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AbstractÐ We propose an accurate and robust initialization
approach for stereo visual-inertial SLAM systems. Unlike the
current state-of-the-art method, which heavily relies on the
accuracy of a pure visual SLAM system to estimate inertial
variables without updating camera poses, potentially compro-
mising accuracy and robustness, our approach offers a different
solution. We realize the crucial impact of precise gyroscope bias
estimation on rotation accuracy. This, in turn, affects trajectory
accuracy due to the accumulation of translation errors. To
address this, we first independently estimate the gyroscope
bias and use it to formulate a maximum a posteriori problem
for further refinement. After this refinement, we proceed to
update the rotation estimation by performing IMU integration
with gyroscope bias removed from gyroscope measurements.
We then leverage robust and accurate rotation estimates to
enhance translation estimation via 3-DoF bundle adjustment.
Moreover, we introduce a novel approach for determining
the success of the initialization by evaluating the residual of
the normal epipolar constraint. Extensive evaluations on the
EuRoC dataset illustrate that our method excels in accuracy
and robustness. It outperforms ORB-SLAM3, the current
leading stereo visual-inertial initialization method, in terms
of absolute trajectory error and relative rotation error, while
maintaining competitive computational speed. Notably, even
with 5 keyframes for initialization, our method consistently
surpasses the state-of-the-art approach using 10 keyframes
in rotation accuracy. The open source code is available at
https://github.com/ApdowJN/Stereo-NEC.git.

I. INTRODUCTION

The fusion of cameras and Inertial Measurement Units

(IMUs) in Visual-Inertial Simultaneous Localization and

Mapping (VI-SLAM) presents a cost-effective, low-power

solution for robot perception and AR/VR applications. Cam-

eras offer a rich environment representation, while IMUs

measure acceleration and angular velocity, ensuring robust-

ness in fast-motion and texture-less scenes. This synergy

makes them ideal complements. Compared to monocular VI-

SLAM systems, stereo VI-SLAM systems offer the advan-

tages of a baseline with known scale and the capability to

reconstruct 3D geometry even without camera motion.

Initialization in VI-SLAM systems is critical because it

impacts their accuracy and robustness. VI-SLAM depends
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on reliable and precise initial estimates for scale, the gravity

direction, initial velocity, acceleration, and gyroscope biases.

However, accomplishing this task is challenging, demanding

a swift and accurate recovery of observable parameters from

visual and inertial data without prior knowledge.

Compared with the extensive research on monocular sys-

tems, there are relatively few VIO solutions designed for

stereo systems [1]±[7].This is due to the increased compu-

tational demands of processing multiple images and stereo

matching. Similar to monocular VI-SLAM initialization

methods [8]±[17], methods for stereo VI-SLAM initialization

are also categorized into two types: joint approaches [12],

[18] and disjoint approaches [6], [7], [19], [20]. Joint ap-

proaches handle both visual and inertial parameters together

by fusing visual observation and IMU integration. However,

they tend to overlook the gyroscope bias in the closed-

form solution, which results in limited accuracy, while they

are computationally expensive. On the other hand, disjoint

approaches first independently solve the Structure-from-

Motion (SfM) problem and then derive inertial parameters

based on camera poses from a pure visual SLAM system.

Therefore, the accuracy of these methods relies heavily on

the performance of pure visual SLAM. Previous monocular

VI-SLAM approaches have been extended to stereo VI-

SLAM using a similar disjoint initialization strategy. For

instance, VINS-Fusion [6], an extension of VINS-Mono [16],

follows this approach with a slight difference. VINS-Fusion

jointly estimates velocity, gravity vector, and scale through

visual-inertial bundle adjustment, rather than treating them

separately. Huang et al. [19] extended their prior method [15]

to stereo VI-SLAM by introducing an additional scale esti-

mate. Similarly, ORB-SLAM3 [7] applied the same idea [17]

to their stereo VI-SLAM system.

The accuracy of pure visual SLAM greatly impacts the

performance of disjoint methods. However, even in state-of-

the-art stereo VI-SLAM systems like ORB-SLAM3, accurate

camera trajectory estimation is assumed in scenarios with

adequate baseline between consecutive frames and mild

rotation. Nevertheless, in challenging situations such as pure

or intense rotation, ORB-SLAM3’s initialization may result

in reduced accuracy and robustness.

To overcome these limitations and enhance initialization

accuracy and robustness in challenging scenarios, we propose

Stereo-NEC, which leverages insights from our previous

work [9] that takes into account the significant impact of

gyroscope bias estimation on rotation accuracy and consid-

ers the connection between inertial parameters and visual











TABLE I: Comparison of the accuracy of Stereo-NEC and ORB-SLAM3, both using 10 keyframes for initialization, with (W/) and without
(W/O) VI-BA, in terms of ATE (meters) and RRE (degrees). Each value in the table corresponds to the average of RMSE results from
different methods, which launch initialization every 2.5 seconds on the EuRoC dataset.

