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Abstract

We introduce a learning-based depth map fusion frame-

work that accepts a set of depth and confidence maps gen-

erated by a Multi-View Stereo (MVS) algorithm as input

and improves them. This is accomplished by integrat-

ing volumetric visibility constraints that encode long-range

surface relationships across different views into an end-

to-end trainable architecture. We also introduce a depth

search window estimation sub-network trained jointly with

the larger fusion sub-network to reduce the depth hypoth-

esis search space along each ray. Our method learns

to model depth consensus and violations of visibility con-

straints directly from the data; effectively removing the ne-

cessity of fine-tuning fusion parameters. Extensive exper-

iments on MVS datasets show substantial improvements

in the accuracy of the output fused depth and confidence

maps. Our code is available at https://github.com/

nburgdorfer/V-FUSE

1. Introduction

Much like other areas of computer vision, Multi-View

Stereo (MVS) has benefited from the advent of deep learn-

ing. Progress has been driven by the creation of end-to-end

systems, unifying all aspects of the MVS pipeline, and by

replacing heuristics in the components of the pipeline with

optimized network modules. An aspect of MVS that re-

quires further investigation is depth map fusion, which is

still implemented as a sequence of heuristic operations.

Considering that the top performing MVS systems in

terms of geometric accuracy1 use depth map collections

as the representation, depth map fusion can be a crucial

step for obtaining the final 3D reconstruction of the scene.

As has been shown by conventional fusion research [23],

fusing depth maps, guided by geometric constraints, im-

proves the precision of correct depth estimates by blend-

ing them with supporting estimates for the same part of the

surface, detects and removes outliers, and reduces redun-

1NeRF [26] has inspired a vastly expanding class of algorithms that

produce superior results in view synthesis, but not in 3D reconstruction.

We consider NeRF a separate line of work from MVS.

Figure 1. Point cloud reconstructions from DTU [1] and Tanks &

Temples [19] datasets using depth maps from NP-CVP-MVSNet

[40] and UCSNet [3] as input to V-FUSE.

dancy in the final 3D model. Current deep MVS approaches

[3, 11, 21, 25, 42, 40, 41], however, bypass depth map fu-

sion and proceed directly to filtering fusion, which includes

various heuristic post-processing steps to obtain a global

point cloud by filtering the point cloud reconstructed from

the set of depth maps. This approach has been successful;

however, without depth map fusion, not all geometric infor-

mation from the scene is utilized. Our motivation in this

work is to build an end-to-end fusion network that can gen-

erate much more accurate depth and confidence maps.

Filtering fusion that operates on local 3D neighborhoods

is unable to leverage relationships among distant surface

primitives, such as a surface being occluded from a faraway

object. Similarly, convolution networks have a limited re-

ceptive fields and can only reason about local interactions.

We present V-FUSE, an approach that allows a 3D convolu-

tional network to benefit from such geometric information,

in a differentiable manner, controlled by learnable hyper-

parameters.

V-FUSE considers three types of constraints, inspired by

the work of Merrell et al. [23]: support among consistent

depth estimates across multiple views, occlusions and free-

space violations that provide evidence against depth esti-

mates contradicting surfaces estimated in different depth

maps. Free-space violations provide the added benefit of



encoding conflicts with respect to surfaces that may be in-

visible in the frame of the reference camera. There are three

substantial differences between our approach and that of

Merrell et al.: (i) theirs operates in 2 1

2
D while ours oper-

ates in a 3D volume, (ii) their algorithms make decisions per

pixel without considering context, and (iii) all parameters in

our approach are learned end-to-end. Specifying visibility

constraints in the fusion volume allows V-FUSE to reason

based on interactions among depth estimates along the rays,

as well as spatially among neighboring voxels. In the ab-

sence of these constraints, only the latter would have been

possible via 3D convolutions, which cannot reason about

long-range conflicts.

Reducing the storage and computational requirements of

deep MVS networks is a necessity for increasing the reso-

lution and quality of 3D reconstruction. 3D convolutional

networks operating on cost volumes are forced to downsam-

ple high resolution inputs. Since our framework is also vol-

umetric, we propose a technique for achieving high resolu-

tion near the surfaces while keeping memory requirements

manageable. Specifically, we learn to generate a per-pixel,

narrow depth search window by examining the input depth

and confidence estimates. Unlike previous networks that it-

eratively refine the depth search space, our framework lever-

ages the availability of input depth and confidence estimates

to determine a reduced search space in a single pass.

