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Abstract: Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained 1

widespread attention for optimizing traffic signal control in intelligent transportation systems. How- 2

ever, existing ML approaches often exhibit limitations in scalability and adaptability, particularly 3

within large traffic networks. This paper introduces an innovative solution by integrating decentral- 4

ized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance 5

traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel con- 6

sumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are 7

employed to learn traffic state patterns and make informed decisions regarding traffic signal control. 8

The integration with a Digital Twin module further facilitates this process by simulating and replicat- 9

ing the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this 10

proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the 11

simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart 12

Corridor in Chattanooga, Tennessee, USA by considering symmetric and asymmetric road layouts 13

and traffic conditions. Comparative analysis against an actuated signal control baseline approach 14

revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction 15

in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized 16

stop delays on fuel consumption, over a 24-hour scenario. In a PM-peak-hour scenario, the average 17

reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing 18

traffic flow and reducing fuel consumption during high-demand periods. These findings underscore 19

the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals, 20

contributing to a more sustainable and efficient traffic management system. 21

Keywords: Multi-Agent Reinforcement Learning; Digital Twin; Graph Neural Network; Intelligent 22

transportation systems; Traffic Signal Optimization; Fuel Consumption; Traffic congestion; Actuated 23

signal control; Asymmetric Traffic Conditions; 24

1. Introduction 25

Urban centers worldwide are increasingly adopting Intelligent Transportation Sys- 26

tem (ITS) technologies to transform conventional corridors into smart and data-driven 27

transportation systems [1±5]. The deployment of smart corridors offers an opportunity to 28

harness high-resolution and high-frequency vehicle and infrastructure data. This, coupled 29

with advancements in machine learning, artificial intelligence, and high-performance com- 30

puting, presents a promising avenue for addressing safety, mobility, and environmental 31

challenges within transportation systems [6±10]. 32
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Efforts to optimize and enhance transportation systems are exploring innovative 33

approaches, and one such solution under investigation is the application of Digital Twin- 34

assisted decentralized multi-agent Reinforcement Learning (RL). This approach involves 35

establishing a seamless connection between the Digital Twin representation of the physical 36

system and the decentralized multi-agent Reinforcement Learning (RL) framework. The 37

primary goal is to demonstrate the successful integration of these components and leverage 38

the resulting application to optimize traffic signal timing. 39

This study presents an extended version of the work [11], focusing on a real-world 40

case study to demonstrate the practical application of the integrated Digital Twin and 41

decentralized graph-based multi-agent reinforcement learning. Our specific objective is to 42

optimize traffic signal timing, aiming to reduce a performance measure known as Eco_PI, 43

which comprehensively assesses the environmental and efficiency aspects of traffic man- 44

agement by capturing the impact of stops on fuel consumption and delay. The extended 45

methodology introduces red clearance and max green constraints, enhancing simulation 46

accuracy and pedestrian safety while optimizing traffic flow. Additionally, expanded exper- 47

imental analysis provides insights into traffic patterns, congestion, and overall performance, 48

resulting in notable enhancements in traffic flow optimization and congestion mitigation, 49

particularly during peak hours. 50

The integration of Digital Twin technology and decentralized graph-based multi-agent 51

reinforcement learning holds significant potential for addressing the complex dynamics of 52

urban traffic systems. By optimizing traffic signal timing through this integrated approach, 53

this study aims to contribute to the broader goal of creating more sustainable, efficient, and 54

intelligent transportation networks. Further insights into the Eco_PI performance measure, 55

including relevant references can be found in [12±15]. 56

2. Related Work 57

In the realm of urban traffic management, the optimization of traffic signal control has 58

become increasingly imperative due to the challenges posed by growing populations and 59

urbanization. Traditional traffic control methods often struggle to adapt to dynamic traffic 60

scenarios and efficiently coordinate diverse agents, including vehicles and pedestrians. 61

Recent advancements in Artificial Intelligence (AI) offer promising solutions to address 62

these challenges, with notable applications in domains such as healthcare [16±19], trans- 63

portation, etc. Deep learning frameworks have demonstrated effectiveness in tasks such 64

as vehicle tracking, visual speed estimation [20], and traffic estimation [21]. Particularly, 65

Multi-Agent Reinforcement Learning (MARL) approaches [22,23] show particular potential 66

for intelligently optimizing traffic signals. 67

Multi-Agent Reinforcement Learning (MARL) involves collaborative decision-making 68

among agents, each relying on local observations and interactions within the environ- 69

ment. Decentralized graph-based MARL models, like Multi-Agent Advantage Actor-Critic 70

(MA2C) [22], have emerged as a breakthrough, effectively distributing control across lo- 71

cal agents while coordinating for efficient traffic signal management. MA2C addresses 72

scalability concerns in large-scale networks, enabling independent learning for agents 73

and facilitating quicker policy convergence. Coordinated actions enhance performance, 74

especially in cooperative or competitive scenarios. Advantage Actor-Critic (A2C) scales 75

effectively to larger environments [24], enabling parallelized learning and adaptation to 76

dynamic environments by continuously updating policies based on interactions with other 77

agents. Through A2C, agents refine policies through continual exploration and exploitation 78

of the environment, maximizing cumulative rewards for stable and efficient learning. 79

The study [25] underscores the critical importance of accurate simulation models in 80

urban transportation planning and optimization, and highlights the necessity of capturing 81

the complexity of city traffic for effective planning by utilizing real-world vehicle speed 82

data and integrating various sources. As the urban landscape evolves, the integration of 83

Digital Twins, inspired by Industry 4.0 principles [26±41], emerges as a transformative 84

element in modernizing systems and processes. Digital Twins offers a promising paradigm 85
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to enhance the performance of physical systems through virtual modeling [42±45]. The 86

marriage of Digital Twins with Multi-Agent Reinforcement Learning (MARL) for traffic 87

signal optimization marks a paradigm shift in urban traffic management. Digital Twins 88

serve as virtual representations of physical entities, providing real-time monitoring, analy- 89

sis, and decision-making capabilities. Studies such as [46] investigate the transformative 90

impact of Digital Twins, Internet of Things (IoT), and machine learning on data utilization, 91

underscoring the potential of Digital Twins in enhancing real-time data utilization for 92

enterprises. Continuously updated in real-time through sensor data and various sources, 93

the Digital Twins provides an accurate depiction of the current and historical state of the 94

physical entity, allowing for improved prediction, control refinement, and operational 95

optimization [47,48]. Diverse applications of digital twins, including transportation, model- 96

ing techniques, and the benefits of integrating digital twins in system design, have been 97

discussed in [49,50]. 98

In contrast to traditional simulation models based on assumptions, Digital Twins 99

rely on actual data, providing a more realistic representation of the physical entity. This 100

attribute proves particularly beneficial in industries like Intelligent Transportation System 101

(ITS) technologies, where the reliability and performance of complex systems are paramount 102