Seq. Name

ATE (m) RRE (deg)

W/O VI-BA W/ VI-BA W/O VI-BA W/ VI-BA

Ours ORB-SLAM3 Ours ORB-SLAM3 Ours ORB-SLAM3 Ours ORB-SLAM3

MH 01 easy 0.005 0.008 0.005 0.006 0.033 0.088 0.026 0.037
MH 02 easy 0.005 0.006 0.004 0.004 0.032 0.093 0.025 0.024
MH 03 medium 0.030 0.032 0.025 0.027 0.122 0.307 0.107 0.203
MH 04 difficult 0.029 0.031 0.018 0.026 0.084 0.195 0.066 0.125
MH 05 difficult 0.020 0.027 0.014 0.016 0.061 0.164 0.048 0.067
V1 01 easy 0.007 0.008 0.006 0.006 0.117 0.184 0.112 0.119
V1 02 medium 0.018 0.020 0.012 0.015 0.179 0.385 0.145 0.237
V1 03 difficult 0.040 0.054 0.026 0.043 0.372 1.000 0.308 0.669
V2 01 easy 0.004 0.007 0.003 0.004 0.053 0.199 0.046 0.090
V2 02 medium 0.013 0.021 0.009 0.014 0.128 0.324 0.115 0.192
V2 03 difficult 0.036 0.047 0.028 0.039 0.359 0.846 0.314 0.602

Avg 0.019 0.024 0.014 0.018 0.140 0.344 0.119 0.215

TABLE II: Comparison of average initialization computation time for 10 keyframes setting in milliseconds (ms) on EuRoC.
The results involve 10 keyframes, and the best results for each sequence are highlighted in bold.

Seq. Name
Ours & ORB-SLAM3 Ours ORB-SLAM3

Pure Visual SLAM Bias, Vel & Grav Est Rot-Int & Trans-Opt VI-BA Total Cost Bias, Vel & Grav Est Rot-Int & Trans-Opt VI-BA Total Cost

MH 01 easy 514.84 291.58 15.55 57.06 879.03 1.97 - 68.23 585.04

MH 02 easy 474.32 311.86 17.53 58.31 862.02 1.95 - 68.56 544.83
MH 03 medium 458.50 292.21 16.37 56.74 823.82 2.10 - 62.83 523.43

MH 04 difficult 466.76 292.73 14.57 52.33 826.39 2.22 - 66.56 535.54

MH 05 difficult 472.50 308.98 17.15 52.49 851.12 2.06 - 64.21 538.77

V1 01 easy 563.99 304.82 22.79 74.32 965.92 1.80 - 77.42 643.21

V1 02 medium 495.96 298.41 16.43 53.21 864.01 1.79 - 60.86 558.61

V1 03 difficult 532.10 252.32 14.69 49.81 848.92 2.05 - 60.30 594.45

V2 01 easy 553.45 331.41 20.75 73.60 979.21 1.90 - 80.78 636.13
V2 02 medium 556.98 300.84 14.52 52.20 924.54 2.06 - 62.10 621.14

V2 03 difficult 484.68 264.52 12.51 40.54 802.25 2.11 - 57.70 544.49

Avg 506.73 295.43 16.62 56.42 875.20 2.0 - 66.32 575.05

TABLE III: Exhaustive initialization results for 10 keyframes with
Low, Medium, and High Angular Velocity from V2 03 difficult
sequence.

Seq. Name

ATE (m) RRE (degree)

W/O VI-BA W/ VI-BA W/O VI-BA W/ VI-BA

Ours ORB-SLAM3 Ours ORB-SLAM3 Ours ORB-SLAM3 Ours ORB-SLAM3

Low 0.023 0.028 0.017 0.015 0.151 0.378 0.133 0.085
Medium 0.059 0.059 0.050 0.051 0.465 0.737 0.362 0.513
High 0.023 0.045 0.017 0.038 0.319 1.003 0.308 0.741

Avg 0.035 0.044 0.028 0.035 0.312 0.706 0.268 0.446

ORB-SLAM3 in high-speed scenarios.

D. Computation Speed Evaluation

In Table II, we present the runtime comparison for

each initialization module separately, including pure visual

SLAM, IMU bias, velocity and gravity estimation (Bias, Vel

& Grav Est), rotation integration, and translation optimiza-

tion (Rot-Int & Trans-Opt) and VI-BA.

The results reveal that our method is around 10 ms faster

on average than ORB-SLAM3 in VI-BA because it provides

accurate initial estimates which aid faster convergence. How-

ever, our method takes 300.15 milliseconds longer on average

for initialization compared to ORB-SLAM3. This is due to

two additional steps in our method: 1) We first estimate the

initial gyroscope bias before estimating keyframes’ veloc-

ities, gravity direction, and acceleration bias, while ORB-

SLAM3’s Inertial-only step simultaneously estimates veloc-

ities, gravity direction, and IMU biases. 2) After obtaining

the gyroscope bias, we refine the camera rotation estimation

by integrating gyroscope measurements with the gyroscope

bias removed, and we update the camera translation using

a 3-DoF bundle adjustment, while ORB-SLAM3 does not

update the camera pose from pure visual SLAM.

These two additional steps are indispensable, especially

when dealing with a larger gyroscope bias IMU. Enhancing

pose estimation has been demonstrated by updating the

camera rotation through the integration of gyroscope bias-

removed measurements and the camera translation via 3-

DoF bundle adjustment with updated rotation estimation, as

shown in IV-B. The additional 300 ms are only required

during initialization and can be considered negligible for

trajectories that last even a few seconds.

V. CONCLUSIONS

Our proposed method, Stereo-NEC, addresses limitations

in the current state-of-the-art approach, ORB-SLAM3, which

heavily relies on the accuracy of pure visual SLAM to

estimate inertial variables without initial gyroscope bias

estimation in inertial-only optimization. We independently

estimate the gyroscope bias, then use it to refine other

parameters through a maximum a posteriori problem. After

this, we update rotation estimation via IMU integration with

the gyroscope bias removed, enhancing translation estimation

through 3-DoF bundle adjustment with updated rotation

estimation. We also introduce a novel approach to determine

initialization success by evaluating the residual of the normal

epipolar constraint. As a result, our method improves both

accuracy and robustness compared to ORB-SLAM3, while

maintaining competitive computation speed.
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