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Abstract: Machine learning (ML) methods, particularly Reinforcement Learning (RL), have gained
widespread attention for optimizing traffic signal control in intelligent transportation systems. How-
ever, existing ML approaches often exhibit limitations in scalability and adaptability, particularly
within large traffic networks. This paper introduces an innovative solution by integrating decentral-
ized graph-based multi-agent reinforcement learning (DGMARL) with a Digital Twin to enhance
traffic signal optimization, targeting the reduction of traffic congestion and network-wide fuel con-
sumption associated with vehicle stops and stop delays. In this approach, DGMARL agents are
employed to learn traffic state patterns and make informed decisions regarding traffic signal control.
The integration with a Digital Twin module further facilitates this process by simulating and replicat-
ing the real-time asymmetric traffic behaviors of a complex traffic network. The evaluation of this
proposed methodology utilized PTV-Vissim, a traffic simulation software, which also serves as the
simulation engine for the Digital Twin. The study focused on the Martin Luther King (MLK) Smart
Corridor in Chattanooga, Tennessee, USA by considering symmetric and asymmetric road layouts
and traffic conditions. Comparative analysis against an actuated signal control baseline approach
revealed significant improvements. Experiment results demonstrate a remarkable 55.38% reduction
in Eco_PI, a developed performance measure capturing the cumulative impact of stops and penalized
stop delays on fuel consumption, over a 24-hour scenario. In a PM-peak-hour scenario, the average
reduction in Eco_PI reached 38.94%, indicating the substantial improvement achieved in optimizing
traffic flow and reducing fuel consumption during high-demand periods. These findings underscore
the effectiveness of the integrated DGMARL and Digital Twin approach in optimizing traffic signals,
contributing to a more sustainable and efficient traffic management system.

Keywords: Multi-Agent Reinforcement Learning; Digital Twin; Graph Neural Network; Intelligent
transportation systems; Traffic Signal Optimization; Fuel Consumption; Traffic congestion; Actuated
signal control; Asymmetric Traffic Conditions;

1. Introduction

Urban centers worldwide are increasingly adopting Intelligent Transportation Sys-
tem (ITS) technologies to transform conventional corridors into smart and data-driven
transportation systems [1-5]. The deployment of smart corridors offers an opportunity to
harness high-resolution and high-frequency vehicle and infrastructure data. This, coupled
with advancements in machine learning, artificial intelligence, and high-performance com-
puting, presents a promising avenue for addressing safety, mobility, and environmental
challenges within transportation systems [6—10].
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Efforts to optimize and enhance transportation systems are exploring innovative
approaches, and one such solution under investigation is the application of Digital Twin-
assisted decentralized multi-agent Reinforcement Learning (RL). This approach involves
establishing a seamless connection between the Digital Twin representation of the physical
system and the decentralized multi-agent Reinforcement Learning (RL) framework. The
primary goal is to demonstrate the successful integration of these components and leverage
the resulting application to optimize traffic signal timing.

This study presents an extended version of the work [11], focusing on a real-world
case study to demonstrate the practical application of the integrated Digital Twin and
decentralized graph-based multi-agent reinforcement learning. Our specific objective is to
optimize traffic signal timing, aiming to reduce a performance measure known as Eco_PI,
which comprehensively assesses the environmental and efficiency aspects of traffic man-
agement by capturing the impact of stops on fuel consumption and delay. The extended
methodology introduces red clearance and max green constraints, enhancing simulation
accuracy and pedestrian safety while optimizing traffic flow. Additionally, expanded exper-
imental analysis provides insights into traffic patterns, congestion, and overall performance,
resulting in notable enhancements in traffic flow optimization and congestion mitigation,
particularly during peak hours.

The integration of Digital Twin technology and decentralized graph-based multi-agent
reinforcement learning holds significant potential for addressing the complex dynamics of
urban traffic systems. By optimizing traffic signal timing through this integrated approach,
this study aims to contribute to the broader goal of creating more sustainable, efficient, and
intelligent transportation networks. Further insights into the Eco_PI performance measure,
including relevant references can be found in [12-15].

2. Related Work

In the realm of urban traffic management, the optimization of traffic signal control has
become increasingly imperative due to the challenges posed by growing populations and
urbanization. Traditional traffic control methods often struggle to adapt to dynamic traffic
scenarios and efficiently coordinate diverse agents, including vehicles and pedestrians.
Recent advancements in Artificial Intelligence (Al) offer promising solutions to address
these challenges, with notable applications in domains such as healthcare [16-19], trans-
portation, etc. Deep learning frameworks have demonstrated effectiveness in tasks such
as vehicle tracking, visual speed estimation [20], and traffic estimation [21]. Particularly,
Multi-Agent Reinforcement Learning (MARL) approaches [22,23] show particular potential
for intelligently optimizing traffic signals.

Multi-Agent Reinforcement Learning (MARL) involves collaborative decision-making
among agents, each relying on local observations and interactions within the environ-
ment. Decentralized graph-based MARL models, like Multi-Agent Advantage Actor-Critic
(MA2C) [22], have emerged as a breakthrough, effectively distributing control across lo-
cal agents while coordinating for efficient traffic signal management. MA2C addresses
scalability concerns in large-scale networks, enabling independent learning for agents
and facilitating quicker policy convergence. Coordinated actions enhance performance,
especially in cooperative or competitive scenarios. Advantage Actor-Critic (A2C) scales
effectively to larger environments [24], enabling parallelized learning and adaptation to
dynamic environments by continuously updating policies based on interactions with other
agents. Through A2C, agents refine policies through continual exploration and exploitation
of the environment, maximizing cumulative rewards for stable and efficient learning.

The study [25] underscores the critical importance of accurate simulation models in
urban transportation planning and optimization, and highlights the necessity of capturing
the complexity of city traffic for effective planning by utilizing real-world vehicle speed
data and integrating various sources. As the urban landscape evolves, the integration of
Digital Twins, inspired by Industry 4.0 principles [26-41], emerges as a transformative
element in modernizing systems and processes. Digital Twins offers a promising paradigm
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to enhance the performance of physical systems through virtual modeling [42-45]. The
marriage of Digital Twins with Multi-Agent Reinforcement Learning (MARL) for traffic
signal optimization marks a paradigm shift in urban traffic management. Digital Twins
serve as virtual representations of physical entities, providing real-time monitoring, analy-
sis, and decision-making capabilities. Studies such as [46] investigate the transformative
impact of Digital Twins, Internet of Things (IoT), and machine learning on data utilization,
underscoring the potential of Digital Twins in enhancing real-time data utilization for
enterprises. Continuously updated in real-time through sensor data and various sources,
the Digital Twins provides an accurate depiction of the current and historical state of the
physical entity, allowing for improved prediction, control refinement, and operational
optimization [47,48]. Diverse applications of digital twins, including transportation, model-
ing techniques, and the benefits of integrating digital twins in system design, have been
discussed in [49,50].

In contrast to traditional simulation models based on assumptions, Digital Twins
rely on actual data, providing a more realistic representation of the physical entity. This
attribute proves particularly beneficial in industries like Intelligent Transportation System
(ITS) technologies, where the reliability and performance of complex systems are paramount
[51].

Within transportation applications, Digital Twins simulations offer a realistic portrayal
of real-world transportation systems. Acting as a crucial testbed, Digital Twins facilitate the
development of real-time machine learning-based traffic operations applications, providing
a safe and economic environment for training and testing artificial intelligence /machine
learning (AlI/ML) algorithms. Previous studies, exemplified by [52], utilized Digital Twins
for transportation systems, leveraging real-time smart corridor data to model current traffic
states and provide dynamic updates on traffic performance measures. AI/ML algorithms
encompass a range of techniques, including deep learning, reinforcement learning, and
other computational methods, to analyze complex transportation data, optimize traffic
signal timing, predict traffic congestion, and improve overall transportation efficiency. By
integrating Digital Twins with AI/ML algorithms, transportation researchers and prac-
titioners can gain valuable insights into traffic behavior, develop more effective traffic
management strategies, and enhance the performance of urban transportation systems.

Digital Twins in transportation systems offer significant advantages, including real-
time monitoring, improved coordination, and enhanced traffic efficiency [53]. The integra-
tion of Digital Twins with deep learning and reinforcement learning algorithms enhances
real-time adaptive, precision-centric, and predictive traffic monitoring [54]. Moreover,
Digital Twins assist reinforcement learning algorithms in understanding dynamic traffic
states, facilitating better real-time decisions through adaptive signal control [55].

