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Abstract

Domain Generation Algorithms (DGAs) are highly effective strategies employed by malware to establish connections with Com-
mand and Control (C2) servers. Mitigating DGAs in high-speed networks can be challenging, as it often requires resource-intensive
tasks such as extracting high-dimensional features from domain names or collecting extensive network heuristics. In this paper,
we propose an innovative framework leveraging the flexibility, per-packet granularity, and Terabits per second (Tbps) process-
ing capabilities of P4 programmable data plane switches for the rapid and accurate detection and classification of DGA families.
Specifically, we use P4 switches to extract a combination of unique network heuristics and domain name features through shallow
and Deep Packet Inspection (DPI) with minimal impact on throughput. We employ a two-fold approach, comprising a line-rate
compact Machine Learning (ML) classifier in the data plane for DGA detection and a more comprehensive classifier in the control
plane for DGA detection and classification. To validate our approach, we collected malware samples totaling hundreds of Gigabytes
(GBs), representing over 50 DGA families, and utilized campus traffic from normal benign users. Our results demonstrate that our
proposed approach can swiftly and accurately detect DGAs with an accuracy of 97% and 99% in the data plane and the control
plane, respectively. Furthermore, we present promising findings and preliminary results for detecting DGAs in encrypted Domain
Name System (DNS) traffic. Our framework enables the immediate halting of malicious communications, empowering network
operators to implement effective mitigation, incident management, and provisioning strategies.

Keywords: DGA detection and classification, P4 programmable switches, high-speed networks, machine learning, DPI, encrypted
DNS traffic

1. INTRODUCTION

Cybersecurity Ventures predicts cybercrime costs will soar
to $10.5 trillion by 2025 [1]. Attackers use C2 servers, or ren-
dezvous points, for communication to steal data, control com-
promised systems, and conduct malicious activities [2]. Com-
munication methods are broadly categorized as static or dy-
namic. Static methods rely on fixed IP addresses and domain
names, making them detectable and less favored by adversaries
[3]. In contrast, dynamic methods, exemplified by DGAs,
continually shift IPs and domains, presenting formidable chal-
lenges [4]. DGAs, extensively used by cybercriminals, generate
thousands of domains daily to elude next-generation firewalls
and denylists [4]. Malware utilizing DGAs queries the DNS
to resolve IPs, with only a small fraction being associated with
the C2 server, while the remainder yields Non-Existent Domain
(NXD) responses [5].

Ultimately, the advent of DGAs has put practitioners at a
disadvantage, as such algorithms create a high asymmetry be-
tween attackers and defenses, due to the fact that an attacker
only requires a single domain from which to control and send
commands to infected machines, whereas defenses must con-
trol all of the domains in order to mitigate the attack. To put
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the magnitude of this disadvantage in perspective, the DGA of
the Conficker botnet, whose first variant appeared in Octo-
ber 2008 and was followed by several other variants, generated
tens of thousands of pseudo-random domains registered in more
than 100 Top-Level Domains (TLDs). The operational response
to Conficker required an ad hoc partnership between Inter-
net security researchers, operating system companies, antivirus
software vendors, law enforcement parties, ICANN, TLD reg-
istries, and registrars around the world to contain the threat [6].

Current research into DGAs primarily focuses on detection
(binary decision to segregate DGAs from benign traffic) and
classification (multiclass classification to assign the DGA to a
family). Generally, such approaches either rely on contextual
network traffic collected retrospectively (context-aware) or an-
alyze domain name features without depending on other meta-
data (context-less) [7]. While context-less approaches can ob-
tain high accuracy, they require a general-purpose Central Pro-
cessing Unit (CPU) / Graphics Processing Unit (GPU) to ex-
tensively process and analyze the domain names, which could
create a bottleneck and significantly impact throughput due to
the ubiquitous use of DNS on the Internet. On the other hand,
context-aware approaches can be slow since they typically ana-
lyze batches of traffic offline (e.g., using NetFlow [8]).

According to the 2023 global DNS traffic of one of the largest
DNS authoritative DNS providers, NS1 saw a consistent one
million DNS queries per second, 10% being NXD responses.
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Additionally, some companies managed by NS1 reported over
60% NXD responses [9]. These statistics render even state-of-
the-art approaches that exclusively analyze NXD responses in-
feasible, necessitating an efficient solution capable of detecting
DGAs without disrupting high-speed networks.

While the challenges of promptly fingerprinting DGA ar-
tifacts are glaring, the introduction of the P4 programmable
switches technology offers practitioners a unique opportunity
to achieve this aim. More specifically, the P4 language [10] and
the programmable devices it is compiled on, allow network op-
erators to describe in the software (i.e., within the P4 program)
how packets are processed. The flexibility offered by the P4
language allows network designers to overcome the restrictions
of the Software-Defined Networking (SDN) paradigm coupled
with OpenFlow protocol, which is restricted to a fixed set of
header fields [11]. For instance, when new versions of Open-
Flow emerge, each one should be first approved by the Open
Networking Foundation (ONF) and then implemented by hard-
ware manufacturers [12]. Since the emergence of the P4 lan-
guage, several network applications were offloaded to the data
plane, allowing operators to implement custom switch-based
programs that execute at wire speed (reaching 25.6 Tbps [13]).
A program that performs DPI on a general-purpose server sim-
ply cannot keep pace with today’s busy networks, resulting in
severe network bottlenecks or even crashes.

To address the aforementioned shortcomings, this paper pro-
poses a novel framework for performing the detection and clas-
sification of DGA families via the P4 programmable data plane
technology. The proposed framework leverages the customiza-
tion that P4 switches offer to offload a unique hybrid feature
extraction technique to the data plane. The selected features
are a combination of context-aware and context-less attributes,
extracted via shallow and deep inspection of the packet, respec-
tively. Such a framework allows bypassing the latency asso-
ciated with extracting context-aware analysis and the potential
bottlenecks and privacy issues coupled with context-less tech-
niques. To this end, the contributions of this paper are summa-
rized as follows:

• Introducing a novel framework that leverages P4 switches
employing a hybrid context-aware and context-less feature
extraction technique entirely in the data plane to overcome
the associated obstacles of past DGA detection and classi-
fication techniques.

• Developing an in-network mechanism on Intel’s Tofino
chipset [23] for the purpose of processing the entirety of
the domain name. This mechanism extracts both structural
and statistical features to detect DGAs within ≈ 1-2 mi-
croseconds (µs), orders of magnitude faster than state-of-
the-art (by hundreds and thousands of microseconds). This
preserves the privacy of users while reducing the overhead
on the control plane associated with feature extraction and
preprocessing.

• Evaluating the proposed approach on 57 notable DGA
families collected by crawling hundreds of gigabytes of
malware samples from multiple sources. The proposed

approach demonstrated that it can classify DGAs with
very high accuracy from only a small number of NXD
responses. The implementation codes and the collected
dataset are made publicly available to facilitate research
developments in this area [24].

• Presenting novel findings and promising results on detect-
ing DGAs in encrypted DNS over Transport Layer Secu-
rity (TLS), referred to as DoT, using features that address
the limitations of the programmable data plane.

The remainder of the paper is organized as follows. In Sec-
tion 2, we highlight the related work and how they compare to
our approach. Subsequently, Section 3 provides a background
on DGAs and P4 switches. In Section 4, we describe the pro-
posed approach, present the selected features, and detail the P4
implementation. We then present the experimental results of
the proposed approach in Section 5, in addition to showcasing
the methodology and experiments conducted to deal with DoT.
Section 6 presents some discussions and limitations pertaining
to our proposed system. Section 7 concludes the paper with
discussions and future work in this area.

2. Related Work

2.1. DGA Binary and Multiclass Classification

The vast majority of DGA detection techniques rely on using
either context-aware or context-less features to output a binary
decision on whether a DGA exists in the network or not. In
terms of context-aware approaches, Grill et al. [8] utilized Net-
Flow whereas Iuchi et al. [14] relied on an SDN controller to
perform the feature collection for DGA detection. However,
such approaches can cause additional delays. For example, the
average latency in [14] was approximately 3 seconds, which is
larger than the timeout limit of the “nslookup” tool used for re-
solving domain names (2 seconds). In a novel work, Ahmed
et al. [15] developed an SDN monitoring system to mon-
itor TCP/UDP flows corresponding to DGA-based malware-
infected devices based on the OpenFlow switches. The pro-
posed approach sends a copy of all incoming DNS responses
and checks whether any domain name exists in DGArchive (re-
ferred to as suspicious network traffic). If so, a copy of all sus-
picious network traffic is analyzed by an ML-based packet pro-
cessing engine. EXPOSURE [16] is a technique that utilizes
context-less and context-aware features to detect DGAs. The
proposed system reduced the volume of traffic being processed
by sampling subsets of traffic to accommodate the server’s re-
sources. However, the sampling of data might result in missing
some activities that might be malicious.

