IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 July 2024, accepted 28 July 2024, date of publication 1 August 2024, date of current version 13 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3437203

== survey

A Comprehensive Survey on SmartNICs:
Architectures, Development Models,
Applications, and Research

Directions

ELIE F. KFOURY ", (Member, IEEE), SAMIA CHOUEIRI",
ALI MAZLOUM ", (Graduate Student Member, IEEE),
ALI ALSABEH, JOSE GOMEZ, AND JORGE CRICHIGNO", (Member, IEEE)

College of Engineering and Computing, University of South Carolina, Columbia, SC 29201, USA
Corresponding author: Elie F. Kfoury (ekfoury @email.sc.edu)

This work was supported by the National Science Foundation (NSF), Office of Advanced Cyberinfrastructure (OAC), under Grant
2118311, Grant 2403360, and Grant 2346726.

ABSTRACT The end of Moore’s Law and Dennard Scaling has slowed processor improvements in the past
decade. While multi-core processors have improved performance, they are limited by the application’s level
of parallelism, as prescribed by Amdahl’s Law. This has led to the emergence of domain-specific processors
that specialize in a narrow range of functions. Smart Network Interface Cards (SmartNICs) can be seen as
a revolutionary technology that combines heterogeneous domain-specific processors and general-purpose
cores to offload infrastructure tasks. Despite the impressive advantages of SmartNICs and their importance
in modern networks, the literature has been missing a comprehensive survey. To this end, this paper provides
a background encompassing an overview of the evolution of NICs from basic to SmartNICs, describing
their architectures, development environments, and advantages over legacy NICs. The paper then presents a
comprehensive taxonomy of applications offloaded to SmartNICs, covering network, security, storage, and
compute functions. Challenges associated with SmartNIC development and deployment are discussed, along
with current initiatives and open research issues.

INDEX TERMS SmartNIC, data processing unit (DPU), infrastructure processing unit (IPU), Moore’s law,

application offloading, P4, application specific integrated circuit (ASIC), field programmable gate array
(FPGA).

I. INTRODUCTION

In 1965, Gordon Moore predicted that the number of transis-
tors per chip would double every year [1], which was updated
in 1975 to every two years [2]. In 1974, Robert Dennard
noted that power density was constant for a given silicon
area even as the number of transistors increased because of
the smaller dimensions of each transistor. Transistors used
less power and the performance of integrated circuits was
enhanced by packing more transistors per chip [3]. The
ability of the microprocessor, or simply processor, to exploit

The associate editor coordinating the review of this manuscript and

approving it for publication was Rentao Gu

the advances in integrated circuits enabled impressive
performance improvements, see Fig. 1 [4]. Unfortunately,
in 2003, the limits of power due to the end of Dennard Scaling
slowed processor performance to 23%. This observation
forced the industry to use multiple processors per chip,
referred to as cores. While multi-core processors helped
improve performance, they have slowed down in the last
decade, because of the natural limits prescribed by Amdahl’s
Law [5]: there is a maximum performance benefit from
parallelism, as applications also have tasks that must be
executed sequentially. Additionally, Moore’s law has recently
ended, resulting in the improvements of processors to slow
down further.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/

107297

https://orcid.org/0000-0003-1236-6168
https://orcid.org/0009-0004-5537-0647
https://orcid.org/0009-0003-9734-8061
https://orcid.org/0000-0002-6705-5300
https://orcid.org/0000-0003-3183-2857

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

=
o
o

=
o
rS

=
o
W

23% 12% 3.5%
lyear lyear [year

10? k
S S
S A
52% R PR
LA\ S Wt
lyear o 60":5\69 i \"‘\’\@\ \e}\b%

Processor performance (vs. VAX11/780)
=
o

25%
lyear
1980 1985 1990 1995 2000 2005 2010 2015
Year
FIGURE 1. Growth in processor performance over 40 years, relative to the
VAX 11/780 as measured by the SPEC integer benchmarks. Reproduced
from [4].

=
o
)

In today’s world, most data arrive at compute locations as
packets from the networks. The traditional communication
channel connecting networks and hosts is the Network
Interface Card (NIC). In the past, NICs were simple
hardware-based devices that received the packets from the
network and placed them in memory at the host. Packets
would then wait for processing time by the general-purpose
processor at the host [6]. Although this model was successful
for a long time, it has several challenges in current
environments:

e As Moore’s law and Denning scaling ended, simply
adding more processing capacity to cope with the
increasing amount of traffic is no longer an option.

« A large percentage of tasks executed by the processors
relate to the infrastructure rather than to the user applica-
tions, e.g., TCP/IP tasks, encryption, compression, etc.
Such operations use valuable processor cycles that may
be used for application tasks instead.

« Historical software solutions for packet-related tasks are
not efficient in terms of throughput, latency, and energy.
While in the past inefficient software solutions were
mitigated by the relentless progress of the (hardware)
processors, today’s solutions can no longer rely on future
improvements in processor performance.

o The explosion of network traffic is accompanied by
impressive improvement in the physical layer and
bandwidth capacity. As network traffic arrives at servers
at higher rates, processors are unable to process it on
time, and the gap between processor performance and
bandwidth is only increasing.

Since the Dennard Scaling ended and the energy budget
is no longer increasing, many consider that the only
path left to improve energy, performance, and cost is by
using domain-specific processors rather than power-hungry
general-purpose processors. SmartNICs can be seen as a
revolutionary technology developed to address the challenges
listed above by combining heterogeneous domain-specific
processors that specialize in a narrow range of infrastructure
tasks. These include compression/decompression processors,

107298

programmable pipelines, encryption/decryption processors,
and others. SmartNICs also include general-purpose pro-
cessors which are used for managing the system, aiding
the domain-specific processors, and enabling users to run
control-plane applications. In the context of SmartNICs, the
terms accelerators and engines are also used to refer to
domain-specific processors [7], [8]. Note that the develop-
ment of domain-specific processors has been successfully
used in several domains, including graphics in the 2000s —
Graphics Processing Units (GPUs)—, machine learning in mid
2010s —Tensor Processor Units (TPUs)—, networking in the
late 2010s -Network Processor Units (NPUs) that adhere to
architecture models such as the Protocol Independent Switch
Architecture (PISA)—, and genomics in 2018 [9], [10], [11].

The momentum of SmartNICs is reflected in the global
Information Technology (IT) ecosystem. Hyperscalers such
as Google, Amazon, and Microsoft are designing their own
SmartNICs to run infrastructure functions and optimize
revenue and performance [12], [13], [14]. Manufacturers
such as Intel, NVIDIA, and AMD are emphasizing the
development of SmartNICs for a broad market range,
offering Systems on a Chip (SoCs) with programmable
domain-specific processors for security, networks, storage,
and telemetry [15]. Cloud systems such as the Monterey
project are redefining cloud architectures by incorporating
SmartNICs to run storage, networks, and security services,
resulting in substantial improvement in performance while
leaving more processor cycles for user applications [7], [8].
Research and education networks (RENSs) such as the Energy
Sciences Network (ESnet) -the high-performance network
that carries traffic for the U.S. Department of Energy and
research organizations- are upgrading their infrastructures
with SmartNICs to enable data-intensive science [16].
Software vendors are also offloading their solutions to
SmartNICs; VMware’s ESXi, vCenter, and NSX -integral
components for virtualizing High Performance Computing
(HPC) environments- can now be effectively offloaded
onto SmartNICs [17]. Palo Alto Networks, a leading Next-
Generation Firewall (NGFW) vendor, introduced the “‘Intel-
ligent Traffic Offload” service [18]; this service offloads
firewall functions to SmartNICs. Juniper Networks’ virtual
router/firewall can also be offloaded to SmartNICs [19].
Telecommunication operators are increasingly migrating
their core services to run on SmartNICs [20]. Serverless
and edge computing workloads, including Machine Learning
(ML) training and inference, can be accelerated using
SmartNICs [21], [22]. Testbeds such as FABRIC [23] and
GEANT [24], used worldwide for fundamental research, rely
on SmartNICs and other programmable devices to allow
experimenters to program the data path behavior and process
network traffic in novel ways at line rate [25], [26].

A. PAPER CONTRIBUTIONS
Despite the increasing interest in SmartNICs, prior research
has only partially covered this technology. As shown in

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

A Comprehensive Survey on SmartNICs:
Architectures, Development Models, Applications, and Research Directions

!—' The end of Moore’s law and Dennard Scaling
Section [: Introduction Rise of SmartNICs and domain-specific accelerators
l \—4 Paper contributions and organization

Section II: Related SmartNIC related surveys
Surveys Comparison between related work and this survey

l ‘ Traditional, offload, and SmartNIC
Section IlI: Evolution of Components of a SmartNIC

Network Interface Cards ¢ SmartNIC benefits
l Comparison between the generation of NICs

Discrete SmartNICs
Section IV: SmartNIC SoC SmartNICs
Architectures ¢ On-path and off-path SmartNICs
i Commercial SmartNICs

Programmable packet processor: P4, FPGA, P4-FPGA
CPU cores: DPDK, BPF, XDP, P4-DPDK, P4-eBPF, etc.
NIC switch: RTE_flow, TC_FLOWER

Section V: Dev. Tools
and Frameworks

¢ Network: switching, tunneling, observability, etc.

Section VI-X: : Security: firewall, IDS/IPS, DPI, IPSec/TLS, etc.
Applications : Storage: NVMe-oF initiator/target, compression
l Compute: machine learning, key-value stores, etc.

Section XI: Challenges

Challenges, current initiatives, and future work
and Research Trends

Heterogeneous SDKs and architectures, performance
unpredictability, complex function offloading, etc.

FIGURE 2. Paper roadmap.

Table 1, there is currently no updated and comprehensive
material on SmartNICs. This paper addresses this gap by
providing an overview of the evolution of NICs, starting
from traditional basic NICs to SmartNICs. It describes the
hardware architectures, technologies, and software devel-
opment environments used with SmartNICs, as well as
the advantages that SmartNICs offer over legacy NICs.
The paper then proposes a taxonomy of the functions and
applications being offloaded to SmartNICs, illustrating their
advantages over the conventional method of executing such
applications. Additionally, the paper discusses the challenges
associated with SmartNICs and concludes by discussing
future perspectives and open research issues.

B. PAPER ORGANIZATION

The road map of this survey is depicted in Fig. 2.
Section II compares existing surveys on SmartNICs and
related technologies and demonstrates the novelty of this
work. Section III presents an overview of the evolution of
NICs, from traditional basic NICs to SmartNICs. It describes
the components of SmartNICs and their benefits compared to
legacy NICs. Section IV describes the SmartNICs hardware
architectures. Section V describes the tools, frameworks, and
development environments for SmartNICs, both open-source
and vendor-specific. Section VI provides a taxonomy of the
applications and infrastructure workloads that are offloaded
to SmartNICs. The subsequent sections (Sections VII-X)
describe the security, network, storage, and compute func-
tions. Section XI lists challenges associated with SmartNICs.
It then discusses current initiatives that overcome the

VOLUME 12, 2024

challenges and provides a reflection on open research issues.
Section XII concludes the paper. The abbreviations used in
this article are summarized in Table 12, at the end of the
article.

Il. RELATED SURVEYS

Despite the widespread interest from both industry and
academia in SmartNICs, there is a noticeable absence of a
comprehensive survey that adequately explores their potential
and ongoing research endeavors. The existing surveys that are
closest to this paper can be divided into 1) packet processing
acceleration; and 2) programmable data planes.

A. SURVEYS ON PACKET PROCESSING ACCELERATION
The existing surveys in this category discuss the advantages
of accelerating packet processing, particularly with software
technologies. However, while SmartNICs are occasionally
mentioned in these surveys, they fail to delve into crucial
aspects such as their potential, architectures, applications, etc.

Cerovi€¢ et al. [27] discuss various software-based and
hardware-based packet accelerators. The survey focuses on
server-class networking. It first starts by explaining the
problems associated with using the standard Linux kernel for
packet processing in high-speed networks and then delves
into exploring the different classes of packet accelerators.
For the software-based packet accelerators, the survey mainly
describes and analyzes Data Plane Development Kit (DPDK)
[28], PF_RING [29], NetSlices [30], and Netmap [31]. For
the hardware-based packet accelerators, it focuses mainly
on leveraging GPUs and Field Programmable Gate Arrays
(FPGAs) for optimized and efficient packet processing. The
survey does not cover the latest generation of SmartNICs that
include CPU cores and domain-specific accelerators. Also,
the survey does not cover the applications or the infrastructure
workloads that can be offloaded to SmartNICs.

Freitas et al. [32] describe multiple packet process-
ing acceleration techniques. The survey also focuses on
packet processing in Linux environments. It categorizes the
packet processing acceleration into hardware, software, and
virtualization-based. For each category, the survey offers
background information and discusses a simple use case.
The survey also provides discussions on the host resource
usage efficiency, the high packet rate, the system security,
and the flexibility/expandability. The survey briefly mentions
programmable NICs (another term used for SmartNICs) and
their role in accelerating packet processing. It does not cover
their development environments, hardware architectures, and
the applications/workloads that can be offloaded.

Linguaglossa et al. [33] focus on software and hardware
technologies that accelerate Network Function Virtualization
(NFV). It categorizes software acceleration technologies
into pure software acceleration and hardware-supported
functions in software. It also provides a brief overview of
the software acceleration ecosystem which includes DPDK,
XDP, Netmap, and PF_RING. For the hardware technologies,
it discusses the offloading functions of traditional NICs (e.g.,

107299

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

TABLE 1. Comparison with related surveys.

Paper Evolution and | Architectures | Development | Applications and offloaded Comparisons Challenges and | Research trends
definition and models environments workloads taxonomy with regular NICs discussions and directions
[27] e ® ® [®) o ® ®
[32] ©) ® ® o e ® ®
[33] @® @® ® @® o ® ®
[34] o @® ® @® o ® ®
[35] @® @® ® @® ® ® ®
[36] o @) ® @® o ® ®
[37] @® @® @® @® o ® ®
This
survey [J [J [] [J [] [J o

@ Covered in this survey O Not covered in this survey @ Partially covered in this survey

CRC calculation, checksum computation, and TCP Offload
Engine (TOE)) and a subset of the hardware architectures
of SmartNICs. Then, it provides a brief overview of the
programming abstractions in SmartNICs. The survey has the
following limitations: 1) it does not cover all the hardware
architectures; 2) it does not cover the development tools and
environments; and 3) it does not cover the applications and
infrastructure workloads that can be offloaded to SmartNICs.

Fei et al. [34] also focus on NFV acceleration. The
survey classifies NVF acceleration into three high-level
categories: computation, communication, and traffic steering.
Under the computation category, the survey discusses some
hardware offloading architectures which include SmartNICs.
The remaining of the survey focuses on software acceleration
and how to tune the system to achieve better performance.
The survey has the following limitations: 1) it does not
cover the hardware architectures used by the latest generation
of SmartNICs; 2) it does not cover the development tools
and environments; 3) it does not cover the applications and
workloads that can be offloaded to the SmartNIC.

Shantharama et al. [35] provide a comprehensive survey on
softwarized NFs. The survey classifies the CPU, the memory,
and the interconnects as the three main enabling technologies
for NFVs. With low-level details, the survey explains how
each class operates and how it can be optimized to provide
better virtualization support. It also discusses the use of dedi-
cated hardware accelerators (FPGAs, ASICs, etc.) to improve
the performance of softwarized NFs. The survey briefly
describes some of the applications offloaded to SmartNICS
without providing a sufficient overview of the technology, the
different available development environments, or the latest
enhancement in the field of SmartNICs.

Vieira et al. [36] only focus on the extended Berkeley
Packet Filter (eBPF) and the eXpress Data Path (XDP)
software acceleration techniques. The survey illustrates the
process of enhancing packet processing speed by running
eBPF-based applications in the XDP layer of the Linux
kernel network stack. It presents a tutorial that includes
the compilation and verification processes, the program
structure, the required tools, and walk-through example
programs. Although the authors mentioned SmartNICs as
a target platform for eBPF applications, it does not cover

107300

the available architectures of SmartNICs, the development
environments, or the applications that can be offloaded to
SmartNICs.

Rosa et al. [37] describe multiple software and hardware
techniques to enhance packet processing speed in the cloud.
While discussing software-based techniques, the survey
focuses on zero-copy data transfers, minimal context switch-
ing, and asynchronous processing as the core techniques for
network acceleration. After that, it shows how DPDK, XDP,
and eBPF are used in the cloud to enable Network Accelera-
tion as a Service (NAaaS). While discussing hardware-based
techniques, the survey only focuses on RDMA. The authors
only describe SmartNICs as an enabling technology for
RDMA and virtualization without describing their different
architectures, development environments, of their different
capabilities for enhancing network acceleration.

B. SURVEYS ON PROGRAMMABLE DATA PLANES
Numerous surveys have covered the general aspects of
programmable data planes in the past few years [38], [39],
[40], [41], [42]. Some surveys focused on specific areas
such as network security [43], [44], [45], ML training and
inference [46], [47], TCP enhancements [48], virtualization
and cloud computing [49], 5G and telecommunications [50],
rerouting and fast recovery [51], [52]. All these surveys
have discussed some applications developed on SmartNICs.
However, their focus is on programmable switches (e.g.,
Intel’s Tofino). Recent advances in SmartNICs are not
covered in these surveys.

C. NOVELTY

Table 1 summarizes the topics and the features described
in the related surveys. It also highlights how this paper
differs from the existing surveys. To the best of the authors’
knowledge, this work is the first to exhaustively explore the
whole SmartNIC ecosystem. Unlike previous surveys, this
survey provides in-depth discussions on the evolution and
definition of SmartNICs, the common architectures used by
various SmartNIC models in the market, and the development
environments (both open source and proprietary). It then
provides a detailed taxonomy covering the applications

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

| —
Packet buffer Packet buffer Basic Packet buffer Execution
IO TII[1] sccelerators I o engines
TOE CPU cores
! = =
o > Ethernet o) Ethernet o > Traffic
£ alll o and serial 3 alll o and || [| Checksum g e Maz;:ger | %[% __Prog. pipeline
FE XM 0 me X serialio {H |E L& L™ B vicswiteh I [EDED
°| 00 B0 T4
Uz Domain-specific
=
o
DMA engine DMA engine DMA engine

PCle PCle
(a) Traditional NIC (b) Offload NIC

PCle
(c) SmartNIC

FIGURE 3. Main components of (a) traditional NICs, (b) offload NICs, and (c) SmartNICs.

that are offloaded to SmartNICs, while highlighting the
performance gains compared to regular NICs. The survey
also presents the challenges associated with programming
and deploying SmartNICs, as well as the current and future
research trends.

Ill. EVOLUTION OF NETWORK INTERFACE CARDS (NICs)
There are three main generations of NICs: traditional NICs,
offload NICs, and SmartNICs. Fig. 3 shows a simplified
diagram of the three NICs.

A. TRADITIONAL NICs

Traditional NICs (Fig. 3 (a)) are devices that implement basic
physical and data-link layer services. These services include
serializing/deserializing frames, managing link access, and
providing error detection. Typically, these services are
executed by a fixed-function component residing on a
special-purpose chip within the NIC. On the sending side, the
fixed-function component accepts a datagram created by the
host, encapsulates it in a link-layer frame, and then transmits
the frame into the communication link, following the link-
access protocol. On the receiving side, the fixed-function
component receives the frame and forwards it to the host via
a Peripheral Component Interconnect Express (PCle) card.

B. OFFLOAD NICs

Offload NICs (Fig. 3 (b)) incorporate hardware in the form
of ASICs and/or FPGAs to execute basic “‘infrastructure”
functions' that were previously handled by the host. The goal
is to free up cycles in the main host’s CPU for application
(end-user) tasks rather than infrastructure tasks. Examples of
such functions include:

« Basic packet processing: parsing and reassembling IP
datagrams, computing IP checksum, encapsulating and
de-encapsulating TCP segments.

"n this context, infrastructure functions refer to tasks that facilitate data
movement to the host and do not involve application data.

VOLUME 12, 2024

o Managing TCP connections on the NIC: connection
establishment, checksum and sequence number calcu-
lations, TOE, sliding window calculations for segment
acknowledgment and congestion control, among others.

o Other functions that manipulate TCP/IP header fields to
implement basic filtering and traffic classification.

Offload NICs allow end users to perform pre-programmed
functions on the NIC. However, they do not support the
creation and execution of custom applications directly on
the NIC. Even with full transport layer offload, application
protocols still need to be implemented on the host [9].

C. SmartNICs
The definition of a SmartNIC is not widely agreed upon.
Traditionally, NICs that performed functions beyond basic
packet processing were labeled as SmartNICs. Unless
otherwise noted, the term SmartNIC in this survey refers to
the latest generation of NICs, also known as SoC SmartNICs,
Infrastructure Processing Units (IPUs),”> Data Processing
Units (DPUs), and Auxiliary Processing Units (XPUs).3

Fig. 3 (c) shows a simplified diagram of a SmartNIC. The
SmartNIC includes a Traffic Manager (TM) or a NIC switch
that performs Quality of Service (QoS) and steers traffic to the
NIC execution engines. The NIC execution engines consist of
a combination of processors used for custom packet process-
ing and other domain-specific functions. Some SmartNICs
(e.g., NIVDIA’s BlueField-2 [53]) use a multi-core CPU
processor for custom packet processing. Other SmartNICs
(e.g., AMD Pensando DSC [54]) use embedded flow engines
running a P4 programmable Application Specific Integrated
Circuit (ASIC) pipeline. Other SmartNICs (e.g., AMD Xilinx
SN1000 [55]) use an FPGA for custom packet processing.
The domain-specific processors are optimized to provide
high-performance and energy-efficient processing for a
specific set of functions (e.g., cryptography). The execution

2IPU is the terminology used by Intel.
3XPU is used by the Storage Networking Industry Association (SNIA)
community.

107301

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

Host Host
‘ Core H Core H Core H Core ‘ | Core H Core H Core H Core ‘
‘ Core H Core H Core H Core ‘ | Core H Core H Core H Core ‘
| Security ‘ | Storage | ‘ User apps. ‘

L
‘ Network ‘ ‘ User apps. ‘ SmartNIC
Traditional NIC [
|
Forward. ‘ ‘ Network ‘ ‘ Forward. ‘
(a) Traditional NIC (b) SmartNIC

FIGURE 4. In a deployment with a traditional NIC (a), the host CPU cores
execute infrastructure functions and user applications. With SmartNICs
(b), the host CPU cores solely execute user applications. The SmartNIC
CPU cores assist other accelerators in executing infrastructure functions.

engines have a memory hierarchy that typically consists of
an L1 cache, scratchpad, L2 cache, and Dynamic RAM
(DRAM).

The SmartNICs have general-purpose CPU cores for
executing control plane functions. The CPU cores also enable
SmartNICs to function autonomously and have their own
Operating System (OS), such as Ubuntu Linux, which is
independent of the host system in which they are running.

The programmable components of a SmartNIC allows it
to execute infrastructure functions, without involving the
CPU of the host. Consider Fig. 4. In a deployment with a
traditional NIC (a), the host CPU cores execute infrastructure
functions (typically classified as network, security, and
storage) and user applications; with SmartNICs (b), the host
CPU cores solely execute user applications. The SmartNIC
CPU cores assist other domain-specific accelerators in
executing infrastructure functions.

1) CUSTOM PACKET PROCESSING

SmartNICs enable the developers to devise custom packet
processing on its execution engines. The packet processing
logic can be implemented on CPU cores, FPGAs, or pro-
grammable ASIC pipelines. Regardless of the hardware
architecture used by the SmartNIC, its packet processing
engines include the following components: programmable
parser, programmable match-action pipeline, and pro-
grammable deparser. These components closely resemble
those of the PISA architecture [56], see Fig. 5. The
programmable parser allows the developer to define headers
based on custom or standard protocols and parse them. It is
represented as a state machine. The programmable match-
action pipeline carries out operations on packet headers
and intermediate results. Each match-action stage comprises
multiple memory blocks (such as tables and registers)
and Arithmetic Logic Units (ALUs) that enable concurrent
lookups and actions. To address data dependencies and ensure
coherent processing, stages are organized sequentially. After
processing the packet, the programmable deparser recon-
structs packet headers and serializes them for transmission.

