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Abstract

The Symmetric Information Bottleneck (SIB), an extension of the more familiar Infor-
mation Bottleneck, is a dimensionality reduction technique that simultaneously com-
presses two random variables to preserve information between their compressed ver-
sions. We introduce the Generalized Symmetric Information Bottleneck (GSIB), which
explores different functional forms of the cost of such simultaneous reduction. We then
explore the dataset size requirements of such simultaneous compression. We do this
by deriving bounds and root-mean-squared estimates of statistical fluctuations of the
involved loss functions. We show that, in typical situations, the simultaneous GSIB
compression requires qualitatively less data to achieve the same errors compared to
compressing variables one at a time. We suggest that this is an example of a more gen-
eral principle that simultaneous compression is more data efficient than independent
compression of each of the input variables.

1 Introduction

Recent years have seen an explosion of large-dimensional experimental data sets (de Vries et al.,

2020; Siegle et al., 2021; Haghighi et al., 2022) and the parallel growth in the number
of methods for dimensionality reduction (DR)—that is, for extracting low-dimensional
structure from large-dimensional data (Carreira-Perpinan, 1997; Van Der Maaten et al.,
2009; Nanga et al., 2021). Broadly speaking, we classify dimensionality reduction
methods into two classes: unsupervised and supervised. Unsupervised DR methods
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seek a low-dimensional description, Ty, of a large-dimensional variable, X, that pre-
serves its variance, entropy, or another measure of diversity of the data. Such meth-
ods include the familiar principal component analysis (PCA) (Hotelling, 1933), non-
negative matrix factorization (Lee and Seung, 1999), multidimensional scaling (MDS)
(Kruskal, 1964), t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton,
2008), Isomap (Tenenbaum et al., 2000), Uniform Manifold Approximation and Projec-
tion (UMAP) (Mclnnes et al., 2018), autoencoders (Hinton and Salakhutdinov, 2006),
and related techniques (Kingma and Welling, 2014). In contrast, supervised DR tech-
niques aim to find a low-dimensional description, 7y, of a large dimensional X, while
preserving 7'x’s ability to explain another variable Y, which provides an effective rel-
evance or supervision signal. Common examples include variable selection in regres-
sion (Andersen and Bro, 2010; Kuo and Mallick, 1998), cross-encoders, Bayesian Ising
Approximation (BIA) (Fisher and Mehta, 2015), and the Information Bottleneck (IB)
(Tishby et al., 2000; Tishby and Slonim, 2000). A particularly interesting class of such
supervised dimensionality reduction problems is when both the reduced variable X and
the relevance variable Y are large-dimensional. In these situations, finding significant
correlations within combinatorially many groups of components of X and Y is hard,
suggesting parallel dimensionality reduction of both X and Y into 7'y and Ty, respec-
tively.

We distinguish three classes of approaches to this problem. In the first, which we
call the Independent Unsupervised Dimensionality Reduction (IUDR), one applies un-
supervised DR methods to X and Y independently. One then searches for statistical
dependencies between Ty and Y or Ty and X or T’x and Ty, but the dimensionality
reduction itself is agnostic of this subsequent step. A familiar example of this is the Prin-
cipal Components Regression, where the projections on the principal components of X
are regressed against Y. We also distinguish Independent Supervised Dimensionality
Reduction (ISDR), where T'x is produced by compressing X with Y as the supervision
signal, while 7y emerges from compressing Y with X as the supervision. The Informa-
tion Bottleneck (IB) (Tishby et al., 2000), the Generalized and Deterministic Informa-
tion Bottleneck (GIB) (Strouse and Schwab, 2017), and cross-encoders are examples of
such approaches. Finally, Simultaneous Supervised Dimensionality Reduction (SSDR)
is a class of methods where T’y and 7y are produced simultaneously, typically being su-
pervision signals of each other. ! Examples of SSDR include the Canonical Correlation
Analysis (CCA) (Hotelling, 1936; Yang et al., 2021) and its modern nonlinear neural
network based generalizations (Andrew et al., 2013; Chapman and Wang, 2021), Par-
tial Least Squares (PLS) (Wold, 1966; Wold et al., 2001), and the Symmetric version
of the Information Bottleneck (SIB) (Slonim et al., 2006).2 In this paper we introduce
a Generalized version of the Symmetric Information Bottleneck (GSIB) by interpolat-
ing between the compression cost measured by entropy and information. This parallels
for SSDR the introduction of the Generalized Information Bottleneck (GIB) for ISDR,

1SSDR methods are sometimes referred to as dual DR (Sponberg et al., 2015a). We believe that the
terminology we propose here is better suited for classifying the breadth of DR approaches.
Different sources refer to CCA or PLS as both supervised or unsupervised techniques or something
inbetween (Holbrook et al., 2017; Scott and Crone, 2021; Zhuang et al., 2020). Within our classification
scheme, these are supervised methods.



of which the Deterministic Information Bottleneck and the Information Bottleneck are
limits (Strouse and Schwab, 2017).