Alternatively, context-less approaches reduce some of the la-
tency of context-aware methods, at the risk of causing through-
put degradation and bottlenecks under high DNS traffic load.
FANCI [2] and ANCS [17] used a combination of multiple
structural, linguistic, and statistical features to detect malicious
Algorithmically Generated Domains (mAGDs), i.e., domain
names generated by DGAs. Their models required an average
of 2.5 and 100 milliseconds (ms), respectively, to detect if a
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Table 1: Comparison between DGA detection and classification approaches with our work.

Approach Detect Classify Features Traffic Monitored Performance
Context-

less
Context-

aware
DNS
Reqs

EXD
Reps

NXD
Reps CPU/GPU ASIC Latency

[8] ✓ ✓ ✓ ✓ t minutes
[14] ✓ ✓ ✓ ✓ ✓ t seconds
[15] ✓ ✓ ✓ ✓ t ms

EXPOSURE [16] ✓ ✓ ✓ ✓ ✓ ✓ t minutes
FANCI [2] ✓ ✓ ✓ t ms
ANCS [17] ✓ ✓ ✓ t ms

[18] ✓ ✓ ✓ t ms
[19] ✓ ✓ ✓ ✓ t ms

Phoenix [20] ✓ ✓ ✓ ✓ t ms
Pleiades [21] ✓ ✓ ✓ ✓ t ms
EXPLAIN [7] ✓ ✓ ✓ t 100’s µs

[22] ✓ ✓ ✓ ✓ t ms

Our Approach ✓ ✓ ✓ ✓ ✓ ✓ ❞q ✓
1-2 µs (0/1)

100’s µs (1..57)tHeavy usage ❞q Light usage (used if a DGA is detected in the ASIC)

domain name is an mAGD. Highnam et al. [18] and Yu et al.
[19] used Deep Learning (DL) to detect DGAs and their models
approximately took 10 ms and 50-70 ms, respectively.

Phoenix [20] is an earlier approach that detected and clus-
tered (i.e., classified DGAs into multiple clusters) DGAs using
a combination of linguistic and IP-based features. Focusing on
context-less features, Pleiades [21] clustered domains that are
similar based on syntactic features and those that are queried
by multiple machines. Additionally, Pleiades applied a classi-
fication algorithm to map the cluster to a DGA variant. EX-
PLAIN [7] extracted 76 features from a domain name within
tens to hundreds of microseconds on a dedicated GPU for ML
and achieved 81% accuracy in classifying DGAs. More re-
cently, Tuan et al. [22] improved DGA family classification
accuracy to 99% and 85.55% on two different datasets; how-
ever, the authors did not discuss key aspects pertaining to the
deployment feasibility of their approach, such as the monitoring
of DNS traffic, the time required to perform feature extraction
and inference, etc. In our previous work [25], we assumed that
a DGA exists in the network and we only performed family
classification (without detection) on 50 DGA families. Thus,
all the features were sent to the control plane to classify the
DGA to a family type without any intelligence running in the
programmable data plane. Additionally, the implementation in
the data plane required recirculation (i.e., reiterating the packet
multiple times) per each subdomain, which added substantial
processing overhead on the switch. Also, encrypted traffic was
also not addressed at all.

Table 1 compares DGA detection and classification ap-
proaches with our work, along with the latency required for
each. Essentially, our work is novel as it combines context-
aware and context-less feature extraction techniques entirely
in the programmable Application-Specific Integrated Circuit
(ASIC) switch; thus, accurately and swiftly detecting DGAs at
line rate. In particular, the switch takes 1−2 µs to perform DPI,
extract the features, and apply in-switch inference on whether a

DGA exists in the network or not (i.e., run a classifier in the data
plane to detect DGAs). Beyond this DGA detection, the control
plane is notified with all the extracted features to further make
a more accurate decision and subsequently classify the DGA
to a family (i.e., assigning a class between 1 and 57 represent-
ing the collected DGA families). The latency corresponding
to the DGA family classification is in tens to hundreds of mi-
croseconds. Such a framework is orders of magnitude faster
than CPU/GPU-based machines [7] and is scalable in high DNS
rates networks. Our work also presents novel results pertaining
to DGA detection within encrypted traffic.

2.2. DNS and DPI in P4

Meta4 [26] is a framework that monitors network traffic by
parsing a limited number of labels and characters of the domain
name in DNS replies. P4DDPI [27] is a previous work of ours
that increases the number of parsed labels in domain names
for the purpose of applying security functionalities. Kaplan
et al. [28] handle a vast majority of DNS packets in the data
plane without sacrificing the network bandwidth or tampering
with the DNS packets. Despite the novelty and effectiveness of
the aforementioned DNS inspection approaches, none of them
parse the whole domain name regardless of its size.

Our approach herein is the first approach that leverages P4
programmable switches to analyze network traffic at line rate
to detect and classify DGA-based malware infections. In par-
ticular, (1) the P4 programmable switch can perform real-time
analysis and DPI on domain names; (2) flexibly collect rele-
vant features that are not available in traditional routers; (3)
perform in-switch inference to detect DGAs; (4) involve the
control plane only when a DGA exists in the network for en-
hanced classification of the DGA family; (5) process Tbps of
network traffic, which is infeasible in general-purpose servers.
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3. Background

3.1. Domain Generation Algorithm (DGA)
DGAs generate domains by typically utilizing a seed, which

can consist of numeric constants, the current date/time, or even
Twitter trends [29]. The seed serves as a shared secret be-
tween attackers and infected machines to compute the shared
rendezvous points. By constantly generating domains, such at-
tackers do not have to hardcode the domains in their malware
binaries, thus rendering C2 takedown efforts largely ineffective
and negating static domain denylisting techniques. Addition-
ally, such constant domain generation circumvents domain rep-
utation services since the generated domains are short-lived.

According to Plohmann et al. [30], there were 43 DGAs
known by 2016, which has more than doubled to 99 domains
that are known today [31]. This increase is primarily attributed
to the ability of DGAs to dramatically improve the resistance
of many malicious activities to takedowns. The growing di-
versity of these algorithms can also be observed based on how
they generate domains. For instance, the Locky ransomware
generates domains with 5 − 18 characters while using one of
14 TLDs (e.g., “hjaoxrrwoocdsrr.uk”, “firrsn.yt”). On the other
hand, Emotet, an information-stealing malware, generates do-
mains with fixed lengths of 16 characters while exclusively
using the “.eu” domain (e.g., “fureeqnicoyejedm.eu”). While
these DGAs are considered among those that generate random
domains, other variants referred to as dictionary DGAs (e.g.,
Gozi and Matsnu) use a combination of random dictionary
words to generate domain names that closely mirror the appear-
ance of legitimate ones (e.g., “company-depend.com”, “salad-
doctortrainer.com”); thus making it more challenging for hu-
mans and traditional defenses to detect them. Indeed, the evo-
lution and proliferation of DGAs have necessitated state-of-the-
art ML-based DGA techniques to adjust their features accord-
ingly.

The majority of existing related works pertaining to DGA de-
tection and classification solely rely on the features of the do-
main name (see Table 1). The network characteristics of DGAs
(e.g., inter-arrival time between packets, protocol counts, etc.)
are not considered for several reasons, such as avoiding the ex-
haustion of the proposed system under high traffic loads and
preserving the privacy of the users. However, the aggregation
of network heuristics was proven to be highly effective in mal-
ware and botnet detection [32]. To this end, such heuristics are
incorporated into the proposed approach without significantly
affecting throughput.

3.2. Programmable Switch Primer
The programmable data plane enables network operators to

customize the behaviors of network devices, such as routers
and switches, that used to be proprietary with fixed function-
ality [33]. Fig. 1 shows the Protocol Independent Switch
Architecture (PISA), a data plane programming model that
includes the following elements: programmable parser, pro-
grammable match-action pipeline consisting of multiple stages,
and programmable deparser. The programmable parser is rep-
resented as a state machine that can define the headers that

Switch 
ASIC

Programmable 
parser

Programmable match-action pipeline 
(multiple match-action stages)

Programmable 
deparser

Packet Packet

State

…

Memory ALU

Figure 1: Components of a PISA-based data plane.

need to be parsed (e.g., Ethernet, IP, DNS, or even custom
headers). The programmable match-action pipeline consists of
multiple match-action units (control blocks) to match against
packet header fields and apply actions with supplied action
data. Each unit can include one or more Match-Action Tables
(MATs) that are coupled with Static Random Access Memory
(SRAM) or Ternary Content Addressable Memory (TCAM) for
storing lookup keys and the action data. The arithmetic op-
erations that are encoded in a program are implemented via
Arithmetic Logic Units (ALUs). Additional action logic can
be implemented using stateful objects, such as registers that
are stored in SRAM. Lastly, the programmable deparser de-
fines how packet headers are reassembled when they exit the
switch [34]. The high-level language for programming PISA
is P4. Unlike general-purpose programming languages, P4 is
domain-specific and optimized to handle Tbps of network traf-
fic.