Due to the Digital Twin's ability to behave as a real-time environment with different
static and dynamic properties, it can be used to assist deep learning algorithms like training
autonomous cars [56], real-time adaptive, precision-centric, predictive traffic monitoring
[57], and Reinforcement Learning (RL) algorithms like edge task scheduling [58], intelligent
manufacturing systems [59], and in vehicular edge computing [54]. To learn the dynamic
traffic flow behavior and make better decisions in real-time through adaptive signal control
[55], reinforcement learning algorithms can have better assistance through Digital Twin.
The Digital Twin can use data from various transportation components, including vehicle
presence time in the detector zone which refers to the elapsed time from when vehicles
enter the detector zone until they leave, approaching vehicle counts, and pedestrian re-
call, to create a comprehensive representation of the transportation system. This enables
Reinforcement Learning (RL) agents to learn traffic flow behavior and perform various
actions in the digital environment. Moreover, the ability of multiple agents to interact with
the same environment and coordinate with each other can lead to better decisions and
improved traffic flow. The use of Digital Twin with Reinforcement Learning (RL) agents
increases efficiency in decision-making and enables agents to observe their performance
for future decisions.
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Additionally, broadening signal optimization to encompass all directions, including
traffic approaching from various cardinal directions such as east, west, north, and south
bounds, and accounting for heterogeneous traffic conditions, enables the development of
a more comprehensive traffic management strategy. This approach, as demonstrated in
the study by Pandit et al. [60], ensures more efficient service for vehicles on side streets,
alleviates congestion on main thoroughfares and secondary routes, and reduces travel
times for all road users. While achieving a green wave for main streets is beneficial,
addressing diverse traffic demands across all directions is crucial for effective urban traffic
signal control. This inclusive approach ensures a more equitable distribution of traffic
flow and enhances overall network efficiency. Moreover, the effectiveness of a traffic
signal system lies in its ability to dynamically adjust the sequence of signal phases in
response to changing traffic conditions [61,62], rather than adhering rigidly to a predefined
or fixed sequence. Studies such as [63] dynamically generate phase schemes per cycle
based on traffic asymmetry to optimize traffic signal timing. However, being bound to the
cycle entails predetermined phase and cycle durations, which do not allow for dynamic
adjustments in phase durations based on real-time traffic demand.

Building upon this landscape, our prior work [11] introduces a novel approach by com-
bining Digital Twin assistance with decentralized graph-based multi-agent reinforcement
learning (DGMARL) [11] to learn dynamic traffic states. DGMARL agents, strategically
distributed at individual intersections, observe traffic state features from multi-directions.
DGMARL model considers traffic approaching from various cardinal directions, such as
east, west, north, and south bounds, necessitating the consideration of the dynamics of
vehicles approaching from each of these directions when optimizing signal timing. Conse-
quently, the model takes into account the diverse flow of traffic when optimizing signal
timing. Then the agents exchange information with neighboring agents to optimize in-
tersection signal timing along with dynamic phasing. This innovative method, known
as dynamic phasing, allows for dynamic adjustment of signal phases based on real-time
traffic conditions, rather than adhering to a predefined sequence. The proposed DGMARL
model is designed to handle heterogeneous data, including vehicle presence time in the
detector zone, approach-level vehicle count aggregates, pedestrian recall times, and current
signal states from current, upstream, and downstream intersections from all directions. The
integration leverages a Component Object Model (COM) interface of PTV-Vissim, a traffic
simulation software, to control signal timing through Digital Twins.

The proposed model boasts several key technical features that collectively enhance its
efficacy in optimizing traffic signal timing:

*  Seamless Integration of Digital Twin and Decentralized Graph-based Multi-Agent
Reinforcement Learning (DGMARL): The integration of Digital Twins and DGMARL
allows for the dynamic optimization of traffic signal timing, leveraging real-time traffic
data and simulation capabilities to improve traffic flow and reduce congestion.

¢ Distributed Multi-Agent Reinforcement Learning: Multi-agent reinforcement learning
agents are deployed at individual intersections to observe traffic state features, includ-
ing vehicle presence time in the detector zone. They exchange this information with
neighboring agents to collectively determine an optimal policy for controlling traffic
signals. The implementation of actions is validated against rules and constraints, such
as minimum green time and pedestrian recall time, ensuring safe mobility for all users.
In a coordinated multi-agent environment, the optimal policy is derived through
reinforcement learning, where agents interact with the environment, learning from ex-
periences to maximize rewards over time. Through iterative exploration, agents adjust
policies to prioritize actions with higher rewards. Furthermore, agents engage in com-
munication and coordination with neighboring agents to enhance decision-making
and achieve better outcomes collectively.

*  Consideration of All Directions of Traffic Demand: Unlike traditional approaches that
may focus solely on specific traffic flows, the DGMARL model considers the traffic
demands from all directions, ensuring a comprehensive approach to traffic signal
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optimization. This inclusion allows for more efficient management of traffic flow
across the entire network.

. Dynamic Phasing: The DGMARL model offers dynamic phasing, enabling flexible
adjustments to signal timing sequences based on evolving real-time traffic conditions.
This flexibility enhances adaptability and responsiveness to changing traffic patterns
and congestion levels.

e Handling Heterogeneous Data: The DGMARL model coordinates diverse data types,
including vehicle presence time, count aggregates, pedestrian recall times, and cur-
rent signal states, to optimize traffic flow efficiently. It achieves this through several
mechanisms: feature engineering for data preprocessing, message passing and commu-
nication among agents, neural network processing to learn complex patterns, reward
calculation based on coordinated data inputs, and policy optimization for dynamic
signal timing decisions. By integrating these data types into a unified framework,
the model performs comprehensive analysis and decision-making, enabling effective
traffic management across the transportation network.

¢  Utilization of Component Object Model (COM) Interface: Leveraging the COM inter-
face of PTV-Vissim, the proposed model can seamlessly take actions and control signal
timing through the Digital Twins. This integration streamlines the implementation of
optimized signal timing strategies in real-world traffic scenarios.

In this extended version, introduced crucial enhancements to the methodology. In-
corporated a red clearance constraint to ensure adequate time for vehicles crossing in-
tersections, thereby enhancing the accuracy of the simulations. Additionally, introduced
max green constraints to prioritize pedestrian safety while optimizing traffic flow. These
constraints ensure that when a pedestrian recall is enabled in the current green phase, the
algorithm switches to another phase with the highest traffic demand, thereby improving
the realism and effectiveness of the traffic signal control algorithm.

Furthermore, the experimental analysis expanded to include additional results focus-
ing on vehicles passing through intersections during green signal phases. This comprehen-
sive analysis provides valuable insights into traffic patterns and performance, enriching
our understanding of signal optimization effectiveness, traffic congestion, signal efficiency,
and overall transportation performance.

These improvements have yielded significant enhancements in traffic flow optimiza-
tion and congestion mitigation. Notably, both PM-peak hour and 24-hour scenarios have
experienced notable increases in performance, demonstrating the effectiveness of the ex-
tended methodology in addressing complex traffic dynamics and optimizing traffic signal
timing for sustainable urban mobility.

3. Digital Twin System for Traffic Network
3.1. Physical Environment and Digital Twin
3.1.1. Digital Twin Architecture

Smart corridor Digital Twins are typically driven using real-time and historic vehicle
and infrastructure data from the corridor [52,55,64]. In this study, the Digital Twin is
developed using vehicle real-time and historic volume count, turn count, and Signal
Phasing and Timing (SPaT) data available from approximately 2.1 miles of Martin Luther
King (MLK) Smart Corridor, Chattanooga, Tennessee, USA, consisting of 11 signalized
intersections. A smart corridor Digital Twins model architecture typically includes four
key components as shown in Figure 1:
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1. Raw Data Stream Processing Module
]

3. Prediction and Optimization Module

| |
Real-Time : Reqmred Slgn_al Data : . Simulation Output Data
. Signal (Event Timestamps ° Temporary Storage
Signal Data +» —> . .
Stream | Datg of Signal Indication | ks T
| Extraction Changes) I s
_ : . : 5 Optimization
Real-Time | Required Volume Count Data |
Aggregate 1 Volume 1-mi t | O v
Volume Count : Data [ ROIOEEEIC 2 :H ;>. Optimized Signal
Data Stream : Extraction Turn Count Data : N Timing Plan
(10-min aggregate) —
lL : Optimization Testbed
____________________ Simulation
A\
4. Data Request Management Module 2. Dynamic Data-Driven
(Flask Web Server) Traffic Simulation Module
Process Volume and Signal AL V|§5|mTr§ﬁ|c
» COM <»  Simulation
Data Get Requests .
Module Engine

Process Simulation Output
Vehicle Record Data Post <
Requests

Figure 1. Digital Twin Architecture.

