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Abstract— Processing-in-memory (PIM) has emerged as an
enabler for the energy-efficient and high-performance
acceleration of deep learning (DL) workloads. Resistive random-
access memory (ReRAM) is one of the most promising
technologies to implement PIM. However, as the complexity of
Deep convolutional neural networks (DNNs) grows, we need to
design a manycore architecture with multiple ReRAM-based
processing elements (PEs) on a single chip. Existing PIM-based
architectures mostly focus on computation while ignoring the role
of communication. ReRAM-based tiled manycore architectures
often involve many Processing Elements (PEs), which need to be
interconnected via an efficient on-chip communication
infrastructure. Simply allocating more resources (ReRAMs) to
speed up only computation is ineffective if the communication
infrastructure cannot keep up with it. In this paper, we highlight
the design principles of a dataflow-aware PIM-enabled manycore
platform tailor-made for various types of DL workloads. We
consider the design challenges with both 2.5D interposer- and 3D
integration-enabled architectures.
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I. INTRODUCTION

As the complexity of deep neural networks (DNNs) grows, we
must design manycore-based accelerators with multiple
processing elements (PEs) on a single chip. Three-dimensional
(3D) integration and 2.5D interposers are two enabling
technologies that enable high degrees of integration to design
suitable manycore architectures for accelerating deep DNN
workloads. The processing elements (PEs) in both 2.5D and 3D
architectures need to be connected via an efficient on-chip
communication network to reduce the amount of data
movement.

Chiplet-based 2.5D architectures that integrate multiple
small dies on an interposer are drawing the attention of leading
silicon manufacturers due to their higher energy efficiency and
lower fabrication cost than monolithic planar big chips [1].
Chiplet-based systems connect multiple small dies (chiplets)
through a network-on-interposer (Nol). Manufacturing several
smaller chiplets and combining them into a single system leads
to the functionality of a larger chip while maintaining the cost
advantages of the smaller chips [2] [3].

Three-dimensional (3D) integration is another technology
that enables designers to design high-performance and energy-
efficient manycore architectures [4]. Both through-silicon via
(TSV)- and emerging monolithic 3D (M3D) enables integration
of multiple PEs in a single system. However, the achievable
performance of conventional TSV-based 3D systems is
ultimately bottlenecked by the horizontal wires (wires in each
planar die). Hence, TSV-based architectures do not realize the
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full potential of 3D integration. M3D integration opens up the
possibility of integrating PEs using multiple layers by utilizing
nano-scale monolithic inter-tier vias (MIVs), reducing the
effective wire length. This leads to better performance and
energy efficiency. In addition, M3D provides better heat
dissipation than TSV-based designs. Due to better thermal
conductivity and extremely thin inter-layer dielectric (ILD),
heat is easily dissipated, reducing thermal hotspots [5].

Integrating several PEs or chiplets in a single system
introduces additional data exchange. This necessitates the
design and optimization of the interconnection network, which
is the communication backbone of the 2.5D/3D system. This
on-chip data exchange is exacerbated specifically for emerging
machine learning (ML) applications. Deep neural networks
such as convolutional neural networks (CNNs), Graph Neural
Networks (GNNs), Transformer models, and their variants are
employed in a range of applications, including autonomous
vehicles, machine translation, video analytics, recommendation
systems, and social networks [6] [7] [8]. All these ML
applications give rise to unique on-chip traffic patterns when
mapped onto a manycore system. Hence, designing dataflow-
aware manycore accelerators is extremely important.