Ever since the P4 language was proposed, the networking
community leveraged the flexibility and programmability of-
fered by the language to develop in-network applications per-
taining to In-band Network Telemetry (INT), load balancing,
network performance, security, and so forth. For instance,
Jaqen [35] designed a switch-native approach for Distributed
Denial of Service (DDoS) defense within seconds while han-
dling Tbps of traffic. Despite the exciting opportunities of
pushing custom network algorithms to the data plane, the P4
switch promises Tbps throughput by limiting the complexity
of pipeline stages and permitting only elementary actions (e.g.,
removing looping operations and allowing only simple arith-
metic). Additionally, the switch has a limited number of stages.
Essentially, any behaviors encoded within the same stage op-
erate in parallel, and therefore there can be no dependencies
between such behaviors (e.g., the results from one MAT are
needed to perform actions of another). As a result, the amount
of traditional sequential processing that can be done per a
packet’s pass through the program is bounded [36].

Several programmable architectures have been developed,
some with extended functionalities to provide more flexibility.
For instance, the Portable Switch Architecture (PSA), devel-
oped by the P4 Working Group (WG), is divided into ingress
and egress pipelines, each consisting of three programmable
parts: parser, multiple match-action control blocks, and de-
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Figure 2: System overview.

parser. PSA specifies several packet processing primitives, such
as packet recirculation that allows the packet to repeat ingress
processing once it has already traversed the egress pipeline.
Such a mechanism can be used to simulate loops in P4 and add
more processing logic to the packet. The Tofino Native Ar-
chitecture (TNA) is an extended version of the PSA developed
by Intel [34], and the P4 program of the proposed approach is
based on it.

4. Proposed System

4.1. System Overview
The primary goal of the proposed framework is to promptly

detect and classify DGAs to facilitate immediate incident re-
sponse and subsequent investigations. To this extent, we aspire
to fingerprint the existence of a DGA on the network as soon
as it begins attempting to resolve domain names (i.e., receiv-
ing NXD responses), and ultimately isolate the infected host
from the network before contacting the C2 server. To achieve
this aim, we offload the entirety of the feature extraction and
preprocessing steps to the data plane, which take place as pack-
ets traverse the switch’s pipeline. Subsequently, a subset of the
context-less (associated with the received NXD) and context-
aware features corresponding to the host receiving the NXD are
fed to a compact in-switch inference model to detect any traces
of a DGA. Consequently, detected DGAs in the data plane alert
the control plane for further investigation and classification of
the DGA. Indeed, the proposed approach offloads the bulk of
data processing and decision-making to the data plane that can
process Tbps and utilizes the control plane only when a serious
threat exists.

The high-level architecture of the proposed approach is
shown in Fig. 2, which can be summarized in the following
steps. (1) The P4 switch monitors the communication of the
internal network’s hosts with the Internet and counts the num-
ber of DNS requests and unique IPs contacted by each host
(context-aware features). (2) When an NXD response is re-
ceived, the switch parses the whole domain name and extracts
its context-less features (i.e., statistical and structural domain
name features). Furthermore, the switch updates other neces-
sary context-aware network features (e.g., inter-arrival times).

(3) Once the domain name and the features are extracted, the
switch takes a subset of these features and feeds them to the
ML classifier running at line rate to detect if the host receiving
this NXD is compromised with a DGA. (4) Next, if a DGA is
detected in the data plane, the switch sends all aggregated fea-
tures to the control plane via message digests. The latter passes
these features to a more comprehensive ML classifier that gives
more certainty on whether the host receiving the NXD response
is harboring a DGA. (5) If such a DGA presence is detected, the
control plane can promptly install a rule in the switch to block
the communication of the offending host. Additionally, it runs a
classification algorithm to assign a family to the detected DGA.
To maximize the effectiveness of the proposed architecture, the
programmable switch should be strategically placed to intercept
DNS queries from hosts to the DNS resolver/cache. Note that
such optimal placement varies from one network implementa-
tion to another; however, a P4 switch’s ability to seamlessly
process vast amounts of traffic allows for a broad array of de-
ployment scenarios.

4.2. Feature Selection

This section details the features selected by the proposed ap-
proach to detect a DGA and classify it using the P4 switch. To
realize the performance gains of P4-programmable switches,
the software and hardware limitations (e.g., limited memory
and arithmetic operations) must be adhered to; thus, special
consideration was taken to arrive at informative features that
can simultaneously be implemented within switch hardware in
a practical manner.

4.2.1. Context-aware Features
Context-aware features make use of the network traffic be-

havior of DGAs while they are attempting to contact the C2
server. In addition to having the potential to promote DGA de-
tection before the malware has made contact with the malicious
actor, network features can also enhance DGA classification
performance without relying heavily on complex domain name
feature extraction. To this extent, the proposed framework
leverages network-based features, labeled as context-aware, to
enhance its capacity to fingerprint DGA artifacts in a timely
manner.

Number of NXDs. Many state-of-the-art approaches focus
on non-resolving DNS traffic (i.e., NXDs) since the activity of
a DGA can be fingerprinted well before one of the mAGDs re-
solves to an IP address [37]. To empirically assess such in-
tuition, we examined the number of NXDs of normal hosts
(benign) within a campus network, in comparison to that from
DGA-based malware samples collected. While we found that
the number of NXDs mapped to DGAs is noticeably larger than
that for normal hosts, there are some exceptions, such as DNS
misconfigurations. For instance, benign hosts were repeatedly
querying the same domain “static.kpn.net.felk.cvut.cz” and get-
ting a large number of NXDs, which may be labeled as a DGA
by current defense strategies solely based on the number of as-
sociated NXDs. Note that the behavior of repeatedly querying
the same domain name successively is not common in DGAs, as
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Figure 3: Histogram of the number of unique NXDs in normal
users and DGA-based malware samples.

they generate different domains to evade being detected. Thus,
to reduce false positives, only unique NXDs should be counted
for each host in the network. This technique will render DNS
misconfigurations of a certain domain name to have a low num-
ber of NXDs, while DGAs would still have a high NXD count.
Fig. 3 validates this claim by showing the number of unique
NXDs corresponding to DGA-based malware samples and nor-
mal users in the campus network. Approximately, 90% of nor-
mal samples have less than 10 NXDs, compared to only 24% of
DGA samples.

Number of DNS requests and unique IPs contacted. Grill
et al. [8] used NetFlow to monitor the amount of DNS requests
(σ(a)) of each host (a) in the local network and the number of
unique IP addresses that it contacts (π(a)). The intuition be-
hind these features is that users in the network need to make a
DNS query before contacting any IP. Thus, normal users have
a low ratio of σ(a) over π(a), whereas DGAs have higher ratios
since, among all the DNS requests, only a few are contacted.
We corroborate this claim by plotting the Cumulative Distri-
bution Function (CDF) of the ratio of σ(a) over π(a) in both
DGA-based malware samples and normal hosts in a campus
network in Fig. 4. The samples taken in both datasets cor-
respond to those that show at least one NXD response during
the packet capture file. Additionally, since some samples could
have cached DNS records (especially in the campus network),
which leads to contacting IP addresses without resolving a do-
main, we omit the IP addresses that are seen before the first
DNS request for each host.

Critiques of [8] stress that monitoring all DNS traffic is re-
source intensive and intrusive, thus, they focus on monitoring
NXDs as it is orders of magnitude smaller than the full amount
of DNS traffic [37]. Such a claim is valid on general-purpose
CPUs (e.g., using NetFlow) which are not equipped to han-
dle DNS traffic rates, however, with P4 switches, monitoring
these statistics can be done at line rate, with per-packet granu-
larity. Our work monitors the features in [8] while having the
advantage of using P4 switches to solve its limitations. An-
other limitation of the work in [8] is that matching the requests
with responses in NetFlow is not straightforward since different

0 50 100 150 200 250 300
Ratio of DNS requests over unique IP addresses

0.0

0.2

0.4

0.6

0.8

1.0

CD
F DGAs
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Figure 4: CDF of the ratio of DNS requests over unique IP
addresses contacted in normal users and DGA-based malware
samples.

network probes have different error distributions of timestamps.
Additionally, the authors chose five minutes as a time interval to
collect the statistics in NetFlow for better performance. Such a
duration is too long and could potentially allow the C2 to com-
municate with the botnets. In our approach, such limitations
are resolved by using P4 registers to perform per-packet count-
ing and aggregation of these features for each host in the local
network. Additionally, since the inspection and aggregation are
done in-network, the timestamps of the flows would not be er-
roneous.