Module 1: Raw Data Stream Processing Module - includes processing of raw data to
parse, format, and store the data in a database. From the physical MLK Smart Corridor,
using Python scripts, 1 min aggregate by turn types (left, through, and right turn vehicle
counts) for each approach ((Eastbound, Westbound, Northbound, and Southbound) of
all the intersections are calculated and stored in a MySQL relational database, to be used
in Module 2 dynamically. Furthermore, 10 Hz Signal Phase and Timing (SPaT) data are
obtained from the signal controllers in the corridor. SPaT data processing involved two key
steps. First, the raw data are parsed to only filter the phase indications corresponding to
each phase for each intersection. Next, the high-frequency raw SPaT data from the field
is processed to only filter out the records on changes in signal phase events. While the
SPaT data are received at high frequency, only the change in phase event data is required.
Hence, only that is stored in the database. Turn count aggregate and SPaT data are stored
in separate tables in the database that are queried to drive the simulation in Module 2.

Module 2: Dynamic Data-Driven Traffic Simulation Module - includes PTV-Vissim
microscopic traffic simulation model of the Smart Corridor, dynamically driven using
volume, turn movement ratios, and signal indications data (from Module 1). In this
implementation intersection approach level, 1-minute aggregate volume counts, 10-minute
aggregate turn counts data, and signal timing are dynamically driven using PTV-Vissim’s
Component Object Model (COM) module. Using COM the signal indications can be driven
using external SPaT (Signal Phasing and Timing) data or PTV-Vissim’s internal Ring Barrier
Controller (RBC) module.

Module 3: Prediction and Optimization Module or Simulation Testbed Application
Module - consists of tools and algorithms to process simulation outputs based on the
requirements of the application. This module contains processes or algorithms that are
driven using outputs from the Digital Twins simulation. In this study, the outputs such
as vehicle presence time in the detector zone, each direction approach level vehicle count
aggregates, vehicle velocity, and current signal state, etc are generated from the PTV-Vissim
simulation model in the Dynamic Data Driven Traffic Simulation Module are used as inputs
for prediction and optimization for the signal timing plan.

Module 4: Real-Time Data Broker Module - handles real-time dynamic data transac-
tions between modules. This module consists of a Flask-based web service to handle data
transactions/communication between the other three modules.
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3.1.2. Muti-tier Incremental Approach for Digital Twin Development

Smart corridor Digital Twins development requires integration and synchronization
of multiple components within the Digital Twins architecture described in the previous
section. This makes Digital Twins development a time-consuming process susceptible to
coding, integration, implementation, data processing, and other errors. To tackle this, in this
study a three-tier incremental approach is used that allows a parallel workflow. The Digital
Twins development process is broken into three tiers with increasing communication and
infrastructure integration complexity. Such an approach enables training and testing of
Machine Learning/Reinforcement learning-based (ML/RL) applications early on, on the
initial tiers, thus, reducing the wait time required for the development of a fully operational
real-time Digital Twins. Such an approach enables the training and testing of ML/RL-based
applications such as signal timing optimization developed in this paper, on initial tiers
rather than waiting for the completion of the full real-time Digital Twins, thereby expediting
the overall study timeline. A detailed description of the incremental approach for digital
twin development, as shown in Figure 2 is found in [65].

= r >

Simulation Model Prepopulated with Pseudo Digital Twin Real Time Digital Twin
Historic Data
o Architecture to drive the model Integrates real-time streaming field
N Offllne5|mu!at|opmodelpopulated dynamically using historic data data into the architecture
" wuthstat|c.h|stor|cdata * data streamed into model in * drives the digital twin model using
'é ' onemnutevolume same formats as real-time the real-time data
' ten-mmuteaggregateturn * develops dynamic links between
movement raio data, and the digital twin modules
* preset signal control plans
. + faster than real-time * addresses time synchronization  * training learning algorithms
& model calibration and validation and dynamic data link issues * deployment and evaluation of
2 * algorithm development * repeatable experiments using trained algorithms before field
pseudo real time data streams implementation

Figure 2. Three-tier Incremental Approach to Digital Twin Development for Application Testing.

The three-tier incremental approach includes the following simulation model versions:

Tier 1- Prepopulated model: traditional simulation model prepopulated with archived
data. This version includes automation of raw data extraction and ingestion of extracted
data by the PTV-Vissim model. Data extraction and ingestion are partially automated,
enabling the ability to efficiently test developed algorithms under different conditions on
different days (e.g., weekday vs. weekend, growth scenarios, etc.). Automation of data
handling in this level is critical to the overall usability and effectiveness of this version of
the model in training and testing the DGMARL model.

Tier 2 - Pseudo Digital Twin: simulation model driven dynamically using archived
data. In this tier, the data is dynamically fed into the simulation as opposed to prepopu-
lating before the simulation runs in Tier 1. Several parts of the efforts of Tier 1 platform
development, such as data investigation, data extraction, and automation of ingestion of
input data into simulation are used in Tier 2 platform development. However, a significant
advance in Tier 2 is the development of the dynamic links between the modules shown in
Figure 1. Further, in this tier the signal indications are controlled using field received SPaT
messages, not the internal Vissim Ring Barrier Controller (RBC). Thus, the implemented
signal phase times will match the field directly, rather than relying on the accuracy of the
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simulation signal control emulator. This platform thus provides a test bed to develop the s
interface that integrates the DGMARL optimization algorithm with data-driven Digital s
Twins simulation. 306

Tier 3 - Real-time Digital Twin: online simulation model driven dynamically using o
real-time field data. In this tier, the simulation is driven using real-time data. The Tier 2 s
platform is modified and updated to stream real-time data. This platform will be used to s
develop the interface between the physical system represented by the Digital Twins and s
the optimization development algorithm. a1

In this study, the interface between the Reinforcement Learning (RL) optimization sw
algorithm and the physical system is initially developed using the Tier-1 platform. The s
developed Reinforcement Learning (RL) algorithm in the future will also be integrated s
with the Tier-2 and Tier-3 platforms to test and further improve the algorithm. 315

4. Digital Twin and Reinforcement Learning (RL) 316

The seamless integration of the Digital Twins with the Decentralized Graph-based a7
Multi-Agent Reinforcement Learning (DGMARL) model, depicted in Figure 3, constitutes s
a novel approach for training agents associated with each intersection. This integration s
enables the agents to learn from the Digital Twins and make informed decisions to optimize s
signal timings based on real-time observations of the traffic state from multi-direction. 21

@ital representation of transportation network, Digital Tyvin 3ssisted DGMARL \

intersections, signal controllers, detectors, vehicles etc.
Observe traffic state: Vehicles Adaptive Signal Control:

presence time, Signal phase — Multi-agent reinforcement
— status, Pedestrian recall data ~---- learning algorithm
; I}
Synchronize vehicles trajectory . . ‘ q
Actions: Decision making

<+——— data, Signal phases and timin; A
»Signa P & «— for traffic signal controller
data, Pedestrian recall and

Cremeemmed . to update phase status
A K )
i 1 i
K iData Collection and Integration i /
H H ‘
R ! Traffic State
’®® © SN Vehicles trajectory data, Signal
o ® Q o phases and timing data, Pedestrian

~rg @y S recall and sensory data :
© ° Actions |
e ®® ® v

: y 5 mnnmmmmmmmemmmmmemmmemm————— Traffic Signal Controller

°

Real-world Physical Transportation Environment

— Offline Training & Testing in DT
----- » Online Execution in Real-Time Environment

Figure 3. Digital Twin assisted DGMARL Learning.

The integration process between the Digital Twins and the decentralized multi-agent a2
reinforcement learning algorithm is elaborated as follows: 323

*  The decentralized multi-agent reinforcement learning algorithm leverages inputs such s
as vehicle presence time in the detector zone, current phase state, pedestrian recall =
time, etc., obtained from the Digital Twins. It then makes decisions, determining s
whether to maintain the current signal phase or switch to a phase with anticipated s
high traffic demand following a dynamic phasing approach. This decision is based on s
the current state of the intersection and the desired objective, which is to minimize the s
Eco_PI measure. 330

*  The decision made by the decentralized multi-agent reinforcement learning algorithm  sa
is fed back to the Digital Twins, prompting an update to its simulation based on the 2
decision. The updated simulation is subsequently utilized to provide new inputs to
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the decentralized multi-agent reinforcement learning algorithm. This iterative process
continues until the desired optimization objective is achieved.