Our main contributions are:

• An end-to-end learning-based method for the fusion

of depth and confidence maps, leveraging long-range,

volumetric visibility constraints encoded into a visibil-

ity constraint volume (VCV).

• A pixel-wise search window estimation sub-network

to refine the depth search space.

We provide extensive evaluation of V-FUSE on MVS

benchmarks [1, 19, 43], using 2D and 3D error metrics.

2. Related Work

In this section, we review related work on learning-based

MVS, as well as conventional and learning-based depth map

fusion.(Unfortunately, no recent surveys on these topics are

available, to the best of our knowledge.)

The combination of deep learning and plane-sweeping

stereo has inspired a new generation of MVS algorithms.

The plane-sweeping volume (PSV) [10] allows the use of

cost aggregation and disparity estimation techniques de-

veloped for binocular stereo [18] in multi-view settings.

The first deep learning-based plane-sweeping algorithm

was DeepStereo [8] that addresses view synthesis in a

self-supervised manner. Supervised formulations targeting

depth map estimation are largely influenced by MVSNet

[42] and concurrent work [14, 15]. We also adopt the PSV

structure in this work for our fusion volume.

Several methods [3, 11, 21, 25, 35, 40, 41, 44] aim to

improve memory efficiency in deep MVS through multi-

resolution, iterative schemes that refine the depth search

space with each increase in resolution. This is achieved via

regular incremental reductions in search range [11, 41], or

with a range set using only confidence estimates [3]. We

have developed a non-iterative method for estimating per-

pixel depth search windows based on information extracted

from the distribution of input depth and confidence maps.

Recent work has addressed MVS by: combined classifi-

cation and regression for depth estimation [29, 34], sequen-

tial depth interval selection [32], an adaptation of RAFT

(Recurrent All-Pairs Field Transforms) [22], operating over

adaptive intervals along epipolar lines instead of discrete

depths [21], and the use of a non-parametric depth distri-

bution model to mitigate shortcomings of unimodal depth

models [40]. Transformers for MVS [6, 12, 33, 36] leverage

the intra- and inter-attention mechanisms to achieve more

accurate feature matching than previous architectures.

Conventional Depth Map Fusion Conventional fu-

sion methods reduce errors and inconsistencies in MVS

pipelines. Merrell et al. [23] propose two algorithms for

fusing depth maps by selecting depth estimates with large

degrees of support from the input depth maps that outweigh

violations of visibility constraints. We employ similar con-

straints, but in a volumetric formulation while the conven-

tional approach [23] reasons on 2 1

2
D depth maps. Hu and

Mordohai [13] extend the aforementioned method [23] by

modeling geometric uncertainty, in addition to confidence,

and by considering multiple depth candidates per pixel.

A popular choice for fusing depth maps among deep

MVS pipelines is the work of Galliani et al. [9]. It is based

on the projection of depth estimates onto several support-

ing depth maps to accumulate consensus subject to criteria

on reprojection error and surface normal inconsistency. The

dense COLMAP pipeline [31] also includes a fusion mod-

ule that rejects outliers based on lack of photometric and

geometric support and clusters inliers. Both techniques re-

quire setting several thresholds and parameters, and are lim-

ited to filtering depth maps into a final 3D model without

improving the underlying depth maps.

Some deep MVS systems introduce custom fusion and

filtering steps which are not included in the end-to-end

trainable pipeline. These include P-MVSNet [20] that

considers pixel and depth reprojection errors, and D2HC-

RMVSNet [39] that includes geometric consistency scores.

Instead of relying on filtering and averaging depth esti-

mates, our work aims to refine and fuse depth maps before

they are filtered and projected into a point cloud.

Learning-Based Depth Map Fusion Most learning-based

fusion methods follow the seminal work of Curless and

Levoy [5] and adopt a volumetric representation of the trun-

cated signed distance function (TSDF). Learning-based ap-







The response values are weighted by the original confidence

values Cv,p for view v and pixel p. The multiplier λp is the

same parameter used in the encoding of occlusions.

3.2. Evidence Aggregation and Depth Estimation

In order to aggregate neighboring information, we regu-

larize the VCV using a 3D UNet similar to MVSNet [42].

This includes several layers of 3D convolutions with down-

sampling and skip-connections to incorporate global con-

text in the latent space, producing a probability volume P .

We then apply a soft-argmax operator along the depth di-

mension. The final fused depth map is generated using the

depth-wise expectation of probabilities for each depth hy-

pothesis,

Df
p =

∑

d

Sp,dPp,d (4)

Here, we write Sp,d and Pp,d using explicit index notation

instead of Sq and Pq to clearly indicate the reduction over

the depth dimension.