Recent works have proposed several interconnect
architectures for efficient communication between multiple
chiplets/PEs on a 2.5D/3D system for ML workloads [9].
Existing Nol/NoC architectures assume a single and typically
fixed application workload executed one at a time so that the
Nol/NoC can be optimized for a specific application class
mapped onto the manycore system. Offline application-specific
Nol/NoC optimization is challenging in real-world settings for
two main reasons. First, multiple application workloads with
varying inputs may need to be executed simultaneously in a
real-world scenario (e.g., inferencing for different images or
English sentences with varying lengths using the same deep
models such as transformers). Second, various workloads may
appear simultaneously (e.g., inferencing tasks with different
deep models). Specifically, mapping the DNN neural layers
onto the chiplets/PEs needs special attention. For example, each
neural layer in DNNs typically sends data from layer L; to layer
Li41 (i.e., the data flow graph is mostly linear). Hence, the
consecutive neural layers need to be mapped to neighboring
chiplets or PEs to reduce latency and improve energy
efficiency. This dataflow awareness during the design process
is imperative so that the communicating neural layers are highly
likely to run on neighboring chiplets/PEs without introducing a
significant volume of long-range and multi-hop data exchange.
Moreover, in the case of ML algorithms with varying
computational kernels (like in the case of transformers,
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influence maximization over graphs), a dataflow-aware strategy
can be used for improving energy efficiency and performance.
As an example, the fully-connected (FC) layers in Transformers
must be mapped in a contiguous manner on the physical
Nol/NoC layer to reduce the communication overhead [10].
This is identical to the DNN dataflow.

In this paper, we present design principles of dataflow-aware
Nol/NoC architecture specifically targeted towards ML
workloads using 2.5D/3D integration. We also highlight the
thermal challenges while designing the dataflow-aware
manycore architecture.

II. DATAFLOW-AWARE NOI ARCHITECTURE

2.5D-based manycore systems offer a promising alternative
to monolithic chips [1] [3]. Novel 2.5D chiplet platforms
provide a new avenue for compact and high-yield architectures
for executing various emerging compute- and data-intensive
workloads. However, scalable communication between chiplets
is particularly challenging due to relatively large physical
distances between chiplets, poor technology scaling of
electrical wires, and shrinking power budgets. The
aforementioned challenges make it difficult to design a viable
Nol that can support ultra-high bandwidth, energy-efficient,
and low-latency inter-chiplet data transfer without increasing
fabrication costs. The demands on the Nol infrastructure will
only be exacerbated as application complexity and
computational requirements continue to scale. For example, the
Nol area overhead alone can be up to 85% of the total system
area for a 2.5D-based system [2] [11]. In this section, we present
the fundamental idea behind the dataflow-awareness in a
chiplet-based system and present a comparative performance
evaluation of various Nols proposed in the literature.

Both application-specific and general-purpose 2.5D chiplet
architectures have been explored. Most of these architectures
are based on conventional multi-hop interconnection networks,
such as mesh or torus [11] [3] [12] [9]. IntAct is one of the
earliest architectures demonstrating low latency interconnects
on a chiplet-based system using an active interposer [13]. [tis a
6-chiplet 96-core architecture with routing logic and peripheral
test and programming circuitry like JTAG implemented within
the interposer, with a 2D-Mesh interconnection architecture.
The SIAM framework enables fast design space exploration of
2.5D-based systems [11]. SIMBA introduces tiling
optimizations on fixed 2D-Mesh Nol topology for executing
deep models such as ResNet50 [12]. The Kite family of
topologies, which are primarily Torus-based, have been
proposed for 2.5D-based systems [6]. Recent work discusses
the advantages of integrating heterogeneous chiplets on the
interposer to reduce design costs [3]. Recently, a compact-
packing high-fan-out chiplet-based interconnection architecture
called HexaMesh has been proposed [14]. HexaMesh improves
bisection bandwidth and has inherently large routers with star-
like connections to its nearest possible neighbors. A high-
performance and energy-efficient Nol architecture called
SWAP was proposed for designing chiplet-based systems for
server-scale scenarios, running multiple DNN workloads in
parallel [2]. We note that all the above-mentioned Nol
architectures (mesh, torus, concentrated mesh, application-
specific) principally utilize multi-hop networks, which do not
scale with more chiplets. Moreover, these multi-hop Nol
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Fig. 1: Illustration of the SFC-based architecture for a 36-chiplet system.