[51]. 103

Within transportation applications, Digital Twins simulations offer a realistic portrayal 104

of real-world transportation systems. Acting as a crucial testbed, Digital Twins facilitate the 105

development of real-time machine learning-based traffic operations applications, providing 106

a safe and economic environment for training and testing artificial intelligence/machine 107

learning (AI/ML) algorithms. Previous studies, exemplified by [52], utilized Digital Twins 108

for transportation systems, leveraging real-time smart corridor data to model current traffic 109

states and provide dynamic updates on traffic performance measures. AI/ML algorithms 110

encompass a range of techniques, including deep learning, reinforcement learning, and 111

other computational methods, to analyze complex transportation data, optimize traffic 112

signal timing, predict traffic congestion, and improve overall transportation efficiency. By 113

integrating Digital Twins with AI/ML algorithms, transportation researchers and prac- 114

titioners can gain valuable insights into traffic behavior, develop more effective traffic 115

management strategies, and enhance the performance of urban transportation systems. 116

Digital Twins in transportation systems offer significant advantages, including real- 117

time monitoring, improved coordination, and enhanced traffic efficiency [53]. The integra- 118

tion of Digital Twins with deep learning and reinforcement learning algorithms enhances 119

real-time adaptive, precision-centric, and predictive traffic monitoring [54]. Moreover, 120

Digital Twins assist reinforcement learning algorithms in understanding dynamic traffic 121

states, facilitating better real-time decisions through adaptive signal control [55]. 122

Due to the Digital Twin’s ability to behave as a real-time environment with different 123

static and dynamic properties, it can be used to assist deep learning algorithms like training 124

autonomous cars [56], real-time adaptive, precision-centric, predictive traffic monitoring 125

[57], and Reinforcement Learning (RL) algorithms like edge task scheduling [58], intelligent 126

manufacturing systems [59], and in vehicular edge computing [54]. To learn the dynamic 127

traffic flow behavior and make better decisions in real-time through adaptive signal control 128

[55], reinforcement learning algorithms can have better assistance through Digital Twin. 129

The Digital Twin can use data from various transportation components, including vehicle 130

presence time in the detector zone which refers to the elapsed time from when vehicles 131

enter the detector zone until they leave, approaching vehicle counts, and pedestrian re- 132

call, to create a comprehensive representation of the transportation system. This enables 133

Reinforcement Learning (RL) agents to learn traffic flow behavior and perform various 134

actions in the digital environment. Moreover, the ability of multiple agents to interact with 135

the same environment and coordinate with each other can lead to better decisions and 136

improved traffic flow. The use of Digital Twin with Reinforcement Learning (RL) agents 137

increases efficiency in decision-making and enables agents to observe their performance 138

for future decisions. 139
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Additionally, broadening signal optimization to encompass all directions, including 140

traffic approaching from various cardinal directions such as east, west, north, and south 141

bounds, and accounting for heterogeneous traffic conditions, enables the development of 142

a more comprehensive traffic management strategy. This approach, as demonstrated in 143

the study by Pandit et al. [60], ensures more efficient service for vehicles on side streets, 144

alleviates congestion on main thoroughfares and secondary routes, and reduces travel 145

times for all road users. While achieving a green wave for main streets is beneficial, 146

addressing diverse traffic demands across all directions is crucial for effective urban traffic 147

signal control. This inclusive approach ensures a more equitable distribution of traffic 148

flow and enhances overall network efficiency. Moreover, the effectiveness of a traffic 149

signal system lies in its ability to dynamically adjust the sequence of signal phases in 150

response to changing traffic conditions [61,62], rather than adhering rigidly to a predefined 151

or fixed sequence. Studies such as [63] dynamically generate phase schemes per cycle 152

based on traffic asymmetry to optimize traffic signal timing. However, being bound to the 153

cycle entails predetermined phase and cycle durations, which do not allow for dynamic 154

adjustments in phase durations based on real-time traffic demand. 155

Building upon this landscape, our prior work [11] introduces a novel approach by com- 156

bining Digital Twin assistance with decentralized graph-based multi-agent reinforcement 157

learning (DGMARL) [11] to learn dynamic traffic states. DGMARL agents, strategically 158

distributed at individual intersections, observe traffic state features from multi-directions. 159

DGMARL model considers traffic approaching from various cardinal directions, such as 160

east, west, north, and south bounds, necessitating the consideration of the dynamics of 161

vehicles approaching from each of these directions when optimizing signal timing. Conse- 162

quently, the model takes into account the diverse flow of traffic when optimizing signal 163

timing. Then the agents exchange information with neighboring agents to optimize in- 164

tersection signal timing along with dynamic phasing. This innovative method, known 165

as dynamic phasing, allows for dynamic adjustment of signal phases based on real-time 166

traffic conditions, rather than adhering to a predefined sequence. The proposed DGMARL 167

model is designed to handle heterogeneous data, including vehicle presence time in the 168

detector zone, approach-level vehicle count aggregates, pedestrian recall times, and current 169

signal states from current, upstream, and downstream intersections from all directions. The 170

integration leverages a Component Object Model (COM) interface of PTV-Vissim, a traffic 171

simulation software, to control signal timing through Digital Twins. 172

The proposed model boasts several key technical features that collectively enhance its 173

efficacy in optimizing traffic signal timing: 174

• Seamless Integration of Digital Twin and Decentralized Graph-based Multi-Agent 175

Reinforcement Learning (DGMARL): The integration of Digital Twins and DGMARL 176

allows for the dynamic optimization of traffic signal timing, leveraging real-time traffic 177

data and simulation capabilities to improve traffic flow and reduce congestion. 178

• Distributed Multi-Agent Reinforcement Learning: Multi-agent reinforcement learning 179

agents are deployed at individual intersections to observe traffic state features, includ- 180

ing vehicle presence time in the detector zone. They exchange this information with 181

neighboring agents to collectively determine an optimal policy for controlling traffic 182

signals. The implementation of actions is validated against rules and constraints, such 183

as minimum green time and pedestrian recall time, ensuring safe mobility for all users. 184

In a coordinated multi-agent environment, the optimal policy is derived through 185

reinforcement learning, where agents interact with the environment, learning from ex- 186

periences to maximize rewards over time. Through iterative exploration, agents adjust 187

policies to prioritize actions with higher rewards. Furthermore, agents engage in com- 188

munication and coordination with neighboring agents to enhance decision-making 189

and achieve better outcomes collectively. 190

• Consideration of All Directions of Traffic Demand: Unlike traditional approaches that 191

may focus solely on specific traffic flows, the DGMARL model considers the traffic 192

demands from all directions, ensuring a comprehensive approach to traffic signal 193
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optimization. This inclusion allows for more efficient management of traffic flow 194

across the entire network. 195

• Dynamic Phasing: The DGMARL model offers dynamic phasing, enabling flexible 196

adjustments to signal timing sequences based on evolving real-time traffic conditions. 197