We then argue that SSDR approaches can require a lot fewer data than their ISDR
counterparts to achieve the same accuracy. We demonstrate this by comparing the bias
and statistical fluctuations in the objective functions of independent GIB reductions
of variables X and Y (ISDR approach) with the corresponding bias and fluctuations
for the GSIB (SSDR approach). We show that the bias for the GSIB scales as the
product of cardinalities of the compressed variables, while the bias for the GIB scales
as the (typically much larger) product of cardinalities of the supervision signal and the
compressed variable. We do the comparison for both typical fluctuations and for the
upper bounds on the fluctuations. While our derivations are done for the IB approaches
only, the intuitive explanation of the differences between the approaches suggests that
SSDR methods are likely to require less data than their ISDR analogues more generally.

2 Background: Information Bottleneck and the Sym-
metric Information Bottleneck

2.1 Information Bottleneck and Its Generalizations

The goal of Information Bottleneck (IB) is to produce a compression, 7'y of a random
variable X, such that the compression retains as much information as possible about
another random variable Y, which is called the relevant (or, in our language, the su-
pervising) variable. The information is measured using Shannon’s mutual information
(Shannon, 1948), which quantifies the difference between the joint probability distribu-
tion p(z, y) and the product of the marginal distributions p(z)p(y):

1(X,Y) = p y)% = H(X) - H(X|Y), (1)

where H (X)) is the entropy of the variable X and H(X|Y) is the conditional entropy
of X given Y, H(X|Y) = Xy py) HX|Y = y) = Yy p(y) ¥ plely) log(p(aly)).
Mutual information is symmetric, always non-negative, and is only zero when the ran-
dom variables are independent (Cover, 1999).

To achieve its goal, IB produces a probabilistic mapping from X to T'x, p(t.|z),
which minimizes a specific cost function. The cost function trades off preserving the
information in the compression about the relevant variable, /(7'y, Y'), against losing the
information about X (reducing the variable), I (T'y, X):

Lig = I(Tx,X) - BI(Tx,Y). (2)

Here £ is the trade-off parameter, which controls how important the compression I (7'y, X)
is compared to preserving the relevant information 7(T’x, Y"). As § — oo, the cost func-
tion is minimized by having no compression, X = 7. Recently a Generalized version
of IB was proposed (GIB) (Strouse and Schwab, 2017), which changes the cost function
to

Lo = H(Tx) — a, H(Tx|X) — B1(Tx,Y), 3)
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which has a formal solution

pltalr) = (1 >exp [aiaogp(tx)—5DKL<p<y|x>Hp<y|tx>>> @

xT

p(ylte) p(z,y), (5)

where Dyy, is the usual Kullback—Leibler divergence (Kullback and Leibler, 1951).

The original IB is recovered from GIB when o, = 1. In contrast, when o, — 0,
I(Tx, X) is replaced with H(Tx) in the cost function. This corresponds to replacing
the cost of having a noisy channel encoding X into 7'y with the cost of directly storing
T'x. In this case, the formal solution results in a deterministic mapping between X and
Tx, and the resulting problem is known as the Deterministic Information Bottleneck
(DIB) (Strouse and Schwab, 2017).

If both X and Y are large-dimensional and require dimensionality reduction, one
can apply IB to produce the mapping X — T'x with Y as the relevant variable, and then
solve a separate IB problem to map Y — 7y with X as the supervision. This approach
would fall into the ISDR class in our nomenclature.

2.2 Symmetric Information Bottleneck and its Generalization

The Symmetric Information Bottleneck (SIB), introduced in Slonim et al. (2006), is an
SSDR approach, where X and Y are compressed simultaneously, such that the com-
pressed versions Ty, and 7y contain the maximal amount of information about each
other. This corresponds to optimizing the loss function:

Leip = [(Tx; X) + I(Ty;Y) — BI(Tx; Ty ), (6)

where optimization is over all possible probabilistic compressions p(t,|x) and p(t,|y).
As before, § determines the strength of the trade-off between the compression and
preserving the relevant information.

For generality, here we propose a Generalized SIB (GSIB), which incorporates flex-
ible compression terms, similar to how GIB was optained from IB. The new cost func-
tion 1s

Lasis = lax (Tx; X) + Loy (T3 Y) — BI(Tx; Ty) (7)
= H(Tx) - Osz(Tx|X) + H(Ty) - ayH(Ty|Y) - 5](TX>TY) (8)

Here we defined shorthands [, (Tx, X) = H(Tx) — axH(Tx|X), and similarly for
I, , and the cost function must be minimized with respect to p(t,|z) and p(t,|y). The
parameters ax and «y are what dictates how probabilistic the mapping between the
uncompressed variables and their compressed versions is. In the limit o, ay — 0, the
mapping can be verified to be deterministic (see below), resulting in the Determistic

SIB (DSIB). When ax, ay — 1, GSIB becomes the usual SIB.



Optimization of the cost function has a formal solution:

exp | 2 (np(t,) = BDic (plt, o) Ip(t, |t))|

p(tx|llf) (.CL’ OKXyﬁ) 9 (9)
o [ (e > 5DKL<p<tx|y>||p<tx|ty>>]
>y Dty Iy)p(x,y) > xy Pty ly)p(te]2)p(2, y)
i) ==y P = e Y
Y p(talx)p(e,y) > xy P(tyly)p(te|z)p(z,y)
pitly) ==y M) = e ey 1P

Similar to IB, this formal solution can be iterated starting from an initial guess for both
p(t;|z) and p(t,|y).