107302

" EED| | EED /|0 N
Al _ |mmp| |mmp| |mmp| (T | o$
K ED| | EED /|0 110 £
END| | B0 D LTI T
Programmable Stage 1 Stage 2 Stagen Programmable
parser Programmable match-action pipeline deparser

O state Memory [] ALU[J

FIGURE 5. Programmable Pipeline. The parser allows parsing custom
packets. The match-action pipeline executes operations over the packet
headers and intermediate results. The deparser assembles the packet
headers back and serializes them for transmission.

Although various vendors have their own models for
programming the pipeline, there is a common goal across the
industry to make them P4-programmable [57]. P4, originally
designed as a domain-specific language for programmable
data plane switches, has gained popularity in programming
other packet data paths due to its simplicity and versatility.

2) DOMAIN-SPECIFIC PACKET PROCESSING

Infrastructure tasks can be broadly categorized into net-
work functions, security functions, and storage functions.
These tasks are integral to various networks, including
data centers, cloud environments, enterprise networks, and
campus networks. Given the specificity of these functions,
some are optimized by being implemented directly in
hardware to enhance their speed and efficiency. For instance,
Transport Layer Security (TLS), a widely used protocol for
encrypting application payloads and authenticating users,
involves functions like encrypting and decrypting data.
Recognizing the repetitive nature of these operations, it is
practical to hardcode them into hardware. Hardware-based
crypto processors, which have been utilized for some time,
are examples of domain-specific processors incorporated into
SmartNICs. In addition to improving the speed and efficiency
of their respective functions, domain-specific processors free
up CPU cores on the host for other computing tasks.

Other examples of domain-specific processors include reg-
ular expression (RegEx) used for tasks requiring Deep Packet
Inspection (DPI), Non-Volatile Memory Host Controller over
Fabrics (NVMe-oF) for remote storage, data compression,
data deduplication, Remote Direct Memory Access (RDMA),
etc. The application sections of this survey (Sections VII-X)
will explore more specific use cases that leverage these
domain-specific accelerators for various applications.

3) CONTROL PLANE AND MANAGEMENT

SmartNICs incorporate CPU cores for running control plane
functions and for managing the SmartNIC. The CPU cores
can also be used for implementing functions that do not fit in
ASIC/FPGA execution engines. The CPU cores are typically
ARM or MIPS-based. Some advantages of incorporating
CPU cores within the SmartNIC are:

o Certain infrastructure functions (e.g., key distribution
for TLS sessions) require execution in the CPU. The

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

TABLE 2. Features, Traditional NICs, Offload NICs, and SmartNICs.

Feature TraleiLE)nal Olf\IﬂIcgd SmartNIC
Infrastr.ucture functions Low Medium High
separation
Security Isolation Low Low High
General-purpose CPU No No Yes
Domain-specific processors Low Medium High
Customization of data plane No Low High
Flexibility to define new No Low High
protocols
Innovation Low Medium High
Standardized models Yes Yes No
Technology maturity High High Medium

SmartNIC CPU cores can be utilized to perform these
functions. This alleviates the burden on the host’s
CPU cores, allowing them to focus on executing user
application functions.

o Infrastructure functions will run more efficiently on the
CPU cores of the SmartNIC than on the CPU cores
of the host since they will be separated from other
compute-intensive workloads used by user applications.

o The security is improved because the infrastructure
functions will be completely isolated from the host.

o The ASIC/FPGA execution engines have limitations on
the complexity of operations to be performed on the
packets. Such limitations stem from the fact that packets
must be processed as quickly as possible to sustain line
rate. Having CPU cores on the SmartNIC can help in
executing such functions, at the cost of an increase in
the latency.

D. SmartNICs BENEFITS
SmartNICs offer a wide range of features and benefits that
solve modern network challenges.

« Infrastructure offloads: Data center infrastructure tasks
currently consume up to 30% of processing capac-
ity [58]. This phenomenon is commonly known as the
Data Center Tax. By offloading these tasks to the Smart-
NIC, the freed-up 30% of processing capacity becomes
available for user applications. This optimization can
significantly increase revenue opportunities for cloud
providers. This is the main reason why hyperscalers are
among the early adopters of this technology.

o Application acceleration: By incorporating hardware-
based accelerators, SmartNICs demonstrate superior
performance per watt compared to host-based applica-
tions. This results in reduced latency, enhancing overall
efficiency.

o Agility and reprogrammability: The process of devel-
oping new silicon is time-consuming, expensive, and
requires thorough testing. By the time this cycle is
completed, rapid technological advancements may have
already rendered the hardware obsolete. SmartNICs
address this challenge by offering programmable com-

VOLUME 12, 2024

{ SmartNIC Architectures]

l
v v

System on Chip (SoC) J Discrete J

— ASIC + CPU a— ASIC

— FPGA + CPU — ASIC + FPGA

FPGA

CPU cores with embedded OS.
Could run autonomously without
the host platform.

No CPU cores or OS. Could not
run autonomously without the
host platform.

FIGURE 6. Taxonomy of SmartNIC architectures based on SoC and
discrete categories. The taxonomy is reproduced from [59].

TABLE 3. Comparison between various SmartNIC architectures.

Architecture Cost P(rjogrammmg Flexibility Speed
omplexity
ASIC Low Low Low High
FPGA High High Medium High
ASIC + FPGA High Medium Medium High
ASIC + CPU Medium Low High Medium
FPGA + CPU High High High Medium

ponents, allowing for adaptability and timely updates in
response to changing technological needs.

o Security isolation: SmartNICs enhance security by
isolating the execution of infrastructure functions from
the server execution environments.

E. COMPARISON OF TRADITIONAL, OFFLOAD, AND
SmartNICs

Table 2 contrasts the main characteristics of traditional,
offload, and SmartNICs. In the latter, the infrastructure func-
tions are separated from the user applications; this isolation
improves security by protecting the user applications on the
host. The separation is possible due to the presence of CPU
cores and domain-specific accelerators on the SmartNIC.
Moreover, the data plane (i.e., packet processing) of the
SmartNIC is customizable and is defined by the developer’s
code; this provides flexibility in defining and processing
new protocols as well as innovating with new applications.
The technology maturity and the standardized architectures
for SmartNICs can still be considered low in contrast to
traditional and offload NICs.

IV. SmartNICs ARCHITECTURES

The definition of a SmartNIC in Section III-C targeted
SoC SmartNICs. SoC SmartNICs comprise computing units,
which include a general-purpose ARM/MIPS multicore
processor, packet processing engines, and domain-specific
accelerators. It also includes a multi-level onboard memory
hierarchy. The architectural components are connected by

107303

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

TABLE 4. Commercial discrete SmartNICs from various vendors.

Architecture Vendor Model PCIg Bandwidth Technical
generation (Gbps) document
| ASIC [Mellanox [ConnectX -5/6LX /6DX /7 [3/4/5 50/100/200 /400 [[60]-[63] |
Achronix VectorPath S7t 5 400 [64]
FPGA AMD Alveo U50/US0 LV / US5C /U200 / U250/ U280 3/4 1x100/ 2x100 [65]-[68]
Napatech NT200A02 3 2x100 [69]
.. N501x /N5110A / FB2CDGI1 / N6010/6011
Silicom / FB4XXVG TimeSync 3/4/5 4x25 /2x100 / 4x100 / 2x400 [70]-[74]
[ASIC+FPGA | NVIDIA | Innova -2 Flex [4 2x100 [1751 |
TABLE 5. Commercial SoC SmartNICs from various vendors.
Architecture Vendor Model Core type CPU PCIe' Bandwidth Technical
cores generation (Gbps) document
AMD Pensando | Giglio / DSC2-(25/100/200) Arm A72 16 4 225 X007\ sy 176),
2x200 (77]
Asterfusion Helium EC2004Y / EC2002P Arm V8 24 3/4 4x24 /2x100 [78], [79]
Broadcom Stingray PS225-H16 Arm A72 8 3 2x25 [80]
ASIC+CPU Intel / Google E2000 Arm Neoverse N1 16 4 200 [81]
Marvell LiquidIO III Arm A72 36 4 5x100 [82]
Netronome Agilio FX /CX Arm A72 4 3 2x10/2x40 [83], [84]
NVIDIA BlueField 2 - 2X Arm A72 8 4 200 [53]
NVIDIA BlueField 3 -3X Arm A78 16 5 400 [85]
2x25/ 1x100 /
AMD Alveo U25N / U45N / SN1000 | Arm A53/A42 4716 3/4 2x100 [55], [86],
FPGA+CPU [87]
N6000-PL /N6001-PL /
Intel C6000X-PL / C5000X-PL Arm A53/ Xeon D 4/8 3/4 2x25/2x100 [88]
Napatech NT400D1xSCC /F2070X IPU | Arm A53/Xeon D 4/8 4 2x100 [89]

high-bandwidth coherent memory buses or high-performance
interconnects [90].

Another category of SmartNICs, referred to as discrete
SmartNICs, do not incorporate CPU cores and thus, cannot
run autonomously without the host platform. Regardless of
whether the SmartNIC is SoC or discrete, its packet process-
ing logic may be implemented using ASIC or FPGA. Various
SmartNICs available in the market may employ either of
these hardware architectures or in some cases, a combination
of both. The SmartNICs architecture taxonomy is shown
in Fig. 6. Table 3 summarizes the differences between the
various SmartNIC architectures, as described next.

A. DISCRETE SmartNICs

Hardware implementations come with tradeoffs in terms of
cost, programming simplicity, and adaptability. Furthermore,
the hardware needs to support a high degree of parallelism
to achieve high-speed packet processing. The discrete
architectures can be classified as:

o ASIC: An ASIC device offers cost-effectiveness and
optimal price-performance, as it is designed for a
specific application, providing high efficiency for pre-
defined tasks. However, its flexibility is limited because
it cannot be reprogrammed after manufacturing. ASIC-
based SmartNICs feature a programmable pipeline
that is relatively straightforward to configure, yet this
programmability is constrained by predefined functions

107304

within the ASIC, leading to potential limitations in
supporting certain workloads.

FPGA: FPGA-based SmartNICs are exceptionally pro-
grammable. FPGAs consist of an array of programmable
logic blocks and a hierarchy of reconfigurable intercon-
nects allowing the blocks to be inter-wired. Common
FPGA-based SmartNICs have hardened blocks for
providing a range of functions (e.g., hardened blocks
for the network interface, hardened blocks for floating
point, etc.) [59]. Given sufficient time, effort, and
expertise, FPGAs can efficiently accommodate nearly
any functionality within the confines of their available
gates. However, FPGAs are known for being challenging
to program and can be costly. They require hardware
description languages (HDLs) such as VHDL or Verilog,
making the development process complex and time-
consuming.

ASIC 4 FPGA: Integrating both ASIC and FPGA within
the SmartNIC presents a balanced solution. Common
functions are efficiently executed on the ASIC, leverag-
ing its ease of programmability compared to the FPGA.
Functions that cannot be programmed on the ASIC will
be implemented on the FPGA, providing flexibility,
albeit with increased programming complexity. In other
words, the FPGA acts as an assist to the ASIC. This
design provides high packet processing speed but is
costly due to the use of FPGA technology. The trade-off
between flexibility, cost, and performance is critical

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

in choosing the appropriate hardware architecture for
specific applications.
Table 4 shows some popular commercial discrete Smart-
NICs from various vendors and their specifications.

B. SoC SmartNICs

SoC SmartNICs use ASIC or FPGA for the majority of
packet processing, with some packets being processed by
general-purpose CPU cores. The two major SoC SmartNIC
architectures are:

o ASIC + CPU: this architecture includes a set of pro-
grammable ASIC cores that handle most of the packet
processing. The level of programmability is defined by
what has been designed within the ASIC during the
manufacturing process. The CPU cores, on the other
hand, handle the packet processing functions that are not
supported on the ASIC.

o FPGA + CPU: this architecture includes FPGA config-
urable logic for handling most of the packet processing.
Unlike the ASIC-based SoC, FPGA enables more flex-
ibility in programming. The level of programmability
is limited by the resources available on the FPGA. The
CPU cores in this architecture will typically implement
functions that are difficult to be implemented on the
FPGA.

General-purpose CPU cores can be programmed using
familiar high-level programming languages such as C,
C++, and Python. The flexibility of the system is greatly
enhanced, allowing for the implementation of a wide range
of programs, including those with complex features like
loops and multiplications. This versatility is particularly
challenging to achieve on ASIC or FPGA, which are better
suited for specific or predefined tasks. While the CPU cores
allow additional features on the NIC, functions executed
on the CPU cores might not achieve line-rate performance.
Additionally, the latency can vary based on the program
structure and the execution path that the packet follows.
Adding more complexity to the packet processing will further
increase the latency. The trade-off here involves balancing
the benefits of programmability and flexibility against the
potential performance impacts.

In addition to processing a small subset of the packets,
integrating general-purpose CPU cores improves the man-
agement of the SmartNIC. They also enable the SmartNIC to
be independent of the host, run its own OS, manage its own
resources, and perform tasks autonomously without relying
on the host system for every operation. This reduces the load
on the host CPU and provides isolation.

Table 5 shows some popular commercial SoC SmartNICs
from various vendors and their specifications.

C. ON-PATH AND OFF-PATH SmartNICs

Another way to categorize the architectures of SmartNICs is
based on how their NIC cores interact with network traffic.
There are two categories: on-path and off-path [90].

VOLUME 12, 2024

‘ Host cores ‘

AT

—

— ‘ Host cores ‘
‘ NIC cores ‘ A T

M —

| v

‘ Traffic manager ‘ ‘ NIC switch ‘

v 3 v

‘ TX/RX ports ‘ ‘ TX/RX ports ‘ ‘ NIC cores |

A] A]
B2 v
Traffic Traffic

(a) On-path (b) Off-path

FIGURE 7. On-path and off-path SmartNICs. In on-path SmartNICs, all
packets are processed by the NIC cores. In off-path SmartNICs,

an embedded NIC switch directs the packets to be executed by the NIC
cores or the host cores.

TABLE 6. Characteristics of on-path and off-path SmartNICs.

| Characteristics [On-path [Off-path |
NIC switch X v
Operating system X v
Full network stack X v
Programming complexity High Low
Host performance impact High Low
Complex code offloading Low High

1) ON-PATH SmartNICs

With on-path SmartNICs (Fig. 7 (a)), the NIC cores actively
manipulate each incoming and outgoing packet along the
communication path. These SmartNICs provide low-level
programmable interfaces, allowing for direct manipulation
of raw packets. In this design, the offloaded code is
closely situated to the network packets, increasing efficiency.
However, the drawback is that the offloaded code competes
for NIC cores with requests sent to the host. If too much
computation is offloaded onto the SmartNIC, it can result in
a significant performance degradation of regular networking
requests sent to the host. Typical on-path SmartNICs are
augmented with specialized hardware to enhance the packet
processing on the cores. An example is pre-fetching in which
the content of the packet is placed in a structure similar to the
L1 cache [91].

Note that programming on-path NICs can be challenging
due to the utilization of low-level APIs. Examples of
on-path SmartNICs include Netronome Agilio [92], Marvell
LiquidIO [82].

2) OFF-PATH SmartNICs

Off-path SmartNICs (Fig. 7 (b)) take a different approach
by incorporating additional compute cores and memory
in a separate SoC located next to the NIC cores. The
offloaded code is strategically placed off the critical path
of the network processing pipeline. The SoC is treated as a
second full-fledged host with an exclusive network interface,
connected to NIC cores and the host through an embedded
switch (sometimes referred to as eSwitch or NIC switch).
Based on forwarding rules installed on the embedded switch,

107305

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

SmartNIC Development ‘

Tools and Frameworks

¥ Y
Component-specific Technologies } { Software Dev. Environments }
I I
1
v v v v ¥
Programmable Pipeline CPU Cores NIC Switch Vendor-specific Vendor-agnostic
(Section V.A) (Section V.B) (Section V.C) (Section V.D-E) (Section V.F)
b P4 Language > Native OvS Control Plane ™ ASIC |" Abstraction Framework
k P4 Architecture: PNA = Data Plane Dev. Kit (DPDK) L ovs-vswitchd k- DOCA, ASAP? IPDK
P4 Compiler (p4c) b~ Berkeley Packet Filter (BPF) - OCTEON SDK OPI
: L+ eXpress Data Path (XDP) OvS Data Plane 1> Pensando SSDK SONIC-DASH
P FPGA Programming b Barefoot SDE
L . L, P4 Backends DPDK-based: rte_flow
VHDL, Verilog, ... Kernel-based: TC Flower e FPGA
L FPGA ™ P4-DPDK L Vitis Networking P4
L P4-FP itis Networking
R > P4-cBPF > Achronix ® Tool Suite
P4 to FPGA Bistream > P4-uBPF b= Link
> Netcope P4
> OPAE

FIGURE 8. Taxonomy of SmartNIC development tools and frameworks, categorized by component-specific technologies and software development

environments.

the traffic will be delivered to the host or the SmartNIC’s
CPU cores. Users can create a pipeline of match-action
tables, serving as the fast path. The CPU cores on the other
hand handle the complex logic and serve as the slow path.
A common example is having the CPU cores process the first
packet in a flow and generate rules for the match-action tables
to process subsequent packets.

In contrast to on-path SmartNICs, the offloaded code
in off-path SmartNICs does not impact the host’s network
performance. This clear separation enables the SoC to
run a complete kernel (e.g., Linux) with a comprehensive
network stack (RDMA), simplifying system development and
allowing for the offloading of complex tasks. Examples of
off-path SmartNICs include NVIDIA’s BlueField-2 [53] and
Broadcom Stingray [80].

Table 6 summarizes the differences between the on-path
and off-path SmartNICs.

V. SmartNICs DEVELOPMENT TOOLS AND
FRAMEWORKS

This section provides an overview of the development tools
and frameworks employed for programming SmartNICs. The
taxonomy, illustrated in Fig. 8, categorizes them based on the
specific component within the SmartNIC being programmed.

A. PROGRAMMABLE PIPELINE

The packet processing logic is commonly built using ASICs
or FPGAs. The development of offloaded applications
depends on the hardware architecture and the vendor’s
Software Development Kits (SDKs).

1) P4 LANGUAGE
In 2016, the PISA architecture was introduced as a
domain-specific processor for networking [56]. PISA is

107306

programmed using the Programming Protocol-independent
Packet Processor (P4) language [93]. Although P4 was
initially intended to program the data plane of PISA-based
switches, it has demonstrated its versatility to program data
planes for other packet processing devices. Despite the
variety of programming models used by various vendors,
there is a common goal which is to make their pipeline
programmed in P4 [57].

P4 has a reduced instruction set and has the following
goals:

« Reconfigurability: P4 enables the reconfiguration of the
parser and the processing logic in the field.

o Protocol independence: P4 ensures that the device
remains protocol-agnostic, allowing the programmer to
define protocols, parsers, and operations for processing
headers.

o Target independence: P4 hides the underlying hardware
from the programmer, with the compiler considering
the device’s capabilities when transforming a target-
independent P4 program into a target-dependent binary.

The initial specification of the P4 language, denoted as
P44, was released in 2014 [94]. Subsequently, in 2016,
a more refined version known as P44 was drafted [95]. P46
represents a matured language that extends the capabilities of
P4 to a broader range of underlying targets, including ASICs,
FPGAs, SmartNICs, and more.

Fig. 9 shows the workflow of developing a P4 program
and deploying it into a target device. The P4 code is written
by the user. The code must include a P4 architecture model,
which is typically supplied by the device’s manufacturer. The
code is then compiled by a P4 compiler, which generates two
artifacts: 1) the binary that will be deployed in the data plane
of the target device; and 2) data plane APIs that will allow

VOLUME 12, 2024

E.

-

. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Input code Target device TABLE 7. Comparison between P4 architectures: PSA and PNA.
P4 program Control plane ‘ Feature ‘ PSA ‘ PNA ‘
(data plane) - = =
] X Main target devices Switches SmartNICs
| P4 compiler Binary ”|_Data plane API Table entries modification X v
B el fieEnTe Table accessibility] One stage | Multiple stages
model » Data plane Non-packet processing (message % v
processing)
Accelerator invocation X v
|:| User-supplied |:| Manufacturer-supplied |:| Compiler output Directionality (host-to-net, net-to-host) X v
TCP connection tracking X v
l:l Front-end supplied by community, back-end by manufacturer Stateful elements (counters,
registers, meters, etc.) v v

FIGURE 9. P4 workflow. The P4 compiler accepts the user-supplied P4
code and the P4 architecture model. The output is a binary that will be
loaded in the data plane, and APIs that the control plane can leverage to
interact with the data plane.

the control plane to interact with the data plane (e.g., for
generating table entries, manipulate stateful memories, etc.).

2) P4 ARCHITECTURE

A P4 architecture is a programming model that defines the
capabilities of a target’s P4 processing pipeline. P4 programs
are specifically designed for a particular P4 architecture, and
these programs can be applied to any targets that adhere to
the same P4 architecture.

Although the P4 architecture is provided by the manufac-
turer of the device, it often follows the specifications of open-
source architectures. With the emergence of SmartNICs,
the community has developed an open-source architecture
tailored for programming these NICs. This architecture is the
Portable NIC Architecture (PNA) [96].

a: PORTABLE NIC ARCHITECTURE (PNA)

PNA [96] is a P4 architecture that defines the structure
and common capabilities for SmartNICs. PNA has four P4
programmable blocks (main parser, pre-control, main control,
and main deparser), and several fixed-function blocks (e.g.,
network ports, packet queues, inline externs), as shown in
Fig. 10. In contrast to the architectures used by programmable
switches (e.g., PSA) which process packets only from
network ports, PNA can process packets coming/going to

‘ P4 programmable ‘ ‘ Fixed function | ‘ Planned extension to P4 |

FROM_NET ~ FROM_HOST

Main parser

S T —
—

Pre control

R
Main control

Net-to-host
inline extern

Host 1

«-- Port
loopback

Host ___,
loopback

t
Network Ports

!
Host N

Message processing

FIGURE 10. Portable NIC Architecture (PNA).

VOLUME 12, 2024

network ports and to the host interfaces. Thus, there are four
packet paths: net-to-host, host-to-net, net-to-net, and host-to-
host.

Consider Fig. 10. The packets that arrive on a network
port are processed by the MainParser. The MainParser parses
network packets based on their headers. Once parsing is
complete, the header fields are stored in data structures
available throughout the entire packet processing pipeline.
Next, the PreControl block decides whether packets need to
be processed by the net-to-host extern block. One example
is decrypting packet payloads using the IPsec protocol. If a
packet has an IPsec header but fails to match any established
security associations found through P4 table lookups, the
PreControl code could drop the packet.

The MainControl block is where packet processing code
is typically written. This code modifies headers, updates
stateful elements like counters, meters, and registers, and
optionally attaches additional user-defined metadata to the
packet. The MainDeparser then serializes the headers back
into a packet for further transmission. After this, the packet
may either proceed to the NIC’s message processing section
and then typically to the host system or loop back towards
the network ports. This design enables on-NIC processing of
port-to-port packets without involving the host system.

The host-to-net and net-to-host externs allow execut-
ing functions on the domain-specific accelerators such as
encrypting or decrypting IPsec payload. The message pro-
cessing is responsible for converting between large messages
in host memory and network size packets on the network and
for dealing with one or more host operating systems, drivers,
and/or message descriptor formats in host memory.

b: PNA FEATURES
PNA has features that are not traditionally supported by other
similar P4 architectures including:

1) Table entries modification: Other P4 architectures only
allow modifying table entries from the control plane.
PNA allows modifying the entries in a table directly
from the data plane. This is possible through the
add_on_miss table property. When this property is set,
the add_entry extern function can be invoked in the
default action. This function will add a new entry in

107307

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

P4 program Backend
(data plane) compiler 1 Target 1
Frontend Intermediate - 3>
compiler Representation (IR) Backend Target N
compiler N

FIGURE 11. P4 compilation process.

the table with the same key that was used for matching
and action data that are specified in the data plane. Note
that the control plane can still modify the table entries,
even if they were added by the data plane.

2) Table entry timeout: if the pna_idle_timeout property
is set to a table, a notification will be sent once the
configured duration has elapsed since an entry was last
matched.