This flexibility enhances adaptability and responsiveness to changing traffic patterns 198

and congestion levels. 199

• Handling Heterogeneous Data: The DGMARL model coordinates diverse data types, 200

including vehicle presence time, count aggregates, pedestrian recall times, and cur- 201

rent signal states, to optimize traffic flow efficiently. It achieves this through several 202

mechanisms: feature engineering for data preprocessing, message passing and commu- 203

nication among agents, neural network processing to learn complex patterns, reward 204

calculation based on coordinated data inputs, and policy optimization for dynamic 205

signal timing decisions. By integrating these data types into a unified framework, 206

the model performs comprehensive analysis and decision-making, enabling effective 207

traffic management across the transportation network. 208

• Utilization of Component Object Model (COM) Interface: Leveraging the COM inter- 209

face of PTV-Vissim, the proposed model can seamlessly take actions and control signal 210

timing through the Digital Twins. This integration streamlines the implementation of 211

optimized signal timing strategies in real-world traffic scenarios. 212

In this extended version, introduced crucial enhancements to the methodology. In- 213

corporated a red clearance constraint to ensure adequate time for vehicles crossing in- 214

tersections, thereby enhancing the accuracy of the simulations. Additionally, introduced 215

max green constraints to prioritize pedestrian safety while optimizing traffic flow. These 216

constraints ensure that when a pedestrian recall is enabled in the current green phase, the 217

algorithm switches to another phase with the highest traffic demand, thereby improving 218

the realism and effectiveness of the traffic signal control algorithm. 219

Furthermore, the experimental analysis expanded to include additional results focus- 220

ing on vehicles passing through intersections during green signal phases. This comprehen- 221

sive analysis provides valuable insights into traffic patterns and performance, enriching 222

our understanding of signal optimization effectiveness, traffic congestion, signal efficiency, 223

and overall transportation performance. 224

These improvements have yielded significant enhancements in traffic flow optimiza- 225

tion and congestion mitigation. Notably, both PM-peak hour and 24-hour scenarios have 226

experienced notable increases in performance, demonstrating the effectiveness of the ex- 227

tended methodology in addressing complex traffic dynamics and optimizing traffic signal 228

timing for sustainable urban mobility. 229

3. Digital Twin System for Traffic Network 230

3.1. Physical Environment and Digital Twin 231

3.1.1. Digital Twin Architecture 232

Smart corridor Digital Twins are typically driven using real-time and historic vehicle 233

and infrastructure data from the corridor [52,55,64]. In this study, the Digital Twin is 234

developed using vehicle real-time and historic volume count, turn count, and Signal 235

Phasing and Timing (SPaT) data available from approximately 2.1 miles of Martin Luther 236

King (MLK) Smart Corridor, Chattanooga, Tennessee, USA, consisting of 11 signalized 237

intersections. A smart corridor Digital Twins model architecture typically includes four 238

key components as shown in Figure 1: 239
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the decentralized multi-agent reinforcement learning algorithm. This iterative process 334

continues until the desired optimization objective is achieved. 335

This integration of the Digital Twins and DGMARL offers a compelling alternative to 336

the traditional method of field training the DGMARL model for signal timing optimization. 337

By learning from the Digital Twins, the model undergoes efficient and safe training and 338

testing, avoiding the challenges associated with tedious field training. The Digital Twins 339

data accumulation capability facilitates efficient visualization and in-depth analysis of the 340

traffic state. The outcome is a validated and reliable output and the offline training defines 341

the DGMARL neural network before deployment, ensuring a robust and optimized system. 342

5. Implementation of Intelligent Agents to Optimize the Global Transportation 343

Motivations for AI-Enabled Intelligent Agents in Transportation Networks: AI- 344

enabled intelligent agents represent a transformative force in enhancing transportation 345

networks, offering a myriad of benefits that span efficiency, reliability, safety, and societal 346

well-being. The motivations driving the integration of these agents are multifaceted and 347

include the following. 348

• Enhanced Efficiency, Reliability, and Safety: Intelligent agents leverage AI algorithms 349

to analyze transportation data [66], enabling them to make optimized decisions. This 350

results in increased efficiency, reliability, and safety within transportation networks 351

[67,68]. 352

• Positive Impacts on Quality of Life, Environment, and Economic Growth: The deploy- 353

ment of intelligent agents has a direct positive impact on people’s quality of life by 354

reducing congestion and improving travel experiences. Environmental benefits are 355

realized through eco-friendly transportation practices promoted by optimized traffic 356

flow. Economic growth is fostered as efficient transportation networks contribute to 357

smoother logistics and infrastructure support 358

• Real-Time Traffic Optimization: Intelligent agents actively monitor real-time traffic 359

conditions, offering dynamic recommendations to drivers. This includes suggesting 360

alternate routes to avoid congestion, adjusting traffic signals for improved flow, and 361

predicting maintenance needs [69]. 362

• Optimized Resource Allocation and Safety Monitoring: Resource allocation is opti- 363

mized for emergency vehicles, buses, trains, and other vehicles based on real-time 364

demands. Safety is paramount, with intelligent agents detecting potential problems 365

early [70±72]. This proactive approach contributes to a safer transportation environ- 366

ment. 367

Graph Representation of the Transportation Network: The utilization of graph 368

representation, coupled with intelligent agents, provides a powerful framework for com- 369

prehensive situational awareness within transportation networks. This approach leverages 370

graph theory to model the network structure and facilitates advanced decision-making 371

capabilities: 372

• Comprehensive Situational Awareness: Processing and analyzing the traffic data is 373

highly computationally costly and graph framework provides highly scalable strate- 374

gies. Graph representation, employing nodes for intersections and edges for routes, 375

provides a holistic view of the entire transportation network. Intelligent agents utilize 376

this graph to track vehicle trajectory [73,74], predict congestion, optimize traffic states, 377

and enhance overall situational awareness by efficiently monitoring the entire network 378

[75±77]. This approach enables precise monitoring and analysis of traffic states within 379

the transportation network, facilitating comprehensive situational awareness. By 380

representing the transportation network as a graph, agents can analyze connectivity 381

between intersections, assess traffic flow patterns, and identify potential bottlenecks or 382

congestion points. This graphical representation empowers agents to make informed 383

decisions regarding traffic signal control, route planning, and overall network manage- 384
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ment, leading to improved situational awareness and enhanced traffic management 385

strategies. 386

• Integration of Machine Learning Algorithms: Reinforcement learning algorithms are 387

seamlessly integrated, enabling agents to learn traffic patterns from both historical 388

and real-time data. This integration enhances their adaptability to dynamic traffic 389

conditions. By continuously observing and analyzing traffic data, the algorithm 390

can respond to different traffic conditions such as anomalies, allowing agents to 391

adapt and optimize traffic signal timing dynamically. This adaptability ensures that 392

traffic management strategies remain effective in response to changing traffic patterns 393

and unforeseen events, ultimately leading to improved traffic flow and congestion 394

mitigation. 395

• Traffic Signal Control Optimization: Intelligent agents interact with local signal con- 396

trollers, leveraging graph-based insights to optimize traffic signal timings by analyzing 397

sensor data from key locations and communicating with local signal controllers [78,79]. 398

This dynamic control mechanism helps in avoiding congestion and improving traffic 399

flow. 400

Scalability Scalability is a pivotal consideration in optimizing traffic signal timings, 401

especially as transportation networks expand in size and complexity. 402

• Challenges in Single-Agent Architecture: Centralized agents face limitations in process- 403

ing, communication, and latency as the transportation network grows. Effectiveness 404

in smaller networks may not translate to larger networks due to increasing demands. 405

