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Abstract—perfSONAR is a tool used to monitor and trou-
bleshoot problems in high-speed networks such as Science De-
militarized Zones (DMZs). It is essential to validate that data
transfers are performing as expected. However, perfSONAR
suffers from the trade-off between the measurement accuracy
and the overhead induced by its active tests.

This paper presents a scheme that offloads the traffic monitor-
ing to a programmable data plane (PDP) switch. The scheme in-
tegrates a PDP switch with perfSONAR, where the switch contin-
uously collects network measurements (e.g., latency, throughput,
packet loss rate) and periodically reports the measurements to
the perfSONAR archiver. This integration significantly enhances
the granularity, visibility, and troubleshooting capabilities of
perfSONAR. Additionally, the scheme automates the reporting
period according to the variability of the monitored measure-
ments, which eliminates the need of human intervention observed
in today’s networks. In contrast to traditional schemes that
report all measurements, the proposed approach uses the Linear
Prediction (LP) method to only report the samples that reveal a
variation on the measurements. Experimental results show that
the system reduces the number of reports by five times under
stable network conditions and sustains a relative mean error
(RME) below 0.06.

Index Terms—Programmable Data Planes, P4, Linear Predic-
tion, Adaptive Sampling, perfSONAR, Science DMZ.

I. INTRODUCTION

perfSONAR is a monitoring tool used on campus network,
Internet service providers (ISPs), research and education net-
works (RENs), and high-speed networks in general, including
Science Demilitarized Zones (DMZs) [1]. perfSONAR uses ac-
tive tests to synthetically generate end-to-end traffic and report
measurements based on these tests. The measurements are used
to infer potential network issues [2]. Despite its essential role
and widespread deployment, perfSONAR suffers from a trade-
off between the provided visibility and the induced overhead to
the network [3]. Additionally, the measurements collected by
perfSONAR are based on the synthetic traffic, which may not
accurately represent the actual network traffic. Furthermore,
the synthetic data may even interfere with the actual network
traffic, causing disruptions and artificial packet bursts.

This paper presents a scheme that offloads the traffic moni-
toring to a programmable data plane (PDP) switch, integrated
to perfSONAR. The scheme generates fine-grained measure-
ments by passively monitoring real traffic, without incurring
unnecessary overhead. Through this integration, the visibility,
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granularity, accuracy, and troubleshooting capabilities of perf-
SONAR are greatly enhanced [3].

A seamless integration between perfSONAR and the PDP
switch is accomplished by satisfying two design goals: (1)
using the perfSONAR archiver to store the measurements,
(2) using the perfSONAR configuration daemon to configure
the PDP switch at run time. To satisfy the first requirement,
the control plane of the PDP switch normalizes the raw
measurements extracted from the data plane and stores them
directly on the archiver’s database through its application pro-
gramming interfaces (APIs). To satisfy the second requirement,
a command is added to pSConfig, the configuration daemon
of perfSONAR. The PDP switch aggregates the measurements
and periodically reports them to the perfSONAR archiver. The
added command is used by the administrator to configure the
rate at which the PDP switch reports the measurements. Note
that a high reporting rate implies less aggregation, leading to
higher accuracy at the cost of increasing storage and processing
overhead. On the other hand, a low reporting rate implies more
aggregation, leading to lower accuracy but decreasing storage
and processing overhead.

The proposed system is flexible enough and allows the
network administrator to 1) adjust the reporting rate at run
time through pSConfig, or 2) automate the reporting rate
according to the variability of the monitored measurements.
The second approach uses the Linear Prediction (LP) method
[4]: instead of reporting all the measurements extracted by
the data plane, the control plane only reports the samples that
reveal a variation in the traffic.

The contributions of this paper are summarized as follows:

« Eliminating human intervention. The system enables the
administrator to adjust the reporting rate automatically.