Inter-arrival time between NXDomains. DGA-based bot-
nets periodically repeat a certain cycle of DNS domain name
resolution until they resolve the IP address of the C2 server
[14]. Fig. 5a and Fig. 5b show the inter-arrival times of NXD
responses belonging to various DGA families, as well as nor-
mal samples in a campus network (Czech Technical University
(CTU)) over several days, respectively. For each sample (i.e.,
host) the average inter-arrival time of NXD responses is com-
puted.

The inter-arrival time values between NXD responses in the
majority of DGA families vary from milliseconds to tens of sec-
onds. With a few DGA families (Ctuwail, Ursniff, and Qsnatch)
having inter-arrival times ranging in 100-150 seconds, these
families are still well below that of typical normal hosts in CTU
traffic (hundreds and thousands of seconds). Smaller inter-
arrival times of NXD responses in normal hosts (e.g., CTU-48
and CTU-52) are typically due to a misconfigured service that is
repeatedly trying to resolve the same domain or a set of domains
that is down. Nonetheless, repeated domains can be ignored in
our system by observing only unique domain names in the data
plane (using the hash of the domain name). This variation of
inter-arrival times is an important metric used for both the de-
tection and classification of DGAs. A full list of inter-arrival
times of all DGA families and campus network benign samples
can be found online in our repository [24].
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Figure 5: Inter-arrival time of (a) NXD responses in normal users and (b) DGA-based malware samples.

4.2.2. Context-less Features
Our work aims to identify the features that have been proven

to be effective in the literature [38, 39] and can be implemented
in P4. In particular, we utilize the randomness of a certain do-
main by implementing the n-gram character frequency as a sta-
tistical feature, in addition to a number of structural features of
the domain name.

The 2-grams (bigrams) of a subdomain name d is a multi-
set of all character sequences b, such that b ∈ d and |b| = 2.
For instance, the bigrams of the word “google” are: “$g”, “go”,
“oo”, “og”, “gl”, “le”, and “e$” (the leading “$g” and trailing
“e$” bigrams are sometimes omitted). We utilize the bigram
frequency because the distribution of frequencies can vary be-
tween domain names belonging to DGAs and normal samples
(detection), as well as they can vary among DGA families based
on their algorithms (classification) [40]. Additionally, it is prac-
tical to store the distribution frequencies in the limited SRAM
in the data plane. To arrive at the bigram frequency feature on
the switch, the domain name D is first divided into multiple
subdomains, where each subdomain d can be viewed as a sep-
arate word. Subsequently, the bigram frequency distribution is
applied to each subdomain separately. Next, we calculate the
randomness of a domain name D according to formula 1. The
formula is adapted from [38], where the original one requires a
division operation which we eliminate since it is not supported
in the data plane. Despite this elimination, formula 1 can still
perform well in separating normal from random domains.

score (D) =
∑

∀ subdomain d ∈ D

 ∑
∀ bigram b ∈ d

f b
d

 (1)

where f b
d is the frequency of the bigram b in the subdomain

d, read from the pre-computed match-action tables. The fre-
quency of the bigrams utilized in this equation was obtained by
processing the English dictionary and the one million most pop-
ular domains by Cisco Umbrella (Top 1M) [41] and counting

Table 2: Notations used for P4-based domain name parsing.

Definition Notation
Domain name D

Length of the whole domain name L
Subdomain of a domain name d

Length of a subdomain l
Maximum len. of a subdomain parsed per iteration max len d
Maximum num. of subdomains parsed per iteration max nb ds
Maximum num. of characters parsed per iteration max chars

the number of occurrences of each bigram within every word.
Consequently, benign domains are more likely to have a high
bigram frequency value than DGA-based domains since they
are often meaningful [2].

The structural features of a domain name include the length
of the domain name, the number of subdomains, the TLD, and
the validity of the TLD. These features have been proven to be
useful for detecting and distinguishing DGA families [31], and
their implementation is feasible in the data plane [24].

4.3. P4 implementation

Parsing domain names in P4 switches has been discussed
and implemented in [42, 26]. However, their implementations
solely focus on fingerprinting a domain name in the data plane
without discussing or implementing other functionalities that
might not fit in the switch. In this section, we lay out the chal-
lenges associated with parsing domain names and extracting
their context-less features, in particular the n-gram frequency
value. Additionally, we detail our P4-based architecture that
extracts the domain name and the features in a novel optimized
technique. Our architecture can be easily adapted to scale with
the resources of P4 programmable devices. We use the defi-
nitions in Table 2 for generalization when discussing the chal-
lenges and implementations in P4.
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Figure 6: Challenges associated with domain name DPI and n-gram frequency computation in the parser and the match-action
pipeline.

4.3.1. Challenge 1: Limited Parsing Capabilities
PISA-based switches are designed to parse fixed headers,

thus, making it challenging to parse DNS domain names as
they have variable-length subdomains. A P4-based solution
for such a variable header length is to create a state for each
possible subdomain length. However, this creates a large num-
ber of possible states and could be infeasible with complex P4
programs. According to RFC 1035 [43], the length of a sub-
domain is limited to 63 characters (octets). Additionally, the
length of the entire domain name is limited to 255 characters
(including a byte for the length of each subdomain, and a zero
byte that terminates the whole domain). Each subdomain can
have one character, which makes the maximum number of sub-
domains =

⌊
255
2

⌋
= 127 (each subdomain is separated by the

dot “.” character). Therefore, the total number of possibilities
(states) is 63×127 (maximum number of characters in a subdo-
main multiplied by the maximum number of subdomains). The
parser design in Fig. 6 shows the states that cover all possible
subdomains and their lengths, where the maximum number of
subdomains max nb ds and the maximum length of a subdo-
main max len d parsed can go up to 127 and 63, respectively,
to cover all domain name combinations.

4.3.2. Challenge 2: Limited Number of Stages
Even if the parser allows for extracting a large number of

characters [26], the limited number of stages in the match-
action pipeline restricts the number of operations that can be
performed on the parsed header. For instance, Kaplan et al. [42]
can extract up to six subdomains (max nb ds = 6), each with
length up to 31 characters (max len d = 31) in the parser. How-
ever, the authors utilize a parser counter to limit the maximum
number of extracted characters to 60 (max chars = 60). Addi-
tionally, domain names with more than four subdomains cannot
be fingerprinted, i.e., cannot be inferred in the data plane using
MATs. Although the approach in [42] can handle a large num-
ber of domain names, it cannot be applied to our system since
each extracted subdomain of length l has a total of (l− n+ 1) n-
grams, and every n-gram requires a MAT to derive its frequency

value. Moreover, each subdomain requires multiple branches
(if conditions) to check for the validity of its headers before
applying the MATs for computing the n-gram frequency value.
Such features should be implemented all while taking into con-
sideration other features (e.g., inter-arrival times, number of
IPs and DNS requests, structural features of the domain name,
etc.). The match-action pipeline of Fig. 6 shows an example of
the MATs that need to be applied across multiple stages of the
pipeline to calculate the n-gram frequency value. The length of
each extracted subdomain d must be less than max chars minus
the lengths of all previously parsed subdomains. This condition
should be satisfied to adhere to the total number of characters
that can be extracted in the parser (max chars). Dissecting the
subdomains into multiple headers necessitates creating multiple
branches and logic for each subdomain separately, resulting in
increased resource utilization and limiting the number of sub-
domains that can be parsed.

In a previous work of ours [25], every pipeline pass parses
a maximum of seven characters from a single subdomain, then
the bigram of the extracted characters is computed. The limit
on the number of characters (seven characters) and labels (one
label) was chosen based on several attempts to fit the feature
extraction algorithm in the switch while respecting the limited
number of stages. However, extracting a single subdomain in
every pipeline pass could induce an excessive number of recir-
culations for many domains. For instance, the domain “a.bc.co”
would require three recirculations even though the length of the
entire domain is seven (including the dot “.” separators in the
middle), which could have been parsed in one pipeline pass if
it is treated as one subdomain (string). Therefore, a more opti-
mized and efficient P4 implementation is needed to be devised.

4.3.3. Proposed P4 Architecture
To tackle the first challenge, we approach parsing the entirety

of the domain name by utilizing packet recirculation. Subse-
quently, the domain name does not have to be fully parsed in
one pipeline pass. This allows for limiting the number of parsed
subdomains as well as the length of each subdomain.
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Figure 7: P4 implementation of the proposed approach showing the DPI mechanism and bigram frequency calculation of the
domain name “www.abcde.com”.