This integration of the Digital Twins and DGMARL offers a compelling alternative to
the traditional method of field training the DGMARL model for signal timing optimization.
By learning from the Digital Twins, the model undergoes efficient and safe training and
testing, avoiding the challenges associated with tedious field training. The Digital Twins
data accumulation capability facilitates efficient visualization and in-depth analysis of the
traffic state. The outcome is a validated and reliable output and the offline training defines
the DGMARL neural network before deployment, ensuring a robust and optimized system.

5. Implementation of Intelligent Agents to Optimize the Global Transportation

Motivations for Al-Enabled Intelligent Agents in Transportation Networks: Al-
enabled intelligent agents represent a transformative force in enhancing transportation
networks, offering a myriad of benefits that span efficiency, reliability, safety, and societal
well-being. The motivations driving the integration of these agents are multifaceted and
include the following.

*  Enhanced Efficiency, Reliability, and Safety: Intelligent agents leverage Al algorithms
to analyze transportation data [66], enabling them to make optimized decisions. This
results in increased efficiency, reliability, and safety within transportation networks
[67,68].

. Positive Impacts on Quality of Life, Environment, and Economic Growth: The deploy-
ment of intelligent agents has a direct positive impact on people’s quality of life by
reducing congestion and improving travel experiences. Environmental benefits are
realized through eco-friendly transportation practices promoted by optimized traffic
flow. Economic growth is fostered as efficient transportation networks contribute to
smoother logistics and infrastructure support

*  Real-Time Traffic Optimization: Intelligent agents actively monitor real-time traffic
conditions, offering dynamic recommendations to drivers. This includes suggesting
alternate routes to avoid congestion, adjusting traffic signals for improved flow, and
predicting maintenance needs [69].

*  Optimized Resource Allocation and Safety Monitoring: Resource allocation is opti-
mized for emergency vehicles, buses, trains, and other vehicles based on real-time
demands. Safety is paramount, with intelligent agents detecting potential problems
early [70-72]. This proactive approach contributes to a safer transportation environ-
ment.

Graph Representation of the Transportation Network: The utilization of graph
representation, coupled with intelligent agents, provides a powerful framework for com-
prehensive situational awareness within transportation networks. This approach leverages
graph theory to model the network structure and facilitates advanced decision-making
capabilities:
¢  Comprehensive Situational Awareness: Processing and analyzing the traffic data is

highly computationally costly and graph framework provides highly scalable strate-

gies. Graph representation, employing nodes for intersections and edges for routes,
provides a holistic view of the entire transportation network. Intelligent agents utilize
this graph to track vehicle trajectory [73,74], predict congestion, optimize traffic states,
and enhance overall situational awareness by efficiently monitoring the entire network
[75-77]. This approach enables precise monitoring and analysis of traffic states within
the transportation network, facilitating comprehensive situational awareness. By
representing the transportation network as a graph, agents can analyze connectivity
between intersections, assess traffic flow patterns, and identify potential bottlenecks or
congestion points. This graphical representation empowers agents to make informed
decisions regarding traffic signal control, route planning, and overall network manage-
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ment, leading to improved situational awareness and enhanced traffic management s
strategies. 386
* Integration of Machine Learning Algorithms: Reinforcement learning algorithms are  ze
seamlessly integrated, enabling agents to learn traffic patterns from both historical sss
and real-time data. This integration enhances their adaptability to dynamic traffic se
conditions. By continuously observing and analyzing traffic data, the algorithm .
can respond to different traffic conditions such as anomalies, allowing agents to s
adapt and optimize traffic signal timing dynamically. This adaptability ensures that
traffic management strategies remain effective in response to changing traffic patterns 30
and unforeseen events, ultimately leading to improved traffic flow and congestion s
mitigation. 395
¢  Traffic Signal Control Optimization: Intelligent agents interact with local signal con- 19
trollers, leveraging graph-based insights to optimize traffic signal timings by analyzing s
sensor data from key locations and communicating with local signal controllers [78,79]. s
This dynamic control mechanism helps in avoiding congestion and improving traffic s
flow. 400

Scalability Scalability is a pivotal consideration in optimizing traffic signal timings, o
especially as transportation networks expand in size and complexity. a02

¢ Challenges in Single-Agent Architecture: Centralized agents face limitations in process- 40
ing, communication, and latency as the transportation network grows. Effectiveness
in smaller networks may not translate to larger networks due to increasing demands. s
¢ Multi-Agent Architecture for Scalability: Multiple agents, operating independently, 40
optimize traffic signal timings at different intersections within the network. Asyn- 4o
chronous communication protocols, including message passing and attention mecha- s
nisms, reduce communication overhead [80]. Distribution of workload and efficient 00
utilization of local data enhance scalability for larger volumes of data and intersections 40
[22,23,81]. at

Hence integration of Al-enabled intelligent agents, graph representation, and scalable multi- .
agent architectures presents a holistic approach to transforming transportation networks. a3
By distributing the workload and utilizing local data more efficiently, this approach can s
handle larger volumes of data and more intersections. ats

5.1. Graph Neural Network Formulation of Traffic Network 416

The proposed approach adopts a graph neural network (GNN)-oriented formulation a7

to model the traffic environment as a network, providing a comprehensive representation s
of the traffic network structure and dynamics. This section discusses the key components of s
the formulation, including the graph representation, the infrastructure of the Digital Twin- o
assisted DGMARL system, and the spatio-temporal multi-agent reinforcement learning
process. 422
Multi-agent reinforcement learning is employed to disclose the spatial and temporal 43
patterns of traffic. In this process, agents interact with their environment over both space 4
and time, learning from their actions and experiences to optimize their behavior. Spatial 4
information encompasses various configurations related to signal controllers, pedestrian s
walk configurations, and intersection-specific timing parameters such as minimum and 4
maximum green times, red clearance times, and yellow times. This information delineates s
the physical layout of the environment, including the arrangement of intersections and 42
road networks. Meanwhile, temporal information pertains to changes occurring over time, 4.
such as fluctuations in traffic flow and congestion levels. By incorporating both spatial 4
and temporal dimensions, this approach enables agents to effectively learn and adapt to 4
dynamic traffic conditions, enhancing traffic management and optimization strategies. a3
434

The notations used in this paper are given in Table 1 and 2. 435
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Table 1. Notation used for the Transportation network.

Notation Description
G=W¢) Bi-directional graph specified by
set of intersections/agents (vertices) and set of
links (edges)
ij ID of intersections / agents / nodes
I ID of links / edges
ej €& Link connecting intersections i and j
N; Set of incoming neighbors of intersection i
o Traffic flow status intersection i
¢ Signal phases of intersection i

Table 2. Notations used for Decentralized Graph-based Multi-Agent Reinforcement Learning.

Notation Description
S, A, p,and r State space, Actior;{ sace, Agent’s Policy, and
eward
sit €S State of intersection i at time ¢
aiy €A Action taken by agent 7 at time ¢
iy = Eco_PI Eco_PI as reward r at time ¢
d; Average stop delay occurred in the link /
N; Number of stops occurred in the link [
K; Average stop penalty calculated for link /
vr Critic - State Value
QT Actor - Action Value
4 Initial policy p distribution of intersection i at
Sit ~ P time ¢
0; Policy network parameters of intersection i
wj Value network parameters of intersection i

5.1.1. Graph Representation of Traffic Network:

The traffic environment is represented as a bi-directional graph denoted as G(V, £ ),
where V represents a set of intersections modeled as agents, and £ represents a set of roads
considered links, where ¢; ; € £ is a link that connects intersections i and j. Each intersection
i has static features such as approach links, signal controllers, signal phases, detectors, the
number of lanes, uncontrolled approaching links, and neighboring intersections Ni C V.
The signal controller at each intersection is associated with signal phases ¢;, each having
static features like list of signal lights, minimum green serving time, yellow time, red
clearance time, pedestrian recall time, and priority phase.

5.2. Infrastructure of DGMARL

Figure 4 shows the architecture of a Digital Twins-assisted multi-agent reinforcement
learning empowered traffic environment.

Each intersection of the traffic network was designed as a local agent. The multi-
intersection traffic network signal timing optimization problem is addressed with decentral-
ized multi-agent reinforcement learning. The traffic signal control problem is formulated
as a Markov Decision Process (MDP): (S, A, p,r) where S denotes the state space, A rep-
resents the action space, and r is the reward that measures the benefit brought about by
a specific action. The objective is to learn the optimal policy p that generates the best
action for the next step and maximizes the subsequent accumulative discounted rewards
produced by the action.