« Increasing the accuracy of the reports by lowering the
aggregation at the data plane level. The control plane
can extract the measurements from the data plane at high
rates without flooding the archiver by selectively reporting
samples.

« Reducing the number of reports by five times under stable
network conditions and sustaining RME below 0.06 under
unstable network conditions.

o Publishing the P4 code that generates fine-grained mea-
surements on the PDP, and the Python implementation
that implements the adaptive model. They can be accessed
via [5].
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Fig. 1. System Overview.

The remainder of the paper is organized as follows. Section
II provides background on programmable data planes, conven-
tional sampling, and adaptive sampling techniques and clarifies
how the proposed system differs from existing work. Section
IIT describes the proposed approach. Section IV presents the
experimental results. Section V discusses the limitations of the
proposed approach and the future work in this area. Section
VI concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Programmable Data Planes

Data plane programmability allows the developer to parse
custom headers, define the processing behavior of the packets,
measure the events occurring in the data plane with high
precision, and report the events to the control plane with
nanosecond resolution [6]. The Protocol Independent Switch
Architecture (PISA) is a widely adopted data plane program-
ming model [7]. It is composed of a programmable parser,
a programmable match-action pipeline, and a programmable
deparser [8]. The programmable parser operates as a state ma-
chine to parse the headers. The match-action pipeline processes
the packets based on the logic defined by the P4 program.
P4, or Programming Protocol-independent Packet Processors,
is the de-facto language to program the data plane [9]. The
programmable deparser serializes the headers and prepares
them for transmission.

B. Adaptive Sampling

Adaptive sampling methods adjust the sampling rate based
on the observed measurements. In general, adaptive techniques
are based on fuzzy logic or LP [4]. In fuzzy logic-based
systems, the sampling rate is adjusted by considering similar
past experiences [10]. On the other hand, LP-based systems
construct a model from the observed traffic. The model is then
used to predict future measurement values. If the prediction
is accurate, the sampling rate is reduced as the model has
captured the current traffic pattern. On the contrary, inaccurate
prediction increases the sampling rate to detect the new traffic
pattern [11]. A common weakness among adaptive systems
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is that they ignore the unsampled measurements, and conse-
quently, the network behavior is not monitored during the time
interval between samples [4, 12].

The proposed system deploys an adaptive sampling model
based on the LP method. It utilizes a PDP switch to have
continuous access to the measurements, such that the sampling
decision is taken on each measurement extracted from the data
plane. The main distinction between the existing work and the
proposed system is that the system considers both sampled
and unsampled measurements to adjust the adaptive model and
continuously monitors the network.

III. PROPOSED SYSTEM
A. Overview

The proposed system aims to reduce the load at the
archiver through adaptive sampling. The data plane of the
PDP switch collects per-packet measurements. It monitors
per-flow throughput, packet losses, Round Trip Time (RTT),
and the border router’s queue occupancy. The control plane
periodically extracts the measurements from the data plane.
Instead of reporting all the measurements to the archiver,
the control plane samples the measurements that reflect the
behavior of the traffic. As shown in Fig. 1, the control plane
deploys an adaptive sampling model. This model adjusts the
measurement reporting rate based on the traffic variation.

Before discussing the adaptive model, it is essential to define
some terminologies:

« Extraction rate is the rate of extracting or pulling mea-
surements from the data plane. This rate is constant.

o Observations are the measurements extracted from the
data plane.

« Samples are the observations selected by the model to be
sent to the archiver for storage.

o Reports are the samples normalized by the control plane
for the archiver to be able to ingest them.

« Reporting rate, also referred to as sampling rate, is the rate
of sending reports to the archiver. The model dynamically
adjusts this rate.

