrix
is generated row-wise over the sequence length. Afterward, the
softmax values are computed online for the blocks of rows and
appropriately scaled to get the actual softmax for the attention head.
A key advantage of this approach is that the attention values are
computed without the need to write intermediate matrices back to
DRAM, preventing frequent DRAM reads and writes.

FF: We map both the weight matrices of the FF network (W and
WF2) to the ReRAM tier with the weights spatially partitioned
across the ReRAM cores. This ensures pipelined matrix
multiplication with activations flowing unidirectionally from the
neural layer L; to neural layer L; ;4.

NoC: We need to maximize the NoC throughput to maximize the
overall performance gain. Given the unidirectional dataflow within
the ReRAM tier, core placement as well as associated inter-core
links can be determined offline to prevent long-range traffic
exchange [2]. Therefore, the inter-core links on the ReRAM tier are
not part of the optimization. However, ReRAM cores exchange
data with DRAM and the SM-MC tier through vertical links.
Hence, we need to consider the traffic through inter-tier vertical
links during optimization for the fixed ReRAM core placement.
Further, each SM operates in parallel during the MHA computation
with data accessed through MCs. The number of SMs typically
exceeds that of MCs, thereby giving rise to many-to-few and few-
to-many traffic patterns. Additionally, the output from different
heads is concatenated which results in a many-to-one traffic
pattern. A mesh-based NoC is not well suited for the traffic
generated within HeTraX [10]. Hence, following existing work, we
design a suitable NoC for the many-to-few traffic generated [10] .

Let each candidate design (1) corresponds to a specific
configuration (placement of cores and links) in the design space.
The NoC throughput can be maximized by minimizing the mean
u(A) and standard deviation g (1) of link utilization [10].

KO =By wes 00D = [PEEL - kO ()

Here, uy, is the expected link utilization of link £ and L is the total
number of links.

4.3 Thermal Optimization

3D architectures have high power density and are prone to thermal
hotspots. Consequently, it becomes necessary to consider the peak
temperature of the system when optimizing for performance. The
peak temperature of each core can be estimated using the
approximate thermal model, which determines the temperature



using horizontal and vertical heat flow [11]. The vertical heat flow
can be determined by dividing the system into vertical columns.
The temperature of a core located at layer & from the sink due to the
vertical heat flow is given by:
k i k
T(Tl, k) = Z Pn,i Z R] + Rb Z Pn,i (2)
i=1 j=1 i=1

where P, ;(t) is the power consumption of the core at layer i from
the sink in the vertical column n, R; is the thermal resistance in the
vertical direction, and R}, is the thermal resistance of the base layer
[11]. The horizontal heat flow is represented through the maximum
temperature difference in a layer.

AT (k) = max T, — min T 3)
n n

Combining both horizontal and vertical heat flow models, the
objective becomes minimizing the worst-case temperature.

T(%) = (max {T(n, k)3) (max (4T (k)}) @

Further, it should be noted that ReRAM cores have different
thermal sensitivity when compared to the CMOS-based SM-MC
cores. ReRAM cells store weights using conductance, which varies
with temperature [3]. Any thermal fluctuations within the ReRAM
cells can introduce noise, potentially resulting in erroneous
computations and compromising the inference accuracy of the
underlying model [3]. The effect of thermal noise on the ReRAM
conductance value can be represented by the following.

\/4G.KD.TRQRAM.F>
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Here G represents ReRAM ideal conductance, K}, is the Boltzmann
constant, F denotes the operating frequency, and V is the voltage
difference across the two ReRAM terminals [3]. We consider the
temperature of ReRAM cores in the context of the ReRAM noise
as the optimization objective.