architectures create performance bottlenecks for datacenter
scale applications, involving multiple concurrent tasks.
Recently, a space-filling-curve (SFC) based Nol architecture
for 2.5D systems called Floret has been proposed [8]. Fig. 1
shows the SFC-based architecture with six petals connected by
a hierarchical top-level network. Floret accelerates datacenter
scale ML workloads by employing a dataflow-aware mapping
along the chiplets placed in multiple petals of Floret. Moreover,
it is scalable for various DNN workloads with similar dataflow.
In theory, this dataflow-aware design problem can be viewed
as one of embedding a linear ordering (i.e., an SFC) of chiplets
over the given topology [15] [16]. However, multiple DNN
tasks may need to be dynamically mapped to the system, and
each task may consist of different numbers of neural layers.
Furthermore, the number of chiplets needed to execute each
layer may also vary. Therefore, the problem becomes one of
generating multiple SFCs, each with its own sequence of
chiplets to map the neural layers of any of the tasks [17].
Moreover, as the different DNN tasks complete, the chiplets
used for that task need to be reassigned to newer tasks. If a
consecutive sequence of chiplets is insufficient to accommodate
all the layers of a DNN task, the spill over layers will need to
utilize chiplets in other parts of the Nol (i.e., from other SFCs)
to ensure successful completion. During the mapping phase,
since the same DNN task may use chiplets from two or more
SFCs, it is important to reduce the average number of hops
between the tail of an SFC and the head of the next SFC.
Therefore, it is imperative to minimize this average path length
d between the tail of one SFC to the heads of the other non-
overlapping SFCs:
1
Minimize: d = — N Z |ti - hj|where i, p=2(;') (1)
i,jE[0,A—1]
Where A is the number of SFCs and (h;, t;) stand for the head
and tail of the i SFC. Here, the distance between any tail-to-
head pair is calculated as the Manhattan distance over the 2D
grid. Minimizing this average distance measure d is imperative
as communication delays between the tail of one SFC and the
head of the next SFC can significantly impact the overall
system performance. Therefore, the placement of the SFCs and
the resulting separation between them in terms of hops become
necessary measures to reduce DNN task execution times. Taken
together, these factors — i.e., the need to accommodate multiple
SFCs, the dynamic nature of mapping multiple DNN tasks to
those SFCs, and the need to potentially hop from one SFC to
another (for the same task) — all make this a challenging
problem, one where classical SFC designs may not apply.
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TABLE I: DNN INFERENCE WORKLOADS ALONG WITH THEIR NUMBER OF

TRAINABLE PARAMETERS
Name DNN model Dataset Parameters
(in Millions)
NN; ResNet18 Imagenet 24.76
NN, ResNet34 36.5
NN, ResNet50 25.94
NN, ResNet101 9.42
NN ResNet110 43.6
NNg ResNet152 54.84
NN, VGG19 93.4
NNy DenseNet169 54.84
NNg ResNet18 CIFAR-10 11.22
NNj, ResNet34 21.34
NN, VGG11 9.62
NN, VGG19 20.42
NN;; GoogLeNet 6.16

Floret curve is equipped to address all the aforementioned
challenges. In particular, Floret connects the chiplets (in the
order the neural layers are mapped) along the contiguous path
in a two-dimensional (2D) space, as illustrated in Fig. 1. The
intuition behind the Floret architecture is to subdivide a multi-
dimensional space into smaller contiguous segments (or
individual SFCs), and then to stitch those pieces together.
Specifically, we leverage the space-filling property to generate
a path where a single curve, without any gaps or breaks,
traverses the area of the interposer with no closed loops. We
first divide the chiplet-based system into multiple SFCs. Each
SFC stitches a set of chiplets along the 2D planar path, as
illustrated in Fig. 1. Each SFC consists of a head (H,, Hy, ..., Hy)
and a tail (T}, T, ..., T) with A = 6 in Fig. 1) connecting a group
of chiplets in a contiguous path. We also need to minimize the
inter-SFC path length among the non-overlapping SFCs to
reduce latency in long-range inter-SFC data exchanges. The
advantages of the proposed mapping along the space-filling
path of the Nol are two-fold. First, neural layers get mapped to
contiguous chiplets and executed in the order they appear until
the system is fully utilized. Second, the space-filling Nol
architecture, which minimizes the inter-SFC data exchange,
reduces the latency when we need to find contiguous chiplet
resources belonging to different SFCs. Instead of one
monolithic SFC, we use multiple SFCs to introduce inherent
redundancy in the system. Even though the Floret curve design
is presented for a 2D grid system of chiplets, the design
methodology is generic to be extended in principle to other
symmetric topologies — e.g., Kite, Butter Donut, Double
Butterfly [5] [18]. This is because our algorithm to assign the
head-tail pairs simply relies on starting at the center of the Nol
and radiating outwards iteratively. In the case of DNNs, given
that communication primarily relies on neighboring layers, a
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Fig. 2: (a)Variation of router-port configuration for Kite, SIAM, SWAP, and
Floret. (b) Comparison of the total number of links for Kite, SIAM, SWAP,
and Floret for a 2.5D system with 100 chiplets.

simple 2D grid topology is sufficient to serve as the breadboard
for generating the Floret curve Nol.