3) Table accessibility: traditional P4 architectures allow
only one operation on a table per stage. With PNA,
tables can be accessible by multiple stages, even in
different pipelines.

4) Non-packet processing: PNA facilitates message pro-
cessing, enabling operations on larger blocks of data to
be transferred to and from host memory.

5) Accelerator invocation: PNA supports invoking accel-
erators (e.g., crypto accelerator).

Table 7 compares and contrasts PNA and the Portable
Switch Architecture (PSA), an architecture mainly used by
switches.

3) P4 COMPILER

After writing a P4 program, the programmer invokes the
compiler to generate a binary that will be deployed on
the target device (e.g., the programmable pipeline of the
SmartNIC). Consider Fig. 11. The P4 compiler (p4c) has
a frontend and a backend. The frontend is universal across
all targets and handles the parsing, syntactic analysis,
and target-independent semantic analysis of the program.
The frontend generates an Intermediate Representation (IR)
which is then compiled by the backend compiler for a specific
target. The backend is provided by the manufacturer of the
device.

4) FPGA PROGRAMMING

FPGAs consist of an array of configurable logic blocks
and programmable interconnects, allowing users to define
the functionality of the chip based on their application
requirements. FPGA-based SmartNICs follow the same
programming workflows as other FPGAs provided by the
vendors. This means that the development tools, methodolo-
gies, and languages used for programming traditional FPGAs
can be applied to SmartNICs as well. FPGA vendors provide
software tools that facilitate the programming process. These
tools include Integrated Development Environments (IDEs)
and compilers that translate Hardware Description Languages

107308

(HDLs) such as VHDL and Verilog into configuration files
for the FPGA.

5) P4-FPGA

Programming FPGAs with languages such as VHDL or
Verilog can be challenging and time-consuming, especially
for newcomers. To address this issue, frameworks have
been developed to translate P4 code into FPGA bitstream.
P4, being a high-level and user-friendly language ideal
for programming datapaths, offers a faster and more effi-
cient alternative for FPGA programming. This approach
streamlines the programming process, making it particularly
accessible for users without extensive FPGA programming
expertise, ultimately enhancing both accessibility and effi-
ciency. However, there are challenges in designing a compiler
that translates P4 code to VHDL or Verilog. First, FPGAs
are typically programmed using low-level libraries that are
not portable across devices. Second, generating an efficient
implementation from a source P4 program is difficult since
programs vary widely and architectures make different
tradeoffs.

The community has been actively working on develop-
ing P4 FPGA compilers. The vendors (e.g., Xilinx [97],
Intel [98]) are providing their workflows to generate
bitstreams from P4 on their targets. P4-FPGA tools can
significantly reduce the engineering effort required to develop
packet-processing systems based on devices while maintain-
ing high performance per Lookup Table (LUT) or Random
Access Memory (RAM).

B. CPU CORES

User applications run on CPU cores, whether on the cores
on the SmartNIC, or the cores in the host. The steps for
an application to process a packet coming from the NIC
are shown in Fig. 12 (a). When a packet is received, the
NIC triggers an interrupt that informs the OS about the
packet’s location in memory. The OS subsequently transfers
the packet to the network stack which then initiates system
calls from the OS kernel to deliver the packet to its intended
user-level application. These steps induce overheads that
dramatically degrade the bandwidth throughput. Today’s
NICs have already reached more than 200Gbps [18]. As NICs
become faster, the available time for processing individual
packets becomes increasingly limited. For instance, with
200Gbps, the time between consecutive 1500-byte packets is
as low as 60 nanoseconds (ns). The standard network stack is
inadequate to keep up with the high traffic rates.

1) DATA PLANE DEVELOPMENT KIT (DPDK)

DPDK comprises a collection of libraries and drivers
designed to enhance packet processing efficiency by bypass-
ing the kernel space and handling packets within user space
(see Fig. 12 (b)). With DPDK, the ports of the NIC are
disassociated from the kernel driver and associated with a
DPDK-compatible driver. In contrast to the conventional

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Application User Application User
space space
DPDK PMD

TABLE 8. Comparison between the P4 backends.

[Featres | P4DPDK | P4eBPF/XDP | P4uBPF |
Kernel Kernel Userspace v X v
space space NIC support v v v
Stack Stack
P4 Architectures | PNA, PSA [ebpf,xdp] ubpf_model.p4
‘ Kernel Kernel _model.p4
Network Network . P4—spec P4—C— P4—C—
driver driver Compilation —C—s0 eBPF bytecode | uBPF bytecode
guppmed High Low Medium
eatures
Hardware Hardware
NIC NIC

(a) Standard packet processing (b) Kernel-bypass using DPDK

FIGURE 12. Software packet processing. (a) standard packet processing
(interrupt-based), (b) kernel-bypass packet processing (polling mode).

method of packet processing within the kernel stack using
interrupts, the DPDK driver operates as a Poll Mode Driver
(PMD). It consistently polls for incoming packets. The
utilization of a PMD, combined with the kernel bypass, yields
superior packet processing performance. DPDK’s APIs can
be used in C programs.

DPDK started as a project by Intel and then became open
source. Its community has been growing, and DPDK now
supports all major CPU and NICs architectures from various
vendors. A list of supported NICs can be found at [99].

2) eXpress DATA PATH (XDP) AND EXTENDED BERKELEY
PACKET FILTER (eBPF)

When utilizing DPDK, the kernel is bypassed to achieve
enhanced performance. However, this comes at the cost
of losing access to networking functionalities provided by
the kernel. User space applications are then required to
re-implement these functionalities. XDP presents a solution
to this issue. XDP operates as an eBPF program within
the kernel’s network code. It introduces an early hook
in the RX (receive) path of the kernel, specifically within
the NIC driver after interrupt processing. This early hook

Application User Application User
i space i space

Kernel . Kernel
space space
Stack Stack
[Kernel [Kernel
Network Network
driver driver
XDP
; v Hardware Hardware
<N NIC
----- Nig reeee L XDP_Jefe>
(a) Native XDP (b) Offloaded XDP

FIGURE 13. XDP packet processing. (a) Native XDP, slower, (b) Offloaded
XDP, faster.

VOLUME 12, 2024

allows the execution of a user-supplied eBPF program,
enabling decisions to be made before the Linux networking
stack code is executed. Decisions include dropping packets,
passing packets to the normal network stack, and redirecting
packets to other ports on the NIC. XDP reduces the kernel
overhead and avoids process context switches, network layer
processing, interrupts, etc.

XDP programs have callbacks that will be invoked when

a packet is received on the NIC. There are three models for
deploying an XDP program:

o Generic XDP: XDP programs are incorporated into
the kernel within the regular network path. While this
method does not deliver optimal performance advan-
tages, it serves as a convenient means to experiment with
XDP programs or deploy them on standard hardware
that lacks dedicated support for XDP.

o Native XDP: The NIC driver loads the XDP program
during its initial receive path, see Fig. 13 (a). Support
from the NIC hardware is required for this mode.

o Offloaded XDP: The XDP program is loaded directly
by the NIC hardware, bypassing the CPU as a whole,
see Fig. 13 (b). This requires support from the NIC
hardware.

3) P4 BACKENDS

Creating P4 programs is generally considered more straight-
forward compared to writing DPDK or BPF/XDP code.
Consequently, there have been efforts to translate P4 into
these codes. The P4 compiler (p4c) is equipped with backends
specifically designed for generating DPDK, BPF/XDP, and
Userspace BPF (uBPF) codes. Table 8 compares the P4
backends.

a: P4-DPDK

The pdc-dpdk backend translates P41 programs into
DPDK Application Programming Interface (API), allowing
the configuration of the DPDK software switch (SWX)
pipeline [100]. The P4 programs can be written for the PNA

plc- DPDK pipeline C
—>| H F < |
m’ dpdk SPec library compiler 50

FIGURE 14. P4 DPDK pipeline.

107309

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

or PSA architectures.* The backend transforms a given P4
program into a representation (.spec) that aligns with the
DPDK SWX pipeline (see Fig. 14). The subsequent step
involves the generation of a C code from the.spec file. This
code includes C functions corresponding to each action and
control block. A C compiler then generates a shared object
(.so) from the C code. It is important to note that P4-
DPDK is not a P4 simulator (e.g., BMv2); it achieves high
performance.

b: P4-eBPF

The expressive powers of P4 and eBPF programming
languages differ, yet there is a significant overlap, particularly
in network packet processing. The P4 to eBPF compiler
translates P4 programs into a restricted subset of C code
that is compatible with eBPF. The P4 program only defines
the data plane. The control plane is separately implemented;
BPF Compiler Collection (BCC) tools simplify this by
generating C and Python APIs for the interaction between
the data plane and the control plane. The P4 to eBPF
compiler also facilitates the integration of custom C extern
functions, enabling developers to extend the P4 program’s
functionality by incorporating eBPF-compatible C functions.
This capability empowers the P4 program with features not
natively supported by the P4 language. Upon compilation,
the P4 compiler generates a C file and its corresponding
header. A subsequent C compiler then generates an eBPF
program, loadable into the kernel using the Traffic Control
(TC). Once loaded, manipulating tables in the eBPF program
can be achieved with the bpftool provided by the kernel.

¢: P4-uBPF

uBPF adapts the eBPF processor to run in userspace. The
utilization of uBPF is advantageous due to its compatibility
with any solution implementing kernel bypass, such as DPDK
apps.

The p4c-ubpf compiler translates P4 programs into uBPF
programs. The backend for uBPF predominantly relies on
the P4-eBPF compiler, but generates C code compatible with
user space BPF implementation. The uBPF backend offers
a broader scope compared to the eBPF backend. Beyond
simple packet filtering, the P4-uBPF compiler supports P4
registers and programmable actions, encompassing packet
modifications and tunneling. The generated C programs are
compiled by the clang compiler, which generates uBPF
bytecode. The bytecode is then loaded into the uBPF VM.

C. NIC SWITCH

The NIC switch performs QoS traffic control and steers
traffic to the NIC execution engines. SmartNICs typically
implement the NIC switch following the specifications of the
open-source Open vSwitch (OvS). OvS is a software switch
originally designed to enable communication among Virtual

4Preliminary experiments show that more features are implemented for
PNA over PSA for the P4-DPDK target.

107310

Userspace ovs-vswitchd

Kernel

Datapath B

“~.___» First packet —» Subsequent packets

FIGURE 15. Open vSwitch (OvS) components.

Machines (VMs). OvS has two major components, the control
plane (ovs-switchd) and the data plane, also known as the
datapath.

1) OvS CONTROL PLANE
Fig. 15 demonstrates how the OvS components interact to
forward packets. After receiving the first packet of a flow, the
datapath forwards it to the ovs-switchd. The ovs-switchd then
determines how the packet should be handled, and then sends
the packet back to the data plane with the desired handling
method. It also instructs the data plane to cache the action
for handling similar packets. Subsequent packets are then
matched and their actions are executed, all in the data plane.
Actions may include packet modification, packet sampling,
packet dropping, etc.

The OvS control plane is traditionally executed on the host
in the userspace. With SmartNICs, the OvS control plane is
executed on the CPU cores of the SmartNICs.

2) OvS DATA PLANE

The standard OvS switch’s datapath is situated in the kernel
(see Fig. 15), which strains CPU resources and degrades the
performance. This performance degradation becomes more
pronounced with an increasing number of flows and more
complex policy rules, consuming multiple CPU cores for
datapath operations and ultimately resulting in the lowest
server utilization. To address these issues, many SmartNICs
offer support for offloading OvS into their NIC switch. When
this feature is utilized, the OvS datapath is moved to the
hardware, resulting in superior performance compared to the
software-based versions.

a: OvS-DPDK AND RTE_FLOW
OvS-DPDK enhances OvS by incorporating a DPDK-based
datapath in the userspace, surpassing the performance of

VM or VM or User space VM or

container container container

VF Driver VF Driver i VF Driver ||
i APl
| OVS-Bridge | Kernel

TC_Flower | api
vF %
NIC switch af SmartNIC NIC switch SmartNIC

(a) OvS DPDK with HW offload

FIGURE 16. OvS hardware offload. (a) OvS DPDK with hardware offload
using rte_flow; (b) OvS kernel with hardware offload using tc_flower.

(b) OvS kernel with HW offload (TC Flower)

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

gRPC |
Host client
h 4
[oo b vio |
ﬂ i
\ 2 i
BlueField pfOhpf 4
OVS-
CPU Cores BR3
gRPC ;
Ovs- server SF2
BR1
—{ sFo |
URL filter
0oVvs- app |- Regex
BR2 SF1 accelerator
—— Datatrafficpath oo Runtime configuration

FIGURE 17. DOCA URL filter reference application.

the standard kernel OvS datapath with reduced latency.
OvS-DPDK leverages hardware offload capabilities through
rte_flow [101], a DPDK-based API, see Fig. 16 (a). This API
facilitates the installation of rules into the hardware switch
within the SmartNIC (NIC switch). The rte_flow API enables
users to define rules for matching specific traffic, altering
the packets, querying related counters, etc. Matching within
this context can be based on various criteria such as packet
data (including protocol headers and payload) and properties
like associated physical port or virtual device function ID.
Operations supported by the rte_flow API include dropping
traffic, diverting traffic to specific queues, directing traffic
to virtual or physical device functions or ports, performing
tunnel offloads, and applying marks, among others.

b: OvS-KERNEL AND TC FLOWER

The OvS-kernel can use the TC Flower [102] to configure
rules on the hardware switch integrated into the SmartNIC,
see Fig. 16 (b). Within the Linux kernel, the TC flower
classifier, which is a component of the TC subsystem, offers
a means to specify packet matches using a defined flow
key. This flow key encompasses fields extracted from packet
fields and, if desired, tunnel metadata. TC actions enable
the execution of diverse operations on packets, such as drop,
modify, output, and various other functionalities.

D. VENDOR-SPECIFIC SDKs - ASIC
The following SDKs are proprietary and target ASIC-based
SmartNICs.

1) NVIDIA's DOCA

The Data Center-on-a-Chip Architecture (DOCA), is a
software development framework developed by NVIDIA for
the BlueField SmartNICs [53]. This framework encompasses
various components, including libraries, service agents, and
reference applications. Applications developed using DOCA

VOLUME 12, 2024

OCTEON SDK

Extension packages

‘ DPDK Network H VPP H PCIE Offload H IPSec ‘ ‘Secure KeyStorage‘

Virtualization layer

‘ OVS-DPDK H KVM H Docker/CNI H VPP vSwitch ‘

Base SDK

‘ Boot Loader H Linux Kernel H DPDK H IPSec H Toolchain ‘

FIGURE 18. OCTEON SDK layers and modules.

are written in the C programming language and incorporate
support for DPDK. This integration ensures that developers
have access to all DPDK APIs for efficient packet processing.
Additionally, DOCA comes equipped with its own set
of libraries designed to streamline interactions with the
components on the SmartNIC. For instance, to implement
IPsec or perform encryption and decryption, DOCA offers
dedicated APIs that developers can easily invoke, simplifying
the integration of these functionalities into their applications.

One noteworthy library within DOCA is the DOCA
Flow [103]. This library allows programmers to customize
packet processing by defining matching criteria and actions.
These match-action units are defined in pipes, which can
be chained. Given DOCA’s reliance on DPDK, it leverages
rte_flow to transmit rules to the embedded switch (NIC
switch). NVIDIA employs its proprietary ASAP? technol-
ogy [104] for implementing the embedded switch and for
efficient traffic offloading to the hardware.

Consider Fig. 17 which shows an example of a DOCA
application for Uniform Resource Locator (URL) filtering.
The developer must create OvS bridges and connect scalable
functions (SF)’ to them. Note that the OvS bridge 1is
hardware offloaded. In this specific example, one bridge is
used to connect the physical port to the application (OvS-
BR2). Another bridge is used to connect the application
to the host (OvS-BR1). The incoming packets on the
physical port will be forwarded to the application, which
runs on the CPU cores. URL filtering involves parsing the
application layer because the URL to be visited is located
at the HTTP header. The SmartNIC will invoke the regular
expression (RegEx) hardware accelerator to scan for the
URL, which is significantly faster than scanning using the
CPU. A third bridge can be created to enable the user to
manage the application (e.g., specifying the URLs to be
blocked). BlueField provides gRPC interfaces for the runtime
configuration.

It is possible to develop DOCA applications without the
hardware; however, testing the compiled software must be
done on top of a BlueField [105].

SAn SFis a lightweight function that has dedicated queues for sending
and receiving packets; it is analogous to the virtual function (VF) used in
SR-IOV.

107311

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

AMD Pensando SSDK

Development Libraries and sample code

toolchain

Platform CPU sample P4 sample
library codes code

Build environment
with P4 compiler

Drivers for CPU cores

DSC simulator and

test environment Linux kernel driver

‘ DPDK driver

FIGURE 19. AMD Pensando SSDK.

2) OCTEON SDK

The OCTEON SDK is a comprehensive suite that integrates
a development environment and optimized software modules
for building applications on OCTEON family processors.
The suite consists of a base SDK, a virtualization layer,
and a collection of SDK extension packages designed for
specific application functions. The Base SDK relies on
a standard Linux environment and user-space DPDK (see
Fig. 18). It facilitates the seamless compilation of DPDK,
Linux, or control plane applications on top of it with
minimal adjustments. Programmers write C code and invoke
libraries for accelerating functions, including compres-
sion/decompression, regex matching, encryption/decryption,
and more.

In addition to the Base SDK, the suite includes SDK
extensions that help users enable complex applications.
These extensions consist of pre-optimized, application-
specific modules bundled into packages that run on the
Base SDK. Notable extensions include OvS-DPDK, Vector
Packet Processor (VPP), secure key storage, trusted execution
environment, etc. Furthermore, the OCTEON SDK provides
a cycle-accurate simulator. This simulator enables the devel-
opers to test the behavior of their programs with precision and
accuracy in software.

3) AMD PENSANDO SSDK

The AMD Pensando SDK facilitates software development
for the AMD Pensando SmartNIC. This comprehensive SDK
includes a P4;¢ compiler, debugging tools, a DPDK driver,
example codes, and thorough documentation (see Fig. 19).
Specifically, P44 can be used to write code for execution in
the programmable pipeline. C and C++ are used to write
code for the CPU core complex. Additionally, the SDK
allows invoking the SmartNIC’s built-in domain-specific
accelerators.

Similar to DOCA, developers have the flexibility to com-
pile applications without the SmartNIC hardware. However,
unlike DOCA, Pensando SDK provides a simulator, allowing
developers to test their ideas before uploading the image to
the hardware. This validation capability becomes particularly
advantageous when integrating the SDK and simulator into
CI/CD-based development and workflows. The simulator
boasts machine-register accuracy, ensuring that any code

107312

developed for it can be cross-compiled to run seamlessly
on the real hardware. The simulator serves as a valuable
tool for validation, speeding up development, and simplifying
debugging processes within a virtualized environment.

The reference applications included with the AMD Pen-
sando SDK include a basic skeleton hello world, Software
Defined Network (SDN) policy offload with Longest Prefix
Matching (LPM), Access Control List (ACL), flow aging,
IPsec gateway, and other classic host offload such as TCP
Segmentation Offload (TSO), checksum calculation, and
Receive Side Scaling (RSS).

4) BAREFOOT SDE/INTEL P4 STUDIO

The compiler used for programming the pipeline on the Intel
IPU has similarities with that used for programming the
Tofino switches [81]. The compiler was originally developed
by Barefoot Networks, which was acquired by Intel in
2021. This compiler was formerly known as Barefoot SDE,
and now it has been rebranded as Intel P4 Studio. It is
well-established and has undergone extensive revisions and
optimizations. Additionally, the compiler is equipped with
a Graphical User Interface (GUI) tool (P4 Insight [106])
that offers comprehensive insights into resource utilization.
This includes details such as the location of specific match-
action tables, the utilization of hash bits, and the usage of
SRAM/TCAM. The public documentation does not provide
clear specifics on how the compiler differs between Tofino
switches and SmartNICs.

5) SDKs FOR ASIC SmartNICs COMPARISON

Table 9 compares the four SDKs. The characteristics com-
pared include the supported SmartNIC models, P4 language
support, development feasibility with or without dedicated
hardware, availability of simulators or emulators for testing,
and the necessity for special licensing. The AMD Pensando
and Intel SmartNICs are P4 programmable and thus, their
SDKs provide a P4 compiler. The NVIDIA BlueField and
the Octeon SDK only support P4 for their CPU cores
(e.g., through P4-DPDK). Furthermore, all SDKs except
Intel/Barefoot SDE offer development without dedicated
hardware, and Pensando SSDK and Octeon SDK provide
simulators or emulators for testing purposes. The Pensando
SSDK and the Intel SDE require the customer to sign a
Non-disclose Agreement (NDA) to get the license for the
SDKs.

E. VENDOR-SPECIFIC SDKS - FPGAs

The following SDKSs are proprietary and target FPGA-based
SmartNICs.

1) VITIS NETWORKING P4

Vitis Networking P4 [107], developed by AMD Xilinx, is the
development environment for their FPGA SmartNICs. This
high-level design environment greatly simplifies the creation
of packet-processing data planes through P4 programs (see

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

TABLE 9. Comparison between the vendor-specific SDKs for ASIC
SmartNICs.

Intel/Barefoot

. NVIDIA Octeon Pensando
Characteristic

DOCA SDK SSDK SDE
Supported BlueField Marvel Pensando Intel IPU
SmartNICs 2/3/X LiquidIO | DSC-200 E2000
P4 support x* x* v v
Development
wo/ hardware v v v X
Simulator/ % v v %
emulator
Special licensing X X v v

*While P4 is not the main language used for programming the packet
processing engine, it can be used for programming the CPU cores (e.g., with
P4 DPDK).

Section V-AS). The tool’s primary function is to translate
the P4 design intent into a comprehensive AMD FPGA
design solution. The compiler maps the control flow with a
custom data plane architecture composed of various engines.
This process involves selecting suitable engine types and
tailoring each one according to the specified P4 processing
requirements. The architecture definition file for Vitis
Networking P4 is named xsa.p4. This architecture follows the
open-source P4 PNA architecture (see Section V-A2a).

Fig. 20 illustrates the AMD Vivado™ hardware tool flows
designed for AMD Vitis™ Networking P4 implementations.
There is a flow for the software, which is used for testing
the behavior of the P4 program. The other flow is for the
hardware. In the software flow, the P4C-vitisnet compiler
accepts a P4 file as input and generates an output.json
file. This json file is provided to the P4 Behavioral Model.
Note that this behavioral model provided by Xilinx closely
resembles the behavioral model created by the community,
known as BMv2. The software flow also has a Command
Line Interface (CLI) which is a control plane application
used to interact with the data plane at runtime. Packets and
metadata information can be fed into the behavioral model
when testing.

For the hardware flow, the PAC-vitisnet compiler generates
an.sv file. The compiler uses the Vitis Networking P4 IP.
The.sv file can be used for launching Register Transfer
Level (RTL) simulation on the RTL simulator or for running
synthesis/implementation on the hardware. The hardware
flow also accepts metadata and packets as inputs.

Xilinx also provides the Xilinx Runtime library (XRT)
[108], which is a user-friendly, open-source software stack
designed to facilitate communication between the application
code and the FPGA device. It offers APIs for Python and
C/C++ applications.

2) INTEL P4 SUITE FOR FPGA

The Intel P4 Suite for FPGA is a high-level design toolkit that
produces packet processing IP for Intel-based FPGAs from
P4 codes. This toolkit comprises a compiler responsible for
converting P4 into RTL and a software framework equipped
with APIs that facilitate the interaction between control plane

VOLUME 12, 2024

v
Vitis Networking P4 IP

PAC-vitisnet
compiler
v

NN

Run synthesis/
implementation

PAC-vitisnet
compiler

Launch
simulation (RTL)

N
.bit

AN
o] '
.meta N
‘ Behavioral model ‘

‘ p4bm-vitisnet-cli RTL simulator ‘ HW test ‘
.pcap

meta

.pcap

RS

Software flow Hardware flow

FIGURE 20. AMD Xilinx’s Vitis Networking P4 software and hardware
flows.

applications and the data plane. The toolkit’s workflow is
shown in Fig. 21. Intel’s P4 compiler for FPGA accepts as
input the P4 program and a custom architecture, and generates
RTL for the data plane and APIs for the control plane. The
resulting RTL, combined with the architecture’s RTL and the
shell RTL are then transformed into an FPGA binary using
conventional FPGA development environments (e.g., Intel
Quartus). Finally, this binary is deployed to the hardware.
The control plane APIs are pushed to the Intel P4 FPGA
for Software Framework which enables user-defined control
plane applications to interact with the hardware.