B. Adaptive Model

LP is an adaptive sampling method based on the Linear
Prediction Coefficient (LPC) technique [4]. LPC is used by
the Transport Control Protocol (TCP) to predict the RTT of
the packets [13]. It employs a low pass filter that predicts
future values based on the recent value and the average of the
last observed N values, where N is the order of the filter. The
low pass filter is represented by the following formula:



zp=a-R+(1—a)-Av

The equation predicts the next sample x,, based on the most
recent value R and the average of the previous N samples Av,
using a coefficient a within the range of O to 1. Higher values
of a give more weight for the recent value.

Unlike LPC, LP does not employ the coefficient a. Besides,
LP uses the average rate of change of the last N samples
instead of their average value as indicated in the equation
below:
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Where:
e T, is the predicted value for the next sample.
N+1

e x 1s the most recent sample.

e N is the number of samples considered.

e x; and t; represent the value and arrival time of the ith
sample, respectively.

o ATeyrrens 18 the time gap between the most recent sample
and the next sample.

When a new observation arrives, the LP model calculates
the error m between the predicted and observed values. m is
calculated by dividing the predicted value over the expected

Lp . .
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value: m = =5

within o from 1 (i.e., 1 —0 < m < 14 0), the predicted value
is considered close enough to the actual value and the sampling
rate can be reduced. Otherwise, the recent observation does not
follow the pattern detected by the model, and the sampling rate
should increase to detect the new pattern. Table I shows how
the future intervals between samples are defined based on the
error. AT, is the time gap between the next sample and the
sample that follows (the value of the next AT .y rrent). Almax
and AT,,;, are the maximum and the minimum allowed time
intervals between samples, respectively.

In the proposed system, the data extraction rate is constant,
and consequently, the inter-arrival time between consecutive
observations (AT') is constant. The model predicts the value
of the next observation instead of the next sample as follows:

Science DMZ

_.—: perfSONAR :DTN @ : TAP

Fig. 2. Experimental Topology.

TABLE I
RULES TO DEFINE THE NEXT INTERVAL BETWEEN SAMPLES IN THE
PROPOSED SYSTEM.
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For each flow monitored by the data plane, the proposed
adaptive model maintains a vector x for the values of the last IV
observations, ¢ the timestamp of the last sample, AT y.r-en: the
time difference between the recent sample and the next sample,
and z,,,, the prediction of the next observation. When a
new flow is detected by the PDP switch, the corresponding
AToyrrent 18 set to ATy,in. The error m is only calculated
if N > Npin, where N,,;, is a constant representing the
minimum number of observations required to predict future
values. The vector x can hold at most N,,., observations,
where N,,q, is a variable dependent on ¢ and on the average
change of measurements.

The time intervals between samples are adjusted based
on the rules described in Table 2. If the error is within o
from unity, AT y;rent 18 incremented by 1 second. Otherwise,
AToyrrent 18 set to AT, and the vector x is emptied. The
time interval between samples is minimized (i.e., the sampling
rate is maximized) because a disruption in the flow behavior
is detected. The vector x is emptied because the new behavior
is assumed unrelated to the previous behavior (i.e., the worst-
case scenario is assumed). One advantage of this assumption
is that the model can adapt faster to the new behavior. Another
advantage is that anomalies are automatically discarded by the
model and not used to predict future values. Furthermore, this
assumption bounds the maximum difference between consec-
utive observations (d) used to predict future values (Appendix
- 1).

The adaptive model aims to minimize the number of sam-
pled measurements while sustaining low relative mean error
(RME). RME measures the difference between sampled values
and the total values compared to the average of all total values.
Denote by x4 the next observation to be sampled by the
adaptive model. For each zx1, its RME is calculated as
follows:

| Ny — |
I

N+1
where 1 = > .