• Multi-Agent Architecture for Scalability: Multiple agents, operating independently, 406

optimize traffic signal timings at different intersections within the network. Asyn- 407

chronous communication protocols, including message passing and attention mecha- 408

nisms, reduce communication overhead [80]. Distribution of workload and efficient 409

utilization of local data enhance scalability for larger volumes of data and intersections 410

[22,23,81]. 411

Hence integration of AI-enabled intelligent agents, graph representation, and scalable multi- 412

agent architectures presents a holistic approach to transforming transportation networks. 413

By distributing the workload and utilizing local data more efficiently, this approach can 414

handle larger volumes of data and more intersections. 415

5.1. Graph Neural Network Formulation of Traffic Network 416

The proposed approach adopts a graph neural network (GNN)-oriented formulation 417

to model the traffic environment as a network, providing a comprehensive representation 418

of the traffic network structure and dynamics. This section discusses the key components of 419

the formulation, including the graph representation, the infrastructure of the Digital Twin- 420

assisted DGMARL system, and the spatio-temporal multi-agent reinforcement learning 421

process. 422

Multi-agent reinforcement learning is employed to disclose the spatial and temporal 423

patterns of traffic. In this process, agents interact with their environment over both space 424

and time, learning from their actions and experiences to optimize their behavior. Spatial 425

information encompasses various configurations related to signal controllers, pedestrian 426

walk configurations, and intersection-specific timing parameters such as minimum and 427

maximum green times, red clearance times, and yellow times. This information delineates 428

the physical layout of the environment, including the arrangement of intersections and 429

road networks. Meanwhile, temporal information pertains to changes occurring over time, 430

such as fluctuations in traffic flow and congestion levels. By incorporating both spatial 431

and temporal dimensions, this approach enables agents to effectively learn and adapt to 432

dynamic traffic conditions, enhancing traffic management and optimization strategies. 433

434

The notations used in this paper are given in Table 1 and 2. 435
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Table 1. Notation used for the Transportation network.

Notation Description

G = ⟨V , E⟩ Bi-directional graph specified by
set of intersections/agents (vertices) and set of

links (edges)
i, j ID of intersections / agents / nodes
l ID of links / edges

eij ∈ E Link connecting intersections i and j

Ni Set of incoming neighbors of intersection i
δi Traffic flow status intersection i
ϕi Signal phases of intersection i

Table 2. Notations used for Decentralized Graph-based Multi-Agent Reinforcement Learning.

Notation Description

S , A, p, and r
State space, Action sace, Agent’s Policy, and

Reward
si,t ∈ S State of intersection i at time t
ai,t ∈ A Action taken by agent i at time t

ri,t = Eco_PI Eco_PI as reward r at time t
dl Average stop delay occurred in the link l
Nl Number of stops occurred in the link l
Kl Average stop penalty calculated for link l
Vπ Critic - State Value
Qπ Actor - Action Value

si,t ∼ p
Initial policy p distribution of intersection i at

time t
θi Policy network parameters of intersection i
ωi Value network parameters of intersection i

5.1.1. Graph Representation of Traffic Network: 436

The traffic environment is represented as a bi-directional graph denoted as G(V , E), 437

where V represents a set of intersections modeled as agents, and E represents a set of roads 438

considered links, where ei,j ∈ E is a link that connects intersections i and j. Each intersection 439

i has static features such as approach links, signal controllers, signal phases, detectors, the 440

number of lanes, uncontrolled approaching links, and neighboring intersections N i ⊂ V . 441

The signal controller at each intersection is associated with signal phases ϕi, each having 442

static features like list of signal lights, minimum green serving time, yellow time, red 443

clearance time, pedestrian recall time, and priority phase. 444

5.2. Infrastructure of DGMARL 445

Figure 4 shows the architecture of a Digital Twins-assisted multi-agent reinforcement 446

learning empowered traffic environment. 447

Each intersection of the traffic network was designed as a local agent. The multi- 448

intersection traffic network signal timing optimization problem is addressed with decentral- 449

ized multi-agent reinforcement learning. The traffic signal control problem is formulated 450

as a Markov Decision Process (MDP): (S ,A, p, r) where S denotes the state space, A rep- 451

resents the action space, and r is the reward that measures the benefit brought about by 452

a specific action. The objective is to learn the optimal policy p that generates the best 453

action for the next step and maximizes the subsequent accumulative discounted rewards 454

produced by the action. 455

To enhance learning efficiency and inform optimal actions based on approaching traffic, 456

neighboring agents share local observations through communication graphs and knowl- 457

edge sharing through message passing, enabling agents to communicate and coordinate. 458

This function aggregates the current agent’s traffic state and recent policy, along with that 459
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delay δD
l,i,t, and vehicles average speed V l,i,t. In Equation (4), the variables ϕS

i,t, ϕD
i,t, and 483

ϕPS
i,t correspond to the current instant phase status, current phase duration, and pedestrian 484

serving status, respectively. The variable ϕMinG
i,t indicates whether the minimum green time 485

has been fulfilled in the current phase, while ϕMaxG
i,t indicates whether the current phase 486

duration has reached the maximum green serving time. The system monitors the maximum 487

green serving time when pedestrian recall is enabled for the current phase ϕi. In such cases, 488

vehicles are served until the maximum green time is reached unless the agent decides to 489

switch to another phase based on the ongoing traffic condition, after which pedestrians are 490

served. 491

492

ϕMinG
i,t =

{

1, if ϕD
i,t ≥ max(ϕMinGT

i,t , ϕPST
i,t )

0, otherwise
(5)

where ϕMinGT
i,t represents the minimum green serving time, ϕD

i,t represents the current phase 493

duration, and ϕPST
i,t represent pedestrian serving time which is the sum of walk and flashing 494

don’t walk time. 495

496

ϕMaxG
i,t =

{

1, if ϕPR
i,t & (ϕD

i,t ≥ ϕMaxGT
i,t )

0, otherwise
(6)

where ϕPR
i,t represents the pedestrian recall flag, ϕD

i,t represents the current phase duration, 497

and ϕMaxGT
i,t represents the maximum green serving time. 498

5.2.2. Action Space: 499

The initial action ai,t at intersection i is evaluated against physical constraints, namely 500

the minimum green serving time ϕMinGT
i,t , the maximum green serving time ϕMaxGT

i,t for 501

the current active phase ϕi at intersection i, and the pedestrian serving time ϕPS
i,t based 502

on the current phase duration ϕD
i,t. This evaluation ensures the safety of all users within 503

the transportation network. Subsequently, the final decision a′i,t is incorporated into the 504

intersection’s signal timing plan. 505

The decision-making process is expressed by the Eq.(7), where a′i,t is determined as 506

follows 507

a′i,t =











ai,t, if ϕMinG
i,t

1, if (ϕMaxG
i,t & ϕPR

i,t )

0, otherwise

(7)

where ϕMinG
i,t the flag determines whether minimum green is served for the current phase 508

or not as defined in the Eq.5. In this context, a′i,t = 0 signifies that the agent refrains from 509

taking action, while a′i,t = 1 implies that the agent will transition the current phase signal 510

to yellow. If the current phase is configured with pedestrian recall ϕPR
i,t , and if the current 511

phase duration is greater than or equal to maximum green constraint ϕMaxG
i,t then the action 512

a′i,t = 1 is enforced to switch to another phase. After this transition, the current phase will 513

be ready to serve pedestrian walk plus flashing don’t walk time, following the serving 514

of yellow and red clearance timing. Subsequently, the phase ϕi,t with the highest traffic 515

demand will be switched to green. The next phase ϕi,t is determined by the following 516

equation, 517

518

ϕi,t = arg max
ϕ
⟨ΥTF

ϕ ⟩
Fi
ϕ=1 (8)