3) ACHRONIX TOOL SUITE

The Achronix Tool Suite (ACE) is used to design Achronix’s
FPGA SmartNICs. The tool includes place and route func-
tions, timing analysis and bitstream generation and download,
synthesis analysis, and in-system debugging using snapshots.
The Achronix design flow facilitates ease for FPGA designers

User’s P4
program

Intel P4 compiler
for FPGA

Software (CPU)
Data plane | Control plane

Custom arch. RTL APIs Control plane
include file application
1 Intel P4 FPGA
Software Framework
Custom

arch. RTL

FPGA dev. (e.g., FPG;, FPGA
Intel Quartus) Bin hardware

arch. RTL

FIGURE 21. Intel P4 Suite for FPGA workflow.

107313

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

Developer, network
administrator

l REST, gRPC

API gateway load Vendor
balancer gateway

I
Network shim Storage shim Security shim Al/ML shim
API API API API
Software-development Kits (SDKs)

[NVIDIA, Intel, Xilinx ...]

!

‘ SmartNIC targets ’

FIGURE 22. Open Programmable Infrastructure (OPI) architecture. The
vendor-specific SDKs and hardware are abstracted via a common API
developed by OPI.

by supporting standard RTL (VHDL and Verilog) input and
employing industry-standard simulation techniques.

4) NAPATECH LINK TOOLKIT

The Link toolkit, developed by Napatech, is a collection
of software providing plug-and-play features for various
SmartNICs from Napatech. The software includes: Link-
capture, which facilitates packet capture with nanosecond
timestamping and replay with precise inter-frame gap control.
Link-Inline accelerates various network and security appli-
cations, Link-Virtualization offloads a virtual switch to the
SmartNIC, and Link-Storage accelerates virtualized storage.

5) OFS AND OPAE

The Open FPGA Stack (OFS) is an open-source solution
that offers a hardware and software framework for creating
shell design and workload [109]. OFS includes reference
shell designs for various Intel FPGA devices, drivers, and
software tools. Using OFS, Application-Specific FPGA
Interface Managers (FIMs) can be developed, making use
of the Open Programmable Acceleration Engine (OPAE)
SDK. OPAE, which is a subset of OFS, is a software layer
comprising various API libraries. These libraries are used
when programming host applications that interact with the
FPGA accelerator.

F. VENDOR-AGNOSTIC

1) OPEN PROGRAMMABLE INFRASTRUCTURE (OPI)

The OPI is a community-driven initiative focused on creating
common APIs to configure and manage different SmartNIC
targets [110]. Instead of relying on vendor-specific SDKs,
developers can use OPI’s standardized APIs to activate
services, effectively abstracting the complexities associated
with vendor-specific SDKs. Consider Fig. 22. The developer
uses gRPC and REST APIs to initial calls to the API gateway.
The gateway acts as a load balancer between four shim APIs:
network, storage, security, and AI/ML. These shim APIs then
translate the calls to the hardware accelerators through the

107314

vendor-specific SDKs. With such a design, portability can be
ensured across various targets. Note that the developers can
still execute functions provided by the vendor if they are not
available through the OPI APIs.

2) INFRASTRUCTURE PROGRAMMER DEVELOPMENT KIT
(IPDK)

The IPDK is an open-source, vendor-agnostic framework
comprising drivers and APIs tailored for infrastructure
offload and management tasks. It is versatile and capable
of running on a range of hardware platforms including
SmartNICs, CPUs, or switches. Operating within the Linux
environment, IPDK leverages established tools like Storage
Performance Development Kit (SPDK), DPDK, and P4
to facilitate network and storage virtualization, workload
provisioning, root-of-trust establishment, and various offload
capabilities inherent to the platform. IPDK is a sub-project of
OPL

IPDK already supports multiple targets including
P4 DPDK, OCTEON SmartNICs, Intel IPU, Intel FPGA, and
Tofino-based programmable switch [111].

IPDK has two main interfaces: 1) Infrastructure Appli-
cation Interface; and 2) Target Abstraction Interface. The
Infrastructure Application Interface serves as the northbound
interface of the SmartNIC, encapsulating the diverse range of
Remote Procedure Calls (RPCs) supported within IPDK. The
Target Abstraction Interface represents an abstraction pro-
vided by an infrastructure device (e.g., SmartNIC) that runs
infrastructure applications for connected compute instances.
These instances could include attached hosts and/or VMs,
which may or may not be containerized.

3) SONIC-DASH

SONiC, an open-source operating system for network
devices, has experienced significant growth [112], [113].
The SONiC community has introduced a new open-source
project called DASH (Disaggregated APIs for SONiC Hosts)
aiming at being an abstraction framework for SmartNICs
and other network devices. It consists of a set of APIs and
object models which cover network services for the cloud.
The initial objective of DASH is to enhance the performance
and connection scale of SDN operations, aiming to achieve a
speed increase of 10 to 100 times compared to software-based
solutions in today’s clouds and enterprise. DASH’s ecosystem
includes a community of cloud providers, hardware suppliers,
and system solution providers.

VI. OFFLOADED APPLICATIONS TAXONOMY
This section describes the systematic methodology that was
adopted to generate the proposed taxonomy. The results of
this literature survey represent derived findings by thoroughly
exploring the SmartNIC-related research works published in
the last five years.

Fig. 23 shows the proposed taxonomy. The taxonomy was
meticulously designed to cover the most significant works
related to SmartNICs. The aim is to categorize the surveyed

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

‘ SmartNIC Offloading Applications

v Y

v v

b Intrusion detect/prevention Open vSwitch

Flow bypass > Tunneling and overlay

Deep Packet Inspection (DPI)
Custom IDP/IPS functions

\—» VxLAN, GRE, Geneve

> Observability and telemetry

L Data in transit encryption o
: Network observability
‘: IPSec offload System observability

TLS offload

- Data at rest encryption Ly Load balancing

i: L4-L7 load balancers

> 5G User Plane Function

FIGURE 23. Taxonomy of SmartNIC offloaded applications.

Centralized
security

East-West
traffic

(a) (b)

Distributed HW
security

Distributed SW
security >

c) (d)

FIGURE 24. (a) Perimeter-based security. The appliance only inspects NS
traffic; (b) Centralized security. The appliance can inspect EW traffic, but
the bandwidth overhead is high; (c) Distributed SW firewall.
Software-based appliances are attached to the servers and can inspect
EW traffic, but the performance is not high. (d) Distributed HW firewall.
Appliances are offloaded to SmartNICs on the servers, enabling EW
inspection with high performance.

works based on various high-level disciplines. The taxonomy
provides a clear separation of categories so that a reader
interested in a specific discipline can only read the works
pertaining to that discipline.

SmartNICs accelerate various infrastructure applications,
categorized primarily into security, networking, and storage

VOLUME 12, 2024

VM/containers observability

Receive Side Scaling (RSS)

Security Network Storage Compute
(Section VII) (Section VIII) (Section IX) (Section X)
b~ Firewalls and packet filters > Switching / routing i Storage initiator > Machine learning

\-» NVMe-oF initiator offload ‘: ML training

S ML inference
> Target initiator

Key-value st
L+ NVMe-oF target offload [~ €y-value stores

L» Data replication

b Compression .
P = Ordering

\-» Deflate, zlib, SZ3 . .
> Transaction processing

> Scheduling
= Aggregation

= Serverless computing

- Lambda on NIC
- Heterogeneous devices

functions. It also accelerates various computing workloads
including AI/ML inference and training, caching (key-value
stores), transaction processing, serverless functions, and
others. Each high-level category in the taxonomy is further
divided into sub-categories. For instance, various transaction
processing works belong to the sub-category ‘““Transaction
processing” under the high-level category “Compute”.
Additionally, the survey offers performance comparisons
between applications running on the host and those offloaded
to the SmartNICs.

The subsequent subsections delve into the ongoing devel-
opments within each of the aforementioned category, offering
insights into the lessons learned from these advancements.

VII. SECURITY

The landscape of data center traffic has undergone a signifi-
cant transformation with the rise of cloud-hosted applications
and microservices [114]. Traditionally, traffic patterns were
characterized by North-South (NS) flows (between internal
and external devices) that are protected by dedicated security
appliances (e.g., firewall) at the perimeter, see Fig. 24 (a).
However, in the past decade, the dynamics have been shifting
towards East-West (EW) flows (between internal data center
devices), accounting for up to 80% of total data center
traffic [115], [116]. Unlike North-South traffic, East-West
traffic was relatively unprotected. A workaround for this was
to use a centralized security appliance and forward EW traffic

107315

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

to it for inspection,® see Fig. 24 (b). This results in traffic
traversing the intermediary devices (i.e., switches) twice,
leading to duplication of both network load and the latency
experienced by the two hosts.

This has led to the emergence of Zero Trust and
microsegmentation architectures [117], whose main idea is
to decentralize security functionality and move it closer
to the resources that require protection. Data centers and
cloud providers have shifted to using software-based security
functions to protect East-West traffic [118], see Fig. 24
(c). While this shift is advantageous in terms of ease of
deployment and cost-effectiveness, it has some drawbacks:

« Performance: Packets traverse the regular network stack
to be processed by a security function on the general-
purpose CPUs. This increases latency and decreases the
throughput.

o Scalability: The CPU cores often struggle to inspect
traffic at high rates, particularly in the absence of
software accelerators (e.g., DPDK). This can lead to
high packet drop rates.

« Isolation: all traffic, including malicious traffic, is sent
to the host. This lack of isolation can pose security risks.

o CPU usage: security functions consume a substantial
portion of the CPU processing power, particularly
during periods of high traffic volume. This can result
in performance bottlenecks and service degradation for
end-user applications.

To mitigate these issues, SmartNICs have been used to
offload the security functions from general-purpose CPUs,
see Fig. 24 (d). Specifically, SmartNICs have been used to
offload firewall functionalities, IDS/IPS, DPI, and data-at-
motion and data-at-rest encryption.

A. FIREWALL

A firewall monitors incoming and outgoing network traffic
and allows or blocks packets based on a set of pre-
configured rules. Firewalls typically operate up to layer-
4 to perform basic ACL operations. This means that the
traffic can be matched against network layer information
(e.g., source/destination IP addresses) and transport layer
information (e.g., source/destination port numbers).

Software-based firewalls are widely being used, especially
in cloud environments [118]. They are typically implemented
in conjunction with a virtual switch (e.g., OvS). With
software-based firewalls, traffic is inspected using the CPU
cores of the host where the firewall is running. This degrades
the performance and consumes the compute capacity of the
CPU.

Recall that SmartNICs are equipped with a programmable
pipeline or an embedded switch, where match-action rules
can be defined. This makes it possible to implement firewalls
with basic ACLs directly on the hardware at line rate. The
functionality of the firewall can be implemented from scratch
by a developer. However, it requires implementing many

6Sometimes referred to as traffic tromboning.

107316

‘ CPU cores Host ‘
A Y
CPU cores
IDS/IPS API
; v
b : NIC switch /
[E Programmable pipeline
L SmartNic
D » Slow path, without bypass
Traffic R » Fast path, with bypass

FIGURE 25. IPS/IDS bypass offload to the SmartNIC.

functions such as connection tracking if stateful inspection’
is needed, flow caching and aging, etc. As an alternative, the
hardware offloaded switch on the SmartNICs is being used
to implement the firewall functionalities [119], [120]. The
switch rules can be transparently offloaded to the hardware.
The developer only needs to specify the rules that allow/block
traffic. The connection tracking feature of the switch can
be leveraged to enable stateful inspection. As an example,
VMware allows offloading the firewall functionalities of its
NSX distributed switch to the SmartNIC [17], specifically,
the L2-L4 inspection and firewalling.

B. INTRUSION DETECTION/PREVENTION SYSTEM
Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS) are cybersecurity technologies designed to
safeguard networks and hosts from unauthorized access,
malicious activities, and security threats. An IDS monitors
and analyzes network or system events to identify suspicious
patterns or anomalies. It provides real-time alerts or logs
for further investigation. On the other hand, an IPS goes a
step further by actively preventing or blocking unauthorized
activities in real-time. Examples of open-source IDS/IPS
include Zeek (formerly known as Bro) [122], Suricata [123],
and Snort [124].

IDS and IPS are generally deployed on the general-purpose
CPUs of the host. SmartNICs have been offloading IDS/IPS
functions to accelerate data processing:

1) OFFLOADING IDS/IPS BYPASS FUNCTION
The IDS/IPS does not need to inspect every packet. Typically,
the initial packets within a specific flow contain essential
information, making continuous inspection unnecessary.
There are situations, such as when dealing with an elephant
flow resulting from a large data transfer, where it is imperative
not to inspect the packets throughout the flow’s lifetime.
Additionally, encrypted traffic may also be exempt from
inspection.

Current IDS/IPS systems incorporate bypass mechanisms
within the software through the kernel datapath [132].

7Stateful inspection is a firewall technology that monitors and evaluates
the state of active network connections, making decisions based on the
context of the entire communication rather than individual packets.

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Throughput (Gbps) CPU cores on host

500 5

400 4

300 3

200 2

100 1

0 0 —_—

Traditional SmartNIC Traditional SmartNIC
(Software) (Hardware) (Software) (Hardware)

Throughput (Gbps) CPU cores on host

100 14
80 12
10
60 8
40 6
20 4
I—I 2
0 0 e
Traditional SmartNIC Traditional SmartNIC
(Software) (Hardware) (Software) (Hardware)

FIGURE 26. Performance of IPS/IDS with hardware-based bypass
(SmartNIC offload) versus software-based bypass. The top row shows the
results of offloading the bypass of Suricata IDS while the bottom row
shows the result of offloading the bypass of Palo Alto’s NGFW. Both were
offloaded to NVIDIA's BlueField SmartNIC. Reproduced from [121].

While this enhances throughput, the process still depends on
software that utilizes CPU cycles to efficiently route packets
directly to the user space. Consider Fig. 25. With an offloaded
IDS/IPS, the bypass function is implemented in the hardware
without requiring additional intervention from the IDS/IPS
or the host CPU [18], [121], [133]. The bypass is carried out
on the programmable pipeline or the embedded switch within
the SmartNIC. This significantly improves the performance.
Fig. 26 shows the throughput (left) and the CPU cores used
on the host (right) of software-based IDS/IPS bypass and
hardware-based (SmartNIC). The top row shows the results
of offloading the bypass of Suricata IDS while the bottom
row shows the result of offloading the bypass of Palo Alto’s
Next Generation Firewall (NGFW). Both were offloaded
to NVIDIA’s BlueField SmartNIC. The results show that
hardware offloading (SmartNIC) can attain near line-rate
throughput (~1200% better than the software in the case of
Suricata and ~430% in the case of Palo Alto NGFW). More-
over, the CPU cores on the host are almost idle all the time.

2) OFFLOADING DEEP PACKET INSPECTION (DPI)

IDS and IPS often require inspecting the payload within
packets to identify potential malicious patterns. One example
of this is URL filtering, where the URL in the HTTP header
of the packet is matched against a database. This process is
used for access control and blocking known harmful websites
and phishing pages. The software-driven nature of IDS/IPS
in performing URL filtering has notable implications on the
performance. This is because, for every packet, the IDS/IPS
must parse deep into the packet contents (DPI). In addition
to URL filtering, IDS/IPS systems apply DPI for various

VOLUME 12, 2024

tasks such as application recognition (sometimes referred to
as App-ID), signature matching for malware, etc.

SmartNICs are now integrating hardware-based RegEx
engines. These engines perform pattern matching directly
within the hardware, offering improved efficiency com-
pared to traditional software-based approaches. Applications
leveraging RegEx matching load a pre-compiled rule set
into the engines at runtime. This hardware-driven approach
helps alleviate the performance concerns associated with
DPI in IDS/IPS, making network security more robust and
responsive.

DPI has also been implemented on the hardware from
scratch (e.g., using an FPGA). Ceska et al. [134] proposed
an FPGA architecture for regular expression matching that
can process network traffic beyond 100Gbps. The system
compiles approximate Non-deterministic Finite Automata
(NFAs) into a multi-stage architecture. The system uses
reduction techniques to optimize the NFAs so that they can
fit in the FPGA resources. The system was implemented on
Xilinx FPGA. Other works [135], [136], [137], [138] have
also explored optimizing NFAs for FPGAs.

3) OFFLOADING CUSTOM IPS/IDS FUNCTIONS

Zhao et al. [125] proposed Pigasus, an IDS that uses an FPGA
to perform the majority of the IDS functions, and a CPU to
perform the secondary functions. Pigasus achieves 100Gbps
with 100K+ concurrent connections and 10K+ matching
rules, on a single server. It requires on average five CPU
cores and a single FPGA-based SmartNIC. The system was
tested using Intel Stratix SmartNIC. Another FPGA-based
solution proposed by Chen et al. [126] is Fidas, which
offloads rule pattern matching and traffic flow rate classifi-
cation. Fidas achieves lower latency and higher throughput
than Pigasus. It was implemented on a Xilinx FPGA.
Zhao et al. [127] implemented an FPGA design to analyze
Internet of Things (IoT) traffic and summarize it in real time.
The CPU then uses a flow entropy algorithm to detect the
threats.

Panda et al. [128] proposed SmartWatch, a system
that combines P4 switches and SmartNICs to perform
IDS/IPS functions. The P4 switches perform coarse-grained
traffic analysis while the SmartNIC conducts the finer-
grained analysis. The SmartNIC used is Netronome Agilio.
Wu et al. [129] implemented an anomaly detection-based
IDS on the CPU cores of BlueField SmartNIC. The system
uses the Analysis of Variance (ANOVA) statistical method
for detecting anomalies. Tasdemir et al. [130] implemented
an SQL attack detection system on the BlueField SmartNIC.
The system uses NLP and ML classifiers to analyze and
classify SQL queries. Miano et al. [131] implemented
a DDoS mitigation system by combining hardware-based
packet filtering on the SmartNIC and software-based packet
filtering using XDP/eBPF.

Table 10 summarises and compares the aforementioned
works that offload custom IDS/IPS functions to the Smart-
NICs.

107317

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

TABLE 10. Comparison between various works offloading IDS/IPS functions to SmartNICs.

[Work | Hardwareused [Targeted attack [SmartNIC used | Key points |

Multi-string matching on FPGA; FPGA is used as a primary

Pigasus [125] FPGA, CPU General Intel Stratix engine; CPU is used as a secondary engine; Achieves
100Gbps using five CPU cores.
Offload rule pattern matching and traffic classification to

Fidas [126] FPGA General Xilinx FPGA; Achieves lower latency and higher throughput than
Pigasus.

Zhao et al. [127] FPGA, CPU ToT traffic attacks N/A FRGA—based traffic analysm; CPU-based threat detection
using flow entropy algorithm.

P4 switches (ASIC) Netronome Coarse-grained traffic analysis on P4 switches; Finer-grained

SmartWatch [128] SmartNIC (CPU) General Agilio analysis on SmartNIC.

ONLAD-IDS [129] CPU cores General BlueField Anomaly detection using ANOVA statistical method.

Tasdemir et al. [130] CPU cores SQL attacks BlueField Natural \L.apgl‘lage Processmg .(NLF.)) for SQL query analysis;
ML classifiers for query classification.

Miano et al. [131] ASIC, CPU DDoS N/A Hardware and sqftwgre—based packet filtering; Use cases
target DDoS mitigation.

C. IPSec OFFLOAD

The Internet Protocol Security (IPSec) implements a suite
of protocols to establish secure connections between end
devices. This is achieved through the encryption and
authentication of IP packets. IPsec comprises key modules
including 1) key exchange, which facilitates the establishment
of encryption and decryption keys through a mutual exchange
between connected devices; 2) authentication, which verifies
the trustworthiness of each packet’s source; 3) encryption and
decryption, which encrypts/decrypts payload within packets
and potentially, based on the transport mode, the packet’s IP
header.

IPSec has a data plane (DP) and a control plane (CP).
The CP is responsible for the key exchange and session
establishment. The DP is used for encapsulating, encrypting,
and decrypting packets. Traditionally, the CP and DP of IPSec
are executed fully in the host, see Fig. 27 (a). This consumes
CPU cores, increases latency, and decreases throughput.
Once a packet is encrypted by the IPsec software, it is sent
to the network over a traditional NIC.

The IPsec software can be offloaded to the SmartNIC to
enhance security and performance, see Fig. 27 (b). The IPsec
crypto operations (encryption/decryption) and encapsulation

D Plaintext packet IPSec encrypted packet

Host Host
Workload Workload
HW lerat CPU
Ej IPSec software accelerators
. ovS cores
(CP +DP) IPSec
op [LCrypto || || |psec
[cP
i} Traditional
NIC I:":] SmartNIC
v v
(a) (b)

FIGURE 27. IPSec on the host (a) and IPSec offloaded to the
SmartNIC (b).

107318

100 Linerate 15
7 80 »
a £ 10
S 60 3
4:-,/ pul
& S
® 40 Y
3 £
2 H <
0 DH 0
1 8 512 64 128 512
Number of connections Number of connections
O kTLSSW O3 kTLSHW 3 TCP O kTLSSW O3 kTLSHW 3 TCP

(@) (b)

FIGURE 28. Throughput (a) and CPU core counts (b) of SW kTLS, HW KTLS,
and plaintext TCP.

are executed by the hardware through the domain-specific
accelerators. The accelerators include symmetric cryptogra-
phy algorithms (e.g., Advanced Encryption Standard (AES)),
asymmetric cryptography (e.g., RSA, Diffie-Hellman), and a
True Random Number Generator (TRNG). This deployment
model ensures transparency to the host, securing legacy
workloads while benefiting from the offloading capabilities
of IPsec.

Diamond et al. [139] measured the performance of IPsec
encryption in hardware on the BlueField SmartNIC. The
results show that the offloaded IPSec is 10x faster than the
fully software-based IPSec. Su et al. [140] evaluated IPSec
using the encryption accelerator on an FPGA SmartNIC.
The offloaded IPsec attained ~19x and ~483x throughput
improvement at 64B and 1500B packet sizes, respectively.

D. TLS OFFLOAD

The prevalence of HTTPS servers using the TLS protocol
exceeds 80% across all web pages. As the demand for
accessing web servers continues to grow steadily, there is a
need for an increased rate of bandwidth.

TLS operates on layer 4, on top of TCP. The TLS
process, traditionally handled by user-space applications,
has evolved with the advent of offloading techniques. The
kernel TLS (kKTLS) involves the offload of TLS operations

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

TABLE 11. Security offloaded service and the used accelerators.

Security Domain-specific accelerator
offloz%ded Match-action | RegEx Symmetric | Asym. TRNG
service Crypto Crypto
Stateful
firewall v
IDS/IPS v v
IPSec v v v
TLS v v v
Storage' v v v
encryption

into the kernel, while Hardware (HW) KTLS offloads
cryptographic functions to the domain-specific accelerators
on the SmartNIC. With HW kTLS, the TLS handshake
and the error handling (e.g., incorrect sequence number)
are performed in software, while packets are encrypted and
decrypted in hardware.

Consider Fig. 28 which shows the results of benchmarking
the performance of HW kTLS with an Nginx server,
reproduced from [141]. The throughput of kTLS SW is
smaller than that of the HW KTLS when the number of
connections is small. The HW kTLS achieved line rate
with eight connections. The number of CPU cores on the
host when using HW kTLS is lower than the SW kTLS
and the unencrypted TCP, regardless of the number of
connections.

Kim et al. [142] explored offloading the TLS handshake
to the SmartNIC. Their proof of concept on a BlueField
SmartNIC shows that there is a 5.9x throughput improvement
over executing the handshake on a single CPU core. Novais
and Verdi [143] performed experimental evaluations to
assess the impact of TLS offload on a Chelsio SmartNIC.
Their results suggest that hardware offloading improves the
throughput, latency, and power consumption. Zhao et al.
[144] further detailed experiments on offloading TLS to
SmartNICs. Their results suggest that SmartNICs can be
beneficial for latency-sensitive tasks, but require caution with
computationally heavy loads.