=1
based on AT,y rent, the upper bound on the RME is deter-

If the observation x4 is reported



—— Ground Truth Throughput Sampled Throughput —— RME
0: 0.025, n: 96 0: 0.05, n: 72 0: 0.075, n: 47
o 1.0
Sl g n nog A 2 1 1 n [N A A 1 1 n Ny A A
S AV AV WA | AR AV Y
+= w
. ] ] 1055
22 i p i o
=]
>
o
co A - 0.0
'_
0:0.1, n: 35 0: 0.15, n: 31 0:0.2,n:31
= 1.0
Sl n Moy A A 1 n M A A 1) n My A A
S ANV VU \/K AV Y U \4\ NV VW u[\
+ w
=] B B 10.5
22 i t i 2
[®)]
3
Zo AN 0.0

20 40 60

Time [s]

80 100 120 20 40

60

Time [s]

80 100 120 20 40 60

Time [s]

80

Fig. 3. The number of samples and RME with respect to different values of o.

mined by N, o, and z; (Appendix - 4). If the observation x 41
is sampled because its error m is not within o from unity, then:
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and consequently, (Appendix - 4) does not hold.
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C. Proactive Rate Adjustment

Reactive adaptive systems adjust the sampling rate after the
pattern of traffic changes. On the other hand, proactive adaptive
systems adjust the sampling rate before the deviation in the
traffic pattern is observed. LP method is a reactive system as it
adjusts the sampling rate based on the observed error between
the predicted value and the real value.

A main feature of the proposed system is that the adaptive
model has access to the recent N observations rather than the
recent N samples. If observation xy; reveals a deviation
in the traffic behavior, the model can send the previously
unreported observations from vector x, imitating the proactive
functionality. Although reporting the elements of vector x (i.e.,
recent [N observations) is equivalent to proactively adjusting
the data reporting rate to AT},;, before observing the deviation
in the behavior, it imposes unnecessary utilization of resources.

From any vector x, at most three elements have been
reported to the archiver. In the best-case scenario, x v is the last
reported element. In such a case, no further action is required
as the previous traffic pattern has already been reported, and
the RME is bound from above by (Appendix - 4). In the worst-
case scenario, x y,,,,, 1S the last reported element (x; is the first
element in the current traffic pattern). In such a case, reporting
x suffices to construct the pattern of the last NV —3 unreported
measurements.

IV. EXPERIMENTATION

A. Topology Setup

The experimental topology is depicted in Fig. 2. It consists
of a Science DMZ connected to a WAN via two Juniper
MX 204 routers [14] (denoted by BR and ISP in the figure).

The science DMZ and the WAN have one DTN for data
exchange and one perfSONAR node to monitor and archive
network performance. Two optical TAPs are connected to the
ingress and egress ports of the BR. The TAPs are provided by
Fiber Instrument Sales that can handle speeds up to 100Gbps
[15]. They duplicate the packets to the PDP switch. The PDP
switch is Edgecore Wedgel00BF-32X switch (Intel Tofino)
[16]. It passively collects the measurements and reports them
to the perfSONAR node. iPerf3 tool is utilized to generate the
traffic. AT,,;, and AT,,., are set to one and five seconds,
respectively.

B. Evaluating the Impact of o

A two-minute test is performed between the DTNs to
evaluate how different values of o affect the number of samples
and the RME. The results of the experiment are depicted in
Fig. 3. The ground truth throughput is the throughput without
sampling. The upper left graph shows that the number of
samples is 96, and the RME is around zero when o is set to
0.025. The upper middle graph shows that the RME slightly
increases, and the number of samples reduces by 25% with o
being 0.05 compared to 0.025. The same behavior is observed
with o being 0.075 compared to 0.05, such that the increase
in the RME and the reduction in the number of samples are
higher compared to the change from o being 0.05 to 0.025.

As the value of o increases above 0.075, the RME becomes
significant. The model fails to detect the fluctuation in the
throughput because o is relatively large with respect to the
average change in the throughput. For instance, when o is set
to 0.15, the number of samples is 31. The average reporting
rate is % = 0.26 samples per second, which means that
the average AT yrrent 18 3.9 seconds. Thus, most of the
throughput measurements predicted by the model were close
enough to the observed values (according to the defined o).