To enhance learning efficiency and inform optimal actions based on approaching traffic,
neighboring agents share local observations through communication graphs and knowl-
edge sharing through message passing, enabling agents to communicate and coordinate.
This function aggregates the current agent’s traffic state and recent policy, along with that
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of its neighbors. The aggregated state undergoes processing through linear transformation s
neural network layers and an LSTM (Long Short-Term Memory) layer, adept at capturing s
long-term dependencies in sequential data. Subsequently, the ReLU (Rectified Linear Unit)
activation function is applied to introduce non-linearity to the network, followed by feeding s
the resulting output into the actor neural network for decision-making. Linear transforma- s
tion, a mathematical operation, manipulates input data through linear combinations, with s
linear transformation layers in neural networks performing these operations to produce s

output features. a67
RL-enabled a;,t = n-(al,tlsllf 05 Toir ¢ ~ )
Agent 1
RL-enabled ay; = (A lS'y )5 Top ¢ _
Agent 2 e [
B :
‘ ay, = m(ay s’y ) Ty; Il
\‘ RL-enabled Nt NEZNeh Toie —
\ Agent N - RN
| &
.o ’ <
') (59 'Tz,h) ("5t TN °
| . :
\ Eco_Pi;, :
FTTTTRTTT T T """"""" ! e 2
1 " =*
| \ ' Digital Twin =
! \ h o
: h \\ m M 1
! L\ - e . Local
I D= : observatikn
- " (si0) Digital Transportation
Graph Representation of Local and ' Environment + Sensors

Global Observation

;¢ - Local observation at time t; h;, - Neighbor(s) state at time t; s’;, - Updated state at time t;
Tg; - Policy at time t; a;, - Action at time t; r;, - Reward at time t;

Figure 4. Architecture of Digital Twin assisted DGMARL Learning.

5.2.1. State Space: a8

Each intersection state is derived from the heterogeneous observations of traffic states 40
and traffic signal phase state from multi-direction, and is further refined using a spatial- o
temporal graph neural network [82]. The state of the global traffic network at time ¢ for the

traffic network is defined as i a2
St = {sit}i_1- @
where {s;} is the state of the intersection i at time t which is the heterogeneous observation
of traffic states and traffic signal phase state from multi-direction. a4
The state of agent i at time ¢, {s;;}, is formed by the observed traffic flow status Y'F' s
and the traffic signal phase status ¥7°. Namely, at6
TF T
sip = (Y} r‘Pi,tS> )
where X a7
TF _ PT W D 7 9\ F;
Yi; = ( <f5z,i,tr 51,i,tr 51,i,tr Vl,i,t>z:1>¢:1 (3)
and 478
TS S D PS MinG MaxG
Ti,t = <4’i,t/ 4’i,t/ it i,tm ’ i,tax > 4)

479

In Equation (3), F; is the number of phases in the intersection i, and K ; is the number o

of approaching links at phase ¢;; the observations of each approaching link / in each phase
¢; include vehicle presence time in the detector zone 6]'/,, average waiting time 6|7 ,, average -
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delay 5E ., and vehicles average speed V;;;. In Equation (4), the variables ¢?,, ¢7,, and
¢S correspond to the current instant phase status, current phase duration, and pedestrian
serving status, respectively. The variable pM"C indicates whether the minimum green time

has been fulfilled in the current phase, while (/)%”"G indicates whether the current phase
duration has reached the maximum green serving time. The system monitors the maximum
green serving time when pedestrian recall is enabled for the current phase ¢;. In such cases,
vehicles are served until the maximum green time is reached unless the agent decides to
switch to another phase based on the ongoing traffic condition, after which pedestrians are
served.

ming _ J 1 if ¢f > max(e}f"T, ¢ PT) 5)
it 0, otherwise

MinGT
it

where ¢; represents the minimum green serving time, ([)iDt represents the current phase

duration, and ¢F°T
don’t walk time.

represent pedestrian serving time which is the sum of walk and flashing

MaxG _ {1, if (le?tR & ( Z,Dt Z (P%HXGT) (6)

it .
0, otherwise

where ¢/'R represents the pedestrian recall flag, ¢1, represents the current phase duration,
and gbthI“XGT represents the maximum green serving time.

5.2.2. Action Space:

The initial action 4; ; at intersection i is evaluated against physical constraints, namely
the minimum green serving time ¢%Z”GT, the maximum green serving time gbthI“XGT for

the current active phase ¢; at intersection i, and the pedestrian serving time (,bl{J tS based
on the current phase duration gbl-l?t. This evaluation ensures the safety of all users within
the transportation network. Subsequently, the final decision ag,t is incorporated into the
intersection’s signal timing plan.
The decision-making process is expressed by the Eq.(7), where a; , is determined as
follows
it if ¢%inG
ap=q1 i (@7 &) @)

0, otherwise

where ¢M"C the flag determines whether minimum green is served for the current phase
or not as defined in the Eq.5. In this context, a;, = 0 signifies that the agent refrains from

taking action, while a}, = 1 implies that the agént will transition the current phase signal
i
phase duration is greater than or equal to maximum green constraint cp%ﬂxc then the action
”;,t = 1is enforced to switch to another phase. After this transition, the current phase will
be ready to serve pedestrian walk plus flashing don’t walk time, following the serving
of yellow and red clearance timing. Subsequently, the phase ¢; ; with the highest traffic
demand will be switched to green. The next phase ¢;; is determined by the following
equation,

to yellow. If the current phase is configured with pedestrian recall ¢;,*, and if the current

¢ip = argmax (Y3F)_y )

The proposed model follows a dynamic phasing approach, prioritizing the phase with
the highest traffic demand to minimize vehicle waiting delays.
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Dynamic phasing, allowing dynamic adjustment of signal phases based on real-time
traffic conditions, significantly enhances adaptability and responsiveness to changing traffic
patterns and congestion levels. This flexibility enables real-time optimization, ensuring
traffic signals can adapt immediately to varying traffic conditions. It accommodates the
dynamic nature of traffic patterns, including fluctuations due to factors such as time of day,
events, accidents, and road construction. By dynamically adapting to traffic conditions,
signals with dynamic phasing help reduce congestion, optimize signal timing to minimize
delays and queue lengths, and ultimately improve travel times for motorists. Moreover,
this adaptability contributes to enhanced safety on the roads by reducing the likelihood of
accidents associated with sudden stops and congested traffic conditions. Overall, dynamic
phasing plays a crucial role in promoting smoother traffic flow, reducing congestion,
shortening travel times, and enhancing safety for all road users.

5.2.3. Reward based on Eco_PI:

In Distributed Multi-Agent Reinforcement Learning, rewards are calculated based
on the collective performance of all agents in the environment. In a transportation envi-
ronment, where each intersection functions as an individual agent. In this study, rewards
are calculated locally for each agent. The reward for each agent is determined by a metric
called negative Eco_PI, which represents the cumulative impact of stop delays and pe-
nalized stops. This metric encapsulates the undesirable effects of traffic congestion and
inefficiencies at intersections, allowing agents to optimize their behavior to minimize these
negative outcomes. By incorporating stop delays and penalized stops into the reward
calculation, agents are incentivized to make decisions that improve traffic flow and reduce
congestion, ultimately leading to more efficient and sustainable transportation systems.

The reward function was formulated as Eco_PI by measuring the number of stops and
stop delays that occurred in every traffic approach, following an existing fuel consumption
model proposed in the study [12,13]. The number of stops a vehicle makes is calculated by
counting the number of times the vehicle is stopped in a queue while approaching from all
directions in the intersection. The stop delay is calculated as the amount of time a vehicle
is stationary in the queue before it reaches the intersection. For example, as shown in
Figure 5, at the Cater intersection in MLK Smart Corridor, vehicle stops and stop delays are
calculated on the eastbound, southbound, westbound, and northbound approaching links.
These metrics are then used to calculate the Eco_PI index, which serves as an indicator
of fuel consumption related to stopping. The immediate reward r;; is calculated for each
traffic movement of intersection 7 as

Li
rip = Eco Pl = —(Y_ 671, + (8715 % 613)) )
=1
where 671 is the stop delays that occurred in link I;, 6]V is the number of stops, and 67K, is

the stop penalty penalized for every stops [14,15]. The policy of each agent i is optimized
to maximize the global long-term return E[R[], where R7, = ZZ YT r; 1 is the return at
time ¢, with a discount factor .
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Figure 5. Vehicles Stops and Stop Delays at each approach.