3.3. Dynamic Depth Search Windows

As input, our VCV construction process takes a set of

depth hypotheses per ray. Instead of a single constant set

of hypotheses for all rays, we aim to formulate a hypothesis

set per ray that is learned from the data. For the sake of

run-time and memory efficiency, it is important to limit the

number of depth hypotheses. Therefore, we look to reduce

the search space while maintaining a high probability that it

encompasses the true depth.

Our Search Window Estimation (SWE) sub-network

takes as input the N rendered depth and confidence maps.

We compute the mean and standard deviation of both the

depth and confidence maps per-pixel. Similar to the formu-

lations of the constraints, we average these metrics over the

set of valid inputs K ≤ N . In order to center the search

windows around an initial value Dcenter, we use the input

confidence values to select the most confident depth esti-

mate from the N input views. See the supplement for the

motivation behind this choice.

The input to our search window estimation sub-network

is the concatenation of the pixel-wise depth and confidence

statistics with Dcenter. We run this 5-channel feature map

through several 2D convolutional layers, followed by a sig-

moid activation function. The output is used for estimating

the search window radius,

Rp = rmin + rmaxOp (5)

where Rp is the window radius at pixel p, rmin =
ψmin(bmax − bmin) and rmax = ψmax(bmax − bmin) are

the minimum and maximum allowable bound for the win-

dow radius respectively, andOp is the output of the 2D con-

volutional network at pixel p. The scalars ψmin and ψmax

are used to select a percentage of the full input hypothesis

range (bmax− bmin) as the minimum and maximum allow-

able search window radii. These parameters are in place to

prevent the network from estimating extreme radius values.

Using this estimated window radius, we can define the

depth hypothesis bounds centered around the initial window

center estimates.

Bmin
p = Dcenter

p −Rp (6)

Bmax
p = Dcenter

p +Rp (7)

Here, Bmin
p and Bmax

p are the minimum and maximum

depth bounds defining the search window at pixel p. We

then interpolate between these new bounds to obtain M

depth hypotheses, Sp = [Bmin
p , ..., Bmax

p ] ∈ R
M . The

new hypothesis volume S, with per-pixel hypotheses sets,

is then used to build the VCV as described in Section 3.1.

4. Loss Function

We train our network in a supervised manner on the out-

put depth and confidence maps of MVS frameworks. We

formulate two loss functions, one for each sub-network.

4.1. Depth Regression Loss

We specify the depth regression loss as the l1 loss be-

tween the estimated fused depth maps Df and the ground

truth depth maps Dgt.

Ld =
∑

p∈Ωp

|Df
p −Dgt

p | (8)

Here, Ωp is the set of all valid pixels where ground truth

depths are available. This loss is mainly used to super-

vise the construction of the VCV and the regularization

network; however, there are no barriers in place to prevent

back-propagation through the SWE sub-network. That be-

ing said, it is not sufficient to rely on the regression loss to

supervise our SWE sub-network.

4.2. Depth Search Window Loss

In order to supervise the SWE network module, we for-

mulate two objective functions. The first term, named the

coverage loss, penalizes estimated search windows that do

not encompass the ground truth depth.

Lc =
∑

p∈Ωp

|Dcenter
p −Dgt

p |

Rp

(9)

Using the coverage loss in isolation would not prevent the

network from learning to simply maximize the window ra-

dius. Therefore, as a regularizing term, we add the magni-

tude of the window radius to the joint loss function.





Method
DTU [Sparse] (mm) ↓ DTU [Dense] (mm) ↓

Acc. Comp. Overall Acc. Comp. Overall

MVSNet [42]

+ Gipuma [9] 0.396 0.527 0.462 0.419 0.383 0.401

+ V-FUSE 0.432 0.390 0.411 0.388 0.349 0.368

UCSNet [3]

+ Gipuma [9] 0.338 0.349 0.344 0.320 0.261 0.290

+ V-FUSE 0.354 0.329 0.342 0.265 0.276 0.270

NP-CVP-MVSNet [40]

+ Gipuma [9] 0.356 0.275 0.316 0.288 0.194 0.241

+ V-FUSE 0.337 0.277 0.307 0.256 0.181 0.219

GBi-Net [25]