As for the second challenge, we aim to minimize the num-
ber of branches required for each subdomain by treating the
parsed characters in all the subdomains as one string and, sub-
sequently, computing the n-gram frequency of that string in-
stead. For instance, if the parsed domain is “www.abc”, we
compute the frequency value of the bigrams “ww”, “ww”, “w.”,
“.a”, “ab”, “bc”. Treating the parsed characters in all the subdo-
mains as one string is not a trivial task in P4 since the structure
of the DNS packet does not include the length of the whole do-
main name at once, but rather prepends each subdomain with
its corresponding length. Thus, when parsing a domain name,
we must first read the length of the subdomain, and then extract
it. We deal with the restrictions imposed by the P4 language
by utilizing the ingress and the egress parsers and match-action
pipelines as follows.

Ingress parser defines a limited number of subdomains
max nb ds and a limited number of characters max len d per
subdomain to be parsed. Additionally, the parser utilizes a
counter so that the total number of parsed characters across all
subdomains does not exceed max chars. Given a domain D, if
the first extracted subdomain d1 has a length l1, such that (l1 >=
max chars), then the ingress parser will extract max chars
characters of d1 and move to the ingress match-action pipeline,
where d1 is partially parsed. Otherwise (l1 < max chars), it
will extract the entirety of d1 and proceed to the next subdomain
d2 with length l2 and try to parse it. If (l1 + l2 < max chars),
then it will extract d2 and proceed to d3 similarly. Otherwise
(l1 + l2 > max chars), then it will only extract (max chars− l1)
characters from d2, and thus, d2 will be partially parsed. The ex-
tracted subdomains are stored in separate headers in the ingress
parser (variable-length subdomains cannot be extracted in one
header in P4), and hence, cannot be treated as one string in the
ingress match-action pipeline. The maximum length of the sub-
domain max len d is correlated with the maximum number of
characters parsed max chars. For instance, the first subdomain
can have (max len d = max chars). The second subdomain
can have (max len d = max chars − 1) since there will be one
byte representing the length of the second subdomain. The third
subdomain can have (max len d = max chars−2) and so forth.

Ingress match-action pipeline computes the number of
characters extracted in the ingress parser across all the subdo-

mains so that these characters can be extracted as one string in
the egress parser. The length of the extracted characters can be
characterized by formula 2:

N = min(max chars, l1 + 1 + l2 + 1 + ... + li) (2)

where l1..li correspond to the length of the extracted subdo-
mains d1..di. Adding a value of one for each additional sub-
domain parsed corresponds to the length of the subdomain (the
length of the subdomain is one byte, so it is represented as one
character).

A subdomain d j with length l j can have a length larger than
what the switch can pars This necessitates packet recircula-
tion to be utilized so that the domain is treated over multiple
pipeline passes. The subdomain d j would be partially parsed
in the current pipeline pass, since fully parsing it would ex-
ceed max chars. As a result, the ingress match-action needs
to compute the length of the remaining characters in a partially
parsed subdomain so that the rest of the domain name is parsed
in the next recirculation. The length of the remaining characters
within this subdomain is computed based on formula 3:

r = l j − max chars + l1 + 1 + l2 + 1 + ... + l j−1 + 1 (3)

Where l1...l j−1 correspond to the lengths of the subdomains
d1...d j−1 fully extracted before d j. The length of the remaining
unparsed characters r in d j is equal to the length of the subdo-
main l j subtracted to the number of characters that the switch
can currently parse (max chars − l1 − 1 − l2 − 1 − ... − l j−1).

Since multiple subdomains will be treated as one string in
the egress, this will introduce outlier n-grams when computing
the randomness (e.g., the bigrams “w.” and “.a” in “www.abc”).
These outlier n-grams are the ones that overlap between sub-
domains and contain the dot separator, which is in fact one
byte representing the length of the subdomain succeeding it.
For these outlier n-grams to have a frequency value of zero,
each byte representing the length of an extracted subdomain
(after the first subdomain) is replaced with a special character
that does not appear in an English word. The chosen special
character is the dot character “.”, represented in hexadecimal as
“0x2E”.
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Egress parser receives the number of characters that are ex-
tracted in the ingress and uses it to extract the characters as one
string.

Egress match-action pipeline computes the frequency value
of the n-grams obtained from the parsed subdomain (string) us-
ing a series of match-action tables, where the n-gram is the table
key and its value is computed offline and assigned using the ac-
tion data in P4. The performed computations, along with the
needed metadata are recirculated with the packet for additional
DPI.

Fig. 7 shows an example of how the switch performs DPI on
the domain “www.abcde.com” (represented as (0x3) www (0x5)
abcde (0x3) com) and extracts its n-gram frequency value. The
bigram is selected as it has been proven to be effective [2] and
requires fewer resources in the switch. To conform to the hard-
ware limitations, max chars is set to seven bytes (characters)
and max nb ds to three (subdomains). However, with future
P4 switches that are expected to have more resources, our code
is modular and could be easily adapted to parse more charac-
ters (i.e., by scaling these variables). The ingress parser fully
extracts the first subdomain “www” and partially extracts the
second subdomain (i.e., it only extracts “abc” from “abcde”),
since it cannot extract the whole subdomain (3+1+5 > 7). The
ingress match-action pipeline computes the number of charac-
ters extracted in the parser (“www.abc”) to be seven so that the
egress parser knows exactly how many characters to extract as
one string. Additionally, it computes the number of characters
remaining in the partially parsed subdomain (i.e., r = 2 repre-
senting “de” in “abcde”). This number is crucial when recircu-
lating the packet since the domain will start from “de”, and the
parser needs to know the length of the subdomain before pars-
ing it. Lastly, it swaps the length of the first subdomain with
seven, and that of the second domain with the special character
dot “.”. The egress parser will extract seven characters per the
information provided previously, then, the egress match-action
pipeline will read the string “www.abc” as one string and com-
putes the frequency of the bigrams “ww”, “ww”, “w.”, “.a”,
“ab”, and “bc”. The frequency value of any bigram contain-
ing the special character dot “.” is always zero.

The extracted characters will be removed while preserving
the computed features (e.g., bigram frequency value and the
number of characters extracted so far). Then, the packet gets
recirculated, where the domain name becomes “de.com”. Once
the whole domain is extracted, the context-less and context-
aware features are fed to a Random Forest (RF) classifier run-
ning in the ingress to check if the host receiving the NXD is
infected with DGA-based malware. The implementation of the
RF classifier follows a state-of-the-art optimized approach by
Flowrest [44] so that it can fit in the switch while also handling
DPI and feature extraction.

5. Evaluation

5.1. Dataset

Due to the increased interest in DGA detection, a plethora of
mAGD datasets exist (i.e., domain names generated by DGAs)

VirusTotal, Malpedia,
 VirusShare, Triage

Malware + 
metadata

Retrieve Submit, if

belongs to a 
DGA family Cuckoo 

sandbox

Behavioral 
analysis

Pcap file 

Analyze

DGArchive

Pcap file w/ NXD with domain 

names in DGArchive

Pcap file wo/ NXD with domain 

names in DGArchive
Discard

Store in dataset

Figure 8: Data collection and curation process of DGA sam-
ples.

[31, 45]. These datasets only comprise domain names and
therefore are not sufficient for techniques such as ours that
leverage network-related features. Moreover, due to privacy
concerns, finding a publicly available dataset of network traf-
fic (comprising the required features) of normal hosts and those
infiltrated by DGAs is not trivial. Thus, data collection, filter-
ing, and curation were performed to construct a representative
dataset of both DGA and normal samples.

DGA samples. Despite the variety of mAGD datasets that
have been utilized in the literature, there is no public repository
containing a large number of labeled DGA-based malware. Fig.
8 shows the data collection technique used to obtain the DGA
samples. To this extent, we crawled and retrieved hundreds of
gigabytes of malware samples from notable cyber security ser-
vices and websites including VirusTotal (2017 until 2021) [46],
VirusShare [47], Malpedia [48], and Triage [49]. The hashes of
the obtained samples were submitted to VirusTotal to retrieve
their metadata information and determine if they were previ-
ously reported to have DGA behavior. Subsequently, each sam-
ple was instrumented in an isolated environment (using Cuckoo
sandbox [50]) to capture its network traffic behavior, i.e., the
Packet Capture (Pcap), file for 10 to 30 minutes. The execu-
tion time is selected to scale for the number of samples in our
dataset, while still being able to capture the behavior of the mal-
ware [51]. To further validate that the collected samples demon-
strate DGA behavior, only Pcap files that have NXD responses
registered in DGArchive [31] are considered. DGArchive con-
tains a database of well-known DGAs and their generated sam-
ples. The resulting dataset includes about 1300 samples con-
taining 57 DGA families. We kindly refer interested readers
to our dataset which we make publicly available for additional
details pertaining to the collected DGA families [24].