Interestingly, parenthetically we note that, unlike for IB, there are now exponentially
many, ~ 2I7xI+7¥1 trivial fixed points for this iteration scheme (here | - | denotes cardi-
nality of the variable, so that the rest of our discussion focuses on random variables de-
fined on discrete, finite sets of possible values). For example, a uniform distribution for
both random mappings, p(t,|x) = 1/|Tx| and p(t,|y) = 1/|Ty| is a fixed point of the
iteration with the cost of zero, even though a uniform mapping, independent of the con-
ditioning variable, is clearly not a useful compression. Furthermore, all distributions,
where p(t,|x) is zero for several values of ¢, and uniform otherwise, are also trivial fixed
points. There are exponentially many distributions of this type. When o, = o, = 1,
these distributions are part of a larger class of trivial fixed points, which includes all
mappings independent of the data, i. e., p(t,|z) = A(t,) and p(t,|y) = B(t,). One can
easily verify that the first derivative of L vanishes for these solutions. The second
derivative, which controls if these solutions are minima or maxima, is:

& Lasis —p(z) / / T)p(x / /
Ap(te|x)op(t. |2 - Alt,) (p(z)—ax)d(z,2")d(t, t,) A(t,) (te, 1) (1=6(z, 2")),
(13)
(with similar expression for the compression of Y'). These trivial fixed points are max-
ima when o, < p(z), and o, < p(y). When «, > p(x) and o, > p(y), such as in the
case of SIB, when ax = ay = 1, the trivial fixed points are saddles. Thus solutions
found by the iterative algorithm must be viewed with suspicion, and one should always
verify if the algorithm got trapped by one of the trivial solutions. One may be worried
that it would be difficult to find non-trivial solution of SIB among the sea of trivial fixed
points. In fact, Ref. Abdelaleem et al. (2023a) shows that a variational version of SIB
easily solves this problem.
In the limit of ax, @y — 0, the exponent in the formal solution blows up. As a
result, one obtains a deterministic mapping from uncompressed variables to their com-




pressions:

p(tz|r) = 0(ty, Tu(2)) (14)
7o(x) = argmax, [Inp(t,) — BDkL(p(ty|)||p(ty[ts))] (15)
p(tyly) = o(ty, 7y(y)) (16)
7y(y) = argmax, [Inp(t,) — BDkr(p(ta]y)||p(talty))] - (17)

This is the Deterministic SIB (DSIB).

3 Results

To show that GSIB is more data efficient than two GIBs applied independently to X and
to Y, we notice that, in practical applications, all of the information and entropy terms
in the loss functions must be estimated from data. Estimation of information-theoretic
quantities is a hard task, potentially as hard as estimating the underlying distributions
themselves, largely due to the estimation bias (Antos and Kontoyiannis, 2001; Paninski,
2003). Crucially, for a DR algorithm to produce meaningful results, the empirically esti-
mated loss function must accurately represent the true loss function, which is unknown
to us. Thus the question of which algorithm is more data efficient is equivalent to a
different question: for which of the considered IB algorithms does the estimate of the
respective loss function converge faster to its true value as the sample size grows?

A lot of ink has been expended on the problem of mutual information estimation
(Roulston, 1999; Kraskov et al., 2004; Goebel et al., 2005; Belghazi et al., 2018). Here
we do not try to produce better estimation techniques. Instead we focus on discrete
random variables with finite cardinalities, and we use the simplest estimator, known
as plug-in, naive, or maximum likelihood estimator, for estimation of all of the terms
in the loss functions (Roulston, 1999; Paninski, 2003). For this estimator, which we
denote with *, the probability distribution p(x) is estimated by its maximum likelihood
(ML) value, namely the frequency of an outcome in the sample, p(x) = n(z)/N, where

n(x ) is the number of times x occurred, and N is the total number of samples. Then
H, I, and L are all given by plugging in p instead of p in the expression for these
quantities. Shamir et al. (2010) showed that, while the ML estimator of mutual infor-
mation /(X,Y) is guaranteed to converge to the true value only when N > | X ||Y'|, the
ML estimator of the loss function, EIB, converges at much smaller N, making IB more
practical than one would naively think.

Here we continue this line of analysis and examine the convergence properties of
Lesis and Las when both | X |, [Y| > 1 in two different ways. First, we extend the
derivations of Shamir et al. (2010) and bound the error of estimating each information-
theoretic term in each of the loss functions from data. This allows us to build bounds
on how close L and L are, and we can compare these bounds for GSIB and GIBs.
Second, inspired by Still and Bialek (2004), we calculate the standard deviation and
bias of L — L for different versions of the IB. By both measures, for | X|, Y] > 1,
ﬁGSIB will have a smaller bias then ﬁGIB. This is our main result, allowing us to claim
that the symmetric version of IB is more data efficient.



3.1 Bounds on The Loss Functions

The loss functions Lgsip and L consist of multiple mutual information and entropy
terms. We calculate bounds on the fluctuations between each of these terms and their
estimators, and then combine them into a single estimate of the fluctuations of each loss
function. We do this below in detail for I(T; X) and its estimator /(T ; X). Analysis
of the other terms is similar. Furthermore, for our analysis, only the distributions of
x and y are unknown, and must be sampled from data. The distributions p(t,|z) and
p(t,|y) are chosen by the algorithm and optimized over. That is, they are known in any
particular iteration of the scheme. Thus they do not produce fluctuations in the loss
function directly, but only through the induced p(t,,t,), which fluctuate. This means
that, as first noticed in Ref. Shamir et al. (2010), some terms do not contribute to the
fluctuation bounds, simplifying the results. Crucially, our expressions below will hold
for all mappings p(t,|z) and p(t,|y), and not just the mappings that minimize their
respective loss functions.