+ ∼ COLMAP [31] 0.315 0.262 0.289 0.254 0.173 0.214

+ V-FUSE 0.310 0.274 0.292 0.227 0.180 0.204

Table 2. Chamfer distances (lower is better) of the final fused point

clouds from the evaluation set of DTU [1] benchmark. We evalu-

ate the final models using the official script that enforces a sparse

minimum point-spacing of 0.2mm (left). Since the errors are ap-

proaching this threshold, we also evaluate the models enforcing a

dense minimum point-spacing of 0.03mm (right). MVSNet [42],

UCSNet [3], and NP-CVP-MVSNet [40] use Gipuma [9] to fuse

depth estimates into a final 3D model. GBi-Net [25] uses an adap-

tation of the fusion approach of COLMAP, in which geometric and

photometric filters are used to filter and average consistent depth

estimates across views.

from the fused depth maps. We evaluate our point clouds

on the DTU benchmark [1], measuring accuracy, complete-

ness, and overall scores. Accuracy is the mean distance be-

tween every point in the estimated point cloud to the clos-

est point in the ground truth model and completeness is the

mean distance between every point in the ground truth point

cloud to the closest point in the estimated model. The over-

all score is the average of these metrics. We show a variation

of these metrics when comparing to DeFuSR [7] following

the evaluations performed in their work. DonnÂe and Geiger

[7] report the Chamfer distances as the percentage of points

within a threshold of τ = 2.0mm. We also evaluate our

point clouds on the Tanks & Temples benchmark. We re-

port the f-score for each scene, as well as the mean f-score

for all scenes.

MVS Baselines We compare the results of applying V-

FUSE on the outputs of MVSNet [42], UCSNet [3] as a

representative multi-resolution algorithm and two state-of-

the-art methods, NP-CVP-MVSNet [40] and GBi-Net [25].

Fusion Baselines We compare the results of V-FUSE with

the conventional fusion approach of Merrell et al. [23] for

2D evaluations, and Gipuma [9] for 3D evaluations, since

Gipuma is the method of choice by state-of-the-art MVS

frameworks to produce final 3D models. We also provide

comparisons to the learning-based fusion method, DeFuSR

[7]. Methods operating on implicit TSDF volumes, such

as VolumeFusion [4], RoutedFusion [37], and NeuralFu-

sion [38] are not included in our evaluations, since they are

better suited for reconstructing closed, watertight objects.

These papers do not provide any quantitative evaluations

on DTU or Tanks & Temples, with NeuralFusion present-

ing qualitative-only results on select scenes from Tanks &

Temples.

Method
DTU (full) ↑

Acc. (%) Comp. (%) Mean (%)

MVSNet [42] 88 66 77

+ DeFuSR [7] 86 65 76

+ V-FUSE 98 98 98

Table 3. Chamfer distances (lower is better) of the final 3D models

of MVSNet [42] using DeFuSR [7] and V-FUSE for fusion. Here,

accuracy and completeness are reported as the percentage of points

with accuracy and completeness scores within τ = 2.0mm.

Evaluation on DTU Dataset We first compute ground truth

depth maps for DTU in the same manner as MVSNet [42].

Specifically, we run screened Poisson surface reconstruc-

tion (SPSR) [16] on the provided ground truth point clouds

for each scene and produce a watertight mesh. We then ren-

der this mesh into all cameras to obtain ground truth depth

maps. To produce our final point clouds, we use heuristic

filtering, similar to the post-processing presented in GBi-

Net. We first filter out depth estimates that have a confi-

dence value below a threshold. We then project each esti-

mate into neighboring views, using the depth estimates in

each view to reproject back to the reference view, measur-

ing the pixel reprojection error and filtering out estimates

whose error is above a threshold.

Table 1 shows a comparison of the depth map errors

between all baseline methods and V-FUSE. Observing the

fused depth map errors, we can see that even using the

low resolution inputs of MVSNet, V-FUSE can generate

depth maps with a lower MAE than UCSNet and NP-CVP-

MVSNet. Additionally, V-FUSE produces depth maps with

more inliers at all threshold values compared to the input

depth maps generated by all baseline methods. A compar-

ison of error maps is shown in Figure 4. Qualitative depth

map results can be seen in Figure 5. We can observe that V-

FUSE removes much of the noise in the input depth maps,

while producing better estimates near depth discontinuities.

In Table 2, we evaluate the final 3D models of all MVS

baselines and compare the fusion choice from each method

to V-FUSE. V-FUSE shows clear improvements in the over-

all results in both Sparse and Dense evaluation scenarios. In

the case of GBi-Net, the improvements realized by V-FUSE

are more noticeable without the sampling procedure used in

the Sparse evaluation. DeFuSR [7] provides results evalu-

ating fusion of COLMAP [31] and MVSNet [42] inputs on

DTU. We provide a comparison according to the evaluation

protocol used in [7] in Table 3. The threshold used by De-

FuSR is τ = 2.0mm, which is quite large. V-FUSE outper-

forms DeFuSR by a substantial margin, which is expected

as the authors state they are not able to refine the MVSNet

inputs much.