519

The proposed model follows a dynamic phasing approach, prioritizing the phase with 520

the highest traffic demand to minimize vehicle waiting delays. 521
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Dynamic phasing, allowing dynamic adjustment of signal phases based on real-time 522

traffic conditions, significantly enhances adaptability and responsiveness to changing traffic 523

patterns and congestion levels. This flexibility enables real-time optimization, ensuring 524

traffic signals can adapt immediately to varying traffic conditions. It accommodates the 525

dynamic nature of traffic patterns, including fluctuations due to factors such as time of day, 526

events, accidents, and road construction. By dynamically adapting to traffic conditions, 527

signals with dynamic phasing help reduce congestion, optimize signal timing to minimize 528

delays and queue lengths, and ultimately improve travel times for motorists. Moreover, 529

this adaptability contributes to enhanced safety on the roads by reducing the likelihood of 530

accidents associated with sudden stops and congested traffic conditions. Overall, dynamic 531

phasing plays a crucial role in promoting smoother traffic flow, reducing congestion, 532

shortening travel times, and enhancing safety for all road users. 533

5.2.3. Reward based on Eco_PI: 534

In Distributed Multi-Agent Reinforcement Learning, rewards are calculated based 535

on the collective performance of all agents in the environment. In a transportation envi- 536

ronment, where each intersection functions as an individual agent. In this study, rewards 537

are calculated locally for each agent. The reward for each agent is determined by a metric 538

called negative Eco_PI, which represents the cumulative impact of stop delays and pe- 539

nalized stops. This metric encapsulates the undesirable effects of traffic congestion and 540

inefficiencies at intersections, allowing agents to optimize their behavior to minimize these 541

negative outcomes. By incorporating stop delays and penalized stops into the reward 542

calculation, agents are incentivized to make decisions that improve traffic flow and reduce 543

congestion, ultimately leading to more efficient and sustainable transportation systems. 544

The reward function was formulated as Eco_PI by measuring the number of stops and 545

stop delays that occurred in every traffic approach, following an existing fuel consumption 546

model proposed in the study [12,13]. The number of stops a vehicle makes is calculated by 547

counting the number of times the vehicle is stopped in a queue while approaching from all 548

directions in the intersection. The stop delay is calculated as the amount of time a vehicle 549

is stationary in the queue before it reaches the intersection. For example, as shown in 550

Figure 5, at the Cater intersection in MLK Smart Corridor, vehicle stops and stop delays are 551

calculated on the eastbound, southbound, westbound, and northbound approaching links. 552

These metrics are then used to calculate the Eco_PI index, which serves as an indicator 553

of fuel consumption related to stopping. The immediate reward ri,t is calculated for each 554

traffic movement of intersection i as 555

ri,t = Eco_PIi = −(
Li

∑
l=1

δSD
i,l,t + (δSK

i,l,t ∗ δNS
i,l,t)) (9)

where δSD
i,l,t is the stop delays that occurred in link li, δNS

i,l,t is the number of stops, and δSK
i,l,t is 556

the stop penalty penalized for every stops [14,15]. The policy of each agent i is optimized 557

to maximize the global long-term return E[Rπ
0 ], where Rπ

i,t = ∑
T
τ γτ−tri,t is the return at 558

time t, with a discount factor γ. 559
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policy and is calculated as the weighted sum of the action-value function for all possible 594

actions. 595

The policy distribution approximates the anticipated cumulative discounted reward 596

from taking an action in a state under the policy πi. The advantage function helps the critic 597

network reinforce the selection of the most suitable action by updating the policy distribu- 598

tion with policy gradients as directed by the critic, which in turn increases the probability 599

of actions proportional to the high expected return E[Rπ
i,0] = ∑s′i,t∈S′ p(s′i,t)V

π
i (s′i,t). 600

Learning from experiences: During each time step, the experience replay buffer D 601

stores the information including the initial state, the updated state with neighbor net- 602

works, updated policies and values, the new state after taking action, and the step reward 603

(si,t, a′i,t, mNi ,t, ri,t, s′′i,t, v′i,t, πθi,t
). 604

In each subsequent time interval, the model learns the temporal dependency by utilizing 605

the batch of experiences B is {(s′i,τ , mNi ,t,τ , a′i,τ , ri,τ , s′′i,τ , v′i,τ , π′θi,τ
)}i∈V,τ∈B stored in the re- 606

play buffer D and updates the graph neural network parameters based on the calculated 607

losses. Where {π′θi
}i∈V is stationary policy and value {V′ωi

}i∈V were updated after physical 608

constraints evaluation of intersection i. Actor loss incorporates the negative log probability 609

of the action that was sampled under the current policy, and the actor is updated based on 610

the estimated advantage. And the Critic loss, which involves computing the mean squared 611

error between the sampled action-value and the estimated state-value, is updated using 612

the estimated state-value. 613

5.3. Digital Twin Assisted Method 614

Widely employed by traffic engineers and researchers, PTV-Vissim [83] is a microscopic 615

road traffic simulator with a user-friendly Graphical User Interface (GUI) for designing 616

road networks and setting up simulations. However, limitations arise when dynamically 617

manipulating objects during simulations. To overcome this challenge, PTV-Vissim provides 618

a solution through a Component Object Model (COM) interface. In this study, we utilize 619

Python scripts to develop the COM interface, enabling programmable manipulation of 620

simulator functions and parameters. 621

To reduce congestion and improve Eco_PI, the PTV-Vissim COM interface was em- 622

bedded with Digital Twins which represents the decentralized graph-based multi-agent 623

reinforcement learning framework. The Digital Twins serve as a representation of the 624

physical transportation environment, with each intersection mapped to a corresponding re- 625

inforcement learning agent. These agents interact with the Digital Twins through the COM 626

interface, ensuring optimal policy maintenance and facilitating efficient decision-making 627

for controlling signal phases within a tolerable time frame, as illustrated in Figure 4. 628

The Digital Twins-assisted DGMARL algorithm, illustrated in Algorithm 1, maps each 629

intersection in the Digital Twins to a corresponding reinforcement learning agent i. To 630

facilitate seamless scaling and integration of multiple agents, each agent is associated with 631

a unique thread threadi, leveraging multi-threading. This approach enables the agents to 632

learn the global traffic state collectively and make optimal decisions at their respective 633

intersections, thereby improving the Eco_PI. 634

At time t the agent i observes various features through Digital Twins components as 635

shown in the algorithm in Appendix A1, such as the vehicle presence time in the detector 636

zone, each direction approach level vehicle count aggregates, vehicles average speed, and 637

current signal state (line-5). Then collaborates with its neighbors Ni to share and receive 638

their states through message passing as described in Algorithm 1 line-6. Then the updated 639

state s′i,t of agent i is processed through a graph neural network to derive the optimal policy 640