To estimate |I(Tx: X) — I(Tx; X)|, we compare both terms to the expected value
of the empirical information £(I(Tx; X)):

[[(Tx; X) = I(Tx; X)| = [[(Tx; X) = E(I(Tx; X)) + E(I(Tx; X)) = I(Tx; X)|
< [[(Tx; X) = E(I(Tx; X))| + [1(Tx; X) = E(I(Tx; X))|. - (18)

This is analogous to the usual bias-variance decomposition for bounds on the magnitude
of fluctuations, with the first term in Eq. (18) representing the absolute deviation of the
estimator, and the second the bias. We now bound the absolute deviation and the the
bias terms separately.

First we focus on the absolute deviation (first) term in Eq. (18). For this, we follow
Shamir et al. (2010) and rely on the the McDiarmid’s inequality. This concentration
inequality bounds the probability of the difference between a function of an empirical
sample and its expected value. The bound is constructed from bounds on the change in
the function due to changes in individual data points:

2 2
Pllf(z1, 22, ...,2n) = E(f(z1,22,...,2n))| = €] < 2exp [_Zec} = 01,
(19)

where | f(z1,..., 2. xn) — f(og, .., 2 en)| < a. (20)

Thus, to use the inequality, we consider the maximum change in lifa single datum is
changed. That is, suppose the data point (x, y) is replaced by another data point (2, y/').
Then the maximum likelihood estimator at the point (x,y), p(z, y), decreases by 1/N.
In contrast, p(z’, y’) increases by 1/, and the estimate does not change at all other x,
y values. Similarly, the marginals p(x), p(z'), p(y), and p(y’) change by at most 1/N,
while marginals at all other values remain the same. For a fixed compression mapping,
we calculate p(t,) = > p(t,|z)p(x). We see that, with a single datum moving, p(t,)
can change by at most |p((t,|z") — p(t.|x))|/N < 1/N for each t, € Tx. Similarly
p(t,) can change by at most 1/N for each t, € Ty.

We now express the relevant mutual information in terms of entropy, I, (Tx; X) =
H(Tx) — axH(Tx|X), where the entropy H(Tx) depends on the probability density
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pts):
Zp ) log (. 1)

The change in entropy from moving a smgle datum can be bounded using the following
inequality, again borrowed from Shamir et al. (2010):

|(a+0)log(a+d) —alogal <log(N)/N (22)

for any positive integer N and for any a € [0,1 — 1/N] and § < 1/N. We apply
this identity for each term in the sum in Eq. (21) and find that the change in H (Tx) is
bounded by |T'x|log N/N.

We bound the change in H(Tx|X) = Y p(x)H(Tx|X = z). H(Tx|X = z)
only depends on p(t,|x), which we consider fixed. p(z) changes by at most 1/N
for two values of x. Thus the largest change is |H(Tx|z') — H(Tx|z)|/N <
| max(H (Tx|x'), H(Tx|z))|/N < log|Tx|/N. The last inequality comes from
H(Tx|X = z) <log|Tx/|, with the bound achieved for the uniform distribution.

Finally, combining the results for both entropy terms, we see that I, _(T; X) can
change by at most (|T’x|log N + ax log|Tx|)/N. Now we apply the McDiarmid in-
equality, Egs. (19, 20) to finally obtain that, with probability of at least 1 — d;:

log(2/41)
V2N

This generalizes the result of Shamir et al. (2010) to ax # 1. Similarly, we get that,
with probability of at least 1 — 91,

oy (Tx; X) = E(Lay (Tx: X))| < (|Tx|log N + ax log |Tx|) (23)

log(2/41)
V2N

This leaves us with the final bound on the difference between the ML estimators
of various informations and their expectations, namely for I (T'x; Ty); this quantity is
not analysed in Shamir et al. (2010), but we proceed very similarly. First, we calculate
how much this term changes from a single datum being moved by using the identity
I(Tx;Tx) = H(Tx)+H(Ty)—H(Tx, Ty). Luckily we already calculated that H (T'x)
changes by, at most, |T'x|log N/N, and H(Ty) changes by, at most, |Ty|log N/N.
We are left to calculate how much H(Tx,Ty) can change. We write H(Tx,Ty) =
— 2 pp, D(tes ty) log p(te, 1), where p(t.,t,) = 3, p(t|z)p(tyly)p(z,y). There-
fore, fi(t,, t,) can change by, at most, 1/N for all (t,,t,) € (T, Ty). Thus, H(Tx, Ty)
can change by at most |7’y ||Ty | log N/N. We again use the McDiarmid’s inequality and
we determine that, with probability of at least 1 — 4y, the difference between the ML
estimate /(T’x; Ty ) and its expected value is bounded by

Loy (Ty:Y) = E(Lay (Ty; )| < (|Ty|log N + ay log [Ty ) 24)

log(2/41)
V2N

Now we need to calculate bounds on the bias (second) terms in Eq. (18) and similar
expressions for the other information quantities. For this, we use results from Paninski

[[(Tx; Ty) — E(I(Tx; Ty))| < ((|/Tx| + |Tv| + |Tx||Ty|) log N) . (25)
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(2003), namely:

() = BT < log (1412972 ) < TS, 26)
() - BT < log (14 272 ) < B2, @

A Tx||Ty| —1 Tx||Ty| —1
\H(TX,TX>—E<H<TX,TX>>|s1og(1+' X”A}/‘ )s‘ X”A}/‘ . (28)

Since we consider mapping p(t.|) as fixed and known for this analysis, there is no bias

A

H(Tx|X)— E(H(Tx|X)). This means that the bias |/, (T'x; X) — I, (T'x; X)| only
comes from the | H (Tx) — H(Tx)| term and does not have an | X | or a, dependence.