Evaluation on Tanks & Temples Dataset We use the

model trained on the DTU output depth and confidence

maps of each network without any fine-tuning for evalua-

tion. In order to evaluate the depth maps on Tanks & Tem-
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Figure 6. Qualitative comparison of depth maps for scenes from the Tanks & Temples benchmark [19] using GBi-Net [25] as input.

Method
intermediate ↑

Mean Fam. Franc. Horse Light. M60 Pan. Play. Train

UCSNet [3]

+ Gipuma [9] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89

+ V-FUSE 55.03 75.64 57.60 46.03 54.35 55.78 49.42 56.02 45.37

GBi-Net [25]

+ ∼ COLMAP [31] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89

+ V-FUSE 59.08 78.92 65.23 49.96 59.16 57.08 53.13 58.58 50.61

Table 4. F-score (higher is better) of the final fused point clouds from the evaluation sets of the Tanks & Temples [19] benchmark. The best

results between the baseline and V-FUSE are marked as bold.

Method
Tanks & Temples

MAE↓ < τ ↑ < 2τ ↑ < 4τ ↑

UCSNet [3] 0.175 11.83 19.69 30.17

UCSNet + V-FUSE 0.167 12.18 19.75 29.84

NP-CVP-MVSNet [40] 0.177 15.49 25.16 37.38

NP-CVP-MVSNet + V-FUSE 0.155 15.68 25.13 37.57

GBi-Net [25] 0.240 12.02 19.51 29.24

GBi-Net + V-FUSE 0.243 12.88 20.57 30.22

Table 5. Quantitative comparison of depth map errors on the train-

ing set of Tanks & Temples [19]. All methods have been trained

on DTU. The threshold value τ is selected per-scene and is derived

from the thresholds provided by the benchmark.

ples, we use the training set and the provided ground truth

point clouds, computing ground truth depth maps the same

way they are computed for DTU. Table 5 shows the depth

map errors between each baseline and V-FUSE. The fused

depth maps are more accurate overall for UCSNet and NP-

CVP-MVSNet. For GBi-Net, we show improved accuracy

for estimates within the error thresholds. See Figure 6 for

a qualitative comparison of depth maps. Table 4 shows the

f-scores for the final point clouds on the Tanks & Temples

intermediate set. We show comparable results to both input

MVS baselines. We provide the precision and recall split

for each method in the supplement.

Additional Experiments We provide results on the valida-

tion set of the BlendedMVS [43] dataset in the supplement.

Using the outputs of GBi-Net trained on the BlendedMVS

training set and the V-FUSE model trained on DTU with-

out any fine-tuning, V-FUSE produces higher quality depth

maps for all scenes, with a mean MAE of 0.288 compared

to 0.319 for GBi-Net. We also provide evaluations of the

output confidence maps, reporting the AUC of all methods.

Using GBi-Net as input, the AUC of V-FUSE is 2.480 com-

pared to 3.690 for GBi-Net. We show several ablation stud-

ies in the supplement, testing the individual contributions of

different aspects of the network architecture. Specifically,

we evaluate the contributions of the visibility constraints, as

well as the efficiency gains of the SWE sub-network. As de-

tailed in the supplement, introducing the SWE sub-network

results in 8.5× memory and 9× run-time efficiency gains,

as well as a 20% decrease in MAE.

6. Conclusion

We have presented an end-to-end depth map fusion net-

work that leverages long-range visibility constraints en-

coded into a learnable pipeline. Our method improves input

depth and confidence maps generated by MVS networks,

integrating multi-view consensus and inconsistency mea-

sures. We also present a novel depth search space refine-

ment sub-network that estimates a narrow search window

along each ray to increase memory and run-time efficiency,

as well as allow for high resolution depth estimation near

surfaces. The combination of these concepts is able to ob-

tain fused depth maps that are quantitatively and qualita-

tively much better than the inputs. While the depth map fu-

sion in our work is end-to-end, merging the depth estimates

into a unified point cloud remains a heuristic-driven pro-

cess. We aim to incorporate a more principled point cloud

reconstruction procedure from a collection of depth maps

in future work. We also aim to explore the generalization

ability of learning-based fusion.
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