πi and select actions to control the signal phase ϕi (line-7). Then agent i validates the actions 641

(line-8), against the physical constraints configured in the Digital Twins, the minimum 642

green serving time and pedestrian recall time, to ensure user safety. If the decision is to 643

stay in the current phase in green, then no actions are applied back to the Digital Twins; 644

otherwise, agent i validates the other phase’s vehicle presence time in the detector zone 645

and selects the phase ϕj that has a higher upcoming traffic demand, then applies the signal 646
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phase change action to the signal controller in the Digital Twins (line-9) as shown in the 647

algorithm in Appendix A2, which updates the simulation. Once the decided action is 648

applied, each agent i estimates the current reward ri with the new observed traffic state 649

si,t+1 (line-10), and stores the experiences in the replay buffer (line-11). When the buffer 650

size reaches minimum batch size the agent starts to learn from the collection of experiences 651

at every time step to minimize the critic loss L(ωi) and actor loss Ĵ(θ) (lines 12-14). The 652

agent i repeats the above processes until it achieves the desired objective of identifying 653

optimal policy to choose the best actions for reducing congestion and Eco_PI. 654

Due to the distributed agent environment, each agent makes different decisions based 655

on their local and neighboring traffic state, so the convergence of an optimal policy is 656

different for each agent and the efficiency of learning is increased. Since agents continue to 657

interact with the real environment through the Digital Twins, the probability of arriving at 658

an optimal policy is faster. Hence, by using a Digital Twins and reinforcement learning, 659

the system can adapt to changing traffic conditions in real-time, leading to more efficient 660

signal control, and it can be further optimized to maximize its benefits. 661

Algorithm 1 Digital Twin assisted DGMARL Learning

Require α learning rate, β entropy coefficient.
Ensure: Initialize PTV-Vissim objects Vissim, Net, Links, Signal Controllers, and Signal

Groups.
Ensure: Initialize graph G(V , E), agent i ∈ V , link li ∈ E , physical constraints ic, policy

network parameters θ, and value network parameters ω.
1: for e = 1 to episodes do
2: for t = 0 to T − 1 do
3: for agent i = 1 to V create thread threadi do
4: Thread threadi starts
5: Observe state si from Digital Twin.
6: Update state s′i,t ≈ si,t ∪ πNi,t−1

∪ hNi,t−1
through message passing.

7: Select policy πθi,t
, action ai,t ≈ π(a|s′i,t), and get value v(s′i,t|ω, ai,t).

8: Evaluate agent’s actions a′i,t = (ai,t|ic) and update value v′(s′i,t|ω, a′i,t) and policy

π′(a′i,t|v
′
i,t, s′i,t).

9: Take action a′i,t in Digital Twin

10: Observe reward ri,t and new state s′i,t+1.
11: Store the observations in replay buffer

D ← (s′i,t, π′θi,t
, a′i,t, ri,t+1, s′i,t+1, v′ω,i,t).

12: if t >= sample batch size B then
13: Sample random minibatch of B samples (sj, aj, rj, s′j j) from D ∀ j ∈ 1..B.

14: Obtain target return y
j
i = r

j
i + γQπ′

i (s′j, a′1, .., a′N) where a′i = π′(s
′j
i ).

15: Update critic by minimizing the loss: L(ωi) =
1
B ∑j[y

j
i j− Q

p
i i(s′j, a

j
1, .., a

j
N)]

2

and ωi = ωi − α∇L(ωi).
16: Update actor using sampled policy gradient descent along with entropy loss:

Adv
′j
i = y

j
i −Qπ′

i (s′j, a
j
1, .., a

j
N).

17: Ĵ(θ) = 1
B ∑j∇− log πθi

(a
′j
i |s
′j
i )Adv

′j
i + β ∑ πθi

(a
′j
i |s
′j
i ) log πθi

(a
′j
i |s
′j
i ).

18: θi = θi + α∇ Ĵ(θ).
19: end if
20: Thread threadi ends
21: end for
22: end for
23: end for
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vehicles at each intersection approach. At Central St, there is a notable 12.90% reduction in 773

the number of vehicles stopped compared to the actuated plan, indicating improved traffic 774

flow. Despite Central St having 2.28% fewer moving vehicles compared to the actuated 775

signal timing plan, there is still a reduction in Eco PI, primarily due to the significant 776

decrease in stopped vehicles. Conversely, at the Douglas Intersection, there is a 20.75% 777

increase in the number of stops compared to the actuated plan, leading to a higher Eco_PI, 778

despite a 2.23% increase in the number of moving vehicles during the simulation period. 779

This underscores the importance of considering the distribution and frequency of stopped 780

vehicles at intersection approaches in assessing the impact on Eco_PI. 781

An important consideration with DGMARL is its focus on addressing traffic demands 782

from all directions, including both main streets and side streets, while adhering to manda- 783

tory constraints such as minimum green time and pedestrian walk serving time. As a 784

consequence of this approach, the traffic density on certain approaches may increase, 785

reflecting the comprehensive optimization of traffic flow in a multi-directional environ- 786

ment. This heightened traffic density on specific approaches may have implications for the 787

Eco_PI, underscoring the complex interplay between traffic demand patterns and signal 788

optimization strategies. 789

Overall, the results demonstrate the effectiveness of the DGMARL approach in manag- 790

ing traffic demand across all directions and optimizing traffic signal timing to reduce Eco_PI, 791

while maintaining adherence to mandatory constraints at both corridor and intersection 792

levels. 793

7. Discussion 794

The findings from the experiments shed light on the effectiveness of the Digital 795

Twin-assisted graph-based decentralized multi-agent reinforcement learning algorithm in 796

optimizing traffic network signal timing. These results warrant a thorough discussion to 797

interpret their significance in the context of previous studies and the underlying hypotheses, 798

as well as to explore their broader implications and potential future research directions. 799

Firstly, the observed improvements in learning efficiency and performance corroborate 800

with prior research that has emphasized the advantages of multi-agent reinforcement 801

learning in dynamic and complex environments. By allowing agents to interact with their 802

surroundings, exchange knowledge with neighboring agents, and explore multiple actions 803

simultaneously, our approach aligns with the principles outlined in previous studies on 804

traffic signal optimization. 805

Furthermore, the efficacy of the Digital Twin in assisting the algorithm highlights the 806

growing role of digital twin technology in optimizing real-world systems. By providing 807

a virtual representation of the physical transportation environment, the Digital Twin 808

enables more accurate observations and simulations, leading to enhanced decision-making 809

capabilities for the reinforcement learning algorithm. 810

In discussing the implications of these findings, it becomes evident that the proposed 811

approach holds promise for addressing traffic congestion and improving overall transporta- 812

tion efficiency on a larger scale. The ability to optimize traffic signal timing in real-time 813

based on evolving traffic conditions offers significant potential for reducing travel times, 814

minimizing delays, and enhancing the overall commuter experience. 815

Looking ahead, future research directions should focus on further validating and 816

refining the algorithm through extensive testing in real-road environments. This includes 817

deploying the algorithm in larger traffic networks, incorporating additional functionalities 818

such as adaptive learning mechanisms, and exploring variations in optimization frequen- 819

cies. Additionally, investigations into the algorithm’s robustness under diverse traffic 820

scenarios and its scalability to accommodate growing urban infrastructures are warranted. 821