E. DATA AT REST ENCRYPTION

SmartNICs can accelerate the encryption of data to
be stored. Instead of using the CPU to encrypt the
data, the domain-specific processor for encryption is
used. Disk encryption protocol like AES-XTS 256/512-bit
is used.

The implementation of encryption offload for storage
through SmartNICs offers flexibility across various points
in the storage data path. Encryption can occur directly on
the storage device (e.g., Just a Bunch of Flash (JBOF)),
securing data at rest. Alternatively, it may take place at the
backend of the storage controller, ensuring the encryption
of data in transit. Another option involves encryption at the
initiator, with the initiator retaining control of the keys, and
the encrypted data transmitted across the entire storage data
path.

VOLUME 12, 2024

F. SUMMARY AND LESSONS LEARNED

SmartNICs significantly enhance the performance of security
inspection. Table 11 summarizes the domain-specific accel-
erators used by the offloaded security functions. The key
takeaways are:

« Offloading stateful firewall functions to the SmartNIC’s
embedded switch or programmable pipeline signifi-
cantly boosts performance. The SmartNIC also allows
running the firewall management and control planes on
its CPU cores.

o The performance of IDS/IPS can be enhanced when
their bypass function is offloaded to the hardware.
Additionally, IDS/IPS can efficiently apply DPI using
the RegEx hardware embedded in the SmartNIC. This
is used in various security applications, including URL
filtering, signature matching, content filtering, etc.

o SmartNICs facilitate the encryption of data-in-flight
without compromising performance. Protocol stacks
like IPSec or TLS can be easily offloaded to the
SmartNIC, without requiring much development. Also,
the SmartNIC provides APIs that enable developers to
leverage the symmetric, asymmetric, and TRNG crypto
processors.

« Data-at-rest can be encrypted by the SmartNIC, enabling
faster storage encryption compared to the SW-based
approach.

o The inherent programmability in SmartNICs opens
avenues for developers to implement custom, novel, and
performant security functionalities.

VIIl. NETWORK OFFLOADS

Software-defined networking (SDN) and NFV are transfor-
mative technologies that have revolutionized the way net-
works are designed, deployed, and managed. Virtual switches
play crucial roles in enabling the flexibility, scalability,
and efficiency that modern networks demand, especially to
connect VMs. The networking functions implemented as
NFVs on the server strain the CPU, especially in networks
with high traffic rates. Recently, SmartNICs have been
used to offload the network functions from general-purpose
CPUs. For instance, SmartNICs have been used to offload
switching/routing, tunneling, measurement and telemetry,
and others.

A. SWITCHING
Virtual switching emerged as a response to the need for
hypervisors to seamlessly connect VMs with the external
network [145]. Traditionally, virtual switches were running
within the hypervisor, operating in software. However, this
approach proved to be CPU-intensive, impacting overall
system performance and preventing optimal utilization of
available bandwidth [146], [147].

Software switches go beyond conventional layer-2 switch-
ing and layer-3 routing [148]; they facilitate rule matching on
various packet fields and support diverse actions on packets.

107319

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

Overlay

- /

vSwitch

Server

FIGURE 29. Tunneling.

These actions include forwarding, dropping, marking, and
more.

1) SWITCHING OFFLOAD

SmartNICs, whether they use a NIC switch or a pro-
grammable pipeline, have lookups and ALUs implemented
in hardware. These components can be used to implement
the match-action functions required for switching packets.
Instead of re-implementing all the functions required for
switching, most SmartNICs allow offloading the datapath
of existing software switches, such as OvS [145], an open
source virtual switch. Note that it is possible to offload
the datapath of proprietary switches, such as that of
VMware’s vSphere Distributed Switch [149]. Besides packet
switching, virtual switches can handle additional tasks such
as Network Address Translation (NAT), tunneling, and QoS
functionalities such as rate limiting, policing, and scheduling.

B. TUNNELING AND OVERLAY

Tunneling is a technique that encapsulates and transports
one network protocol over another. This is commonly
used in virtualized environments to create isolated channels
between VMs or between different segments of a virtualized
network. Tunneling helps in overcoming the limitations of
the underlying physical network and enables the creation of
virtual networks that can span across physical boundaries.
Various tunneling protocols are used in network virtualiza-
tion, including Virtual Extensible LAN (VXLAN) [150],
Geneve [151], Generic Routing Encapsulation (GRE) [152],
etc. This subsection will discuss VXLAN, but the idea
generalizes across all other tunneling protocols.

Throughput (Mpps) Throughput (Mpps)
1148, 64 connections 1148, 250K connections
80 25
60 20
15
40
10
20 5
0 —_— 0 —
Traditional SmartNIC Traditional SmartNIC
(Software) (Hardware) (Software) (Hardware)
(a) (b)

FIGURE 30. Throughput in million packets per second (Mpps) of software
vs SmartNIC tunneling. (a) 114B packets and 64 connections; (b) 114B
packets and 250,000 connections. Reproduced from [153].

107320

VXLAN establishes a virtual network (i.e., overlay net-
work) over an existing layer-3 infrastructure (i.e., underlay
network) by creating tunnels between VMs. This overlay
scheme enables the scalability of cloud-based services
without the necessity to add or reconfigure the existing
infrastructure. However, VXLAN introduces an additional
layer of packet processing at the hypervisor level. Con-
sider Fig. 29. Each packet leaving the VM must have
an additional header to be transported over the underlay
network. A VXLAN Tunnel End Point (VTEP) device
encapsulates during packet transmission and decapsulates
during packet reception. The VTEP is being implemented
on software as part of the hypervisor stack. This process
incurs additional CPU overhead [154]. As the number
of flows scales up, overloading the CPU with packets
for encapsulation/decapsulation can easily lead to network
performance bottlenecks in terms of throughput and latency.

SmartNICs can offload tunneling functions from the host
CPU [155]. They support inline encapsulation/decapsulation
of VXLAN and other tunneling protocols. This logic is
implemented in the embedded NIC switch [156] or the
programmable pipeline [54]. Tunnels definition, which is
part of the control plane, is implemented in software,
on the CPU cores of the SmartNIC. This design not
only improves throughput and reduces latency for the
encapsulation/decapsulation operations, but also frees up
CPU cycles on the host for other tasks. Fig. 30 compares the
tunneling performance between the software and a BlueField
SmartNIC, reproduced from [153]. With 114-byte packets
and 64 connections, the SmartNIC tunneling is ~60 times
higher than the software-based. With 114-byte packets and
250,000 connections, the SmartNIC tunneling is ~20 times
higher than the software-based.

C. OBSERVABILITY - MONITORING AND TELEMETRY
Observability is the ability to collect and extract telemetry
information. During a network outage, effective observability
facilitates diagnosing and troubleshooting problems. It can
also help in detecting malicious events and identifying
network performance bottlenecks.

Traditional packet observability solutions are typically
implemented in hardware, situated outside the server. Exam-
ples include configuring port mirroring (e.g., Switched Port
Analyzer (SPAN)) on switches/routers, see Fig. 31 (a),
deploying network TAPs for replicating packets, see Fig. 31
(b), and exporting flow-based statistics using NetFlow [157]
or IPFIX [158] to a remote collector, see Fig. 31 (c).

1) OFFLOADING PACKETS OBSERVABILITY TO SmartNICs

The traditional approaches to packet observability are all
supported by SmartNICs. SmartNICs can mirror packets
and send them to remote collectors. They can also export
telemetry using flow-based telemetry solutions like NetFlow
or IPFIX, or using packet-level telemetry streaming such
as In-band Network Telemetry (INT) [159] and In-situ

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Switch/router

Switch/router Switch/router

TAP
v
" Port mirror
(a) (b)

Flow record (e.g., NetFlow)

pkt
bytes
bits per sec

v/—‘j

(c

[Original packet [J Copied packet

FIGURE 31. (a) Port mirroring; (b) TAP; (c) NetFlow export.

OAM [160]. SmartNICs can also monitor and aggregate
telemetry locally, which avoids excessive traffic exports.
Furthermore, since they incorporate programmable pipelines,
they can be used to implement more complex packet
telemetry than the traditional ones. For example, it is possible
to implement streaming algorithms such as the Count-min
Sketch (CMS) [161] to estimate the number of packets
per flow in a scalable way, or a Bloom Filter [162] to
test the occurrence of an element in a set. Such telemetry
information can be very useful for a variety of applications
(e.g., security [163], performance analysis [164], etc.).

2) OFFLOADING SYSTEM OBSERVABILITY TO SmartNICs
The SmartNIC also offers supplementary telemetry data
related to the system in which it is located [165], such as the
host. For example, the SmartNIC can provide telemetry data
containing the CPU, memory, and disk usage of the host.

3) VM AND CONTAINERS OBSERVABILITY WITH SmartNICs
External approaches to packet observability cannot observe
inter-VM/container traffic within the same server. While
software-based approaches for monitoring VMs and con-
tainers exist, see Fig. 32 (a), they often burden the CPU,
especially with high traffic rates [165]. SmartNICs provide
hardware visibility on traffic between VMs or containers
within the same server (see Fig. 32 (b)), alleviating the CPU
burden on the host.

D. LOAD BALANCING

Load balancers play a crucial role in modern cloud envi-
ronments by distributing network requests across servers in
data centers efficiently. Traditionally, load balancers relied on
specialized hardware, but now software-based solutions are
prevalent among cloud providers. This shift offers flexibility
and allows for on-demand provisioning on standard servers,
though it comes with higher provisioning and operational
expenses. While software-based load balancers offer greater
customization and adaptability compared to hardware-based
counterparts, they also entail considerable costs for cloud
providers due to server purchase expenses and increased
energy consumption.

Load balancers are categorized into two main types:
Layer 4 (L4) and Layer 7 (L7). L4 load balancers function
at the transport layer of the network stack. They associate
a Virtual IP address (VIP) with a list of backend servers,

VOLUME 12, 2024

Host ‘ Host

‘ VM/Cont ‘ ‘ VM/Cont HVM/Cont ’ ‘ VM/Cont H VM/Cont H VM/Cont ‘
3 5 - T

| SR R

i

Software switch

Programmable packet processor

SmartNIC

Traditional NIC ’
(a) (b)

FIGURE 32. VM and containers observability with (a) software switches
and (b) SmartNICs.

each having its own dynamic IP (DIP) address. Routing
decisions made by L4 load balancers are based solely on
the packet headers of the transport/IP layers, considering
factors such as source and destination IP addresses and
ports. Thus, L4 load balancers do not inspect the payload
content of the packets. On the other hand, L7 load balancers
operate at a higher layer, specifically the application layer.
These balancers are more intricate, as they analyze content
within the packets, particularly focusing on application-layer
protocols like HTTP. The L7 load balancer directs incoming
requests to appropriate backend servers based on the specific
service being accessed. For instance, differentiation may
occur based on URLs.

1) OFFLOADING LOAD BALANCING TO SmartNICs

Several works have offloaded load balancing to SmartNICs.
Cui et al. [166] proposed Laconic, a system that improves
the performance of load balancing due to three key points:
1) Lightweight network stack: unlike traditional L7 load
balancers, which heavily rely on the operating system’s TCP
stack, Laconic opts for a lighter packet forwarding stack on
the load balancer itself. This approach minimizes overhead
and leverages the end-hosts to achieve the desired end-to-
end properties; 2) Lightweight synchronization for shared
data structures: Laconic implements a concurrent connection
table design based on the cuckoo hash table. This design
efficiently manages hash conflicts and reduces the number
of entries needing probing during lookups; 3) Acceleration
with hardware engines: Laconic optimizes packet processing
by transferring common packet rewriting tasks to hardware
accelerators. This strategy alleviates the processing burden on
the CPU cores of the SmartNIC. Huang et al. [167] offloaded
the load balancer to an FPGA-based SmartNIC. The result
shows that the system was able to load-balance at 100Gbps.
Chang et al. [168] described a scheme that finds an optimal
load balancing strategy for a network topology. It uses
SmartNICs and programmable switches. Other works [169],
[170], [171], [172] used variations of the methods above for
load balancing.

2) RECEIVE SIDE SCALING (RSS)
SmartNICs commonly include an accelerator for RSS, which
is a mechanism to distribute incoming network traffic across

107321

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

Header fields

Received packet ’

=

Hash {é} 1
function Indirection
tabl
\ LSB
‘ Hash value
3
1
0|

FIGURE 33. Receive side scaling (RSS).

multiple CPU cores. To achieve this, the SmartNIC calculates
a hash value (Toeplitz hash [173]) based on header fields
(such as the five-tuple) of the received network packet, see
Fig. 33. The hash value’s Least Significant Bits (LSBs) are
then used as indices for an indirection table, the values of
which are used to allocate the incoming data to a specific
CPU core. Some SmartNICs allow steering packets to queues
based on programmable filters [174].

E. 5G UPF

The User Plane Function (UPF) in 5G networks represents
the data plane within the packet core. It connects the
User Equipment (UE) from the Radio Access Network
(RAN) to the data network, see Fig. 34. The UPF typically
performs packet inspection, routing, and forwarding, and
QoS enforcement. It processes millions of flows with a
high connection rate. 5G networks implement the packet
core as VNF running on general-purpose CPUs rather than
dedicated appliances. General-purpose CPUs are not capable
of guaranteeing high throughput and low latency, which are
the requirements and the Key Performance Indicators (KPI)
of 5G networks.

1) UPF OFFLOAD TO SmartNIC

The SmartNIC can be used to offload the UPF func-
tions [175]. Specifically, the following functions are
offloaded: GTPU tunneling: the encapsulation and decap-
sulation of packets run at line rate; policing: the SmartNIC
will control the bit rates of the devices so that they do
not exceed the Maximum Bit Rate (MBR); statistics: the

01 [0,
() N3 Userpl
gl

User Equipment Radio Access
(UE) Network (RAN)

-@ ()

FIGURE 34. 5G network architecture. The packet core is implemented as
VNF on general-purpose CPUs. The SmartNIC is being used to offload the
UPF functions.

107322

counters and metrics are calculated and used for billing
purposes; QoS: the SmartNIC performs Differentiated
Services Code Point (DSCP) on flows to enable 5G QoS;
Load balancing: the SmartNIC balances the traffic to the
corresponding application; Network Address Translation
(NAT): the SmartNIC translates IP addresses on traffic; etc.

Offloading the UPF will not only improve throughput and
reduce latency, but it will also boost the number of users
per server (7x according to [175]) and lower the Capital
Expenditure (CapEx) per user.

F. SUMMARY AND LESSONS LEARNED

SmartNICs significantly improve the performance of network
functions and reduce their CPU consumption on the hosts.
The key takeaways are:

o The packet switching functions (i.e., matching header
fields and taking actions), can be accelerated with
SmartNICs. This is because SmartNICs, whether they
use a NIC switch or a programmable pipeline, have
lookups and ALUs implemented in hardware.

o The performance of tunneling operations (encapsula-
tion/decapsulation) can be significantly improved when
offloaded to the SmartNIC. This also frees the CPU
cores that were previously used for performing the
tunneling operations.

o SmartNICs not only support traditional telemetry solu-
tions but also allow the developer to devise custom
fine-grained measurement schemes. They also enable
inter-VM/container packet observability and host met-
rics telemetry.

« Offloading the UPF of 5G improves the performance
of packet processing, increases the number of users per
server, and decreases the per-user CAPEX.

« Instead of re-implementing all the switching functions,
SmartNICs allow offloading the datapath of existing
software switches.

« Developers can devise custom packet processing algo-
rithms not supported by existing software switches.

IX. STORAGE
Traditionally, storage devices were directly attached to
individual computers or servers. This method provided
fast access to data but lacked scalability and centralized
management. Network Attached Storage (NAS) emerged
as a solution to these limitations. It involves connecting
storage devices to a network, allowing multiple users and
clients to access the storage resources over the network. NAS
provided file-level access to data. Storage Area Network
(SAN) provides a high-speed network that connects storage
devices to servers, providing block-level access to storage
resources. SANs offer higher performance and scalability
compared to NAS.

Traditional remote storage mechanisms establish a connec-
tion between a local host initiator and a remote target. This
process heavily burdens the host CPU, leading to a significant

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Host Host
‘ Apps/VMs/Containers ‘ Apps/VMs/Containers ‘

T
Crypto,CRG, ... ‘ NVMe driver ‘
: |
‘ NVMe‘drlver ‘ T SmartNIC
| NVMe/TCPSW | [vMe F |
T Accelerators CPU Cores
\ LAN driver |
| NVMe/
TCP SW

‘ Network subsystem ‘

v
(a) (b)

FIGURE 35. (a) NVMe-oF initiator without offload. (b) NVMe-oF initiator
offloaded to the SmartNIC.

decrease in overall performance. SmartNICs can be used to
offload the processing from the host CPU.

A. NVMe-OF INITIATOR

Non-Volatile Memory Express (NVMe) is an interface
specification for accessing a computer’s non-volatile storage
media usually attached via the PCI Express bus. It is
typically used for accessing high-speed storage devices like
Solid State Drives (SSDs). NVMe over Fabrics (NVMe-
oF) extends NVME to operate over network fabrics such as
Ethernet, Fibre Channel, or InfiniBand. The NVMe initiator
initiates and manages communication with NVMe targets.
It sends commands to NVMe targets to read, write, or perform
other operations. The NVMe target refers to the NVMe
storage device itself.

Fig. 35 (a) shows the traditional method of NVMe-oF using
the TCP protocol and a regular NIC. The entire NVMe-oF
initiator software stack operates on the host. Tasks such as
cryptography and CRC computations further strain the host
CPU and memory bandwidth.

1) NVMe-oF INITIATOR OFFLOAD

The NVMe-oF initiator functionality can be offloaded to the
SmartNIC (Fig. 35 (b)), minimizing the overhead on the host.
The SmartNIC exposes a high-performance PCle interface
and NVMe interface to the host. Requests from applications
are simply forwarded to a lightweight NVMe driver on the
host. The initiator stack on the SmartNIC leverages the
hardware accelerators for tasks like inline cryptography and
CRC offloading. The TCP stack can either remain on the CPU
cores of the SmartNIC or be offloaded to the hardware itself,
depending on performance considerations and SmartNIC
capabilities. The division of NVMe-oF functions between
hardware and software allows for optimization based on
performance and SmartNIC capabilities.

Another offload to the SmartNIC is the NVMe-oF RDMA.
The NVMe/RDMA data path is implemented in the hardware,
with inline cryptography and CRC offloaded. This approach
offers a high-performance, low-latency solution.

VOLUME 12, 2024

Storage target
Hardware (NIC)

RDMA queues
28

Software (CPU)]

Storage target
Hardware (SmartNIC)

RDMA queues

Network | &
adapter EE

NVMe-oF
NVMe-oF
Block layer NVMe SSD

Driver

NVMe SSD Driver j

NVMe NVMe queues NVMe NVMe queues
: >
s | BB)| || | Lointon | {28 o
SSD controller SSD controller
(a) (b)

FIGURE 36. (a) NVMe-oF target without offload. (b) NVMe-oF target with
offload. Reproduced from [176].

B. NVMe-OF TARGET

Another offload opportunity is offloading the storage target
functions. On a storage target such as JBOF supporting
NVMe-oF, there is a CPU positioned between the network
and NVME SSDs, see Fig. 36 (a). This CPU runs software
responsible for converting NVME-over-Fabrics Ethernet or
InfiniBand signals to NVME PCle signals. The software
comprises various components, including a network adapter
stack, NVME-over-Fabrics stack, operating system block
layer, and NVME SSD stack. Both the network adapter and
SSD utilize queues and memory buffers to interface with
different software stacks.

When a request originates from the network, it arrives at
the network adapter as an RDMA SEND with the NVME
command encapsulated. The adapter then forwards it to its
driver on the target CPU, which further passes it to the
NVMe-oF target driver. The NVME command proceeds
through the driver for the SSDs and then to the NVME SSD
controller. Subsequently, the response follows the reverse
path through the software layers.

1) NVMe-OF TARGET OFFLOAD

With the offload, the fast path is shifted to the hardware on
the SmartNIC. Instead of burdening CPU cycles with millions
of Input/Output Operations per Second (IOPS), the adaptor
now handles the load using specialized function hardware.
Software stacks remain in place for management traffic. The
reduction in latency by removing the software from the data
path is by a factor of three [176]. Moreover, the CPU usage
with offload is negligible.

C. COMPRESSION AND DECOMPRESSION

The surge in data volumes has caused performance bot-
tlenecks for storage applications. Data compression is a
widely adopted technique that mitigates this bottleneck by
reducing the data size. It encodes information using fewer bits
than the original representation. Notably, machine learning,

107323

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

100 T

N
w

CPU Utilization (%)
0
o

DEFLATE zlib sz3 DEFLATE
(CPU) (CPU) (CPU) (SmartNIC)

10000 N .
=z - - _
£
[
£
'~ 1000
)
2
(0]
s
E H ool
]
(&)

100 RIEIEIE LU LU
DEFLATE zlib s73 DEFLATE
(CPU) (CPU) (cPu) (SmartNIC)

FIGURE 37. CPU utilization during compression with various algorithms
(DEFLATE, zlib, SZ3) on seven datasets. Reproduced from [177].

databases, and network communication rely on compres-
sion techniques—both lossless and lossy—to enhance their
performance. Data compression is compute-intensive and
time-consuming, especially with large sizes of data to be
compressed.

1) OFFLOADING COMPRESSION TO SmartNICs

SmartNICs include onboard hardware accelerators that
enable the offloading of compression and decompression
tasks from host CPUs. This offloading alleviates the strain
on host resources, resulting in savings and improved perfor-
mance. Fig. 37 shows the CPU utilization when compression
is executed entirely on the host (denoted as CPU) versus
when executed on the compression hardware engine of
the SmartNIC (denoted as SmartNIC). The experiment
shows results for various compression algorithms (e.g.,
DEFLATE [178], zlib [179], SZ3 [180]) over seven datasets.
The datasets are sorted in the figure by their sizes in ascending
order— each dataset is a column in the figure. The experiment
is reproduced from [177]. When the compression is executed
entirely on the host, the CPU usage approaches 100%,
especially with large datasets. With a SmartNIC, there is a
significant reduction in the CPU utilization.

Fig. 38 shows the compression time needed when executed
entirely on the host (denoted as CPU) versus when executed
on the compression hardware engine of the SmartNIC. The
experiment is reproduced from [177]. With a SmartNIC, there
is a significant reduction in the compression time, regardless
of the size of the dataset.

D. SUMMARY AND LESSONS LEARNED
Offloading storage functions to the SmartNICs improves the
performance.

e Due to the hardware accelerators in the SmartNIC
(e.g., compression, crypto), storage operations like
compression, deduplication, and crypto will run faster
than on the host’s CPU.

o The SmartNIC can be deployed on the initiator or the
storage target. In both deployments, the CPU usage
on the hosting device is negligible, the latency is
minimized, and the number of IOPS is improved.

107324

FIGURE 38. Compression time with various algorithms (DEFLATE, zlib,
SZ3) on seven datasets. Reproduced from [177].

X. COMPUTE

This section examines applications offloaded to the Smart-
NIC that are not specifically tailored to infrastructure
functions. Instead, these applications leverage the SmartNIC
for accelerated computing tasks.

A. MACHINE LEARNING

State-of-the-art deep ML models have significantly expanded
in size, playing a critical role in various domains, including
computer vision, Natural Language Processing (NLP), and
others [46]. The scale of these models has seen a dramatic
increase, with the number of parameters growing from
94 million in 2018 [181] to 174 trillion in 2022 [182].
This exponential growth owes much to advancements in
parallel and distributed computing, enabling tasks related to
model training to be distributed across multiple computing
resources simultaneously. The practice of offloading parts of
ML tasks to network resources traces back to the 2000s [183],
a trend that continued with the advent of Software Defined
Networking (SDN), where ML primarily operates within the
control plane [184]. The recent emergence of programmable
data planes (i.e., programmable switches, SmartNICs) has
further spurred research and practical applications toward
offloading ML phases, such as training and inference, to the
hardware. Offloading ML tasks can occur on a single network
device or across multiple devices, depending on network
requirements and the complexity of the offloaded ML task.