5.2.4. Spatio-temporal Multi-agent RL:

Each intersection’s behavior is modeled using a decentralized graph network and
state and action spaces. Agents use the Multi-Agent Advantage Actor-Critic (MA2C)
algorithm, with Actor and Critic designed using a graph neural network. Agents learn
spatial and temporal dependencies through asynchronous communication protocols and
make decisions based on their current state and policies. Policies are updated based on
optimal long-term return values and evaluated and updated based on physical constraints.
Each agent’s state, action, and reward are communicated to the neighbors through message
passing, and the reward is stored to measure the global return for each agent. Therefore,
the multi-agent Markov Decision Process (MDP) was updated as (G,S,A,M,p,r, s/ ) where
mji; € Mj; is the message passed from agent j to agent i including the states, actions, and
rewards of the neighboring agent i at time t. N; = {j € V|ij € £} represents the set of
neighboring agents that are connected to agent i by links /; ; in the communication graph
(V,€). Then the local agent state is updated as s’;; € S’ which is the joint state of the
agent’s current state and the neighbor’s state.

At time ¢, the state s;; of intersection i includes traffic state such as volume, vehicle
presence time in the detector zone, average waiting time, average delay, and vehicles
average speed, as well as traffic signal state such as current phase state, duration, and
pedestrian recall time. The states of neighboring agents ; are obtained through message
passing, including the aggregation of the agent’s state and policy.

miy = g(sjyUhjy 11U 1, VjEN) (10)

Then the intersection i state is updated by the linear transformation with a rectified linear
function, with the dimensions of the traffic state and traffic signal state input varying for
each intersection. The hidden state of temporal traffic information is extracted by the LSTM
layer.

e =C(sip Uhip 1 Ui Umy) (11)

Then a linear transformation with a rectified linear function is applied to the hidden graphs
to identify the optimal policy, 7r;. And the softmax function is applied to generate actions
a;. The policy is evaluated and adjusted by considering mandatory physical constraints.
Advantage Actor-Critic (A2C) with a Graph Neural Network (GNN) stabilizes the
learning process and enhances the performance of the proposed model in identifying the
optimal policy for maximizing the expected cumulative discounted reward E[R] over
time steps for intersection i. The advantage function A7 (s;,, a; ) evaluates the benefit of
taking an action 4] it ina state st ;1 compared to the average value at that state and serves as a
reference point for the action-value function QF (s} a;,). The state-value function V/*(s} )
defines the predicted cumulative discounted reward from a specific state under a glven
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policy and is calculated as the weighted sum of the action-value function for all possible  su
actions. 505

The policy distribution approximates the anticipated cumulative discounted reward s
from taking an action in a state under the policy 7t;. The advantage function helps the critic  sor
network reinforce the selection of the most suitable action by updating the policy distribu- se
tion with policy gradients as directed by the critic, which in turn increases the probability s
of actions proportional to the high expected return E[Rf)] = X cs p(si )V (s ,)- 600

Learning from experiences: During each time step, the experience replay buffer D«
stores the information including the initial state, the updated state with neighbor net- e
works, updated policies and values, the new state after taking action, and the step reward e
(Sits @} o MG T Sips U 10 7T, ) 604
In each subsequent time interval, the model learns the temporal dependency by utilizing  «os
the batch of experiences B is {(sf/T, MN, t7s a;r, Tit, sf/’T, vf/T, n(’;iﬂ ) }iev rep stored in the re- e
play buffer D and updates the graph neural network parameters based on the calculated e
losses. Where {77y };cy is stationary policy and value { V], };cy were updated after physical e
constraints evaluation of intersection i. Actor loss incorporates the negative log probability o
of the action that was sampled under the current policy, and the actor is updated based on &0
the estimated advantage. And the Critic loss, which involves computing the mean squared 1
error between the sampled action-value and the estimated state-value, is updated using o
the estimated state-value. o13

5.3. Digital Twin Assisted Method 614

Widely employed by traffic engineers and researchers, PTV-Vissim [83] is a microscopic e
road traffic simulator with a user-friendly Graphical User Interface (GUI) for designing e
road networks and setting up simulations. However, limitations arise when dynamically a7
manipulating objects during simulations. To overcome this challenge, PTV-Vissim provides s
a solution through a Component Object Model (COM) interface. In this study, we utilize e
Python scripts to develop the COM interface, enabling programmable manipulation of s
simulator functions and parameters. 621

To reduce congestion and improve Eco_PI, the PTV-Vissim COM interface was em- ¢
bedded with Digital Twins which represents the decentralized graph-based multi-agent s
reinforcement learning framework. The Digital Twins serve as a representation of the e
physical transportation environment, with each intersection mapped to a corresponding re- e
inforcement learning agent. These agents interact with the Digital Twins through the COM 62
interface, ensuring optimal policy maintenance and facilitating efficient decision-making e
for controlling signal phases within a tolerable time frame, as illustrated in Figure 4. 628

The Digital Twins-assisted DGMARL algorithm, illustrated in Algorithm 1, maps each
intersection in the Digital Twins to a corresponding reinforcement learning agent i. To s
facilitate seamless scaling and integration of multiple agents, each agent is associated with
a unique thread thread;, leveraging multi-threading. This approach enables the agents to e
learn the global traffic state collectively and make optimal decisions at their respective o3
intersections, thereby improving the Eco_PI. 634

At time ¢ the agent i observes various features through Digital Twins components as 63
shown in the algorithm in Appendix A1, such as the vehicle presence time in the detector e
zone, each direction approach level vehicle count aggregates, vehicles average speed, and e
current signal state (line-5). Then collaborates with its neighbors N; to share and receive e
their states through message passing as described in Algorithm 1 line-6. Then the updated 63
state s} , of agent i is processed through a graph neural network to derive the optimal policy o
7t; and select actions to control the signal phase ¢; (line-7). Then agent i validates the actions  ex
(line-8), against the physical constraints configured in the Digital Twins, the minimum e
green serving time and pedestrian recall time, to ensure user safety. If the decision is to s
stay in the current phase in green, then no actions are applied back to the Digital Twins; e«
otherwise, agent i validates the other phase’s vehicle presence time in the detector zone e
and selects the phase ¢; that has a higher upcoming traffic demand, then applies the signal e
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phase change action to the signal controller in the Digital Twins (line-9) as shown in the
algorithm in Appendix A2, which updates the simulation. Once the decided action is
applied, each agent i estimates the current reward r; with the new observed traffic state
s; 1+1 (line-10), and stores the experiences in the replay buffer (line-11). When the buffer
size reaches minimum batch size the agent starts to learn from the collection of experiences
at every time step to minimize the critic loss L(w;) and actor loss [(8) (lines 12-14). The
agent i repeats the above processes until it achieves the desired objective of identifying
optimal policy to choose the best actions for reducing congestion and Eco_PI.

Due to the distributed agent environment, each agent makes different decisions based
on their local and neighboring traffic state, so the convergence of an optimal policy is
different for each agent and the efficiency of learning is increased. Since agents continue to
interact with the real environment through the Digital Twins, the probability of arriving at
an optimal policy is faster. Hence, by using a Digital Twins and reinforcement learning,
the system can adapt to changing traffic conditions in real-time, leading to more efficient
signal control, and it can be further optimized to maximize its benefits.

Algorithm 1 Digital Twin assisted DGMARL Learning

Require « learning rate, B entropy coefficient.
Ensure: Initialize PTV-Vissim objects Vissim, Net, Links, Signal Controllers, and Signal
Groups.
Ensure: Initialize graph G(V,£), agenti € V, link [; € &, physical constraints i, policy
network parameters 8, and value network parameters w.
1: for e =1 to episodes do
22 fort=0toT —1do
3 for agent i = 1 to V create thread thread; do
4 Thread thread; starts
5: Observe state s; from Digital Twin.
6
7
8

Update state s}, ~ s;; Uy, , Uhy;, , through message passing.

Select policy 714, ,, action a;; ~ 7(als} ), and get value v(s; ,[w, a; ).

Evaluate agent’s actions a; , = (a;|ic) and update value v'(s} ;|w, a; ;) and policy
T ( lt|vlt’ zt)

9: Take action a; , in Digital Twin
10: Observe reward 7; ; and new state sl 1
11: Store the observations in replay buffer
D« (Sg,t’ ”éi,'ag,t/ "i,t+1/5;,t+1fvgy,i,t)'

12: ift >= sample batch size B then

13: Sample random minibatch of B samples (sh,al,11,5"Ij) from DV j € 1..B.

14: Obtain target return y} = 7} + WQ” (s7,a],. ,aN) where a; = 7'(s /)

15: Update critic by minimizing the loss: L(w;) = 3 2]- [yi] Qp (sl al, L ay)]?
and w; = w; — aVL(wj).

16: Update actor usmg sampled policy gradient descent along with entropy loss:
Adv/] = yl Q” (s",d),. ,a]N) ' o

17: J(0) = § 5V —log 7, (a] |s) Adv]] + BT 79, (a] |5} ) 1og 74, (a |s7).