SIMBA, IntAct, and SIAM principally are based on 2D Mesh
Nol. We consider SIAM to be representative of this group. Kite
is a Torus-based Nol that employs skip connections.
Application-specific SWAP Nol is an irregular architecture
where the chiplets and the associated routers and links are
placed per specific design time considerations for a given set of
DNN applications. One of the main differences between SIAM,
Kite, SWAP, and Floret is the router port configuration. Each
Nol architecture consists of inter-chiplet routers and links.
Since each architecture has different connectivity, the
distribution of the number of router ports and corresponding
link lengths vary.

Fig. 2(a) shows the router-port configuration for Kite, SIAM,
SWAP, and Floret for a 100 chiplet system. We observe that
four-port routers are the most frequent ones with Kite. SIAM
with mesh Nol primarily consists of routers with three and four
ports. In contrast, SWAP primarily uses two- and three-port
routers, where the links are, on average, longer due to the small-
world network approach [2]. However, all the routers in Floret
except the heads and tails have only two ports. As a result, the
total Nol area of Floret is significantly smaller than other
architectures. It should be noted that only reducing the number
of links and router port size on their own does not necessarily
lead to performance and energy efficiency. To achieve these
benefits, it is crucial to consider the length of the links between
routers, as the communication delay depends on the link
lengths. Fig. 2(b) shows the number of links for different
architectures. Kite, for example, has mainly two-hop links, and
the routers are inherently bigger. SIAM, principally a 2D-Mesh,
has single hop link connections to its neighboring chiplets.
SWAP has fewer links and smaller router ports, but not all links
are necessarily single-hop. SWAP also has some longer links,
with four or five hops. Floret mainly consists of routers with
fewer ports, and most links are one-hop connections. In the top-
level network, we allow the tail of one SFC to communicate
with the heads of other SFCs separated by at most three hops.
Within each SFC, all the intra-SFC connections are single hops
with small router ports. Smaller routers and reduced link
lengths (Fig. 2) in Floret reduce Nol energy, area, and the
fabrication costs. Next, we discuss the performance-energy-
area-fabrication cost trade-offs among different Nol
architectures.

We evaluate the Nol architectures by considering a wide
range of concurrent DNNs for inferencing. Table 1 shows
different DNNs and the individual number of parameters. Table
IT shows the list of multiple concurrent DNN workloads for
inferencing simultaneously, representing a datacenter-scale
scenario. We consider a 2.5D architecture with 100 chiplets for
this performance evaluation. In this work, we aim to enable the
acceleration of machine learning (ML) applications using
2.5D/3D architectures. Hence, we consider processing-in-
memory (PIM)-based chiplets as the computing platforms.

ReRAM-based PIM is the enabling technology to accelerate
DNN inferencing. It should be noted that all the architectures
and associated design optimization methodologies are also
applicable to other crossbar array (CBA)-based PIM chiplets
such as SRAM, STT-MRAM, FeFETs, and many different
types of chiplets can be adopted too [2]. Note that the DNNs
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Table II: LIST OF CONCURRENT DNN TASKS ALONG WITH THEIR TOTAL

NUMBER OF PARAMETERS
FOR 100-CHIPLET SYSTEM (DATASET=IMAGENET)
Name DNN model Total
Parameters
WL, [16NN;—> NNg—> 3NNg—> 4NNs — 2NN, - NN, - 1.1B
NN,
WL, 2NNg —» NN, - 7NNs = 4NN, —» 2NN, — NN, 1.4B
- NN,
WL; [12NN; » 9NNg - 3NNs - 10NN; - 12NN; - 8.8B
5NN, - NN,
WL, | NN, - 3NNz > 5NNg - 4NN, > 3NN; - 4NN, 3.8B
- 2NN,
WL | NNg— 3NN, > 4NN, — 6NNg — 4NNg - 3NN, 1.8B
- 2NN,