Putting the bounds on deviations of the estimates from their expectations and of
expectations from the true values together, we get bounds on fluctuations of various
information quantities that contribute to the GSIB loss function

R log(2/6 Tx| —1
s (T X) = Ly (T X)| <(ITx] log N -+ vy log [T ) Y252/ 00) | [T

V2N N
(29)
] log(2/d1) | [Ty -1
Loy (Ty;Y) = Loy (Ty; V)| <(|Ty|log N + ay log | T3 |
| Y( Y ) y( Y )| (| Y| og N + ay 0g| Y|) o~ + v
(30)
[ log(2/6
[[(Tx;Ty) — I(Tx; Ty)| <(|Tx[ + [Ty | + | Tx[| Ty ]) log N g2(]\{ )
Tx| =1 |Ty| =1  |Tx[[T¥| -1
+ N + N + i
log(2/41)
=((|Tx|+1)(|7y|+1) = 1)log N —F———
((ITx [+ D(| Ty + 1) — 1)log N

(Tx|+D(Ty[+1) -4
+ .
N
For comparison, the term |I,,, (Tx; X) — I,,, (T; X)| in the error of the GIB loss func-
tion has the same bounds as the corresponding term in GSIB, Eq. (29). Further the

term |I(T;Y) — I(Tx;Y)| in the error of the GIB loss function is the same as for the
traditional IB. Shamir et al. (2010) calculated it to be:

log(2/51) , (1Tl + D(Y|+1) ~4
VIN N |

€1y

[I(Tx;Y) = I(Tx; Y)| < (3|Tx| +2) log N

(32)

All of these bounds have a similar structure. The term proportional to 1/ V'N comes
from the absolute deviation of the estimators. Its contribution is controlled by 47, so
that if a high certainty is required (6; — 0), then these terms are large. The terms
proportional to 1 /N are the bias terms.

The most crucial observation is that, even though the data comes from the joint prob-
ability distribution p(x, y), which has the cardinality of | X||Y|, the terms proportional

9



to this joint cardinality do not appear in the bounds, similar to Shamir et al. (2010). In
other words, one does not need to have the joint distribution well-sampled to apply any
of the IB variants.

The second observation from the bounds is that the deterministic versions, o =
ax = ay = 0, of both the SIB and the IB have slightly tighter bounds than their gen-
eralized counterparts, including the original IB versions with @« = ax = ay = 1. The
tightening does not affect the bias component of the bounds, but provides a small cor-

. o o o V/og(2/6
rection to the absolute deviation, eliminating the terms similar to «log |T'x| %,
which are subdominant in the size of the reduced representations compared to the terms

. V/log(2/5
like [T | log N V25200

We now compare the data efficiency of GSIB with that of two GIBs applied to
reduce X and Y independently. We do so by bounding the error of the estimates of the
loss for the GSIB vs. for two GIBs run in parallel.

The GSIB loss function error is:

- log(2/61)
L — L < ((|Tx|+ Ty |) log N + ax log|Tx| + ay log |Ty|) X———L—~
| GSIB GSIB| _((| X| | Y|) g X g| X| Y g| Y|) \/W
log(2/61)
+ Tx|+1)(|Ty| +1) —1)log NY——"—L"F
5T +1) (] +1) — 1) log N Y20
Tx| -1  |Ty| -1 (| Tx|+1)(|Ty| +1) — 4
+ N + N + N . (33)
The combined loss of two GIBs reducing X and Y independently is:
. log(2/61)
L — L < ((|Tx|+ Ty ]) log N + ax log |Tx| + ay log |Ty|) Y—F2L—>
|Las — Lams| < ((|Tx| + [Ty]) log x log |Tx| + ay log [Ty |) N
log(2/41)
+ B (3|Tx| + 3|1y |+ 4)log N—F—r°——=
B (3|Tx| + 3|Ty| +4)log o
Tx| -1 Ty —1 T DY +1 T D(X|+1) -8
e O Y B R (i R R R (R RV L P

We see that the dominant contribution to the absolute deviation part of Lggig bound is

B|Tx||Ty|log N 7“(12(_]2\[/61). For two GIBs run in parallel, Eq. (34) says that the dominant

contributions to the absolute deviation would be 35(|Tx | + |7y |) log N 7”1(\)52(72\[/61). That
is, the two GIBs have smaller absolute deviations than GSIB for all but the smallest
cardinalities of the compressed variables. However, notice that the cardinality of the
compressed variables is usually not large, almost by definition, so that this loosening
of the bound may be too small to notice for realistic NV > 1. The behavior of the bias
contributions to the bounds is different. The leading term for GSIB is |Tx||Ty|/N,
while for two GIBs itis (|7x||Y| + | X||Ty|)/N. Thus, when | X|, |Y| ~ N, the GSIB
can be significantly more efficient that GIBs. When | X |, |Y| > N, the bias bounds for
GIBs become meaningless, but GSIB bounds do not depend on the cardinality of the
data variables. This is the reason for our assertion that GSIB has better data efficiency
than two GIBs run in parallel for realistic cardinalities of variables and sample sizes.
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3.2 Mean error and Mean squared error