18: 0, = GiJr(XVf(Q).

19: end if

20: Thread thread; ends

21: end for

22:  end for
23: end for
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6. Experiments

This section provides the details of the experiment setup using a real-world dataset
and optimization results that show the efficiency of the Digital Twins-assisted DGMARL
model.

6.1. Experiment Design

The experiment environment was set up using the real-world dataset collected by
the Department of Computer Science and Engineering at the University of Tennessee,
Chattanooga, USA [84].

Real-world dataset: The dataset is composed of the corridor that connects 11 intersec-
tions on MLK Smart Corridor with bidirectional traffic in East-West, West-East, North-South,
and South-North directions and includes data for roadway network geometry, the traffic
signal timing plan, camera and zone-detecting device, Signal Phasing and Timing (SPaT),
vehicle flow, vehicles speed, and vehicle presence time in the detector zone, etc. The signal
timing plan attained from the city for each intersection follows a dual-ring NEMA con-
troller protocol. In the developed DGMARL algorithm an adaptive signal control strategy is
adapted where the action has been designed with two decisions: 1) Action 1: Stay in green
in the current ongoing phase or 2) Action 2: Switch to the phase that serves the lanes with
the highest traffic demand. Before switching to the new phase, the current phase follows
the yellow and red clearance times that are specific for each phase at each intersection.

6.2. Digital Twin Setup

The Tier 1 Digital Twins platform is used in this experiment. The simulation model of
11 intersections of the MLK Smart Corridor in PTV-Vissim is developed following network
creation guidelines in [85], as shown in Figure 6. The developed model is populated with
archived December 15, 2022, one-minute volume counts at network entry edges, 10-minute
turn percentages at each intersection approach, and signal timing plans received from the
city. Two versions of the simulation model are created: 1) the PM peak model that simulates
the December 15, 2022, 3:00 PM—6:00 PM scenario, and 2) the 24-hour model that simulates
the December 15, 2022, 24-hour scenario. This model is prepopulated with data and runs
faster than wall clock time.

Roadway Network
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Figure 6. MLK Smart Corridor in PTV-Vissim showing roadway network layout and vehicle volume
inputs per time interval.

6.3. Impact of the Application of the Proposed Model

Efficiency of Digital Twins-assisted DGMARL is measured using the number of stops
and stop delays at each intersection as the metrics. Also, Eco_PIis calculated to measure the
impact of fuel consumption related to stopping. DGMARL starts optimizing signal timing
after a non-stationary period of 120 seconds. At each time step, the graph neural network
updates each agent’s current state with Relu activation in the message passing layer. Then,
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the actor and critic neural networks generate the value-assisted action probability. This
process continues until the initial batch size of experiences is gathered. Afterward, at each
time step, the model learns from experience with random samples and updates the graph
neural network parameters to arrive at the optimal policy distribution. The model decay
rate is customized based on the current learning episode. To achieve optimal results, the
model was trained for 100 episodes using the dataset from the first hour of MLK Smart
Corridor on Thursday, December 15, 2022. Each episode’s simulation step was 36000
deciseconds, and the model learned from 240 batch sizes of experience replay at every
240-time step.

6.4. Experiment Results

The developed DGMARL signal timing plan was tested on MLK Smart Corridor for
24-hour and PM-peak hour scenarios of December 15, 2022. The performance of DGMARL
signal timing plan was compared with the baseline actuated MLK Smart Corridor vehicle
actuated signal timing plan. Baseline actuated signal timing is a traditional method for
controlling traffic signals at intersections, where signal timings are predetermined based
on factors like time of day and traffic volume patterns. The signal phases, including
green, yellow, and red intervals, are fixed and not adjusted in real time. Comparing the
signal optimization method DGMARL against this baseline provides insights into potential
improvements in traffic management strategies.

6.4.1. 24-hour scenarios:

Figure 7 shows the comparison of the Eco_PI index observed for every second from
DGMARL and baseline vehicle actuated signal timing plans. The overall Eco_PI improved
by 55.38%, with improvements ranging from 3.17% to 62.14% over the 10 intersections, and
34.77% Eco_PI increased in the Douglas intersection.

5000
4500 H Actuated
4000
€ 3500 " DGMARL
£ 3000
2 2500
& 2000
5 1500
1000 I I I
| LI |
o > Qﬁ > \g;‘o \\‘)
N & & ¢ & & F &S
R R R SR L
Intersection

Figure 7. 55.38% improvement of overall Eco_PI in one 24-hour test duration.
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Figure 8. 38.94% improvement in average of Eco_PI during PM-peak hour with 10 runs of tests.
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Figure 9. 42.78% reduced in the average of stop delays and 0.82% increase in the average number of
stops during Pm-peak hour with 10 runs of tests.
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Figure 10. 13% reduction in stops and 43.29% reduction in stop delays during PM-peak hour in one
run of the test.

6.4.2. PM-peak hour scenario: 21

The experiment results were obtained from ten replicate trials, each conducted with  7»
different random seeds, during the PM-peak hour. These trials compared the Eco_PI perfor- 7
mance observed for every second from the DGMARL approach against the implementation 7
of a vehicle-actuated signal timing plan. Figure 8 illustrates the average Eco_PI over these s
ten trials, showcasing an improvement of 38.94%. The Eco_PI reduction ranged from 3.17% 7
to 62.14% across the ten intersections analyzed. Notably, the Douglas intersection exhibited 7
a relatively higher Eco_PI than the actuated signal timing plan. 728
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Figure 9 illustrates the average stop delay and the average number of stops observed 7
across ten test runs. On average, stop delays decreased by 42.78%, while the average 7o
number of stops increased by 0.82%. In one of the tests using random seed value 32, during 7=
the PM-peak hour scenario, a significant reduction in Eco_PI is evident in both stops and 7
stop delay. Specifically, compared to the baseline actuated signal timing scenario, there 7
was a 13% reduction in stops and a 43.29% reduction in stop delay, as illustrated in Figure 7.
10. Among the intersections, the Central St and Market intersections experienced the s
most substantial improvement, with a 65.04% and 51.80% reduction in average stop delay 7
respectively, while the Pine intersection demonstrated the least improvement at 5.73%. 7
The trend of higher Eco_PI observed for Douglas for DGMARL compared to actuated in 7
Figure 8 above is reflected in stop and delay as well. The stops and stop delays in Douglas 7

intersection are slightly higher for DGMARL compared to the actuated scenario. 740
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Figure 11. Variation of Eco PI during simulation period for Actuated and DGMARL.
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Figure 12. Variation of Eco PI during simulation period for actuated and DGMARL.

A closer examination of specific intersections, such as Pine, Center, Market, and 7
Douglas, revealed interesting trends in Eco_PI improvements, as depicted in Figure 11. 72
These plots show the variation of Eco PI during the simulation period for both the actuated s
and DMARL scenarios for one of the replicate trials. 744

At the Central intersection, consistent improvement in Eco_PI highlights the effec- s
tiveness of the DGMARL approach in optimizing signal timing. The notable reduction s
in Eco_PI at Pine and Market intersections during specific time intervals underscores the 77
potential for targeted signal control adjustments to alleviate congestion and enhance fuel s
efficiency. However, the occasional instances of higher Eco_PI at the Douglas intersection 7o
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compared to the actuated scenario suggest the need for further investigation into the factors
influencing signal optimization outcomes, particularly in complex traffic scenarios.

In this study, both the actuated and DGMARL approaches were subjected to the same
number of vehicle inputs, as illustrated in shown in the Table in Appendix Al. However,
DGMARL demonstrated its effectiveness in optimizing traffic signal timing and improving
Eco_PL These findings underscore the dynamic nature of traffic flow and highlight the
efficacy of DGMARL in mitigating congestion and promoting eco-friendly transportation
practices.
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Figure 13. PM-peak hour traffic throughput in the MLK Smart Corridor: Actuated vs DGMARL.
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Figure 14. Stopped vs Moving Vehicles in PM-peak hour traffic.

In Figure 13, an analysis of traffic flow patterns reveals insights into the distribution
of vehicles crossing each intersection at green. Additionally, detailed information on the
cumulative sum of the count of vehicles crossing each intersection at green can be found in
the table provided in Appendix A2.

This analysis highlights specific trends observed at individual intersections. For
instance, at the Douglas intersection, there is a notable increase of 17.48% in the percentage
of vehicles arriving on green compared to the actuated signal plan. Similarly, at the Georgia,
Market, and Pine intersections, the DGMARL scenario shows increases of 7.94%, 4.02%,
and 0.77% respectively in the percentage of vehicles arriving on green compared to the
actuated scenario. Conversely, at Central St, there is a reduction of 2.76% in vehicles
arriving on green compared to the actuated plan. It’s important to note that the arrival on
green percentage is calculated considering all signal phases and it’s all approaches of the
intersection.