CTU-13 dataset. This dataset contains network traffic cap-
tured at CTU university [52] and also has a large capture of real
botnet traffic mixed in with the normal and background traffic.
Since we require only the normal traffic to model benign behav-
iors, all IPs corresponding to the botnets were removed from the
Pcap files. For privacy reasons, the Pcap files containing net-
work traffic of normal users were truncated to include up until
the transport layer only. Unfortunately, such a dataset would
not be useful in our setup, since we are parsing DNS packets;
however, DNS log files are provided for each Pcap file, which
contain all the DNS traffic (via Zeek [53]) along with the times-
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Table 3: System Accuracy reported by various classifiers amid varying the number of NXD responses.

Approach Model Accuracy with respect to the number of NXD responses received
2 3 4 5 6 7 8 9 10 20 30 40 50

D
et

ec
tio

n

P4-DGAD RF 0.903 0.908 0.918 0.927 0.933 0.933 0.935 0.942 0.944 0.960 0.971 0.973 0.977

DGAD

RF 0.991 0.994 0.994 0.995 0.996 0.997 0.997 0.996 0.997 0.998 0.998 0.998 0.999
SVM 0.968 0.963 0.961 0.963 0.972 0.964 0.966 0.960 0.969 0.964 0.972 0.976 0.979
MLP 0.991 0.994 0.993 0.99 0.994 0.995 0.994 0.996 0.996 0.996 0.997 0.997 0.998
GNB 0.826 0.896 0.94 0.943 0.955 0.960 0.957 0.955 0.955 0.955 0.960 0.957 0.957
LR 0.956 0.967 0.969 0.968 0.967 0.972 0.967 0.972 0.970 0.977 0.977 0.971 0.973

C
la

ss
ifi

ca
tio

n

DGAMC

RF 0.894 0.900 0.921 0.927 0.934 0.938 0.945 0.946 0.951 0.965 0.972 0.976 0.979
SVM 0.836 0.866 0.863 0.875 0.874 0.890 0.881 0.896 0.892 0.880 0.901 0.906 0.915
MLP 0.866 0.877 0.888 0.917 0.905 0.904 0.921 0.927 0.933 0.943 0.952 0.962 0.961
GNB 0.769 0.716 0.696 0.611 0.666 0.596 0.630 0.640 0.641 0.672 0.709 0.722 0.722
LR 0.799 0.806 0.818 0.818 0.828 0.818 0.840 0.834 0.836 0.800 0.822 0.841 0.849

tamps when the DNS queries were made in the Pcap file. In
turn, we were able to associate the timestamps in the Pcap file
with those in the log files and reconstruct the Pcap file contain-
ing the DNS headers.

While the two datasets (Pcap files of DGAs from the Cuckoo
sandbox and Pcap files corresponding to normal hosts in CTU)
come from different environments, this does not affect the con-
ducted experiments and evaluations of the proposed approach.
A normal host in a campus network that gets infected with
a DGA-based malware is going to change its behavior to be-
come similar to one of the DGAs observed in the Cuckoo sand-
box (i.e., start querying domains with NXD responses). Sub-
sequently, the proposed system will get activated with the re-
turned NXD responses and flag the infected host in the network.

Dataset format. After the collection phase, the dataset is in
Pcap file format and needs preparation for training and testing.
Each host is considered a sample identified by its IP address.
Our approach is based on studying the behavior of samples that
receive NXD responses. Thus, each sample is characterized by
a vector of vectors as follows:

xi =[[ f t1
NXD1
, f t2

NXD1
,.., f tm

NXD1
]

[ f t1
NXD2
, f t2

NXD2
,.., f tm

NXD2
]

...

[ f t1
NXDn
, f t2

NXDn
,.., f tm

NXDn
]]

Where xi is a sample in the dataset, the first subvector
[ f t1

NXD1
, f t2

NXD1
, .., f tm

NXD1
] contains all the features from 1 to m

that we selected, and have been seen at the first NXD response
(i.e., NXD1). Each subsequent subvector contains the features
collected at the current NXD response, until the last NXD re-
sponse seen by the host (i.e., NXDn). Such a format facilitates
the training and inference of samples with respect to the number
of NXD responses.

In total, 990 normal samples and 1,247 DGA-based samples
exist in the dataset. The final dataset is stored in a Comma-
Separated Value (CSV) file, and it is available online along with
the scripts to retrieve and preprocess it [24].

5.2. Experimental Setup
The collected datasets comprising DGA samples and normal

campus traffic users were used for offline training and testing
on a general-purpose CPU. In particular, 80% of the dataset
was used for training and 20% for testing. Since a large num-
ber of normal users would not necessarily receive an NXD re-
sponse, only those getting at least two NXDs are included in
the dataset. Furthermore, the number of DGA and normal user
dataset records are balanced before they are fed to the classifier.
Grid search was then applied to select the best hyperparameters
for the model. Lastly, Cross Validation (CV) was used with five
folds in order to avoid overfitting the model.

The trained models can be divided into three based on their
placement in the proposed system. (1) A model for detecting
DGAs that can fit in the P4 switch, referred to as P4 DGA
Detection (P4-DGAD). (2) A model for detecting DGAs with
more resources and enhanced accuracy that runs in the control
plane, referred to as DGA Detection (DGAD). (3) A model for
classifying the family of the detected DGA, referred to as DGA
Multiclass Classification (DGAMC). The ML models in P4-
DGAD, DGAD, and DGAMC only operate when an NXD is
received, thus, the evaluation results are based on features col-
lected at the ith NXD received, where 2 < i < 50. The results of
the detection modules (P4-DGAD and DGAD) is a binary de-
cision outputting one if the sample is found to be a DGA, and
zero if benign. However, the output of the classification module
(DGAMC) is a number between [1, 57] representing the DGA
family. In all experiments, the accuracy metric is considered the
primary criterion to assess the classifier’s performance. The ac-
curacy measures the ratio of correctly predicted instances (true
positives and true negatives) to the total number of instances in
the dataset (true positives, true negatives, false positives, and
false negatives).

5.3. System’s Accuracy
Table 3 reports the accuracy of P4-DGAD, DGAD, and

DGAMC with different ML classifiers. The choice for the P4-
DGAD classifier depends on the software and hardware limi-
tations of the P4 switch. Hence, we adopt an RF classifier in
the data plane since their deployment and efficacy were proven
in several prior studies [54, 32, 44]. The P4-DGAD model was
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Feature Importance

Context-aware
Number of unique IPs 0.365

DNS requests 0.283
NXD inter-arrival time 0.351

Context-less

Bigram score 0.373
Domain name length 0.144

Number of subdomains 0.150
Has a valid TLD 0.044

TLD 0.286

Table 4: Importance analysis of context-aware and context-less
features.

trained on four features, namely, the number of unique IP ad-
dresses contacted, the number of DNS requests, the inter-arrival
time between NXDs, and the bigram frequency value of the do-
main.

The DGAD and DGAMC models are implemented in the
software, allowing for more flexibility with the choice of the
classifier selected, as well as the features fed to the classifiers.
The reported models in DGAD and DGAMC are RF, Support
Vector Machine (SVM), Multi-layer Perceptron (MLP), Gaus-
sian Naive Bayes (GNB), and Logistic Regression (LR) clas-
sifiers. Moreover, these models are trained on all the features
discussed in Section 4.2.

The accuracy of P4-DGAD starts at approximately 90% with
the second NXD received and steadily increases to 94% at the
10th NXD until it reaches 97% at the 50th NXD. This model
runs in the hardware (P4 switch) at line speed, and reports to
the software (control plane), only if a DGA is detected. This
significantly reduces the overhead on the control plane from
the true negatives (i.e., benign hosts receiving NXDs). Such ac-
curacies are high enough to sense if there is any DGA-related
behavior at an early stage of the malware. As for DGAD, RF
outperforms all other reported models with a 99.1% at the sec-
ond NXD, and increasing to 99.7% and 99.9% at the 10th and
50th NXD responses, respectively. This model is used to in-
crease the confidence on whether a DGA exists in the network
or not. For instance, if P4-DGAD reports a false positive (i.e.,
a normal host labeled DGA) at 3nd NXD with accuracy 90%,
DGAD would receive the features and make a more informed
decision with accuracy up to 99.4%.

Similarly, RF performs best in DGAMC with an accuracy of
89.4% at the second NXD and increases to 95.1% and 97.7% at
the 10th and 50th NXD responses, respectively. The MLP clas-
sifier performs closely to RF, however, its training and testing
times are significantly higher. The classification is performed
on 57 DGA families, which is the most representative num-
ber of families among all state-of-the-art DGA classification
approaches utilizing context-aware features. The list of DGA
family names is reported in our GitHub repository, along with
the reported ML models and the evaluation results.