C. Comparing with other Adaptive Systems

The proposed adaptive system is compared to LP and the
multiadaptive sampling technique (MuST) [12]. MuST uses the
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Fig. 4. The throughput and RME comparison between the proposed system, MuST, and LP.
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last IV observations to adjust the time interval between samples
and the size of the samples. Table III shows how MuST adjusts
ATy et and AS,,c.: based on the error m, AT,y rent, and
AScurrent, where AScyrens 18 the current sample size and
Shnext 18 the size of the next sample.

A two-minute iPerf test is performed between the two
DTNs. The parameters o and N4, are set to 0.05 and 5,
respectively. Fig. 4 depicts the ground truth throughput, the
throughput reported by each of the three systems, and the
RME of each system. The proposed system outperforms LP
and MuST, where the ground truth throughput and the reported
throughput overlap with an RME near O throughout the test.
MuST performs better than LP, where it missed reporting a few
critical measurements, which led to an increase in the RME.
LP has the highest overall RME, where it missed a higher
number of critical measurements than MuST.

The cumulative distribution function (CDF) of the RME
for the three systems is calculated by executing 10 tests and
is depicted in Fig. 5. The maximum observed RME by the
proposed system is 0.06, where 98% of the RME values are
less than 0.04. The maximum observed RME by MuST is 0.28,
where 75% of the RME values are less than 0.04, 85% are less
than 0.05, 90% are less than 0.1, 95% are less than 0.2, and
98% are less than 0.25. The maximum observed RME by LP
is 0.3, where 65% of the RME values are less than 0.04, 80%
are less than 0.05, 88% are less than 0.1, 94% are less than
0.2, and 98% are less than 0.25.

V. DISCUSSION: LIMITATIONS AND FUTURE WORK

The proposed system can maintain the state (e.g., number
of bytes, RTT, packet losses, etc.) of up to 2048 flows. This
imposes no limitation if the system targets science DMZ
networks, as they are characterized by a few elephant flows
[1]. However, the system is not scalable enough to monitor
the traffic on an ISP. The constraint on the number of flows
that can be simultaneously monitored originates from the
available resources on the PDP switches and the number of
metrics maintained by the data plane [6]. Future work aims
to investigate the optimal resource allocation strategy at the
PDP switch to maximize the number of monitored flows
without impacting the set of monitored metrics. One approach
is to utilize FermatSketch, a data structure that dynamically
allocates the memory resources of the PDP switch [17].

The proposed system involves the control plane in the data
collection process. Because the control plane does not have
enough processing power to extract per-packet measurements
from the data plane [8], it periodically extracts the measure-
ments. Thus, all measurements collected by the data plane and
not extracted by the control plane are discarded. To minimize
data loss, the proposed system aggregates the measurements on
the data plane. The control plane then extracts the aggregated
values.

In order to eliminate the loss, the data plane should directly
report the measurements to the archiver. However, reporting
per-packet measurements is not an option as it floods the
archiver. Future work aims at deploying an adaptive sampling
model directly on the data plane. The model selectively reports
measurements similar to the proposed system. Nevertheless,
deploying the adaptive model on the data plane results in a
more accurate sampling compared to the model running on the
control plane because it has access to the real measurements
and not the aggregated measurements.

VI. CONCLUSION

This paper deploys an adaptive sampling model to reduce
the consumption of the processing and storage resources at
the perfSONAR archiver. A PDP switch is installed passively
and monitors the inbound and outbound traffic to a Science
DMZ. The data plane of the switch is programmed to collect
and maintain per-flow per-packet measurements. The control
plane then extracts the measurements and utilizes an LP-
based adaptive sampling model to make a per-measurement



sampling decision. The model significantly reduces the number
of measurements reported to the archiver under stable network
conditions and provides an accurate presentation of the state
of the flows under unstable network conditions.
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For any two consecutive observations z;_1 and z; in vector
x, their difference d; is bounded as follows:
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