In summary, the results of our experiments underscore the promising prospects of 822

leveraging Digital Twin-assisted multi-agent reinforcement learning for traffic signal opti- 823

mization. By engaging in discussions that contextualize these findings within the existing 824

literature, highlight their implications, and delineate future research avenues, we aim to con- 825
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tribute to the ongoing dialogue on enhancing traffic management systems and mitigating 826

congestion in urban environments. 827

8. Conclusions 828

This paper has delved into the application of a Digital Twin-assisted graph-based 829

decentralized multi-agent reinforcement learning algorithm for real-time optimization 830

of traffic network signal timing. Through enabling interactions among multiple agents, 831

facilitating knowledge exchange among neighboring agents, and allowing simultaneous 832

exploration of multiple actions, this approach has exhibited notable enhancements in 833

learning efficiency and performance, all while maintaining lower latency. 834

The experiment results have underscored the effectiveness of leveraging Digital Twin 835

technology to assist the multi-agent reinforcement learning algorithm in optimizing traffic 836

network signal timing. Through extensive experimentation on the MLK Smart Corridor 837

in Chattanooga, Tennessee, USA, we observed significant improvements in traffic flow 838

and eco-friendly transportation practices compared to traditional vehicle-actuated signal 839

timing plans. Notably, our results demonstrate a substantial reduction in the Eco_PI index, 840

indicating enhanced fuel efficiency and reduced emissions. 841

However, it’s important to acknowledge the disparities between our findings and 842

those reported in previous studies. While our approach showcases promising results 843

in managing traffic demand and optimizing signal timings, variations in traffic patterns, 844

infrastructure layouts, and environmental factors may contribute to differences in outcomes 845

across different contexts. Therefore, further investigation and comparative analysis are 846

warranted to elucidate the factors influencing these disparities and refine our understanding 847

of the DGMARL algorithm’s performance under diverse conditions. By engaging in such 848

discussions and continuously evaluating our findings in light of previous research, we can 849

gain deeper insights into the capabilities and limitations of MARL-based approaches for 850

traffic management. 851

In summary, this study charts a promising course for advancing traffic management 852

systems and alleviating congestion on a broader scale. The integration of digital twin 853

technology with multi-agent reinforcement learning provides a robust framework for op- 854

timizing complex systems characterized by multiple agents and diverse interactions. By 855

continuing to explore and refine this approach through real-world testing and observa- 856

tion, we can unlock its full potential to revolutionize urban mobility and enhance overall 857

transportation efficiency. 858
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The following abbreviations are used in this manuscript: 899

900

DT Digital Twin

DGMARL Decentralized Graph-Based Multi-Agent Reinforcement Learning

AI Artificial Intelligence

ML Machine Learning

IoT Internet of Things

RL Reinforcement Learning

MARL Multi-Agent Reinforcement Learning

MDP Markov Decision Process

A2C Advantage Actor-Critic

MA2C Multi-Agent Advantage Actor-Critic

GNN Graph Neural Network

LSTM (Long Short-Term Memory)

ReLU (Rectified Linear Unit)

ITS Intelligent Transportation System

SPaT Signal Phasing and Timing

RBC Ring Barrier Controller

GUI Graphical User Interface

COM Component Object Model

MLK Martin Luther King

901

Appendix A 902

Appendix A.1 903

Appendix B 904

Table A1. Vehicles Input.

Input Vehicles Generated Actuated DGMARL

Number of Vehicles 8788 8788
Unique Vehicle IDs [1, 2, 3, ..., 8786, 8787, 8788] [1, 2, 3, ..., 8786, 8787, 8788]
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Algorithm A1 Observing state si from Digital Twin by thread threadi

Require PTV-Vissim objects and agents initialized, time t, thread threadi

1: for signal group sgi do
2: if sgi is current phase signal group then
3: Observe current phase status ϕS

i,t, current phase duration ϕD
i,t, pedestrian recall

status ϕPR
i,t

4: Validate minimum green is served ϕMinG
i,t

5: if sgi has pedestrian recall enabled then
6: Validate maximum green is served ϕMaxG

i,t
7: end if
8: end if
9: for links l = 1 to K do

10: Observe traffic state δPT
l,i,t, δW

l,i,t, δD
l,i,t, and V l,i,t

11: end for
12: end for

Algorithm A2 Apply action a′i in Digital Twin by thread threadi

Require Time t, thread threadi, Current phase ϕi, Next phase ϕj

1: for signal group sgi do
2: if ϕi - current phase then
3: if ϕi is green then
4: Set ϕi to yellow
5: Continue simulation
6: else if ϕi is yellow and yellow served then
7: Set ϕi to red clearance phase
8: Continue simulation
9: else if ϕi is red and red clearance served then

10: Set status ϕi red clearance served
11: end if
12: end if
13: if ϕi is red clearance served then
14: Set ϕj to green
15: Continue simulation
16: end if
17: end for
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Table A2. Cumulative sum of count of vehicles passed through each intersection at green.

Intersection Actuated DGMARL
Increase in % of

Vehicles Crossed the
Intersection at Green

Pine 6472 6522 0.77%
Carter 12430 12779 2.81%
Broad 10217 10628 4.02%

Market 12282 12528 2.00%
Georgia 6083 6566 7.94%
Lindsay 3886 4122 6.07%
Houston 3886 3956 1.80%
Douglas 2632 3092 17.48%
Peeples 1723 1733 0.58%

Magnolia 2280 2339 2.59%
Central St 7723 7510 -2.76%

References 905

1. Governments. Smart Corridor City/County Association of Governments. 906

2. ARCADIS. Creating an Intelligent Transportation Systems for Atlanta’s first Smart Corridor. 907

3. California, US, R.T.T. I-80 SMART Corridor Project. 908

4. San Francisco, CA, P. I-80 SMART Corridor. 909

5. Journal, A. Tennessee DOT Starts Phase 2 Of I-24 SMART Corridor. 910

6. Wu, J.; Wang, X.; Dang, Y.; Lv, Z. Digital twins and artificial intelligence in transportation infrastructure: classification, application, 911

and future research directions. Computers and Electrical Engineering 2022, 101, 107983. 912

7. Saroj, A.J.; Guin, A.; Hunter, M. Deep LSTM recurrent neural networks for arterial traffic volume data imputation. Journal of big 913

data analytics in transportation 2021, 3, 95±108. 914

8. Farazi, N.P.; Zou, B.; Ahamed, T.; Barua, L. Deep reinforcement learning in transportation research: A review. Transportation 915

research interdisciplinary perspectives 2021, 11, 100425. 916

9. Chowdhury, M.; Sadek, A.W. Advantages and limitations of artificial intelligence. Artificial intelligence applications to critical 917

transportation issues 2012, 6, 360±375. 918

10. Machin, M.; Sanguesa, J.A.; Garrido, P.; Martinez, F.J. On the use of artificial intelligence techniques in intelligent transportation 919

systems. In Proceedings of the 2018 IEEE wireless communications and networking conference workshops (WCNCW). IEEE, 920