considered in our performance evaluation consist of linear
(VGQG), residual (ResNet), and dense (DenseNet) connections.
Moreover, all the DNNs consist of fully connected and
convolution layers. Each layer of the DNN contains a higher
order of multi-bit weights (e.g., ResNet-152 on ImageNet with
about 54.8M parameters, VGG19 on ImageNet with 93.4M
parameters). However, mapping different DNNs dynamically
to a chiplet-based system is challenging. The common property
of DNN inference tasks is that activations flow from the i
neural layer to the (i+1)" layer. Hence, there is a need to
maintain contiguity on the physical Nol configuration, to the
extent possible, between any two consecutive neural layers to
reduce communication overhead. It should be noted that the
neural networks with skip connections (such as U-Net models
for image segmentation or ResNet models) will require
communication between non-contiguous layers. However,
activations exchanged among non-contiguous layers are still
limited. For example, in ResNet34, linear activations are 4.5x
higher when compared to skip connections, which are about
19% of the total activations propagated in a single pass. In that
case, the inter-chiplet data exchange will involve multiple
single-hop paths. This, in turn, will degrade the performance
and energy efficiency of the Nol.

Performance: Fig. 3 presents the Nol latency for Floret and the
baseline designs (Kite, SIAM, and SWAP) for the 100 chiplet
system. Latency is normalized with respect to that of Floret. For
instance, we observe that Floret outperforms both the baseline
designs (Kite and SIAM) with up to 2.24x improvements in
latency. Kite, SIAM, and SWAP incorporate regular Nol
topologies and consist of several links that are not necessary for
DNN workloads. We map each DNN layer in Kite, SIAM, and
SWAP following a greedy mapping strategy. The key idea is to
map consecutive DNN layers to chiplets separated by the least
number of hops. However, as these three architectures have
multi-hop paths between chiplets, finding contiguous available
chiplets is not feasible with increasing number of concurrent
DNNs. Fig. 4 shows a representative example of SWAP
architecture. As we map the neural layers to the chiplets with
least communication overhead, this leads to multiple unmapped
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Fig. 3: Comparison of Nol latency for 2.5D system 100 chiplets.
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Fig. 4: Illustration of the SWAP architecture for a chiplet-based system with
few mapped (M) and unmapped (NM) chiplets. Since the system is optimized
at the design time, this leads to poor resource utilization during runtime.

(NM) chiplets. Most importantly, for bigger system sizes, the
multi-hop paths increase even more and give rise to lower
resource utilization. On the contrary, Floret always ensures that
communicating DNN layers are mapped to contiguous chiplets
and utilizes all available resources. The mapping algorithm
treats the list of tasks (W) as a queue, assigning one DNN task
at a time to avoid deadlock in the case of Floret. Deadlocks
could happen only if either there is a cyclic dependency
between two tasks (not possible here as DNN tasks are mutually
independent), or if there are two concurrent mapping threads
that are waiting for one another to release their resources (also
not possible due to the sequential queue-based mapping of the
DNNG) [8].

Energy: By having smaller routers and hence reducing the
unnecessary links, Floret not only decreases the inference
latency but improves energy efficiency. The energy
consumption improvements compared to Kite, SIAM, and
SWAP are shown in Fig. 5 for the 100 chiplet system. Energy
consumption is normalized with respect to Floret. On average,
we observe a 1.65x and 2.8x lower energy than SIAM and Kite,
respectively.

Cost: Nol comprises around 85% of the total 2.5D system area.
Hence, the overall fabrication cost depends on the Nol. The
normalized fabrication cost of an Nol is expressed as [11]:

Cuor = 5L &l @
where L, is the number of chiplets per wafer in the reference
system and L is the number of chiplets per wafer for the system
under consideration. The parameter D, represents the wafer
defect density, and A, f is the Nol area of the reference system.
We consider a 2.5D system designed by AMD with 864 mm?
interposer area and 64 chiplets as the reference in this work [1].
Using (2), we can compare the fabrication cost of two different
Nol architectures. For example, Nol fabrication cost for Floret

(CFloret) is:

CFloret = zef X e_DO(Aref_AFlaret) (3)

Similarly, the fabrication cost of the mesh-based SIAM Nol is:

[ Kite (7] SIAM [SX] SWAP [ Floret

Nol Energy (Normalized)
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Fig. 5: Comparison of Nol energy for 2.5D system 100 chiplets.
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where Agpjorer and Agpapy correspond to the total Nol area of
Floret and SIAM, respectively. Therefore, the fabrication cost
of Floret with respect to SIAM can be expressed as:

CFloret —

Csram =

e ~Do(Asiam—AFioret) (5)
Cs1am

The relative fabrication cost of Floret and other architectures
like SIAM principally boils down to the difference between the
two Nol areas (5). Since the Nol area increases with increasing
number of router ports and Nol links, the corresponding
fabrication cost also increases. For instance, Floret reduces
fabrication cost by about 2.8%, 2.1%, and 1.89x with respect to
Kite, STAM, and SWAP for a 100-chiplet system, respectively.
Floret effectively has smaller router ports and associated links,
reducing the fabrication costs. As the scale of datacenter
applications is expected to reach an order of 100s of TOPS with
billions of storage parameters (equivalent to thousands of
chiplets), the fabrication cost becomes an essential component
for the affordability of such a system [19]. It is crucial to
complement the low fabrication cost with performance and
energy benefits. In summary, smaller routers and fewer links
along the SFC paths enable Floret to achieve lower latency and
fabrication costs with higher energy efficiency than any other
existing Nol architecture.

III. DATAFLOW-AWARE 3D NOC ARCHITECTURE

Thermal bottleneck is not a significant concern in 2.5D
architectures due to relatively lower power density than an
integrated 3D system. 3D architectures are susceptible to high
temperature and hence, will affect inference accuracy of the
trained model using ReRAM-based PEs. ReRAM-based PEs
store the DNN weights and activations as conductance states,
which vary with temperature [20]. As temperature increases
beyond 330K, the conductance range (the gap between G,y and
Gorpr) reduces exponentially. As a result, ReRAM crossbar’s
output can be misinterpreted, leading to poor inference
accuracy [20]. Therefore, it is crucial to consider thermal
impact in 3D NoC architectures. Prior work addressed the
thermal effects on the inference accuracy of ReRAM-based
PIM accelerators via weight remapping, weight reordering, row
adjustment, error compensation, etc. [20]. These techniques
incur performance loss due to delays introduced by additional
peripheral circuits to perform weight splitting, reordering, and
error compensation. Further, they consider the effect of
temperature on achievable accuracy at the crossbar array level.
However, as emerging DNNs workloads use hundreds of
millions of parameters, we rely on large-scale integration of
PEs. In such an integrated system, inter-PE communication
constitutes a significant portion (about 30 to 75%) of the overall
execution time of these workloads [4].

A Floret-inspired 3D SFC-enabled NoC architecture
connects the PEs in the order the neural layers are mapped along
the contiguous path formed by the SFC to achieve high
performance. Since a highly integrated single-chip 3D structure
has more stringent thermal constraints than a 2.5D system, in
addition to performance, neural layer mapping should also
consider DNN inference accuracy. PEs executing the initial
neural layers typically consume more power as they process
more activations. Hence, even along the SFC, we should avoid
placing too many power-hungry cores along one specific
vertical column of the 3D architecture and away from the heat
sink to reduce thermal hotspots. The location of the head/tail of
each SFC, the number of SFCs and their respective lengths, and
the mapping of consecutive neural layers along the SFC need to
be determined by solving a multi-objective optimization
(MOO) problem to achieve high performance without
sacrificing DNN inference accuracy under thermal impact.