The error bounds for the mutual information estimators must hold for worst case under-
lying distributions. Thus there are many cases when the error is significantly smaller
than the calculated bounds. To explore if typical errors are different from the worst
case bounds, here we calculate the mean squared error of Lggiz — ﬁGSIB, and similarly
for the GIB. As always, the mean squared error is the sum of the squared bias and the
variance of the estimator

E(Lgsis — Lasis)? = (Lasis — E(Lasig))? + E((Lasis — E(Lgsi))?),  (35)

and similarly for the GIB. This expression is the bias-variance decomposition and is
similar to the bias absolute deviation decomposition for the bounds, Eq. (18). However,
instead of bounding terms, we now calculate them. For this, we decompose every mu-
tual information term in the loss functions into the corresponding entropy components.

We use the notation 6h = h — h for any variable that is being estimated via the
ML estimator. For the ML estimator of the probability distribution p(z, y), multinomial
counting statistics textbook results give

E(op(z,y)) =0, (36)

5m m’5 , ; /7 /

Expectations for fluctuations of marginal distributions can be obtained by marginalizing
Egs. (36, 37).

In what follows, we will focus on N >> 1, so that fluctuations dp(z, y) have a small
relative variance. Then, to obtain expressions for the variance of entropies, we follow
Still and Bialek (2004) and expand H around the true value H for small 6p. For H(X),
we get (expressions for other entropy terms are similar):

H(X) == (p(x) + dp()) log(p(x) + op(x))

X

-y [ )logp(z) + (g p(z) + 1)op(a) + Y

= H(X)- Y [(log ple) + 1)op(a) + Y = o= 1(5p 9’)2" ] . (38)

X

From this, it follows that 0H(X) = —) [(1ogp(x)+1)5p(x)+%

+O((0p(x))?))].  Noticing that terms first order in dp vanish under averag-
ing with respect to op, cf. Eq. (36), we immediately calculate |E(JH (X)) =

‘);;1 and |E(5H(Y))| = D;‘];l. Similarly, because p(t,|z) is fixed, we get

|[EQGH(X,Tx))| = S5 [EGH(Y, Ty)| = 2t Further, |[E(SH(Tx))| =
z|x z)—1 _ . ..

Loy x PPl 7L L and |E(OH(Ty))| =< X! where the inequalities

IN
comes from p(t,|x), p(t,|y) < 1. Combining these and similar results, we get biases of
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estimators of mutual information terms, which enter the GSIB loss functions:

(0o (X, 7)) < XL (9)
B (6L (v, 7)) < P @0)
B(GI(Tx, Ty))| < xE 1)(2']T\,Y' *h-4 41)
For the terms in the GIB loss function, we similarly get
1y, < P D =4 “2)
1y 1)) < KR Y =4 43)

Note that these biases, to the two leading orders in dp, are half of the bound on the biases
obtained in the previous Section, Eqgs. (29-32). Thus the same scaling analyses apply.
Crucially, we again observe that the bias of the symmetric variant of GIB only depends
on the cardinalities of the compressed variables and not the uncompressed ones. Hence
it is much smaller than for two GIBs applied in parallel, where the bias depends on
IX|Ty | and [Y]|T |

Similarly we now calculate the mean squared error (see Appendix for details):

E(SI(X, Tx)?) =
=5 | S sl ) og

X,Tx, T

p(x,t;) log p(x,t,)
p(@)p(ty) ~ p(x)p(t),)

—I(X,Tx)*|. (44

This expression can be simplified in two important limits. First, we consider the triv-
ial minimum of the loss function, discussed earlier. There the mapping is uniform,
p(tz|x) = 1/|Tx|, so that also p(t,) = 1/|Tx|. We get:

E(I(X,Tx) - I(X,Tx))* =

pa) | p@)ITx] | p@)/T] 0
> RTRE 8 ) IT] B e T~ W 49

X,Tx, T

That is, fluctuations vanish in this case. This is expected since there is no information
between Ty and X, and measuring more data points does not result in a more accurate
estimate of the mutual information.

The second interesting case is a “winner-take-all” mapping, p(t,|x) = 0(t,, 7(z)),
which would correspond to a deterministic clustering of multiple values of x into one
t,. This results in

E(I(X,Tx)—I(X,Tx))* = Zp ) log log — I(X, Tx)?

|
T( ) p(r(x))
%[log(m1n(|TX| X)) — I(X, Tx)?] . (46)

12



Thus, here the average squared error is bound by 227X |2;VI (YT < log ‘J"SXF, which
means that the RMS error for [(Tx, X) is < %. Similarly, the RMS errors for

I(Ty,Y) and I(Tx,Ty) are < % and < w, respectively. For the

traditional IB, the RMS error for (7', X ) is < log |7 , and the RMS error for [ (7,Y") is <

N
log]7] "Thus, the average fluctuations are small and are of the same order of magnitude

for both the symmetric bottleneck and the traditional bottleneck. This means that the
dominant term is the average bias. As we saw earlier, the latter can be much worse for
the traditional IB than for the symmetric IB.