2018, pp. 332±337. 921

11. Kumarasamy, V.K.; Saroj, A.J.; Liang, Y.; Wu, D.; Hunter, M.P.; Guin, A.; Sartipi, M. Traffic Signal Optimization by Integrating 922

Reinforcement Learning and Digital Twins. In Proceedings of the 2023 IEEE Smart World Congress (SWC). IEEE, 2023, pp. 1±8. 923

12. Stevanovic, A.; Shayeb, S.A.; Patra, S.S. Fuel consumption intersection control Performance Index. Transportation research record 924

2021, 2675, 690±702. 925

13. et al., S.A. Investigating impacts of various operational conditions on fuel consumption and stop penalty at signalized intersections. 926

International Journal of Transportation Science and Technology 2022. 927

14. Stevanovic, A.; Dobrota, N. Impact of various operating conditions on simulated emissions-based stop penalty at signalized 928

intersections 2021. https://doi.org/https://doi.org/10.3390/su131810037. 929

15. Alshayeb, S.; Stevanovic, A.; Park, B.B. Field-based prediction models for stop penalty in traffic signal timing optimization. 930

Energies 2021. https://doi.org/https://doi.org/10.3390/en14217431. 931

16. Nia, N.G.; Amiri, A.; Nasab, A.; Kaplanoglu, E.; Liang, Y. The Power of ANN-Random Forest Algorithm in Human Activities 932

Recognition Using IMU Data. In Proceedings of the 2023 IEEE EMBS International Conference on Biomedical and Health 933

Informatics (BHI), 2023, pp. 1±7. 934

17. Nia, N.G.; Kaplanoglu, E.; Nasab, A.; Qin, H. Human Activity Recognition Using Machine Learning Algorithms Based on IMU 935

Data. In Proceedings of the 2023 5th International Conference on Bio-engineering for Smart Technologies (BioSMART), 2023, pp. 936

1±8. 937

18. Nia, N.G.; Nasab, A.; Kaplanoglu, E. Reinforcement Learning-Based Grasp Pattern Control of Upper Limb Prosthetics in an AI 938

Platform. In Proceedings of the 2022 3rd International Informatics and Software Engineering Conference (IISEC), 2022, pp. 1±4. 939

19. Sun, C.; Kumarasamy, V.K.; Liang, Y.; Wu, D.; Wang, Y. Using a Layered Ensemble of Physics-Guided Graph Attention Networks 940

to Predict COVID-19 Trends. Applied Artificial Intelligence 2022, 36, 2055989. 941

20. Hassan, Y.; Sartipi, M. ChattSpeed: Toward a New Dataset for Single Camera Visual Speed Estimation for Urban Testbeds. In 942

Proceedings of the 2023 IEEE International Conference on Big Data (BigData), 2023, pp. 2598±2605. https://doi.org/10.1109/ 943

BigData59044.2023.10386342. 944



Version September 30, 2024 submitted to Symmetry 28 of 30

21. Hassan, Y.; Zhao, J.; Harris, A.; Sartipi, M. Deep Learning-Based Framework for Traffic Estimation for the MLK Smart Corridor 945

in Downtown Chattanooga, TN. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation 946

Systems (ITSC), 2023, pp. 4564±4570. https://doi.org/10.1109/ITSC57777.2023.10422504. 947

22. Chu, T.; Chinchali, S.; Katti, S. Multi-agent Reinforcement Learning for Networked System Control. In Proceedings of the 948

International Conference on Learning Representations. 949

23. Wang, Y.; Xu, T.; Niu, X.; Tan, C.; Chen, E.; Xiong, H. STMARL: A spatio-temporal multi-agent reinforcement learning approach 950

for cooperative traffic light control. IEEE Transactions on Mobile Computing 2020, 21, 2228±2242. 951

24. Chu, T.; Wang, J.; Codecà, L.; Li, Z. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Transactions 952

on Intelligent Transportation Systems 2019, 21, 1086±1095. 953

25. Khaleghian, S.; Neema, H.; Sartipi, M.; Tran, T.; Sen, R.; Dubey, A. Calibrating Real-World City Traffic Simulation Model Using 954

Vehicle Speed Data. In Proceedings of the 2023 IEEE International Conference on Smart Computing (SMARTCOMP), 2023, pp. 955

303±308. https://doi.org/10.1109/SMARTCOMP58114.2023.00076. 956

26. Gurjanov, A.; Zakoldaev, D.; Shukalov, A.; Zharinov, I. Formation principles of digital twins of Cyber-Physical Systems in the 957

smart factories of Industry 4.0. In Proceedings of the IOP conference series: materials science and engineering. IOP Publishing, 958

2019, Vol. 483, p. 012070. 959

27. Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: A 960

review. Journal of manufacturing systems 2021, 60, 119±137. 961

28. Stavropoulos, P.; Mourtzis, D. Digital twins in industry 4.0. In Design and operation of production networks for mass personalization in 962

the era of cloud technology; Elsevier, 2022; pp. 277±316. 963

29. Wagner, R.; Schleich, B.; Haefner, B.; Kuhnle, A.; Wartzack, S.; Lanza, G. Challenges and potentials of digital twins and industry 964

4.0 in product design and production for high performance products. Procedia CIRP 2019, 84, 88±93. 965

30. Schluse, M.; Priggemeyer, M.; Atorf, L.; Rossmann, J. Experimentable digital twinsÐStreamlining simulation-based systems 966

engineering for industry 4.0. IEEE Transactions on industrial informatics 2018, 14, 1722±1731. 967

31. Cinar, Z.M.; Nuhu, A.A.; Zeeshan, Q.; Korhan, O. Digital twins for industry 4.0: a review. In Proceedings of the Industrial 968

Engineering in the Digital Disruption Era: Selected papers from the Global Joint Conference on Industrial Engineering and Its 969

Application Areas, GJCIE 2019, September 2-3, 2019, Gazimagusa, North Cyprus, Turkey. Springer, 2020, pp. 193±203. 970

32. Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of digital twins. Philosophical Transactions of the Royal Society A 971

2021, 379, 20200360. 972

33. Sahal, R.; Alsamhi, S.H.; Brown, K.N.; O’shea, D.; McCarthy, C.; Guizani, M. Blockchain-empowered digital twins collaboration: 973

Smart transportation use case. Machines 2021, 9, 193. 974

34. Kosacka-Olejnik, M.; Kostrzewski, M.; Marczewska, M.; MrówczyÂnska, B.; Pawlewski, P. How digital twin concept supports 975

internal transport systems?ÐLiterature review. Energies 2021, 14, 4919. 976

35. Schwarz, C.; Wang, Z. The role of digital twins in connected and automated vehicles. IEEE Intelligent Transportation Systems 977

Magazine 2022, 14, 41±51. 978

36. Samuel, P.; Saini, A.; Poongodi, T.; Nancy, P. Artificial intelligence±driven digital twins in Industry 4.0. In Digital Twin for Smart 979

Manufacturing; Elsevier, 2023; pp. 59±88. 980

37. Fedorko, G.; Molnar, V.; Vasil’, M.; Salai, R. Proposal of digital twin for testing and measuring of transport belts for pipe conveyors 981

within the concept Industry 4.0. Measurement 2021, 174, 108978. 982
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