Next, we present a comparative performance evaluation of
the Floret-enabled NoC design and joint performance-thermal
optimized NoC in terms of energy-delay-product (EDP), peak
temperature, and the impact on DNN inference accuracy due to
thermal noise. For this evaluation, we consider five DNNs N No-
NN, ; (shown in Table 1) for brevity. In Figs. 6(a)-(c), we
observe that Floret-enabled NoC has a higher EDP reduction by
9% on average since it is optimized for performance only.
However, sole-performance optimized mapping leads to higher
peak temperature in Floret-enabled NoC by 13K on average. As
a result, thermal noise and reduced conductance range degrade
the DNN inference accuracy in Floret-enabled NoC by up to
11%. Figs. 7(a) and (b) show the thermal hotspot results for the
bottom tier (farthest from the heat sink) for Floret-enabled NoC
and joint performance-thermal optimized NoC design running
NN;, (ResNet34) on a 100 PE system as an example. With only
performance-optimized neural layer to PE mapping, i.e., the
Floret-enabled NoC design, we observe 17K higher peak
temperature and more thermal hotspots compared to a joint
performance-thermal optimized design. This highlights the
merit of jointly optimizing performance and temperature
objectives for executing DNNS.

IV. UNIQUE CHALLENGES WITH DATAFLOW AWARE DESIGN

So far, we have discussed how the dataflow-aware design is
essential for designing hardware architectures required for
training/inferencing with various DNN models. However, for
emerging ML workloads such as Transformer models, the
awareness needs to be augmented to address complex data
movement, memory hierarchy, and latency challenges [10].
Each Encoder block within a Transformer consists of two major
functional modules: multi-head self-attention and feed-forward
(FF) [21] [22]. Following these two functional modules, there
is aresidual block to add the input and the output and to perform
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Fig. 6: (a) EDP comparison; (b) Peak temperature comparison; (c) Impact on DNN inference accuracy due to thermal noise on 100 PE NoC-enabled 3D system.
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Fig. 7: Thermal hotspots in the bottom tier for NN;, (ResNet34) running on
100 PE system with (a) Floret-based 3D-NoC and (b) Thermal-aware 3D-NoC.

the layer norm operation. The multi-head attention layer
receives data from the input embedding or previous encoder
block. The decoder stack also consists of k identical blocks with
an extra cross-attention layer to connect with the output from
the last encoder stack. For every self-attention layer within a
Transformer encoder, all the compute units must be rewritten
before the matrix-vector multiplication (MVM) operation is
performed since the inputs change dynamically for each token
and must be stored in internal registers or on-chip buffers.
Traditionally, crossbar-based PIM platforms can directly be
employed for the MVM operations involved in DNN
workloads. However, such intermediate matrices will require
substantial storage capacity or frequent updates in this case.
Hence, traditional nonvolatile memory (NVM)-based PIM
architectures are unsuitable here due to their limited write
endurance. For example, for BERT-Base and Bert-Tiny,
intermediate matrices take up to 8.98x and 2.06x of original
weight matrix storage, respectively. This storage will grow
even more for bigger models, which cannot be stored by using
more resources and by remaining within the reticle limit of the
2.5D system with an acceptable yield. Moreover, due to various
types of computational kernels involved in Transformer
models, we require different types of processing elements, such
as Tensor cores, GPUs, DRAMs, and proces sing-in-memory
(PIM)-based accelerators on the same system. The FF network
consists of two consecutive FC layers, which are large static
hidden layers. Like DNN models, the fully connected layers
have fixed sizes and sparse weight updates compared to encoder
outputs. Data always flows from the i*" to the (i + 1)*" chiplet.
Hence, contiguity should be maintained on the physical Nol
layer, to the extent possible, between any two consecutive
chiplets to reduce the communication overhead. Therefore, we
can connect the ReRAM chiplets/PEs using space-filling curves
(SFCs). However, the end-to-end transformer model exhibits
significant heterogeneity in its computational kernels,
necessitating the integration of different types of hardware
modules on a single system for high-performance and energy-
efficient acceleration. The dataflow-aware Nol/NoC for a part
of the computational kernel could be created as a hardware
macro with an SFC-based architecture. The other hardware
modules must be suitably integrated with this dataflow-aware
hardware macro. This is a challenging design space that needs
to be thoroughly explored.
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V. CONCLUSION

Datacenters require significant compute and storage
resources. Manycore architectures enabled by emerging
2.5D/3D integration technology are enablers for achieving

datacenter-scale performance with small form factor designs.
The achievable performance and energy efficiency of the
manycore architectures depends on the on-chip communication
infrastructure (Nol/NoC). Nol/NoC architectures can be
optimized by incorporating dataflow awareness inherent in
various ML applications. In this paper, we highlight the design
principles of a dataflow-aware manycore platform tailor-made
for various types of ML workloads. We consider the design
challenges with both 2.5D interposer- and 3D integration-
enabled architectures. We also highlight future research
directions that need to be pursued to leverage the benefits
introduced by the dataflow-aware design.