5.4. Feature Importance Analysis

To study the importance of features, we differentiate between
the context-aware features which are time-dependent, and the
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Figure 9: Histogram showing the percentages of C2 servers get-
ting resolved before the i-th NXD.

context-less features which are time-independent. The context-
aware features are primarily network features (e.g., number of
unique IPs contacted) that change with time. For instance, at
the first NXD response received, the number of unique IPs con-
tacted by a sample is less than or equal to that at the second
NXD response. The context-aware feature importance values
presented in Table 4 correspond to RF classifiers trained per
NXD response, and the values are averaged across all NXD re-
sponses (from 2 to 50).

On the other hand, the context-less features depend on the
characteristics of the domain names, rather than the time they
are queried. Consequently, we study their importance sepa-
rately using an RF classifier fed with all collected NXD re-
sponses regardless of the time they are queried. The bigram
score of the domain name has the highest importance value
among other context-less features.

5.5. Communication with the C2 Server

The proposed system aims to detect hosts infected with
DGA-based malware and halt their operations prior to commu-
nicating with the C2 server. Consequently, we analyze the com-
munication between the DGA and the C2 server with respect to
the number of NXD responses received. The network traffic of
each sample is analyzed against the Suricata [55] Intrusion De-
tection System (IDS) to infer if a communication occurs with
the C2 server, and the time it occurs (i.e., the time the IP ad-
dress of the C2 server was resolved by a DNS query in the Pcap
file). Subsequently, we check how many NXD responses were
received prior to resolving the C2 server IP address and plot the
histogram in Fig. 9. Approximately, only 7.5% of the seen C2
servers were resolved before 10 NXDs, and our classifier was
able to detect all of them as DGAs in the data plane before the
10th NXD. Additionally, a significant percentage of DGA-based
malware resolves the IP address of the C2 server after the 40th

NXD, which is a sufficient time to detect the DGA based on the
accuracy results in Table 3.
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Approach Accuracy Training
time

NetFlow [8] 93% 5 mins

SDN [15]
iForest 51%

6 secs
K-means <50%

FANCI [2] RF 98.8%
Hours

(grid search)

EXPLAIN
[7]

RF RFE 90.9% 307 secs*
OVR RFE 91.6% 2533 secs*
OVR union 92.1% 7,036 secs*

OVR Union Spearman 92.2% 3,036 secs*

* Training time is based on the reported metrics in the paper.
Table 5: Accuracy and training time of the state-of-the-art mod-
els.

5.6. Comparison with State-of-the-Art

In the context of DGA detection and classification, the public
datasets (e.g., DGArchive [31]) mainly include domain names
only, which is not sufficient to evaluate approaches that use
context-aware feature (i.e., network traffic features). The pri-
vate datasets are not made publicly available online due to pri-
vacy concerns. Thus, we use our dataset containing context-less
and context-aware features to evaluate state-of-the-art work on
DGA detection and classification. We choose two related work
[8, 15] that use context-aware features, and two related work
[2, 7] that use context-less features. All implementations are
available online and were tested on a machine with 64 GB Ran-
dom Access Memory (RAM) and a 2.9 Gigahertz (GHz) pro-
cessor with 8 cores [24]. Python is the main programming lan-
guage used.

Grill et al. [8] detect DGAs using NetFlow, a Cisco tech-
nology that provides statistics on packets flowing through the
router. In particular, they monitor the ratio of DNS requests
over unique IPs contacted and assume that this ratio follows a
normal distribution in normal traffic. Thus, anomaly values are
obtained using the following fuzzy function in formula 4:

f (x) =


0 if x ≤ µ + t1 · σ
x−(µ+t1·σ)

t2−t1
· σ if µ + t1 · σ < x < µ + t2 · σ

1 if x ≥ µ + t2 · σ
(4)

Where x is the value of the ratio for a given sample, µ and σ
are the mean and standard deviation values of the distribution,
and t1 and t2 are thresholds. We reimplement the approach [8]
and obtain the µ and σ values of our normal dataset. We use the
threshold values t1 = 2 and t2 = 4 and monitor traffic for 5 min-
utes, as suggested by the authors. Then, we test the fuzzy func-
tion on DGA samples and report the accuracy in Table 5. Even
though the fuzzy function scores 93% when data is collected for
5 minutes, it is also worth mentioning that the score is poor (ac-
curacy = 56%) when traffic is collected after one minute, which
deems it unsuitable for fast detection approach. Additionally,
the approach requires constant monitoring and evaluation of all
hosts in the network, in contrast to our approach which only
evaluates hosts receiving NXD responses.

Ahmed et al. [15] monitor the following attributes per flow
to detect DGAs in SDN/OpenFlow environment. (1) Flow vol-
ume in bytes; (2) flow duration; (3) number of packets; (4) av-
erage packet size. These attributes are computed for incoming
and outgoing directions of each flow. The authors rely on a
real-time database server that receives all DNS responses and
checks if the domain name exists in DGArchive [31]. However,
such an assumption requires a prior knowledge of all DGA do-
mains and a powerful server to process all DNS responses in
real-time. We do not take this assumption into consideration
since our dataset includes normal hosts that received NXD re-
sponses not found in DGAarchive. Subsequently, we evaluate
the effectiveness of these attributes in identifying normal and
DGA behavior. We reimplement and train the Isolation Forest
(iForest) [56] and K-means algorithms [57] on our dataset with
the suggested parameter values by the authors and report the
results in Table 5 (SDN/OpenFlow). Both classifiers perform
very poorly, indicating that the proposed attributes cannot be
used solely to detect DGAs in our dataset.

As for context-less approaches, we evaluate FANCI [2]
and EXPLAIN [7] that perform detection and classification of
DGAs, respectively. The source code of FANCI is publicly
available online, thus, we use it to train its RF classifier on our
dataset and detect DGAs. FANCI performs grid search to find
the best parameters of a model, a process that takes hours on
our machine. Similarly, EXPLAIN’s source code, along with
the trained models are available online, and we utilize them to
test the models on our dataset for DGA detection and classifica-
tion (57 DGA families). In particular, EXPLAIN provides four
trained model based on chosen hyperparameters and feature set.

FANCI and EXPLAIN achieve high accuracy detection and
classification results since they use tens of features related to
the domain name. However, a drawback of such an approach
is that a general-purpose CPU/GPU is required to extract the
features. Also, if the approach is to be deployed in real-time,
the servers must be able to withstand DNS traffic loads. To
this end, we measure the time it takes to process an NXD in our
switch (P4 Switch), which includes DPI, feature extraction, and
the in-switch inference. Fig. 10 shows the CDF of the feature
extraction time in microseconds. Our proposed approach in-
curs feature extraction latency that is orders of magnitude lower
than FANCI and EXPLAIN. Additionally, the optimization that
was performed in our proposed approach over the previous one
(Section 4.3) allowed us to go deeper into the packet (per recir-
culation), fit an RF classifier for in-switch inference, and ulti-
mately enhance the detection speed.

We note that even though the authors of EXPLAIN measure
its source code on a dedicated GPU and receive an average fea-
ture extraction time of 276 µs on their best-performing model,
it is still orders of magnitude lower than that received by our
switch.

5.7. Preliminary Results on Encrypted Traffic
By nature, DNS leaks almost all user behavior to any party

that is eavesdropping on the network. Solutions like DoT and
DNS over HTTPS (DoH) provide confidentiality to the trans-
ported DNS traffic and are being increasingly supported by re-

13



100 101 102 103 104

Feature extraction time [ s] in logarithmic scale

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

 P4 Switch            P4 Switch_old       FANCI                 EXPLAIN

 = 1.8834 s       = 2.8860 s       = 986.72 s      = 9233.02 s
 = 0.2210 s       = 0.6704 s       = 154.24 s      = 456.28 s

Figure 10: CDF of the latency incurred while extracting the
features in P4-DGAD and state-of-the-art approaches.

solvers, browsers, and operating systems [58]. In DoH, DNS
queries are sent via the HTTP or HTTP/2 protocols instead of
being sent directly over UDP; thus, DoH traffic looks like other
HTTPS traffic (all traffic is sent via port 443). On the contrary,
DoT adds TLS encryption on top of UDP and uses the dedi-
cated port 853 for sending DNS queries; thus, anyone sniffing
on the network can infer that this is DNS traffic. Subsequently,
the focus of our current evaluation is on DoT since it is practical
to infer the DNS traffic using the P4 switch, where DoH is left
for future work.