Noise(}) = N<0,

4.4 Overall Design Optimization

Considering the performance, thermal, and ReRAM noise
objectives, we aim to find a suitable placement of cores, routers,
and links while reducing the overall system temperature and
suffering no model accuracy loss due to ReRAM noise. The design
of the proposed heterogeneous architecture given the objectives can
be formulated as a multi-objective optimization (MOO) problem.
We represent the MOO formulations as follows:

A= MOO(objectives = u(/l),a(l),T(A),Noise(/l)) 6)

where 1" is the Pareto optimal set of designs. Given the power
constraints, the maximum number of links as well as the number of
ports per router can at most be equivalent to a 3D mesh during
design space exploration. In this work, we use an ML-guided MOO
algorithm, MOO-STAGE [10]. MOO-STAGE has been shown to
outperform more conventional MOO algorithms based on
simulated-annealing (AMOSA) and other heuristics search
especially for a high number of design objectives as is the case
shown in Eq. (6). We solve the MOO problem to obtain the Pareto
optimal designs with suitable core, link, and router placements.
Finally, we perform cycle-accurate simulations to evaluate the
Pareto optimal set to determine the best design.

5 EXPERIMENTAL RESULTS

In this section, we present an experimental analysis of the proposed
HeTraX architecture. First, we describe the experimental setup

Table 2: HeTraX Architecture Specifications

ReRAM Tier: 16-cores, 16-tiles per core
ReRAM 96-ADCs (8-bits), .12><128.><8DACS (1-t_>it), 96 crossbars,
Tile 128x128 crossbar size, 2-bit/cell resolution, 10 MHz, 0.34
W, 0.37 mm?, Tech node — 32 nm [2]
SM-MC Tier: 9-cores
Volta architecture, 8 Tensor core, 64 KB register file, 96
SM core | KB L; cache, 1530 MHz clock frequency, 9.1 mm?, Tech
node — 12 nm [12]
MC core | L, cache —512 KB, 3.2 mm?, Tech node — 12 nm [12]
TSV Parameters
Diameter — 5 um, Via Height — 25 um, Cap. — 37 {F, Res.- 20 mQ [17]

used for evaluation. Next, we assess the optimization undertaken
for HeTraX. Finally, we present a detailed performance-thermal
evaluation and EDP analysis with respect to existing accelerators.

5.1 Experimental Setup

We consider five transformer models in our experimental
evaluation: BERT-Tiny, BERT-Base, BERT-Large, as well as
BART-Base, and BART-Large [1]. Furthermore, we also consider
different types of transformer architectures, including Encoder-
Decoder, Encoder/Decoder only, MQA, and parallel MHA-FF
models [1]. All models use 16-bit precision for computation. The
3D system under consideration is structured with four planar tiers,
each with size 10 mm x 10mm. We have considered 21 SMs and
6 MCs distributed across three tiers, while 16 ReRAM cores are
placed in one tier. Within each SM-MC tier, 9 cores are placed in a
3 x 3 grid pattern, and the ReRAM tier has 16 cores in a 4 x 4 grid.
Fig. 2 shows an illustration of the HeTraX architecture. The
specifications of the ReRAM, SM, and MC cores used are shown
in Table 2. Note that this is an example system size for performance
evaluation. The proposed design methodology is applicable to any
other configurations. We obtain the application traces using nvidia-
smi with Nvidia Tesla V100 GPU to evaluate the performance. We
use AccelWattch to obtain the power profiles of the SM-MC core
[12]. For ReRAM cores, we employ a modified NeuroSim to obtain
the area, latency of all on-chip buffers, and peripheral circuits [13].
We use the cycle-accurate BookSim2 simulator for implementing
the NoC to connect the cores [14]. The inputs to the BookSim?2 are
the connectivity between routers and the inter-core traffic traces for
the transformer models. We employ a standard NoC flow control
mechanism (FIFO-based) for synchronization. Finally, we use the
HotSpot tool to conduct steady-state thermal analysis and obtain
thermal conductivity values for TSV integration from [15].