1) ML TRAINING

The training of large ML models can be accelerated by
following a distributed approach. This involves computing
gradients on each device based on a subset of the data,
which are then aggregated to update model parameters.
Additionally, optimization of model parameters can be
carried out in the data plane to maximize accuracy.

Itsubo et al. [185] devised a system that employs
in-network gradient aggregation and parameter optimization
for neural networks using an FPGA-based SmartNIC. Fig. 39
shows the high-level architecture of [185]. Gradient compu-
tation occurs on GPUs and is subsequently transmitted to the
FPGA via PCle, where aggregation takes place. Following

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

Gradient Aggregation

Read/write Gradients Aggregate
—
packet — @ =
Packet

= Parameter optimization

Read/write

packet

PCle {é} GPU

E:.

FIGURE 39. High-level architecture of [185].

aggregation, the FPGA can execute parameter optimization
algorithms, including Stochastic Gradient Descent, Adagrad,
Adam, and SMORMS3. The proposed framework achieves
aggregation at 98.5% line rate and accelerates parameter
optimization by ~ 1.2 times. Tanaka et al. [186] opt
for a different approach to aggregation, employing a ring
network topology of FPGA-based SmartNICs using the
allreduce algorithm [187]. In this setup, each node within
the ring network awaits data from the preceding node,
aggregates it upon reception using the all-reduce aggregation
algorithm, and subsequently forwards it to the succeeding
node (as illustrated in Fig. 40). This strategy not only
alleviates CPU load but also establishes a direct memory link
between the GPU and the FPGA, thus preserving accuracy,
as floating-point operations required by the algorithm are
supported at the hardware level. Similarly, Ma et al. [188]
improve distributed ML training by performing the entirety
of allreduce operations on an FPGA-based SmartNIC in a
ring network topology. The proposed approach compresses
the gradient before they are shared with other nodes, thus
reducing bandwidth usage. The aggregation is performed on
the SmartNIC of the end-host nodes.

2) ML INFERENCE

In the inference phase, various ML models such as decision
trees, neural networks, and reinforcement learning algorithms
undergo training on a general-purpose CPU. Once trained,
these models are translated into rules that can be executed
within the data plane of the device. This approach enables
accelerated inference, enhancing the efficiency of real-time
decision-making processes.

IIsy [189] explore the feasibility of deploying different
classification algorithms on programmable data planes.
In particular, IIsy can implement decision trees, K-means,
Support Vector Machine (SVM), and Naive Bayes to perform
per-packet classification. The framework converts the code
into match-action tables compatible with programmable data
planes. IIsy’s prototype is implemented over an FPGA-based
SmartNIC using P4 [190]. Xavier et al. [191] developed

VOLUME 12, 2024

DMA
rca + 4
GPU
A 4
cPU
|
e k] Aeh
S
SRAM SRAM
DMA DMA
PGa 4 4 a1 4
epu || cpu ||
CcPU cPU

FIGURE 40. High-level architecture of [185].

a framework that translates decision trees into a P4-
programmable data plane using if-else chain of statements.
The proposed framework differs from [189] by introducing
per-flow classification. BaNaNa Split [192] accelerates neu-
ral networks inside programmable switches and SmartNICs.
This approach leverages the layered structure of neural
networks by splitting them between the CPU and the network
processor. However, BaNaNa Split necessitates quantization,
a process that reduces the precision of neural network weights
at the cost of diminishing accuracy.

B. KEY-VALUE STORES
Data centers face a growing demand for collecting and
analyzing vast amounts of data. Typically, this data is stored
in key-value stores due to their superior performance over
traditional relational database systems. Popular key-value
stores include Redis [194] and Memcached [195]. As data
volumes increase, so does the frequency of reads and writes to
these stores, leading to bottlenecks in the traditional network
protocol stack and heavy CPU consumption.

The emergence of SmartNICs offers a solution by offload-
ing key-value store operations to accelerate performance

SmartNIC Host
~ FGA
Ethernet Networking CPU
— > PCle
connector ’W‘ RDMA ‘WP (Pu;,etller;tii)ite,
B-Tree Accelerator
(scan, get)
Host Memory
Onboard ¢ (16GB)
Memory subsystem | ¢

DRAM (4GB)

530

FIGURE 41. Honeycomb system architecture [193].

o550

[——
PageTable

107325

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

and reduce CPU load. One effective method is leveraging
RDMA [196], [197], [198], [199], [200]. RDMA allows data
to be read from or written to memory without involving
the operating system and the traditional network stack. This
results in lower latency, reduced CPU overhead, and higher
bandwidth compared to traditional networking approaches.

Sun et al. [201] implemented SKYV, a distributed key-value
store accelerated with SmartNIC. The system offloads the
data replication and failure detection components. It targets
the Redis key-value store and is implemented using the
BlueField SmartNIC. The evaluations show that the system
reduces the latency by 21% and increases the throughput
by 14% compared to being implemented fully on the host
without SmartNIC acceleration.

Another aspect of the key-value store that was offloaded to
the SmartNIC is the ordering of elements. Ordered key-value
stores enable additional applications by allowing an efficient
SCAN operation. Liu et al. [193] proposed Honeycomb,
an FPGA-based system that provides hardware acceleration
for an in-memory ordered key-value store. It focuses on the
read-dominated workloads. Consider Fig. 41. The B-Tree
accelerator implements the GET and SCAN operations. The
CPU executes the PUT, UPDATE, and DELETE operations.
The B-Tree is stored on the onboard DRAM in FPGA
and on the memory of the host. Storing the B-Tree on
the host allows better scalability since its memory is larger
than that of the FPGA. The memory subsystem maintains
a cache and communicates with the onboard DRAM.
It also communicates with the host memory using PCle.
The implementation shows that the system increases the
throughput of another ordered key-value store [202] by 1.8x.

Chen et al. [203] designed a heterogeneous key-value store
where a primary instance runs on the host and a secondary
instance runs on a SmartNIC. The system identifies the
popular items and replicates them to the SmartNIC. The
popular items are identified with moving window access
counters. The server instance serves the read and write
requests of all keys while the SmartNIC instance serves
only the read request of popular items. This system targets
read-intensive workloads with skewed access. The system
was implemented on a BlueField-2 and the results show
that the throughput is improved by 1.86x than a standalone
RDMA key-value store.

C. TRANSACTION PROCESSING
High-performance transaction processing is important to
enable various distributed applications. These systems need
to manage a large number of requests from the network
efficiently. One crucial aspect is determining how to schedule
each transaction request to the most suitable CPU core.
Consider Fig. 42 (a) which shows the architecture of a
transaction processing system without scheduling. A tradi-
tional NIC receives requests from the clients and dispatches
them to the worker threads. The worker threads then execute
the transaction, while considering the contention issues that

107326

(o) =

txng: txnq:

{A=1, C=0} 'I‘:_—| {A=0, C=1}

[Runtime stotes |
5 5 id=sched(txn)
5 [e =
Vs
s = || BB)0) e
3 A worker threads
Contention
\ data:{A, B, C, ...} \ \ data:{A, B, C, ...} \
(a) (b)

FIGURE 42. Transaction processing systems. (a) a system without
scheduling, (b) scheduling using SmartNIC. Reproduced from [204].

might happen. Contention in this context means that two
workers are accessing the same data and at least one of them
is issuing a write. In Fig. 42 (a), two transactions (txng and
txnp) are writing to the same data blocks A and C. In such
a scenario, the transactions are typically aborted, causing
the clients to resend the transactions, which degrades the
performance.

Li et al. [204] proposed using a SmartNIC to schedule the
transactions to the appropriate worker threads. The SmartNIC
maintains the runtime states, giving it the flexibility to
make accurate scheduling decisions. The SmartNIC queues
the transactions belonging to the same worker thread.
This avoids having the clients resend the transactions. The
system is implemented on an FPGA-based SmartNIC, which
further reduces the scheduling overhead. The system was
implemented over the Innova-2 SmartNIC and the results
show that the throughput is boosted by 2.68x and the
latency is reduced by 48.8% compared to the CPU-based
scheduling.

Schuh et al. [205] implemented Xenic, a SmartNIC-based
system that applies an asynchronous, aggregated execution
model to maximize network and core efficiency. It uses
a data store on both the SmartNIC and the host. This
data store provides fast access to host data via indexing.
It also maintains a state to enhance the concurrency and
contention issues. Xenic also aggregates work at all inputs
and outputs of the SmartNIC to achieve communication
efficiency. The system was implemented on a LiquidIO
SmartNIC. The results show that Xenic improves the
throughput of prior RDMA-based systems by approximately
2x, reduces the latency by up to 59%, and saves server
threads.

Server Container Serverless Isolate
virtualization virtualization compute functions
Apps Aops | Apps || Apps || Apps | Apps |[GQD
Bins/libs || Bins/libs || Bins/libs || Bins/libs || Serverless engine GQQ
Guest OS || Guest OS Container engine OAVLY)

Host operating system (OS)
Hardware

FIGURE 43. Architectures used in the cloud. Reproduced from [206].

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

M

SmartNICs

Workload
manager

Workload
collector

J Spike mgmt

Control plane

Lambda

Servers

Heterogeneous data and compute plane

FIGURE 44. SpikeOffload system architecture. Reproduced from [21].

D. SERVERLESS COMPUTING
Fig. 43 shows the architectures used in the cloud today. The
server virtualization allows guest operating systems to run
on top of a host operating system. The applications and
the libraries run on top of the guest OS and are isolated
from other operating systems. The trend has shifted towards
container virtualization where applications and their libraries
are isolated but they share the same OS. The containers
can be connected through software switches to enable their
communications. The complexity and the scale of the cloud
make it hard to manage and provision the infrastructure with
tasks requiring fine-grained allocation of resources under
changing workload demands. This has led to the serverless
compute architecture, also known as Function as a Service
(FaaS). In a serverless architecture, developers write code
that represents functions (also known as Lambdas), and these
functions are triggered by various events. The users are billed
only for the resources consumed during the execution. The
serverless workloads, which are targeted by these functions,
are typically short-lived with strict computing and memory
limits. The cloud provider will manage the infrastructure
by creating containers and taking them down when the
workload is completed. Examples of serverless computing
frameworks include Amazon Lambda [207], Google Cloud
Functions [208], and Microsoft Azure Functions [209].
Running the serverless computing functions on top of
containers that are running on top of an OS incurs processing
and networking overhead that increases the latency. Recently,
cloud providers have been using the isolate functions
architecture in which the functions are executed on a bare
metal server.

1) EXECUTING LAMBDA FUNCTIONS ON SmartNICs

Recent efforts have explored the potential of executing
Lambda functions on the SmartNICs. Choi et al. [206]
proposed A-NIC, a framework where Lambda functions
are executed on the SmartNIC. It provides a programming
abstraction, which resembles the match-action of the P4
language, to express the lambda functions. The framework
analyzes the memory accesses of the functions to map them
across the memory hierarchy of the SmartNIC. Because the
workloads are short-lived, A-NIC assigns a function to a
single core on the SmartNIC. The system was implemented

VOLUME 12, 2024

on a Netronome Agilio CX, and the results show that A-NIC
can decrease the average latency by 880x and improve the
throughput by 736x.

Tootaghaj et al. [21] proposed SpikeOffload, a system
that offloads serverless functions to the CPU cores of the
SmartNICs, in the presence of transient traffic spikes, see
Fig. 44. A workload collector module gathers the history
of workloads and feeds the summary to the workload
manager module. The workload manager module predicts
the workload spikes based on the service time and the CPU
loads of the servers and the SmartNICs. It then configures
the service gateway (GW) to distribute the requests to
the corresponding device (i.e., servers and SmartNICs)
in the compute plane. SpikeOffload predicts the spikes in the
workloads using ML. It starts the containers before the actual
load arrives to mitigate the containers’ cold start latency. The
system was implemented on a BlueField-2, and the results
show that the Service Level Agreement (SLA) violations for
certain workloads can be reduced by up to 20%.

E. SUMMARY AND LESSONS LEARNED

SmartNICs extend their utility beyond infrastructure-related
tasks, accelerating various compute functions. The key
takeaways include:

« Machine learning tasks, encompassing distributed train-
ing and inference, experience significant performance
enhancements when offloaded to SmartNICs. These
devices efficiently aggregate model updates from mul-
tiple ML workers and optimize model parameters. Their
programmable pipeline also enables the execution of
certain ML models directly for line-rate inference.

« Key-value stores operations, which include retrieving
and updating data, replicating stores, and detecting
failures, can be offloaded to SmartNICs. This would
bring notable throughput and latency improvements.

« SmartNICs can be used to schedule transactions, aggre-
gate values, and solve contention in distributed systems,
improving the latency and throughput.

o SmartNICs can execute serverless workloads (lambda
functions), which reduces the load on the servers. They
can also be used as an additional execution engine in a
heterogeneous data and compute cluster.

XI. CHALLENGES AND FUTURE TRENDS

In this section, several research and operational challenges
that correspond to SmartNICs are outlined. The challenges
are extracted after comprehensively reviewing and diving into
each work in the described literature. Further, the section
discusses and pinpoints several initiatives for future work that
could be worthy of being pursued. The challenges and the
future trends are illustrated in Fig. 45

A. ARCHITECTURAL DIVERSITY AND VENDOR
SPECIFICITY

SmartNICs can have different architectural models, each
requiring unique programming approaches. Even within

107327

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

[212], [213]

[110]
[210] 1571

[12]

Architectural
diversity

P4 codes

SmartNICs
challenges
and trends

Performance
‘.. unpredict.

Slow path
bottleneck

[211] [215]

[188], [219] [2161-1218]

FIGURE 45. Challenges and future trends. The references represent
examples of existing works that tackle the corresponding future trends.

the same architecture, SmartNICs from different vendors
may necessitate proprietary SDKs and distinct programming
methods, which present several challenges:

o Vendor Lock-In: Developers may become dependent
on a specific vendor’s SDK, making it challenging
to migrate to alternative SmartNICs or adopt new
technologies. For instance, consider the scenario where
a developer has written a packet processing logic
using DOCA for BlueField SmartNICs. If they were to
transfer this logic to Xilinx FPGA-based SmartNICs,
they would need to rewrite the entire logic from
scratch.

o Reduced Collaboration: Proprietary SDKs hinder col-
laboration and knowledge shared among developers,
as expertise gained in one ecosystem may not be easily
transferable to another.

o Increased Development Time and Costs: When devel-
opers need to tailor their code for each SmartNIC’s
proprietary SDK, it significantly increases development
time and costs. Instead of focusing on advancing the
functionality and performance of their applications,
developers must spend valuable resources adapting their
code to work with different SmartNIC architectures and
vendor-specific APIs. This diversion of resources can
slow down the pace of innovation within organizations
and the industry as a whole.

Current and Future Initiatives: To address these challenges
and foster innovation in the SmartNIC space, there is
a growing need for standardized programming interfaces
and open-source development frameworks. Standardization
efforts could promote interoperability among SmartNICs
from different vendors and enable developers to write code
that is portable across various architectures. Additionally,
open-source initiatives can encourage collaboration, drive
community-driven innovation, and provide developers with

107328

‘ Pipeleon

User’s P4 | Top-k Optimization
program

: pipelets/* ﬁ\v
.p4 4’3 .p4 7
Instrument -)
: @roﬁllng P4

Lower-level compilers

SmartNIC

FIGURE 46. Pipeleon workflow. Reproduced from [57].

more flexibility and control over their software stack. Several
initiatives (e.g., OPIL, IPDK, SONiC-DASH) aim to establish
standard APIs for SmartNIC programming and administra-
tion, reducing vendor dependency. However, vendor-specific
functions remain a challenge for generalization.

B. NON-OPTIMIZED P4 CODES

Developers have been using low-level optimization to
enhance the performance of packet processing in SmartNICs.
Recently, vendors are embracing P4 as a uniform program-
ming model for SmartNICs [54], [81], [96]. While P4 allows
ease of programming and offers a high-level standardized
model, it does not guarantee the optimal performance on
SmartNICs. This is because the P4 compilers were optimized
for switch ASICs which have a different execution model
than SmartNICs. With switch ASIC, if the program compiles,
the packet processing executes at line rate. SmartNICs on
the other hand follow the run-to-completion model, where
packets are assigned to a particular processing engine during
the lifetime. With multicore SmartNICs, the packets may
experience variable latencies depending on the complexity of
the program and its execution paths.

Current and Future Initiatives: A noteworthy work
by Xingetal.[57] presented an automated performance
optimization framework (Pipeleon) for P4 programmable
SmartNICs, see Fig. 46. The framework uses profile-guided
optimizations to adapt the P4 program based on the
runtime profiles (e.g., traffic patterns, and table entries).
The input to this framework is a P4 program which is then
partitioned into smaller code snippets called pipelets. The
framework leverages the reconfigurability of the SmartNICs
(e.g., those that follow the disaggregated dRMT architec-
ture [220], [221]) to realize a more efficient implementation.
The framework was tested with BlueField2 and Agilio
CX SmartNICs and the results show that the optimiza-
tions significantly improve the SmartNIC performance in
various use cases by up to 5x. Due to such results,
it would be beneficial to improve the existing P4 compilers
to be tailored to SmartNICs and to consider runtime
profiles.

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

FIGURE 47. (a) Non-optimized placement; (b) optimized placement. The
inter-device transmissions (red arrows) between SmartNIC and CPU lead
to additional element graph latency. Reproduced from [213].

C. COMPLEX FUNCTIONS OFFLOADING

Effectively utilizing SmartNICs for running offloaded func-
tions presents several challenges. First, SmartNICs have
limited computational and memory resources, which restricts
the number of functions that can be accommodated on them.
Second, although it is technically possible to host switching
exclusively on the SmartNIC, doing so incurs considerable
latency costs for packets moving between the functions
deployed on the SmartNIC and those on the host. This is due
to the overhead caused by the multiple traversals across the
host PCI bus. Third, distributing the functions between the
host and the SmartNIC introduces management challenges.
Current and Future Initiatives: Le et al. [212] presented
UNO, a system that splits switching between the host
software and the SmartNIC. It uses linear programming
formulation to determine the optimal placement for functions.
UNO uses the traffic pattern and the load of the function as
input. The experiments show that the savings in processors
is up to eight host cores. UNO also reduces power by
2x. Another work by Wang et al. [213] optimizes the
placement of functions according to the processing and the
transmission latency. The system analyzes the dependencies
and formulates the partition and placement problem using 0-1
linear programming. The system minimizes The inter-device
transmissions between the SmartNIC and the CPU, see
Fig. 47.

D. PERFORMANCE UNPREDICTABILITY

When offloading a function to SmartNICs, developers
must refactor the core logic to align with the underlying
hardware. Determining the optimal offloading strategy may
not be straightforward. Moreover, the performance of ported
functions can vary among developers, relying heavily on

y Lad]

NAT

-
[e)]
T

Normalized latency

= N B~
T

FIGURE 48. Normalized latency for different implementations of
functions: Network Address Translation (NAT), DPI, Firewall (FW), LPM,
Heavy Hitter (HH). Reproduced from [215].

VOLUME 12, 2024

their understanding of NIC capabilities, see Fig. 48. For
instance, using the flow cache can offer orders of magnitude
improvement in latency compared to DRAM [215]. This
is entirely related to how the programmer implements the
code. The performance is also influenced by traffic workloads
(e.g., flow volumes, packet sizes, arrival rates). Additional
functions on the SmartNIC can pose further challenges,
particularly with memory-intensive functions potentially
impacting cache utilization for others, and compute-intensive
functions potentially causing head-of-line blocking at accel-
erators [215]. All these factors often lead to unexpected
performance fluctuations when migrating a function to a
SmartNIC. While benchmarking the program will produce
performance results, it requires that the program be already
developed on the SmartNIC.

Current and Future Initiatives: Performance prediction can
help the developer gain insight prior to porting the code
to the hardware. Clara [215] predicts the performance of
an unported function on a hypothetical SmartNIC target.
Initially, it constructs a model for a given SmartNIC.
Then, it creates performance profiles for that SmartNIC by
conducting hardware microbenchmarks, which encompass
tests on memory latency, accelerator throughput, etc. Clara
then creates a code and examines it to identify segments
that could be fully offloaded to the SmartNIC. It evaluates
the optimal mapping by incorporating constraints derived
from the logical NIC model, performance parameters, and
code segments. By resolving these constraints, Clara can
establish a mapping that optimizes performance after porting.
Finally, Clara tests with a PCAP file and assesses how packets
would traverse the mapping, thereby providing predictions
regarding latency and throughput.

E. POOR SECURITY ISOLATION

Commodity SmartNICs suffer from poor isolation between
offloaded functions and between functions and data center
operators [214]. This limitation is a result of the limited
access controls on the NIC memory and the absence of
virtualization for hardware accelerators. These shortcomings
compromise the robustness and security of individual func-
tions, especially in a multi-tenant environment. Additionally,
any buggy or compromised code within the NIC poses a
risk to all other functions running on it. Concrete attacks on
popular SmartNICs including packet corruption, DPI rules
stealing, and 10O bus denial of service, are presented in [214].
Current and Future Initiatives: Zhou et al. [214] proposed S-
NIC, a hardware design that enforces disaggregation between
resources. S-NIC isolates functions at both the ISA level
and the microarchitectural level. This ensures integrity and
confidentiality, as well as mitigating against side-channel
attacks. The design is cost-effective and requires minimal
changes to the hardware (e.g., die area). However, it still
incurs modest degradation in the performance. Future work
could explore alternative architectures that have less impact
on performance, or other software-based techniques to isolate
the resources.

107329

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

Logically-centralized Logically-centralized

Control Plane ‘ ‘ Control Plane ‘

A A
Runtime API
Y)
Runtime API i
| Slow Path | cru |
) RPC/PC|€ T l ASIC :
Data Plane ‘ ‘ Data Plane FPGA |

(a) SDN in theory (b) SDN in reality

FIGURE 49. (a) SDN in theory; (b) SDN in reality. Reproduced from [211].

F. SLOW PATH BOTTLENECK

Over recent years, there has been a continuous improvement
in the performance of packet-processing data planes, leading
to their predominant implementation in hardware such as
SmartNICs and programmable switches. Yet, there has been a
lack of focus on the slow path, the interface between the data
plane and the control plane, which is traditionally considered
non-performance critical. The slow path is responsible for
handling a subset of traffic that requires special processing
(complex control flow, compute, memory resources). These
tasks cannot be executed on the data plane, see Fig. 49. The
slow path is executed on the CPU cores, whether on the host
or the SmartNIC.

Lately, the slow path is becoming a major bottleneck,
driven by the surge in physical network bandwidth and the
increasing complexity of network topologies. There is a
growth in slow-path traffic in tandem with user traffic.
Current and Future Initiatives: There is a need to re-evaluate
the current approach to balancing workload distribution
between the data plane and the slow path. Zulfigar et al. [211]
articulated the limitations of the current slow path and argued
that the solution is to have a domain-specific accelerator for
the slow path. A challenge with creating such an accelerator
is to design a generic architecture with common primitives
that support most of the slow path use cases. Ideally, the
accelerator would have predictable response times, fast table
updates, and support large memory pools. Further, the paper
advocates extending the match-action model found in most
packet processing devices to match-compute for the slow
path.

G. ML OFFLOAD COMPLEXITY

Offloading the training or the inference in ML from the
CPU/GPU to SmartNICs comes with a set of challenges that
limit the scalability and innovation of the deployed models.

o Accuracy vs Compatibility tradeoff. Some hardware
architectures do not support floating-point numbers and
complex operations, which are required by advanced
ML models, such as neural networks. Workarounds that
are proposed to overcome these limitations come at the
expense of sacrificing the accuracy of the ML model.

107330

TABLE 12. Abbreviations used in this article.