REFERENCES

[1] A. Kannan, N. Jerger and G. Loh, "Enabling interposer-based
disintegration of multi-core processors," in MICRO, 2015.

[2] H. Sharma et al., "SWAP: A Server-Scale Communication-Aware
Chiplet-Based Manycore PIM Accelerator," IEEE TCAD-IC, vol. 41,
no. 11, pp. 4145-4156, 2022.

[3] S.Bharadwaj, J. Yin, B. Beckmann and T. Krishna, "Kite: A Family of
Heterogeneous Interposer Topologies Enabled via Accurate
Interconnect Modeling," DAC, 2020.

[4] B. Joardar, J. Doppa, P. Pande, H. Li and K. Chakrabarty, "AccuReD:
High accuracy training of CNNs on ReRAM/GPU heterogeneous 3-D
architecture," T7CAD-IC, vol. 40(5), pp. 971-984, 2020.

[5] P. Vivet et al., "Monolithic 3D: an alternative to advanced CMOS
scaling, technology perspectives and associated design methodology
challenges.," IEEE ICECS, 2018.

[6] Z. Wuetal.,"A comprehensive survey on graph neural networks," IEEE
TNLS, vol. 32, no. 1, 2020.

[7] W. Liu et al., "A survey of deep neural network architectures and their
applications," Neurocomputing, no. 234, 2017.

[8] H. Sharma et al., "Florets for Chiplets: Data Flow-aware High-
Performance and Energy-efficient Network-on-Interposer for CNN
Inference Tasks," ACM TECS, vol. 22, no. 5, pp. 1-21, 2023.

[9] H. Sharma et al., "Achieving Datacenter-scale Performance through
Chiplet-based Manycore Architectures," in DATE, 2023.

[L0]JH. Sharma, P. Dhingra, J. Doppa, U. Ogras and P. Pande, "A
Heterogeneous Chiplet Architecture for Accelerating End-to-End
Transformer Models," arXiv:2312.11750, 2023.

[11]G. Krishnan et al., "SIAM: Chiplet-based Scalable In-Memory
Acceleration with Mesh for Deep Neural Networks," ACM TECS, vol.
20, no. 5, 2021.

[12]Y. Shao et al., "Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture," in MICRO, 2019.

[13]P. Vivet et al., "IntAct: A 96-Core Processor With Six Chiplets 3D-
Stacked on an Active Interposer With Distributed Interconnects and
Integrated Power Management," /EEE JSSC, vol. 56, no. 1, 2021.

[14]P. Iff. et al., "Sparse Hamming Graph: A Customizable Network-on-
Chip Topology," in DAC, 2023.

[15]T. K. Hazra and A. Hore, "A comparative study of Travelling Salesman
Problem and solution using different algorithm design techniques," in
IEMCON, 2016.

[16]H. Jagadish, "Linear clustering of objects with multiple attributes.," in
Proceedings of the 1990 ACM SIGMOD ICMD, 1990.

[17]T. Majumder et al., "High-throughput, energy-efficient network-on-
chip-based hardware accelerators," Sustainable Computing: Informatics
and Systems,, vol. 3, no. 1, pp. 36-46, 2013.

[18]J. Kim et al., "Flattened Butterfly Topology for On-Chip Networks,"
IEEE Computer Architecture Letters, 2007.

[19]B. Zimmer et al., "A 0.32-128 TOPS, Scalable Multi-Chip-Module-
Based Deep Neural Network Inference Accelerator With Ground-
Referenced Signaling in 16 nm," [EEE JSSC, vol. 55, no. 4, 2020.

[20]H. Shin, M. Kang and L. Kim, "A thermal-aware optimization
framework for ReRAM-based deep neural network acceleration," in
1CCAD, 2020.

[21]A. Vaswani et al., "Attention Is All You Need," Neurips, 2017.

[22]"LLaMA Collection of Foundation Models.," Meta, [Online].
Available: https:/github.com/facebookresearch/llama. [Accessed 22
June 2023].