5.7.1. Dataset collection
Two datasets were constructed to study the characteristics of

domain names belonging to DGAs and normal samples. The
first dataset contains domain names requested by real DGA-
based malware where their response is non-existent. The sec-
ond dataset contains domain names from the one million most
popular domains by Cisco Umbrella (Top 1M) [41]. DoT traffic
can be padded to reduce the information that can be extracted
from the query length. For instance, RFC 8467 recommends
padding all requests to a multiple of 128 bytes, while all re-
sponses are padded to a multiple of 468 bytes. In the collected
dataset, the domain names are queried using DoT via two util-
ities: (1) DNS python module dnspython [59] for unpadded
traffic, and (2) kdig [60] for padded traffic. The DNS resolver
used in both utilities is Google (8.8.8.8), and the network traffic
generated from querying and resolving each domain is saved
in a Pcap file. Each Pcap file contains the TCP handshake, the
TLS handshake (for exchanging the keys), and the DNS request
and response of the queried domain (in encrypted format). Even
though the DNS request and response packets are encrypted in
a TLS packet, they can be differentiated by observing the di-
rection of the flow (i.e., requests have destination port 853 and

responses have source port 853). Indeed, when discussing en-
crypted DNS traffic, the requests and responses include all DNS
types (type A for resolving IPv4 address, type AAAA for re-
solving IPv6, type MX for mail services, etc.).

5.7.2. DoT-tailored Feature Selection
In the conducted experiments, DoT traffic is assumed to be

resolved by a third-party DNS resolver, thus, it cannot be de-
crypted. Consequently, traffic features that can unveil useful in-
formation for detecting DGA-based malware without the need
to inspect the payload are considered. Such features are rep-
resented by (1) DNS request packet size, (2) DNS response
packet size, (3) inter-arrival time between a DNS request and
its response, and (4) inter-arrival time between DNS requests.

In unpadded DoT traffic (Fig. 11.a), the size of the DNS
request packet changes uniformly with the size of the domain
name, regardless of the TLD queried. As for the DNS replies,
the size of the packet varies if the response is NXD or Exis-
tent domain (EXD). In NXD responses, the size of the packet
changes based on the size of the queried name as well as the
TLD queried since NXD replies might return additional infor-
mation about the TLD. In EXD responses, the size of the packet
varies based on the size of the queried name as well as the an-
swer returned (i.e., the resolved IP(s) addresses returned). The
size of DNS packets in unpadded traffic could be relevant for
some DGA families that generate domain names with specific
length ranges and TLDs. For instance, Bedep DGA family gen-
erates domain names of lengths between 12 and 18 and “.com”
TLD, thus, the size of the DNS requests will always range be-
tween 124 and 130 bytes, and their corresponding NXD replies
will always range between 741 and 747 bytes. In padded traffic,
the size of the DNS packet cannot be used as a strong indicator
for the domain name size (Fig. 11.b) as the packet is always
padded by zeros.

As for the inter-arrival time between a DNS request and its
corresponding reply, NXD replies take a longer time to resolve
in both padded and unpadded DoT traffic compared to EXDs
(Figs. 11.c and 11.d). This could be due to caching frequent
domains in local DNS servers. For example, a domain belong-
ing to the Top 1M most used domains is likely to be cached by
the DNS resolver of the ISP, thus, the latter will immediately
return a response and bypass several steps in the DNS query
process [61]. Conversely, NXD replies take longer to be re-
solved since once the request arrives at the DNS resolver, its
whole database should be searched, and when no reply is found
in the local DNS resolver, then recursive resolution occurs to
query authoritative DNS servers; thus, leading to increased de-
lay.

The inter-arrival time between DNS requests is a significant
indicator and it is dependent on the sample behavior rather than
the encryption used (padded or unpadded). Fig. 12 shows
the average inter-arrival times of DNS requests in normal users
within CTU campus over several days, as well as that of vari-
ous DGA families. DNS requests are more spaced out over tens
and hundreds of seconds between benign samples, whereas it is
more compact in DGA-based malware samples.
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Figure 11: CDF graphs of the DNS request and response packet sizes and their inter-arrival time.
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Figure 12: Average inter-arrival times between DNS request in
CTU and DGA samples.

5.7.3. Accuracy of Detecting DGAs using DoT

To evaluate the effectiveness of the DoT-tailored features, the
existing dataset described in Section 5.1 containing normal and
DGA traffic is modified to simulate that the hosts are using
DoT instead of raw DNS. Thus, every DNS request and re-
sponse packet is replaced with its equivalent counterpart using
dnspython (for unpadded traffic) or kdig (for padded traffic).
Multiple RF classifiers are trained with the average and the vari-
ance of the DoT-tailored features at different intervals. The in-
tervals are based on the number of DNS requests received thus
far for each sample and can be differentiated based on the TCP
port number. Table 6 reports the accuracy of the RF classifiers
starting from the second DNS request till the 40th one. Un-
padded traffic starts with 94% accuracy which is slightly higher
than padded traffic (92%) since it benefits from the sizing infor-
mation of the packets. The accuracy reaches 95% and 96% with
unpadded and padded DoT traffic, respectively, however, the
increase in the accuracy is not always uniform (e.g., 93% then
92% at the 5th and the 10th DNS requests, respectively). This
is due to some benign samples having a burst of DNS queries
within a short time window, or DGA samples being stealthy by
spacing out the DNS queries they generate.

Table 6: Reported accuracy of the RF classifier when evaluated
on CTU (benign) and DGA (malicious) samples amid varying
the number of DNS request received.

DoT Traffic
Accuracy with respect to the number of

DNS request
2 5 10 15 20 30 40

Unpadded 0.94 0.94 0.94 0.95 0.95 0.96 0.96
Padded 0.92 0.93 0.92 0.92 0.93 0.94 0.95

6. Discussion

The proposed approach aims to fingerprint the presence of
DGAs, classify them based on the malware family they be-
long to, and subsequently block them from reaching the C2
server. This is achieved using heuristics of network features
coupled with statistical and structural features of the domain
name, which are all collected in the P4 switch. The benefit
of implementing such a system becomes apparent in congested
networks, where the processing capacity of CPUs may be insuf-
ficient to examine each DNS packet thoroughly [2]. Addition-
ally, the delay incurred by waiting to gather network statistics
through conventional network monitoring tools may be unac-
ceptable [8]. Moreover, the switch-based feature extraction and
inference take a few microseconds, without the need for sharing
domain names (i.e., only the extracted features of the domain
name need to be shared). As a result, the privacy of individuals
within an organization is preserved [62].

Despite these benefits, there are a few limitations tied to the
proposed scheme and P4 switches in general. Due to the limited
resources in the switch, the number of users (per IP address)
that can be monitored in our program is approximately 110,000.

Furthermore, the proposed approach saves the context-less
and context-aware features of the users in the internal network
in stateful registers, which are limited in memory. Hence, it
is necessary to remove stale entries that point out to inactive
users (e.g., a user received an NXD reply and remained inactive
for a few hours). However, an attacker who has knowledge
of such implemented features can craft the malware in a way
that bypasses the proposed detection approach. For instance,
an attacker can increase the inter-arrival time among the queried
DNS requests until the resources of the switch are reset.

Additionally, given that the accuracy of the model increases
with the number of NXDs, an attacker could choose to reg-
ister a domain (i.e., this domain will have the IP address of
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the C2 server) that is queried at the beginning (within the first
few NXDs) to reduce the probability of being detected. As for
encrypted DNS traffic, the features experimented with require
statistical computations and memory (average and variance),
which are not feasible in the P4 switch and require external
processing.

7. Conclusion and Future Work

The proliferation of attack vectors that DGA currently sup-
ports, coupled with the magnitude and scale of attacks they fa-
cilitate, necessitates that their presence coincides with imme-
diate incident response and further investigation. To this ex-
tent, this paper presents a novel network framework for detect-
ing and classifying DGA artifacts on an Intel Tofino hardware
switch and promptly blocking them before the compromised
hosts are ordered to take part in malicious actions. The pro-
posed scheme leverages programmable switches for privacy-
preserved microsecond-scale feature extraction and in-switch
inference of DGAs. In particular, it extracts network heuristics
for each host on the internal network, as well as statistical and
structural features of entire NXD domain names obtained via
DPI. Consequently, an ML module running on the switch is uti-
lized to detect the presence of DGAs at line rate. Once a DGA
is detected, the control plane is activated, where it receives the
pertinent features of the DGA-infected host to perform a more
enhanced and thorough analysis. The proposed approach is able
to detect DGAs on real network traces with an accuracy up to
97% accuracy in the data plane, and 99% in the control plane.
Additionally, the detected DGA can be further classified into
its corresponding malware family with an accuracy of up to
97%. Novel experiments on DoT with features tailored to en-
crypted traffic output high accuracy values as well (94%-96%).
Future work in this area includes investigating other network
and domain name linguistic features to achieve higher accuracy
in a short period of time. Additionally, a concrete framework
for DoT, DoH, and other encrypted DNS traffic can be devised
in a way that utilizes SmartNICs via Data Plane Development
Kit (DPDK) and general-purpose CPUs via Extended Berkeley
Packet Filter (eBPF). This would allow for more flexibility in
implementing a security solution while maintaining the require-
ments of high-speed networks.
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