Abbreviation Term

ACL Access Control List

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ANOVA Analysis of Variance

API Application Programming Interface
ASIC Application Specific Integrated Circuit
BCC BPF Compiler Collection

BPF Berkeley Packet Filter

CLI Command Line Interface

CMS Count-min Sketch

CPU Central Processing Unit

DNN Deep Neural Network

DIP Dynamic IP

DOCA Data Center-on-a-Chip Architecture
DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DPU Data Processing Unit

DRAM Dynamic Random Access Memory
eBPF Extended Berkeley Packet Filter
ESnet Energy Sciences Network

FPGA Field Programmable Gate Array
GPU Graphics Processing Units

GRE Generic Routing Encapsulation

GUI Graphical User Interface

HDL Hardware Description Language
HPC High Performance Computing

IDE Integrated Development Environment
IDS Intrusion Detection System

1P Internet Protocol

IPDK Infrastructure Programmer Development Kit
IPU Infrastructure Processing Unit

IPS Intrusion Prevention System

IPSec Internet Protocol Security

IT Information Technology

JBOF Just a Bunch of Flash

KPI Key Performance Indicators

kTLS Kernel TLS

LAN Local Area Network

LUT Lookup Table

LPM Longest Prefix Matching

LSB Least Significant Bit

MBR Maximum Bit Rate

ML Machine Learning

NAS Network Attached Storage

NAT Network Address Translation

NFV Network Function Virtualization
NGFW Next-Generation Firewall

NIC Network Interface Card

NLP Natural Language Processing

NVMe Non-Volatile Memory Express
NVMe-oF Non-Volatile Memory Express over Fabric
OFS Open FPGA Stack

OPAE Open Programmable Acceleration Engine
OPI Open Programmable Infrastructure
oS Operating System

OvS Open vSwitch

P4 Programming Protocol-independent Packet Processor
PCle Peripheral Component Interconnect Express
PISA Protocol Independent Switch Architecture
PMD Poll Mode Driver

PNA Portable NIC Architecture

PSA Portable Switch Architecture

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

RDMA Remote Direct Memory Access

RPC Remote Procedure Call

RSS Receive Side Scaling

RTL Register Transfer Level

SAN Storage Area Network

SDK Software Development Kit

SDN Software Defined Network

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

TABLE 12. (Continued.) Abbreviations used in this article.

Abbreviation Term
SoC System on a Chip

SPAN Switched Port Analyzer
SPDK Storage Performance Development Kit
SSD Solid State Drives

SVM Support Vector Machine

TCP Transmission Control Protocol
TLS Transport Layer Security

™ Traffic Manager

TRNG True Random Number Generator
TSO TCP Segmentation Offload
uBPF Userspace BPF

UE User Equipment

UPF User Plane Function

URL Uniform Resource Locator
VIP Virtual IP

VM Virtual Machine

VPP Vector Packet Processor
VTEP VXLAN Tunnel End Point
VXLAN Virtual Extensible LAN

XDP eXpress Data Path

xPU Auxiliary Processing Unit

« Restriction on the adopted ML algorithm. Despite the
continuous exploration of deploying ML models, such
as neural networks and decision trees in SmartNICs,
a multitude of algorithms, such as Principal Compo-
nent Analysis (PCA), Genetic Algorithms, are yet to
be explored. Additionally, models that are currently
deployed are static and any update to the model requires
temporarily halting the programmable network device
until the new model is compiled and pushed.

« Flexibility of aggregate functions: In the context of
training ML models, the traditional aggregate functions
are ‘min’, ‘max’, ‘count’, ‘sum’, and ‘avg’. However,
over time, several approaches started adopting and pro-
viding user-defined aggregate functions. Implementing
such functions over some hardware architectures used in
SmartNICs is not straightforward.

Current and Future Initiatives: Migration of functionality
is one technique that can overcome the restrictions of
updating the data plane on the fly. For instance, before
the programmable network processor is updated, its func-
tionalities are migrated to another device so that network
communication is not interrupted. To deal with the lack of
support of floating-points, approaches such as [219] translate
floating-point numbers to integers using quantization (i.e.,
a fixed-point representation of decimal numbers). Such
technique can also be used in complex neural network
models that need to be simplified to fit in the data
plane. To reduce communication overhead, Ma et al. [188]
compresses the parameters (i.e., gradients) before sharing
them in the network. Such approaches can enhance network
performance, especially when numerous networking devices
are cooperating.

H. LACK OF TRAINING RESOURCES

There is an evident lack of detailed documentation and
training resources that adequately cover SmartNIC program-
ming and configuration. While some vendors may provide

VOLUME 12, 2024

reference applications, basic documentation, and training
courses (e.g., [222]), they often fall short of providing
the in-depth explanations and hands-on experience that
developers need. This makes it difficult for newcomers to
understand the intricacies of SmartNIC development and
configuration.

Current and Future Initiatives: To address this issue, it is
essential for vendors to invest in creating comprehensive
training materials, including detailed documentation, tutori-
als, and hands-on labs. These resources should cover various
aspects of SmartNIC programming and configuration, from
basic concepts to advanced techniques. Additionally, vendors
could offer interactive online courses or workshops led by
experienced instructors to provide personalized guidance
and support for learners. Some YouTube channels are
posting the latest advances and updates on SmartNICs (e.g.,
STH [216], SNIA [217], OPI [218]). However, they are
still not comprehensive enough to allow a beginner to start
experimenting with SmartNICs.

Xil. CONCLUSION

The evolution of computing has encountered significant
challenges with the end of Moore’s Law and Dennard
Scaling. The emergence of SmartNICs, which combine
various domain-specific processors, represents a pivotal
shift towards offloading infrastructure tasks and improving
network efficiency. This paper has filled a critical void
in the literature by providing a comprehensive survey of
SmartNICs, encompassing their evolution, architectures,
development environments, and applications. The paper
has delineated the wide array of functions offloaded to
SmartNICs, spanning network, security, storage, and com-
pute tasks. The paper has also discussed the challenges
associated with SmartNIC development and deployment, and
pinpointed key research initiatives and trends that could be
explored in the future. Evidence suggests that SmartNICs
are poised to become integral components of every network
infrastructure. Smaller networks, which often lack deep
technical expertise, can leverage SmartNICs for offloading
routine infrastructure tasks. On the other hand, larger and
research-oriented networks, with experienced developers,
will leverage SmartNICs for offloading complex tasks that
are not well-suited for general-purpose CPUs.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan. 1998.

[2] G. Moore, “Progress in digital integrated electronics,” in Proc. Electron
Devices Meeting, 1975, pp. 11-13.

[3] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,
and A. R. Leblanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” Proc. IEEE, vol. 87, no. 4, pp. 668-678, Apr. 1999.

[4] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[S] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proc. Spring Joint Comput. Conf.

AFIPS (Spring), Apr. 1967, pp. 483—485.

J. Faircloth, Enterprise Applications Administration: The Definitive

Guide to Implementation and Operations. San Mateo, CA, USA: Morgan

Kaufmann, 2013.

[6

—

107331

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

[7]

[8]

[9]

[10]

[11]

[12]
[13]

(14

[15]

(16

[17]

[18]

[19]

[20

[21]

[22]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

S. Ibanez, M. Shahbaz, and N. McKeown, “The case for a network
fast path to the CPU,” in Proc. 18th ACM Workshop Hot topics Netw.,
Nov. 2019, pp. 52-59.

M. Metz. (2022). SmartNICs and Infrastructure Acceleration
Report 2022. AvidThink. [Online]. Available: https://avidthink.com/
announcements/smartnics-infrastructure-acceleration-report-2022/

A. Ageev, M. Foroushani, and A. Kaufmann, “Exploring domain-
specific architectures for network protocol processing,” in Proc.
Cloud@MICRO Virtual Workshop, Oct. 2021. [Online]. Available:
https://cloudmicroworkshop.github.io/

E. Tell, “A domain specific DSP processor,” Institutionen for Sys-
temteknik, Linkoping, Tech. Rep. LiTH-ISY-EX-3209, 2001.

D. Caetano-Anolles. (2022). Hardware—Optimizations—
SSD—CPU—GPU—FPGA—TPU. GATK. [Online]. Available:
https://gatk.broadinstitute.org/hc/en-us/articles/360035531632-
Hardware-optimizations-SSD-CPU-GPU-FPGA-TPU

Google. Encryption in Transit. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/436vh9jh

J. Morra. Is This the Future of the SmartNIC?. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/ydruSbcp

Microsoft. Azure SmartNIC. Accessed: Aug. 2,2024. [Online]. Available:
https://tinyurl.com/4sj7m7mp

S. Schweitzer, ‘“‘Architectures, boards, chips and software,” presented
at the SmartNIC Summit, 2023. [Online]. Available: https:/
smartnicssummit.com/proceeding_files/a0q5f000003HkUt/20230614_
PLEN_Schweitzer.PDF

AMD. (2022). AMD Collaborates With the
Network on Launch of Its Next-Generation,
Network to Enhance Data-Intensive Science.
https://tinyurl.com/ycyb382t

VMware. DPU-based Acceleration for NSX. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/238v6j5h

Palo Alto Networks. (2022). Intelligent Traffic
SmartNIC/DPU for Hyperscale Security. [Online].
https://tinyurl.com/d322nda7

Juniper Networks. (2021). SmartNICs Accelerate the New Network Edge.
[Online]. Available: https://tinyurl.com/2uh6uh7t

S. Vural. (2021). SmartNICs in Telco: Benefits and Use Cases. [Online].
Available: https://tinyurl.com/8amw8s74

D. Z. tootaghaj, A. Mercian, V. Adarsh, M. Sharifian, and P. Sharma,
“SmartNICs at edge for transient compute elasticity,” in Proc. 3rd Int.
Workshop Distrib. Mach. Learn., Dec. 2022, pp. 9-15.

C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and
N. Zilberman, “In-network machine learning using programmable net-
work devices: A survey,” IEEE Commun. Surveys Tuts., vol. 26, no. 2,
pp. 1171-1200, 2nd Quart., 2024.

I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “FABRIC: A national-scale programmable
experimental network infrastructure,” IEEE Internet Comput., vol. 23,
no. 6, pp. 38-47, Nov. 2019.

Energy Sciences
High-Performance
[Online]. Available:

Offload Uses
Available:

GEANT. GEANT Testbed. Accessed: Aug. 2, 2024. [Online]. Available:
https://geant.org/
GEANT. (2023). High-Performance Flow Monitoring Using

Programmable Network Interface Cards. [Online]. Available: https:/
resources.geant.org/wp-content/uploads/2023/02/GN4-3_White-Paper_
High-Performance-Flow-Monitoring-Using-Programmable-NICs.pdf

E. D. C. Pontes, M. Martinello, C. K. Dominicini, M. Schwarz,
M. Ribeiro, E.S.Borges, I. Brito, J. Bezerra, and M. Barcellos,
“FABRIC testbed from the eyes of a network researcher,” in Proc. Anais
do 1l Workshop de Testbeds (WTESTBEDS), Aug. 2023, pp. 38—49.

D. Cerovic, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 3645-3676, 4th Quart., 2018.

Linux Found. DPDK. [Online]. Available: https://www.dpdk.org/

Ntop Eng. PF_RING: High-Speed Packet Capture, Filtering and Anal-
ysis. Accessed: Aug. 2, 2024. [Online]. Available: https://tinyurl.com/
yzwcdt3s

T. Marian, K. S. Lee, and H. Weatherspoon, “NetSlices: Scalable
multi-core packet processing in user-space,” in Proc. ACM/IEEE Symp.
Architectures for Netw. Commun. Syst. (ANCS), Oct. 2012, pp. 27-38.
L. Rizzo, “netmap: A novel framework for fast packet I/O,” in Proc. 21st
USENIX Secur. Symp. (USENIX Security), 2012, pp. 101-112.

107332

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

E. Freitas, A. T. de Oliveira Filho, P. R. X. do Carmo, D. Sadok,
and J. Kelner, “A survey on accelerating technologies for fast network
packet processing in Linux environments,” Comput. Commun., vol. 196,
pp. 148-166, Dec. 2022.

L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvari, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance
acceleration techniques for network function virtualization,” Proc. IEEE,
vol. 107, no. 4, pp. 746764, Apr. 2019.

X. Fei, F. Liu, Q. Zhang, H. Jin, and H. Hu, “Paving the way for NFV
acceleration: A taxonomy, survey and future directions,” ACM Comput.
Surv., vol. 53, no. 4, pp. 1-42, Jul. 2021.

P. Shantharama, A. S. Thyagaturu, and M. Reisslein, ‘“Hardware-
accelerated platforms and infrastructures for network functions: A survey
of enabling technologies and research studies,” IEEE Access, vol. 8,
pp. 132021-132085, 2020.

M. A. M. Vieira, M. S. Castanho, R. D. G. Pacifico, E. R. S. Santos,
E. P. M. C. Jinior, and L. F. M. Vieira, “Fast packet processing with
eBPF and XDP: Concepts, code, challenges, and applications,” ACM
Comput. Surv., vol. 53, no. 1, pp. 1-36, Jan. 2021.

L. Rosa, L. Foschini, and A. Corradi, “Empowering cloud computing
with network acceleration: A survey,” IEEE Commun. Surveys Tuts.,
early access, Mar. 14, 2024, doi: 10.1109/COMST.2024.3377531.

E. F. Kfoury, J. Crichigno, and E. Bou-Harb, ““An exhaustive survey on P4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends,” IEEE Access, vol. 9, pp. 87094-87155, 2021.

F. Hauser, M. Hiberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with P4:
Fundamentals, advances, and applied research,” J. Netw. Comput. Appl.,
vol. 212, Mar. 2023, Art. no. 103561.

0. Michel, R. Bifulco, G. Rétvari, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, pp. 1-36, May 2022.

E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, ““A survey on data
plane flexibility and programmability in software-defined networking,”
IEEE Access, vol. 7, pp. 47804-47840, 2019.

W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data
plane programmability beyond OpenFlow: Opportunities and challenges
for network and service operations and management,” J. Netw. Syst.
Manage., vol. 25, no. 4, pp. 784-818, Oct. 2017.

Y. Gao and Z. Wang, “A review of P4 programmable data planes for
network security,” Mobile Inf. Syst., vol. 2021, pp. 1-24, Nov. 2021.

A. AlSabeh, J. Khoury, E. Kfoury, J. Crichigno, and E. Bou-Harb,
“A survey on security applications of P4 programmable switches and
a STRIDE-based vulnerability assessment,” Comput. Netw., vol. 207,
Apr. 2022, Art. no. 108800.

X. Chen, C. Wu, X. Liu, Q. Huang, D. Zhang, H. Zhou, Q. Yang,
and M. K. Khan, “Empowering network security with programmable
switches: A comprehensive survey,” [EEE Commun. Surveys Tuts.,
vol. 25, no. 3, pp. 1653-1704, 3rd Quart., 2023.

R. Parizotto, B. L. Coelho, D. C. Nunes, I. Haque, and A. Schaeffer-Filho,
“Offloading machine learning to programmable data planes: A system-
atic survey,” ACM Comput. Surv., vol. 56, no. 1, pp. 1-34, Jan. 2024.
W. Quan, Z. Xu, M. Liu, N. Cheng, G. Liu, D. Gao, H. Zhang, X. Shen,
and W.Zhuang, “Al-driven packet forwarding with programmable
data plane: A survey,” I[EEE Commun. Surveys Tuts., vol. 25, no. 1,
pp. 762-790, 1st Quart., 2023.

J. Gomez, E. E. Kfoury, J. Crichigno, and G. Srivastava, “A survey on
TCP enhancements using P4-programmable devices,” Comput. Netw.,
vol. 212, Jul. 2022, Art. no. 109030.

S. Han, S. Jang, H. Choi, H. Lee, and S. Pack, “Virtualization in
programmable data plane: A survey and open challenges,” IEEE Open
J. Commun. Soc., vol. 1, pp. 527-534, 2020.

J. A. Brito, J. I. Moreno, L. M. Contreras, M. Alvarez-Campana, and
M. B. Caamaiio, “Programmable data plane applications in 5G and
beyond architectures: A systematic review,” Sensors, vol. 23, no. 15,
p- 6955, Aug. 2023.

A. Mazloum, E. Kfoury, J. Gomez, and J. Crichigno, “A survey
on rerouting techniques with P4 programmable data plane switches,”
Comput. Netw., vol. 230, Jul. 2023, Art. no. 109795.

M. Chiesa, A. Kamisiriski, J. Rak, G. Rétviri, and S. Schmid, “A survey
of fast recovery mechanisms in the data plane,” Authorea Preprints,
vol. 23, pp. 1253-1301, Jan. 2023.

VOLUME 12, 2024

http://dx.doi.org/10.1109/COMST.2024.3377531

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

[53]

[54]
[55]

[56]

[57]

[75]

[76]

[77]

[78]
[79]
[80]
[81]
[82]

[83]

NVIDIA. NVIDIA Mellanox BlueField-2 Data Processing Unit (DPU).
Accessed: Aug. 2, 2024. [Online]. Available: https:/tinyurl.com/
yrky7ee5

AMD. Pensando DSC2-200 Distributed Services Card. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/yr6eeez6

AMD. Xilinx Alveo SN1000 SmartNIC. Accessed: Aug. 2,2024. [Online].
Available: https://tinyurl.com/pxacmnd9

N. McKeown. Why Does the Internet Need a Programmable
Forwarding Plane. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/ffajhk9y

J. Xing, Y. Qiu, K.-F. Hsu, S. Sui, K. Manaa, O. Shabtai, Y. Piasetzky,
M. Kadosh, A. Krishnamurthy, T. S. E. Ng, and A. Chen, “Unleashing
SmartNIC packet processing performance in P4,” in Proc. ACM
SIGCOMM Conf., Sep. 2023, pp. 1028-1042.

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit., Jun. 2015, pp. 158-169.
S. H. Venkata Krishnan, “Enabling applications to exploit SmartnICS and
FPGAs,” OpenFabrics Alliance, Austin, TX, USA, Tech. Rep., 2019.
NVIDIA. ConnectX-5 EN Card. Accessed: Aug. 2, 2024. [Online].
Available: https:/tinyurl.com/nhcf26nr

NVIDIA. ConnectX-6 LX 25/50G Ethernet SmartNIC. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/4at7npy5
NVIDIA. ConnectX-6 Dx 200G Ethernet SmartNIC. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/2e59ts66
NVIDIA. ConnectX-7 400G Adapters. Accessed: Aug. 2,2024. [Online].
Available: https://tinyurl.com/hndz6yxm

Achronix. Vectorpath Accelerator Card. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/yc7xachz

AMD. Xilinx Alveo U50 Data Center Accelerator Card. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/nhbe4xbd

AMD. Xilinx Alveo U55C Data Center Accelerator Cards. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/mr4887yw

AMD. Alveo U200 and U250 Data Center Accelerator Cards. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/2p9tzav3

AMD. Alveo U280 Data Center Accelerator Card. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/bdfzke7z
Napatech. NT200A02 SmartNIC With Link-Capture Software. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/y4xbyypy
Silicom. Silicom FPGA SmartNIC N501x Series. Accessed: Aug. 2, 2024.
[Online]. Available: https:/tinyurl.com/4s9mwr88

Silicom. Silicom N5110A SmartNIC Intel Based. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/yskzrzah

Silicom. FPGA SmartNIC FB2CDGI@AGM39D-2 Intel Based.
Accessed: Aug. 2,2024. [Online]. Available: https://tinyurl.com/3rsbur47
Silicom. FPGA SmartNIC N6010/6011 Intel Based. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/3syps38s

Silicom. FB4XXVG@Z21D TimeSync SmartNIC FPGA Xilinx Based.
Accessed: Aug. 2, 2024. [Online]. Available: https://tinyurl.com/
4vdbp3jd

NVIDIA. Mellanox Innova-2 Flex Open Programmable SmartNIC.
Accessed: Aug. 2, 2024. [Online]. Available: https://tinyurl.com/
3wdy3hxd

AMD. Pensando Giglio Data Processing Unit. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/yst9b77m

AMD. Pensando DSC2-100 100G 2p QSFP56 DPU and DSC2-
25 10/25G 2p SFP56 DPU Distributed Services Cards for VMware
VSphere Distributed Services Engine. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/38ax5jkb

Asterfusion. Helium EC2004Y. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/3bkpn6yv

Asterfusion. Helium Ec2002p. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/psfr4w6d

Broadcom. Stingray PS225 SmartNIC Adapters. Accessed: Aug. 2,2024.
[Online]. Available: https://tinyurl.com/5f3rpu45

Intel. Infrastructure Processing Unit (Intel IPU) ASIC E2000. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/5d3rbjfb

Marvell. Marvell LiquidlO III. Accessed: Aug. 2, 2024. [Online].
Available: https:/tinyurl.com/a7r69vpc

Netronome. Agilio FX 2xI10GbE SmartNIC. Accessed: Aug. 2, 2024.
[Online]. Available: https://www.corigine.com/UploadFiles/pdf/2021-
07-22/124033028154158.pdf

VOLUME 12, 2024

[84]

[85]
[86]
[87]
[88]
[89]

[90]

[91]

[92]

[93]

[94]
[95]
[96]
[97]
[98]
[99]
[100]
[o1]
[102]
[103]

[104]

[105]
[106]
[107]
[108]
[109]
[110]
[
[12]
[113]

[114]
[115]

Netronome. Agilio CX 2x40GbE SmartNIC. Accessed: Aug. 2, 2024.
[Online]. Available: https://www.corigine.com/UploadFiles/pdf/2021-
07-22/124033028154158.pdf

NVIDIA. NVIDIA BlueField-3 Networking Platform. Accessed: Aug. 2,
2024. [Online]. Available: https://tinyurl.com/3e5v2xd2

AMD. Xilinx Alveo U25N SmartNIC. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/2dwz7dxe

AMD. Alveo U45N Data Center Accelerator Card. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/mvtbshy3

Intel. FPGA Product Catalog. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/ykvxkj3c

Napatech. SmartNIC and IPU Hardware Portfolio. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/yxcbx2p9

M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartNICs using iPipe,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 318-333.

T. Cui, W. Zhang, K. Zhang, and A. Krishnamurthy, “Offloading load
balancers onto SmartNICs,” in Proc. 12th ACM SIGOPS Asia—Pacific
Workshop Syst., Aug. 2021, pp. 56-62.

N. Systems, ‘“Programming netronome Agilio® SmartNICs,”
Netronome, Cranberry township, PA, USA, Whitepaper 17, 2017,
pp. 1-14.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014.
P4 Lang. Consortium. P4_I4 Language Specification. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/hzujjzt7

P4 Lang. Consortium. P4_I16 Language Specification. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/5fvfnd8t

P4 Portable NIC Architecture (PNA). Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/3v6etke2

AMD. (2023). Xilinx Vivado Design Suite 2023. Accessed: Aug. 2, 2024.
[Online]. Available: https://www.xilinx.com

Intel. Intel P4 Suite for FPGA. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/42rztah2

Linux Found. DPDK Supported Hardware. Accessed: Aug. 2, 2024.
[Online]. Available: https://core.dpdk.org/supported/

Linux Found. DPDK Pipeline Application. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/udutp3jf

Linux Found. Generic Flow API (rte_flow) Documentation. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/3pwwnnx2

S. Horman, “OvS hardware offload with TC flower,” presented at
Netronome, 2017.

NVIDIA. DOCA Flow. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/bdfx7u98

NVIDIA. (2019). Mellanox ASAP2 Accelerated Switching and Packet
Processing, ConnectX ASAP2—Accelerated Switcha Packet Processing.
[Online]. Available: https://network.nvidia.com/files/doc-2020/
sb-asap2.pdf

NVIDIA. DOCA Developer Guide. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/2usa47hs

Intel. P4 Insight. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/2v2xajrf

AMD. Xilinx Vitis Networking P4. Accessed: Aug. 2, 2024. [Online].
Available: https://docs.amd.com/r/en-US/ug1308-vitis-p4-user-guide
AMD. Xilinx XRT and Vitis Platform Overview. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/y5jdsypx

Intel. Intel Open FPGA Stack. Accessed: Aug. 2, 2024. [Online].
Available: https://www.intel.com/

Linux Found. Open Programmable Infrastructure Project. Accessed:
Aug. 2, 2024. [Online]. Available: https://opiproject.org/

Linux Found. IPDK Documentation. Accessed: Aug. 2, 2024. [Online].
Available: https://ipdk.io/documentation/

Linux Found. Sonic-Dash. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/utcjchme

L. Xin. (2022). SONiC, Programmability & Acceleration. [Online].
Auvailable: https://tinyurl.com/musxey96

J. Thones, “Microservices,” IEEE Softw., vol. 32, no. 1, p. 116, Jan. 2015.
T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf. Internet
Meas., Nov. 2010, pp. 267-280.