We compare the performance of the HeTraX with two recently
proposed state-of-the-art transformer accelerators, HAIMA and
TransPIM [4] [5]. In our performance evaluation, we assume that
the model parameters are available in DRAM before inferencing,
and we account for the timing overhead associated with loading
weights from DRAM to the MC. Additionally, we do not consider
the ReRAM-only architecture, ReTransformer in this comparative
performance evaluation due to the endurance concern when used
for MHA computation [7]. To illustrate, consider the BERT-Large
model processing a single input sequence of length n = 1024,
where each attention head is mapped to a unique ReRAM core. We
need ~5 * 10* rewrite operations to ReRAM cells. Notably, the
number of necessary rewrites increases with the sequence length
due to dynamic matrix multiplications. Consequently, the MHA
computation on ReRAMs can quickly approach the ReRAM
endurance limit (10 — 10° [3]) . This issue becomes worse given
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Figure 3: Comparison of physical placement of cores in HeTraX
with/without noise as an optimization objective.

the trend of continuous increase in sequence length. Contrarily, the
FF network computation on ReRAM is independent of sequence
length. Due to the fixed and limited number of updates, we employ
ReRAM to exclusively implement the FF network in HeTraX.

5.2 HeTraX Optimization

This section presents an evaluation of the HeTraX optimization
framework. First, we validate the necessity of incorporating
ReRAM noise as an optimization objective. We conduct a thermal
analysis of HeTraX, wherein optimization is pursued under
different objectives. The MOO-STAGE algorithm is run for 50
epochs with 10 perturbations from the same starting point. Fig. 3(a)
illustrates the core placement when we undertake only joint
performance-thermal (PT) optimization similar to existing work on
3D manycore architectures. The core placement under PT
optimization places the ReRAM core at the bottom (farthest from
the heat sink), given that the SM-MC tier dissipates more power as
compared to the ReRAM tier. The overall peak system temperature
is 78°c. Conversely, Fig.3(b) depicts the core placement
considering joint performance-thermal-ReRAM noise (PTN)
objectives. The core placement changes significantly with the
addition of noise as an optimization objective in PTN. In the PTN
scenario, the placement of the ReRAM tier is nearest to the heat
sink. This shift in placement is due to the sensitivity of ReRAM to
thermal noise as compared to CMOS-based SM-MC cores and the
addition of noise as an optimization objective. The peak system
temperature is slightly higher in the PTN scenario (81°C) due to the
placement of SM cores at the bottom tier away from the heat sink.

Now, we investigate the impact of ReRAM noise on the model
accuracy under the two discussed optimization scenarios. We
quantify the effect of noise through Eq. (5), utilizing ReRAM tier
temperature. We evaluate the model using widely used GLUE
benchmarking tasks. The GLUE benchmark is a collection of 9
tasks specifically designed to evaluate and compare the
performance of transformer models [16]. We show the accuracy
results considering two NLP tasks, SST-2 and QNLI from the
GLUE benchmark for brevity. Fig. 4 presents the accuracy results
on both the tasks under three scenarios: HeTraX-Ideal (baseline
with no thermal noise), HeTraX-PT, and HeTraX-PTN. We
observe that HeTraX-PTN does not suffer from any accuracy loss.
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Figure 4: Model inference accuracy with/without the adoption of
ReRAM noise as an optimization objective.
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Figure 5: Comparative evaluation between 3D-MESH NoC and
HeTraX NoC assessing router port configuration.

This is attributed to the lower temperature of the ReRAM-tier
(57°C), where thermal noise remains confined within the
quantization boundaries of the ReRAM cells. Conversely, HeTraX-
PT observes up to 3.3% accuracy loss. This reduction in accuracy
is linked to the elevated temperature at the ReRAM tier (78°C),
despite the peak system temperature being lower than that of
HeTraX-PTN. These findings underscore the importance of
considering ReRAM noise as an additional optimization objective.

Now, we evaluate the NoC of HeTraX against a 3D-MESH NoC
design considering optimized core placement obtained under PTN
MOO optimization. The router port size directly relates to the NoC
performance with bigger routers implying more links. Fig. 5
presents the number of routers with a specific number of ports for
the two NoC topologies. We observe a lateral shift to lower router
port count in HeTraX as compared to mesh NoC design. This shift
suggests that the NoC in HeTraX has relatively smaller routers and
a reduced number of links, which directly influences the NoC
performance and energy consumption. Overall, these results
validate the effectiveness of HeTraX’s joint performance-thermal-
accuracy optimization. The optimization determines suitable core
and link placement to achieve high performance while being
thermally feasible and suffering no accuracy loss.