In Figure 14, a closer examination is made of the traffic flow from approaching links
at Central St, Pine, Market, and Georgia intersections to analyze the number of stopped
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vehicles at each intersection approach. At Central St, there is a notable 12.90% reduction in
the number of vehicles stopped compared to the actuated plan, indicating improved traffic
flow. Despite Central St having 2.28% fewer moving vehicles compared to the actuated
signal timing plan, there is still a reduction in Eco PI, primarily due to the significant
decrease in stopped vehicles. Conversely, at the Douglas Intersection, there is a 20.75%
increase in the number of stops compared to the actuated plan, leading to a higher Eco_PI,
despite a 2.23% increase in the number of moving vehicles during the simulation period.
This underscores the importance of considering the distribution and frequency of stopped
vehicles at intersection approaches in assessing the impact on Eco_PI.

An important consideration with DGMARL is its focus on addressing traffic demands
from all directions, including both main streets and side streets, while adhering to manda-
tory constraints such as minimum green time and pedestrian walk serving time. As a
consequence of this approach, the traffic density on certain approaches may increase,
reflecting the comprehensive optimization of traffic flow in a multi-directional environ-
ment. This heightened traffic density on specific approaches may have implications for the
Eco_PI, underscoring the complex interplay between traffic demand patterns and signal
optimization strategies.

Opverall, the results demonstrate the effectiveness of the DGMARL approach in manag-
ing traffic demand across all directions and optimizing traffic signal timing to reduce Eco_P]I,
while maintaining adherence to mandatory constraints at both corridor and intersection
levels.

7. Discussion

The findings from the experiments shed light on the effectiveness of the Digital
Twin-assisted graph-based decentralized multi-agent reinforcement learning algorithm in
optimizing traffic network signal timing. These results warrant a thorough discussion to
interpret their significance in the context of previous studies and the underlying hypotheses,
as well as to explore their broader implications and potential future research directions.

Firstly, the observed improvements in learning efficiency and performance corroborate
with prior research that has emphasized the advantages of multi-agent reinforcement
learning in dynamic and complex environments. By allowing agents to interact with their
surroundings, exchange knowledge with neighboring agents, and explore multiple actions
simultaneously, our approach aligns with the principles outlined in previous studies on
traffic signal optimization.

Furthermore, the efficacy of the Digital Twin in assisting the algorithm highlights the
growing role of digital twin technology in optimizing real-world systems. By providing
a virtual representation of the physical transportation environment, the Digital Twin
enables more accurate observations and simulations, leading to enhanced decision-making
capabilities for the reinforcement learning algorithm.

In discussing the implications of these findings, it becomes evident that the proposed
approach holds promise for addressing traffic congestion and improving overall transporta-
tion efficiency on a larger scale. The ability to optimize traffic signal timing in real-time
based on evolving traffic conditions offers significant potential for reducing travel times,
minimizing delays, and enhancing the overall commuter experience.

Looking ahead, future research directions should focus on further validating and
refining the algorithm through extensive testing in real-road environments. This includes
deploying the algorithm in larger traffic networks, incorporating additional functionalities
such as adaptive learning mechanisms, and exploring variations in optimization frequen-
cies. Additionally, investigations into the algorithm’s robustness under diverse traffic
scenarios and its scalability to accommodate growing urban infrastructures are warranted.

In summary, the results of our experiments underscore the promising prospects of
leveraging Digital Twin-assisted multi-agent reinforcement learning for traffic signal opti-
mization. By engaging in discussions that contextualize these findings within the existing
literature, highlight their implications, and delineate future research avenues, we aim to con-
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tribute to the ongoing dialogue on enhancing traffic management systems and mitigating
congestion in urban environments.

8. Conclusions

This paper has delved into the application of a Digital Twin-assisted graph-based
decentralized multi-agent reinforcement learning algorithm for real-time optimization
of traffic network signal timing. Through enabling interactions among multiple agents,
facilitating knowledge exchange among neighboring agents, and allowing simultaneous
exploration of multiple actions, this approach has exhibited notable enhancements in
learning efficiency and performance, all while maintaining lower latency.

The experiment results have underscored the effectiveness of leveraging Digital Twin
technology to assist the multi-agent reinforcement learning algorithm in optimizing traffic
network signal timing. Through extensive experimentation on the MLK Smart Corridor
in Chattanooga, Tennessee, USA, we observed significant improvements in traffic flow
and eco-friendly transportation practices compared to traditional vehicle-actuated signal
timing plans. Notably, our results demonstrate a substantial reduction in the Eco_PI index,
indicating enhanced fuel efficiency and reduced emissions.

However, it’s important to acknowledge the disparities between our findings and
those reported in previous studies. While our approach showcases promising results
in managing traffic demand and optimizing signal timings, variations in traffic patterns,
infrastructure layouts, and environmental factors may contribute to differences in outcomes
across different contexts. Therefore, further investigation and comparative analysis are
warranted to elucidate the factors influencing these disparities and refine our understanding
of the DGMARL algorithm’s performance under diverse conditions. By engaging in such
discussions and continuously evaluating our findings in light of previous research, we can
gain deeper insights into the capabilities and limitations of MARL-based approaches for
traffic management.

In summary, this study charts a promising course for advancing traffic management
systems and alleviating congestion on a broader scale. The integration of digital twin
technology with multi-agent reinforcement learning provides a robust framework for op-
timizing complex systems characterized by multiple agents and diverse interactions. By
continuing to explore and refine this approach through real-world testing and observa-
tion, we can unlock its full potential to revolutionize urban mobility and enhance overall
transportation efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

DT Digital Twin

DGMARL  Decentralized Graph-Based Multi-Agent Reinforcement Learning
Al Artificial Intelligence

ML Machine Learning

IoT Internet of Things

RL Reinforcement Learning

MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process

A2C Advantage Actor-Critic

MA2C Multi-Agent Advantage Actor-Critic
GNN Graph Neural Network

LSTM (Long Short-Term Memory)

ReLU (Rectified Linear Unit)

ITS Intelligent Transportation System
SPaT Signal Phasing and Timing

RBC Ring Barrier Controller

GUI Graphical User Interface

CcOM Component Object Model

MLK Martin Luther King

Appendix A

Appendix A.1

Appendix B

Table A1l. Vehicles Input.

Input Vehicles Generated Actuated DGMARL

Number of Vehicles 8788 8788
Unique Vehicle IDs [1,2,3,.., 8786, 8787, 8788] [1,2,3,..,8786,8787, 8788]
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Algorithm A1 Observing state s; from Digital Twin by thread thread;

Require PTV-Vissim objects and agents initialized, time ¢, thread thread;
1: for signal group sg; do
2. if sg; is current phase signal group then
3: Observe current phase status ‘Pis,t' current phase duration (p}? , pedestrian recall

status (,DZP tR

4 Validate minimum green is served qbf}fi”G
5 if sg; has pedestrian recall enabled then
6: Validate maximum green is served 4)%”"(3
7 end if
8: end if
9:  forlinks/ =1to K do -
10: Observe traffic state 6/, 67, 6}, and V
11:  end for
12: end for

Algorithm A2 Apply action 4/ in Digital Twin by thread thread;

Require Time ¢, thread thread;, Current phase ¢;, Next phase of
1: for signal group sg; do
2:  if ¢; - current phase then

3: if ¢; is green then
4: Set ¢; to yellow
5: Continue simulation
6: else if ¢; is yellow and yellow served then
7: Set ¢; to red clearance phase
8: Continue simulation
9: else if ¢; is red and red clearance served then
10: Set status ¢; red clearance served
11: end if
122 endif
13:  if ¢; is red clearance served then
14: Set ¢; to green
15: Continue simulation
16:  end if

17: end for




Version September 30, 2024 submitted to Symmetry 27 of 30

Table A2. Cumulative sum of count of vehicles passed through each intersection at green.

Increase in % of

Intersection Actuated DGMARL Vehicles Crossed the
Intersection at Green
Pine 6472 6522 0.77%

Carter 12430 12779 2.81%

Broad 10217 10628 4.02%
Market 12282 12528 2.00%
Georgia 6083 6566 7.94%
Lindsay 3886 4122 6.07%
Houston 3886 3956 1.80%
Douglas 2632 3092 17.48%
Peeples 1723 1733 0.58%

Magnolia 2280 2339 2.59%
Central St 7723 7510 -2.76%
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