107333

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

[116

[117

[118]

[119]

[120]

[121]

[122]

[123

[124]

[125]

[126]

[127]

[128

[129]

[130]

[131]

[132

[133]

[134]

[135]

[136]

[137]

[138]

Cisco. (2015). Cisco Global Cloud Index 2015-2020. [Online]. Available:
https://tinyurl.com/2ery68x4

V. Stafford, “Zero trust architecture,” NIST, Gaithersburg, MD, USA,
Tech. Rep. 800-207, 2020.

D. Basak, R. toshniwal, S. Maskalik, and A. Sequeira, *“Virtualizing
networking and security in the cloud,” ACM SIGOPS Operating Syst.
Rev., vol. 44, no. 4, pp. 86-94, Dec. 2010.

NVIDIA. DOCA Open VSwitch Layer-4 Firewall.
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/bdfctkaj
AMD. Achieve High Throughput: A Case Study Using a Pensando
Distributed Services Card With P4 Programmable Software-Defined
Networking Pipeline. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/yj9ttvnh

M. Gonen. Accelerating the Suricata IDS/IPS With NVIDIA
BlueField DPUs. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyur]l.com/ys8némmz

Zeek Project. Zeek, an Open Source Network Security Monitoring tool.
Accessed: Aug. 2, 2024. [Online]. Available: https://zeek.org/

Open Inf. Secur. Found. Suricata. Accessed: Aug. 2, 2024. [Online].
Auvailable: https://suricata.io/

Accessed:

Cisco. Snort—Network Intrusion Detection and Prevention System.
Accessed: Aug. 2, 2024. [Online]. Available: https://www.snort.org/

Z. Zhao, H. Sadok, N. Atre, J. Hoe, V. Sekar, and J. Sherry, “Achieving
100 Gbps intrusion prevention on a single server,” in Proc. 14th USENIX
Symp. Operating Syst. Design Implement. (OSDI), 2020, pp. 1083-1100.
J. Chen, X. Zhang, T. Wang, Y. Zhang, T. Chen, J. Chen, M. Xie, and
Q. Liu, “Fidas: Fortifying the cloud via comprehensive FPGA-based
offloading for intrusion detection: Industrial product,” in Proc. 49th
Annu. Int. Symp. Comput. Archit. Chicago, IL, USA: Industrial, Jun. 2022,
pp. 1029-1041.

Y. Zhao, G. Cheng, Y. Duan, Z. Gu, Y. Zhou, and L. Tang, ““Secure
IoT edge: Threat situation awareness based on network traffic,” Comput.
Netw., vol. 201, Dec. 2021, Art. no. 108525.

S. Panda, Y. Feng, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield,
and L. N. Bhuyan, “SmartWatch: Accurate traffic analysis and flow-state
tracking for intrusion prevention using SmartNICs,” in Proc. 17th Int.
Conf. Emerg. Netw. EXperiments Technol., Dec. 2021, pp. 60-75.

M. Wu, H. Matsutani, and M. Kondo, “ONLAD-IDS: ONLAD-based
intrusion detection system using SmartNIC,” in Proc. IEEE 24th Int.
Conf. High Perform. Comput. Commun. 8th Int. Conf. Data Sci. Syst. 20th
Int. Conf. Smart City 8th Int. Conf. Dependability Sensor, Cloud Big Data
Syst. Appl. (HPCC/DSS/SmartCity/DependSys), Dec. 2022, pp. 546-553.
K. Tasdemir, R. Khan, F. Siddiqui, S. Sezer, F. Kurugollu, and A. Bolat,
“An investigation of machine learning algorithms for high-bandwidth
SQL injection detection utilising BlueField-3 DPU technology,” in Proc.
IEEE 36th Int. System-on-Chip Conf. (SOCC), Sep. 2023, pp. 1-6.

S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and
R. Sommese, “Introducing SmartNICs in server-based data plane
processing: The DDoS mitigation use case,” IEEE Access, vol. 7,
pp. 107161-107170, 2019.

Open Inf. Secur. Found. Ignoring Traffic. Accessed: Aug. 2, 2024.
[Online]. Available: https:/tinyurl.com/f2kn3snm

R. Yavatkar. SmartNICs Accelerate the New Network Edge. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/2af6yfp3

M. Ceska, V. Havlena, L. Holik, J. Korenek, O. Lengdl, D. Matousek,
J. Matousek, J. Semric, and T. Vojnar, “Deep packet inspection in
FPGAs via approximate nondeterministic automata,” in Proc. IEEE 27th
Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
Apr. 2019, pp. 109-117.

Y.-H. Yang and V. Prasanna, “High-performance and compact architec-
ture for regular expression matching on FPGA,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1013-1025, Jul. 2012.

D. Matousek, J. Korenek, and V. Pus, “High-speed regular expres-
sion matching with pipelined automata,” in Proc. Int. Conf. Field-
Programmable Technol. (FPT), Dec. 2016, pp. 93—100.

D. Luchaup, L. De Carli, S. Jha, and E. Bach, “Deep packet inspection
with DFA-trees and parametrized language overapproximation,” in
Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2014,
pp. 531-539.

M. Ceska, V. Havlena, L. Holik, O. Lengél, and T. Vojnar, “Approximate
reduction of finite automata for high-speed network intrusion detection,”
Int. J. Softw. tools Technol. Transf., vol. 22, no. 5, pp. 523-539, Oct. 2020.

107334

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]
[152]
[153]

[154]

[155]
[156]
[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

N. Diamond, S. Graham, and G. Clark, *“Securing InfiniBand traffic with
BlueField-2 data processing units,” in Proc. Int. Conf. Crit. Infrastructure
Protection, 2022, pp. 277-300.

Q. Su, S. Wu, Z. Niu, R. Shu, P. Cheng, Y. Xiong, Z. Liu, and
H. Xu, “Meili: Enabling SmartNIC as a service in the cloud,” 2023,
arXiv:2312.11871.

T. T. Bar Tuaf, Tal Gilboa. (2020). KTLS Offload Performance
Enhancements for Real-Life Applications. [Online]. Available:
https://tinyurl.com/24ep7pwc

D. Kim, S. Lee, and K. Park, “A case for SmartNIC-accelerated private
communication,” in Proc. 4th Asia—Pacific Workshop Netw., Aug. 2020,
pp. 30-35.

F. Novais and F. L. Verdi. Unlocking Security to the Board: An Evaluation
of SmartNIC-Driven TLS Acceleration With KTLS. Accessed: Aug. 2,
2024. [Online]. Available: https://tinyurl.com/2p92nsnj

J. Zhao, M. Neves, and 1. Haque, “On the (dis)advantages of pro-
grammable NICs for network security services,” in Proc. IFIP Netw.
Conf. (IFIP Networking), Jun. 2023, pp. 1-9.

B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer,” in Proc. Hotnets,
2009.

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, ‘Performance
characteristics of virtual switching,” in Proc. IEEE 3rd Int. Conf. Cloud
Netw. (CloudNet), Oct. 2014, pp. 120-125.

W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, ‘“Revisiting the open vSwitch
dataplane ten years later,” in Proc. ACM SIGCOMM Conf., Aug. 2021,
pp. 245-257.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, and P. Shelar, ““The design and implemen-
tation of open vSwitch,” in Proc. 12th USENIX Symp. Networked Syst.
design Implement. (NSDI), 2015.

VMware. VSphere Distributed — Switch.
https://tinyurl.com/2bpwzubd

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, Virtual Extensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
Over Layer 3 Networks, document RFC 7348, 2014.

J. Gross, 1. Ganga, and T. Sridhar, Geneve: Generic Network Virtualiza-
tion Encapsulation, document RFC 8926, 2020.

D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, Generic Routing
Encapsulation (GRE), document RFC 2784, 2000.

I. Burstein, “NVIDIA data center processing unit (DPU) architecture,”
in Proc. IEEE Hot Chips 33 Symp. (HCS), Aug. 2021, pp. 1-20.

J. Weerasinghe and F. Abel, “On the cost of tunnel endpoint processing
in overlay virtual networks,” in Proc. IEEE/ACM 7th Int. Conf. Utility
Cloud Comput., Dec. 2014, pp. 756-761.

L. Luo, “Towards converged SmartNIC architecture for bare metal &
public clouds,” in Proc. APNet Ind. Talks, 2018, pp. 1-28.

NVIDIA. Virtual Switch on DPU. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/5n8eb6bz

B. Claise, “Cisco systems NetFlow services export version 9,” RFC
Editor, USA, Tech. Rep. RFC 3954, 2004.

B. Claise, M. Fullmer, P. Calato, and R. Penno. (2005). IPFIX
Protocol Specification. Interrnet-Draft. ~ [Online]. Available:
https://www.ietf.org/proceedings/60/slides/ipfix-4.pdf

P4 Work. Group. In-band Network Telemetry (INT) Dataplane
Specification. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/4x9shr45

F. Brockners, S. Bhandari, D. Bernier, and T. Mizrahi, “In situ operations,
administration, and maintenance (IOAM) deployment,” RFC Editor,
USA, Tech. Rep. RFC 9378, 2023.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp- 58-75, Apr. 2005.

B. Bloom, ““Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Comput. Netw., vol. 57, no. 18,
pp. 4047-4064, Dec. 2013.

Z. Zeng, L. Cui, M. Qian, Z. Zhang, and K. Wei, “A survey on sliding
window sketch for network measurement,” Comput. Netw., vol. 226,
May 2023, Art. no. 109696.

[Online]. Available:

VOLUME 12, 2024

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

IEEE Access

[165]

[166]

[167

[168]

[169]

[170]

[171]

[172

[173]
[174]

[175

[176]

[177]

[178

[179

[180

[181]

[182]

[183]

[184]

[185

[186]

[187]

J. White, J. Kim, M. Baldi, Y. Li, and D. MclIntyre. XPU Accelerator
Offload Functions. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/rzyfx5b4

T. Cui, C. Zhao, W. Zhang, K. Zhang, and A. Krishnamurthy, ‘“Laconic:
Streamlined load balancers for SmartNICs,” 2024, arXiv:2403.11411.
X. Huang, Z. Guo, and M. Song, “FGLB: A fine-grained hardware intra-
server load balancer based on 100 g FPGA SmartNIC,” Int. J. Netw.
Manage., vol. 32, no. 6, Nov. 2022, Art. no. e2211.

B. Chang, A. Akella, L. D’ Antoni, and K. Subramanian, “Learned load
balancing,” in Proc. 24th Int. Conf. Distrib. Comput. Netw., Jan. 2023,
pp. 177-187.

Z.Ni, C. Wei, T. Wood, and N. Choi, “A SmartNIC-based load balancing
and auto scaling framework for middlebox edge server,” in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2021, pp. 21-27.

H. Tajbakhsh, R. Parizotto, M. Neves, A. Schaeffer-Filho, and I. Haque,
“Accelerator-aware in-network load balancing for improved application
performance,” in Proc. IFIP Netw. Conf. (IFIP Networking), Jun. 2022,
pp. 1-9.

R. Durner, A. Varasteh, M. Stephan, C. M. Machuca, and W. Kellerer,
“HNLB: Utilizing hardware matching capabilities of NICs for offloading
stateful load balancers,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2019, pp. 1-7.

Y. Zhang, J. Bi, Z. Li, Y. Zhou, and Y. Wang, “VMS: Load balancing
based on the virtual switch layer in datacenter networks,” IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1176-1190, Jun. 2020.

H. Krawczyk, “New hash functions for message authentication,” in Proc.
Int. Conf. Theory Appl. Cryptograph. Techn., 1995, pp. 301-310.

Linux Found. Scaling in the Linux Networking Stack. Accessed:
Aug. 2, 2024. [Online]. Available: https://tinyurl.com/4{jv42hj
Napatech. 5G User Plane Function Offload. Accessed: Aug. 2, 2024.
[Online]. Available: https://tinyurl.com/4jxxeh8t

R. Davis. NVIDIA BlueField Partner’s DPU Storage Solutions
and Use Cases. Accessed: Aug. 2, 2024. [Online]. Available:
https://tinyurl.com/2s4kmkrp

Y. Li, A. Kashyap, Y. Guo, and X. Lu, “Characterizing lossy and lossless
compression on emerging BlueField DPU architectures,” in Proc. IEEE
Symp. High-Performance Interconnects (HOTI), Aug. 2023, pp. 33-40.
L. Peter, DEFLATE Compressed Data Format Specification Version 1.3,
document RFC 1951, 1996.

L. Peter and J. Gailly, ZLIB Compressed Data Format Specification
Version 3.3, document RFC 1950, 1996.

X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “SZ3: A
modular framework for composing prediction-based error-bounded lossy
compressors,” IEEE Trans. Big Data, vol. 9, no. 2, pp.485-498,
Apr. 2023.

E. de Rothschild. (Jun. 2023). Ai Insights—Is the Acceleration of the
Power of Al Models a Recent Phenomenon?. [Online]. Available:
https://www.linkedin.com/pulse/ai-insights-acceleration-power-models-
recent-phenomenon

Z. Ma et al., “BaGuaLu: Targeting brain scale pretrained models with
over 37 million cores,” in Proc. 27th ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., Apr. 2022, pp. 192-204.

A. Moody, J. Fernandez, F. Petrini, and D. K. Panda, ““Scalable NIC-
based reduction on large-scale clusters,” in Proc. ACM/IEEE Conf.
Supercomputing, Nov. 2003, p. 59.

A. Santos da Silva, J. A. Wickboldt, L. Z. Granville, and
A. Schaeffer-Filho, “ATLANTIC: A framework for anomaly traffic
detection, classification, and mitigation in SDN,” in Proc. IEEE/IFIP
Netw. Operations Manage. Symp., Apr. 2016, pp. 27-35.

T. Itsubo, M. Koibuchi, H. Amano, and H. Matsutani, ‘‘Accelerating deep
learning using multiple GPUs and FPGA-based 10GbE switch,” in Proc.
28th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Mar. 2020, pp. 102-109.

K. Tanaka, Y. Arikawa, T. Ito, K. Morita, N. Nemoto, F. Miura, K. Terada,
J. Teramoto, and T. Sakamoto, “Communication-efficient distributed
deep learning with GPU-FPGA heterogeneous computing,” in Proc.
IEEE Symp. High-Perform. Interconnects (HOTI), Aug. 2020, pp. 43-46.
NVIDIA. NVIDIA DOCA Allreduce Application Guide. Accessed:
Aug. 2, 2024. [Online]. Available: https://docs.nvidia.com/doca/sdk/
nvidia+doca+allreduce+application+guide/index.html

VOLUME 12, 2024

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]
[208]
[209]
[210]

[211]

R. Ma, E. Georganas, A. Heinecke, S. Gribok, A. Boutros, and
E. Nurvitadhi, “FPGA-based Al smart NICs for scalable distributed Al
training systems,” IEEE Comput. Archit. Lett., vol. 21, no. 2, pp. 49-52,
Jul. 2022.

Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proc. 18th ACM Workshop Hot
topics Netw., Nov. 2019, pp. 25-33.

S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, ‘“The
P4->NetFPGA workflow for line-rate packet processing,” in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, Feb. 2019,
pp. 1-9.

B. M. Xavier, R. S. Guimardes, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in Proc.
IEEE Conf. Comput. Commun., May 2021, pp. 1-10.

D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the
Al accelerator?” in Proc. Morning Workshop In-Network Comput.,
Aug. 2018, pp. 20-25.

J.Liu, A. Dragojevic, S. Fleming, A. Katsarakis, D. Korolija, I. Zablotchi,
H.-C. Ng, A. Kalia, and M. Castro, “Honeycomb: Ordered key-value
store acceleration on an FPGA-based SmartNIC,” IEEE Trans. Comput.,
vol. 73, no. 3, pp. 857-871, Mar. 2024.

Redis. (2024). The Real-Time Data Platform. [Online]. Available:
https://redis.io/

B. Fitzpatrick. (Aug. 1, 2004). Distributed Caching with Memcached.
Accessed: Aug. 2, 2024. [Online]. Available: https://www.linuxjournal.
com/article/7451

A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson, ‘“FaRM: Fast
remote memory,” in Proc. 11th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2014.

C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build a
fast, CPU-efficient key-value store,” in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2013, pp. 103-114.

A. Kalia, M. Kaminsky, and D. G. Andersen, ‘“Using RDMA efficiently
for key-value services,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
Pp. 265-306.

A. Kalia, M. Kaminsky, and D. Andersen, ‘“Design guidelines for high
performance RDMA systems,” in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2016, pp. 437-450.

B. Cassell, T. Szepesi, B. Wong, T. Brecht, J. Ma, and X. Liu, “Nessie:
A decoupled, client-driven key-value store using RDMA,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 12, pp. 3537-3552, Dec. 2017.

S. Sun, R. Zhang, M. Yan, and J. Wu, “SKV: A SmartNIC-offloaded
distributed key-value store,” in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), Sep. 2022, pp. 1-11.

A. Kalia, M. Kaminsky, and D. Andersen, ‘“Datacenter RPCs can be
general and fast,” in Proc. 16th USENIX Symp. Networked Syst. Design
Implement. (NSDI, 2019, pp. 1-16.

H.-H. Chen, C.-H. Chang, and S.-H. Hung, “HKVS: A framework
for designing a high throughput heterogeneous key-value store with
SmartNIC and RDMA,” in Proc. Conf. Res. Adapt. Convergent Syst.,
Oct. 2022, pp. 99-106.

J. Li, Y. Lu, Q. Wang, J. Lin, Z. Yang, and J. Shu, “AINiCo SmartNIC-
accelerated contention-aware request scheduling for transaction process-
ing,” in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2022, pp. 951—
966.

H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy, *“Xenic:
SmartNIC-accelerated distributed transactions,” in Proc. ACM SIGOPS
28th Symp. Operating Syst. Princ., Oct. 2021.

S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “A-NIC:
Interactive serverless compute on programmable SmartNICs,” in Proc.
IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Nov. 2020,
pp. 67-77.

Amazon. Serverless Function, FaaS Service, AWS Lambda. Accessed:
Aug. 2, 2024. [Online]. Available: https://aws.amazon.com/lambda/
Google. Google Cloud Functions. Accessed: Aug. 2, 2024. [Online].
Available: https://tinyurl.com/acayx98p

Microsoft. Azure Functions. Accessed: Aug. 2,2024. [Online]. Available:
https://tinyurl.com/a7wat88a

Linux Found. /PDK. Accessed: Aug. 2, 2024. [Online]. Available:
https://ipdk.io/

A. Zulfiqar, B. Pfaff, W. Tu, G. Antichi, and M. Shahbaz, “The slow
path needs an accelerator too!” ACM SIGCOMM Comput. Commun. Rev.,
vol. 53, no. 1, pp. 3847, Jan. 2023.

107335

IEEE Access

E. F. Kfoury et al.: Comprehensive Survey on SmartNICs

[212] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift,
and T. V. Lakshman, “UNO: Uniflying host and smart NIC offload for
flexible packet processing,” in Proc. Symp. Cloud Comput., Sep. 2017,
pp. 506-519.

[213] S.Wang,Z. Meng, C. Sun, M. Wang, M. Xu, J. Bi, T. Yang, Q. Huang, and
H. Hu, “SmartChain: Enabling high-performance service chain partition
between SmartNIC and CPU,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1-7.

[214] Y. Zhou, M. Wilkening, J. Mickens, and M. Yu, “SmartNIC security
isolation in the cloud with S-NIC,” in Proc. 19th Eur. Conf. Comput. Syst.,
2024, pp. 851-869.

[215] Y. Qiu, Q. Kang, M. Liu, and A. Chen, ‘“Clara: Performance clarity for

SmartNIC offloading,” in Proc. 19th ACM Workshop Hot topics Netw.,

Nov. 2020.

The Official ServeTheHome.com YouTube Channel. Servethehome.

Accessed: Aug. 2, 2024. [Online]. Available: https://tinyurl.com/

ycS8uapm

[217] The Official SNIA YouTube Channel. SNIAVideo. Accessed:

Aug. 2, 2024. [Online]. Available: https://tinyurl.com/3bhdb7kd

The Official OPI YouTube Channel. The Open Programmable Infras-

tructure. Accessed: Aug. 2, 2024. [Online]. Available: https://www.

youtube.com/@OPI_project

[219] K. A. Simpson and D. P. Pezaros, “Revisiting the classics: Online RL
in the programmable dataplane,” in Proc. IEEE/IFIP Netw. Operations
Manage. Symp., Apr. 2022, pp. 1-10.

[220] J. Xing, K. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime programmable switches,” in Proc. 19th USENIX
Symp. Networked Syst. Design Implement. (NSDI), 2022, pp. 651-665.

[221] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, 1. Keslassy, A. Orda, and
T. Edsall, “DRMT: Disaggregated programmable switching,” in Proc.
Conf. ACM Special Interest Group Data Commun., Aug. 2017, pp. 1-14.

[222] NVIDIA. Introduction to DOCA for DPUs. Accessed: Aug. 2, 2024.
[Online]. Available: https:/tinyurl.com/4tux5eb9

[216

[218

ELIE F. KFOURY (Member, IEEE) received the
Ph.D. degree in informatics from the University of
South Carolina (USC), in 2023. He was a Research
and Teaching Assistant with the Computer Science
Department, American University of Science and
Technology, Beirut. He is currently an Assis-
tant Professor with the Integrated Information
Technology Department, USC. As a member of
the Cyberinfrastructure Laboratory, he developed
training materials using virtual labs on high-speed
networks, TCP congestion control, programmable switches, SDN, and cyber-
security. He is the co-author of a book High-Speed Networks: A Tutorial, that
is being used nationally for deploying, troubleshooting, and tuning Science
DMZ networks. His research interests include P4 programmable data planes,
computer networks, cybersecurity, and blockchain.

SAMIA CHOUEIRI received the master’s degree
in computer and communications engineering
with an emphasis in mechatronics engineering
from the American University of Science and
Technology, Beirut. She is currently pursuing the
Ph.D. degree with the College of Engineering and
Computing, University of South Carolina (USC).
She was a Teaching Assistant and a Laboratory
Instructor with the American University of Science
and Technology. Her research interests include
SmartNICs, P4 switches, cybersecurity, and robotics.

107336

ALl MAZLOUM (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
science from the American University of Beirut
(AUB). He is currently pursuing the Ph.D. degree
with the College of Engineering and Computing,
University of South Carolina (USC), USA. His
research interests include P4 programmable data
planes, SmartNICs, cybersecurity, network mea-
surements, and traffic engineering.

ALl ALSABEH received the M.S. degree in
computer science from the American University
of Beirut. He is currently pursuing the Ph.D.
degree with the College of Engineering and
Computing, University of South Carolina, USA.
He was a Graduate Research Assistant and a
Teacher Assistant with the American University of
Beirut. He is a member of the CyberInfrastructure
Laboratory (CI Lab), where he developed training
materials for virtual labs on network protocols
(BGP and OSPF) and their applications (BGP attributes, BGP hijacking,
and IP spoofing), as well as SDN (OpenFlow and interconnecting SDN with
legacy networks). His research interests include malware analysis, network
security, and P4 programmable switches.

JOSE GOMEZ is currently pursuing the Ph.D.
degree with the College of Engineering and
Computing, University of South Carolina. He is
with the Cyberinfrastructure Laboratory develop-
ing a system based on P4 switches to enable
programmability in non-programmable networks.
His research interests include P4 programmable
data planes, TCP congestion control, passive
measurements, and buffer sizing.

JORGE CRICHIGNO (Member, IEEE) received
the bachelor’s degree in electrical engineering
from the Catholic University of Paraguay, in 2004,
and the Ph.D. degree in computer engineering
from The University of New Mexico, in 2009.
He is currently a Professor with the College of
Engineering and Computing, University of South
Carolina (USC). He has over 15 years of experi-
ence in the academic and industry sectors. Before
joining USC, he was an Associate Professor and
the Chair of the Department of Engineering, Northern New Mexico
College. His work has been funded by Google, NSF, and the Department
of Energy. His research interests include the practical implementation
of high-speed networks and network security. These include the design
and implementation of high-speed switched networks, TCP optimization,
experimental evaluation of congestion control algorithms tailored for
friction-free environments, and scalable flow-based intrusion detection
systems.

VOLUME 12, 2024