5.3 HeTraX Performance Analysis

Now, we compare the end-to-end latency of HeTraX with the
baselines TransPIM and HAIMA. Fig. 6(a) shows the normalized
execution time for each computational kernel of the encoder-only
BERT-Large model as an example. We observe that HeTraX
outperforms both HAIMA and TransPIM and achieves speedup for
each computational kernel within the transformer model. The SMs
efficiently accelerate MHA computation, and the ReRAM layer
computes the FF layer in a highly parallel manner. Additionally,
HeTraX benefits from the fused score and online softmax
calculation on SM cores. In contrast, HAIMA and TransPIM rely
on an additional host for softmax, which prevents online execution
and results in repeated data exchange with the host. However, as
highlighted in Section 2, HAIMA and TransPIM did not consider
thermal effects while designing the architecture. For instance,
HAIMA's configuration suggests integration of up to eight compute
units per bank, with each compute unit dissipating 3.138W of
power. Under the assumption that all compute units in a bank are
operating concurrently as suggested in HAIMA, the power density
of the HBM bank will be around 8W /mm? (I6x higher than
modern GPUs) given the standard HBM2 die area of 53.15 mm?for
16 banks. Similarly, TransPIM consists of 8 stacks of HBMs
connected through TSV. The thermal resistance increases as we
move up in the stack and away from the heat sink. Consequently,
additional power dissipation through compute units in banks can
increase DRAM temperature quickly and create hotspots.

Performance-Thermal Evaluation: Fig. 6(b) presents the overall
performance as well as steady state system temperature with the
same model size as BERT-Large along with different transformer
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Figure 6: Normalized execution time and temperature when compared to the baseline HeTraX, (a) each computation kernel within BERT-Large,
(b) different transformer architectures maintaining uniform model dimensions, and (c) different transformer models with varying sequence length.

architectures to conduct a thorough performance and thermal
analysis. Notably, we observe that both HAIMA and TransPIM
exhibit elevated temperatures, with a minimum temp of 120°C for
any transformer architecture. The maximum temperature reaches
142°C in the case of the fused MHA-FF model where MHA and FF
layers are computed parallelly. Note that the maximum temperature
threshold for DRAM is 95°C beyond which it results in data loss or
corruption. These results underscore the thermal infeasibility of
both HAIMA and TransPIM, necessitating the exploration of
dynamic voltage frequency scaling techniques to make them
practically viable. However, the exploration of such techniques
falls beyond the scope of the current work. Conversely, HEMIT
proves to be thermally realizable, consistently achieving speedup
across various transformer architectures. The speedup is similar for
Decoder-only and Encoder-Decoder models. MQA achieves
slightly more speedup due to its reduced memory bandwidth
requirement [1]. The speedup is maximum for parallel attention
where vertical integration of heterogenous tiers helps with efficient
data exchange during parallel MHA and FF computation. In
summary, HeTraX demonstrates superior performance and
temperature characteristics when compared to the baselines.

EDP Evaluation: Fig. 6(c) illustrates the normalized EDP along
with steady state temperature for HAIMA and TransPIM with
respect to HeTraX considering varying real-world transformer
models and input sequence lengths. We consider EDP as the
relevant metric as it captures both performance and energy in a
single term. It is evident that HeTraX outperforms the baselines
exhibiting increased EDP gains as the transformer model size and
input sequence length increases, thereby showing scalability. For
instance, the EDP of HeTraX is an order of magnitude better
(14.5x) than HAIMA for the BERT-Large model with n = 2056.

6 CONCLUSION

In this paper, we consider the complex interactions among various
types of computing elements to design a 3D manycore architecture
called HeTraX for accelerating end-to-end transformer models.
HeTraX uses SM-MC cores for MHA and ReRAM cores for the FF
network and integrates them vertically for faster data exchange.
Experimental results demonstrate that HeTraX outperforms the

existing state-of-the-art in terms of execution time and EDP while
ensuring thermal feasibility.
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