4 Conclusion

Here we defined the generalized symmetric version of the information bottleneck
(GSIB). We calculated the error bounds for each term within the loss function of GSIB
and of the loss functions of the traditional generalized information bottleneck (GIB).
We showed that the bias in estimating the loss function, and hence the error in finding
the solution to the optimization problem from a finite dataset, is smaller for the GSIB
compared to applying traditional GIB to each of the input variables, in parallel. We also
calculated the average error and RMS error for each of these terms, resulting in essen-
tially the same conclusions. All of these results suggest that when the cardinality of the
measured variables X and Y are both large, and both variables require compression,
then simultaneous compression is more data efficient than independently compressing
each of the input variables.

While making extrapolations from a simple discrete variable case to more complex
scenarios is difficult, we hope that these results are only the first of many to demonstrate
a more general point that simultaneous dimensionality reduction is typically more data
efficient than independent dimensionality reduction. In fact, using numerical simula-
tions, we recently demonstrated a very similar result for a class of linear dimensionality
reduction techniques for continuous variables Abdelaleem et al. (2023b), as well as for
variational autoencoders (an IDR method) and a variational version of SIB (an SDR
method) for large-dimensional continuous variables Abdelaleem et al. (2023a). Collec-
tively, these findings suggest a general paradigm for efficient dimensionality reduction
in complex multivariate datasets. For example, since physical theories are often formu-
lated in terms of collective, coarse-grained representations (e.g., magnetization or tem-
perature, which are expectation values of microscopic spins or energies of molecules),
existence of data efficient algorithms for finding such reduced representations bodes
well for using data-driven approaches for building physical theories of complex sys-
tems. Similarly, in biology, many central questions can be formulated as finding rela-
tions between large dimensional datasets. For example, in neuroscience, one aims to re-
late neural activity to behavior (Steinmetz et al., 2021; Urai et al., 2022; Krakauer et al.,
2017; Sponberg et al., 2015b), and in systems biology, one looks to relate the gene ex-
pression state of a cell to its phenotypic profile (Clark et al., 2013; Zheng et al., 2017,
Svensson et al., 2018; Huntley et al., 2015; Lorenzi et al., 2018). Our analysis suggests
that methods based on the simultaneous dimensionality reduction can have a substantial
impact on these fields as well.
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S Appendix

5.1 Appendix: Derivation of the Generalized Symmetric Bottle-
neck

In what follows, we will derive the formal solution for the generalized symmetric bottle-
neck for p(t,|z). The formal solution is found by minimizing the cost function, Eq. (8)
with respect to p(t,|x), subject to the normalization constraint. For this, we calculate
the following useful derivatives:

op(t:)
Ol o) t,‘ n Zp (tal)p(w) = 6(ta, £,)p(2"), (47)
ap(ty) _ 48
ap(tx,t ) 0 _ ) )

To enforce the normalization of p(¢,|x), we add a Lagrange multiplier \ times the
normalization constraint to the cost function. With the helpful identities above, we now
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find the first derivative:
I Lass + Ay 1y Plta|@)p(z) = 1))

oW(E, )
t, ) Zp ) Inp(t,) + a, Z p(@)p(ts|2) Inp(ts|z)
—Zp lnp +%ZP pltyly) np(t,ly)
(t:wty)
_8 T;y Pt t,) m + A (XXT; plta]2)p(x) — 1)]

= —p(z) Inp(t;) — p(z') + aa[p(z’) Inp(t,[2) + p(z')]
: p(ty ty) :

_5%313@ ,ty)lnm + Ap(z')

= —p(z") [Inp(t)) +1 — X — a, (Inp(
+5Zpt /) n 2l )p(iy:i/

= —p(z )[hlp( ))+1—>\—Ozx(1np

ot o) Pty |x>]

/\ ~— |~ 4

217 +1)

p(ty)p(tyl2’)
= —p(x ) Inp(t),) +1—X—a, (Inp(t,|z') +1)
p(ty|T ty|x
L) (w5 w2l
= —p(a') [hlp( )+ 1= A= ap (Inp(tyfa’) + 1)
+B8Dxr(p(ty|2")|Ip(ty)) — BDxL(p(tyl2")]Ip(ty[t:))] - (50)
We now find the minimum of the cost function subject to the constraint that p(t,|x)

is normalized by setting this derivative to zero and solving for p(¢/ |z’). Doing this, we
find a formal solution:

exp | o (Inp(t;) — BDxr(p(ty|2")|[p(ty[t],))
Zy(2, g, B)

where Z,(2', a, B) = exp [—1+ A+ o, — BDxkw(p(t,|2")||p(t,))], and A is chosen

such that p(t |2) is normalized. Notice that the normalization constant Z, is indepen-

dent of ¢, and #/,. It only depends on ', a,, and /5. The same procedure can be followed
to find the solution of the generalized symmetric information bottleneck for p(t,|y).

p(t,]") = , (51

exp [ L (Inp(t]) — 8D (pltaly ) p(E:12,) |

D 1 / 7
Gl = Zy(y', oy, B)

(52)
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5.2 Appendix: Mean Error

Here we make explicit the calculations started in Section 3.2. Using Eq. (38) from the
main text we, find the expected bias for X to depend on the cardinality |X | and to be:

E(op(x)? E(Y >y op(z,y))?
ooy - 5 EBT) 5 E )
> vy E@p(x, y)op(z, y'))
B ; 2" p(x,y)
Yoy P y) = Xy y p(@, y)p(z, y)
2N Zyp(x y)

%
S~ 20 2x>_|X|—1_

(53)

2Np(r) 2N

Similarly, |E(0H(Y))| = };‘N cand |[E(6H (X, Tx))| = ‘)91;1'
Now we write:

5 E(0p(ta)?) _ 3 E(Y .y 0p(talz)p(a, y))?

Tx 2p(t.) Tx 2 ny p(z,y)
> xx vy E0ta|z)p(ts|z")op(z, y)op(a', y'))

|[E(0H(Tx))| =

2 EX,Y p(te|)p(2, y)

_ Z ZX,Y p(te|z)*p(z,y) — ZX,X',Y,Y/p(tr|$)p(tw‘x/)p($a y)p(a',y')
QNZXYp(t lz)p(x,y)

Tx
-y > x Pta|7)p(z) — Z 2 x Plte|2)p(a]ts) — p(te)
- 2Np(t,) 2N
_ Prexp(telo)p(alts)] — |TX| —1
where the inequality comes from p(t|z) < 1, so that p(t[x)*p(x) < p(t|z)p(z).
We can combine these results to find the overall bias for /(X Tx):
[E(OI(X, Tx))| = |E(6H (X)) + E(0H (Tx)) — E(0H (X, Tx))|
X1, Spaplt () -1 jx) -
- 2N 2N 2N
- YrexPlal@p(alts) =1 Ty -1
- ON - < ON (>3)
Similarly,
[EI(Y, Ty))| = [EQH(Y)) + E(OH(Ty)) = E(OH(Y, Ty))|
_IYI=1 L 2y plyIpGlt,) =1 Y] -1
- 2N 2N 2N
Yy Ptlypylt) =1 Ty -1
- ON - < ON (56)
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Finally, we calculate the bias for I(Tx, Ty):

|[EQOI(Tx, Ty))| =|E(6H(Tx)) + E(6H(Ty)) — E(0H(Tx, Ty))|
_ Yryx Pta|r)p(zlts) — 1 N >or, v Pty ly)p(ylt,) — 1
2N 2N
> rery xy Ptas tylz, y)p(z, ylte, ty) — 1
a 2N ’

and

|E0I(Tx, Ty))| < |E(0H(Tx))| + |E(0H (Ty))| + |E(6H(Tx, Ty ))|
Tx| -1  |Ty|—1  |Tx||Ty| -1
< .
- 2N + 2N + 2N

We can perform similar calculations for the original bottleneck to obtain:

[EQIY,T)| < |EGHY))| + [EQH(T))| + [EGH(Y,T))|

Y=, Saroplal) 1o~ S pltptalsy)

2N 2N 2N
Y, T
LG A W 4P
- 2N 2N 2N

5.3 Appendix: Mean Squared Error

(57)

(58)

(59)

1
2N

(60)

Using a method inspired by Still and Bialek (2004), we start by calculating the expected
squared error for the mutual information between two arbitrary variables A and B,
where the estimated probabilities are different from the true ones by a small error 9,
p(a,b) = p(a,b) + dp(a,b), p(a) = p(a) + dp(a) and p(b) = p(b) + op(b). First, let’s
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calculate the mutual information to the first order in dp:

p(a,b) + op(a,b)
(p(a) + dp(a))(p(b) + dp(b))

1+ dp(a, b)/p(a,b) }

I(A,B) = Z(p(a, b) + dp(a, b)) log

2 2
s+] oy

p(a,b)
(p(a,b) + dp(a, b)) log L,( )p(b) (1 + dp(a)/p(a))(1 + p(b)/p(b))

= S (plo.0) + 390, 0) [log T 1o (14 )

p(a,b)
(-2) (- 52)
|

pla,b)  dpla,b)  dp(a) dp(b)
(p(a,b) + dp(a,b)) |log oap® T plab) — ) — o (0) + .. }

£
W

p(a,) Sp(a,h)  dpla)  op(d)
Fp@l”bgmam@>+p@*”<pmxo p(a) pw>+'“)}
= a,b)lo pla.b) a, —pla
«-Mj@<mﬂgmwmm+®m )~ pltaipta) ~ pab)ins) + .. )
+I(A, B)
= a,b)lo pla,b) a,b) — a) —
_A’B(Sp( b1 gp(a)p(b)+§ap( b) XA:(Sp( ) %:5p(b)+...
4 I(A, B)
_ " G
_I@&B)+%;&K,®<lgpwmw) 1)+.“ (61)

Where in the last two lines, we used >, p(bla) = 1, >, p(alb) = 1, and dp(a) =
> g op(a,b), dp(b) = >, 0p(a, b), respectively.

Thus, we see that 6/(A,B) = >, ;dp(a,b)(log p(éalz 5 — 1) to first order in
op(a,b). We can now calculate the average squared error:

§3mab0%<%?% )

X a, b pa.b)
2, 0l ¥) ( (@)t 1ﬂ
> [5p(a,b)5p(a7b/)]

A,B,A"B

p(a,b) ) ( p(a’,b) )
x | log — 1) (log —-1]. (62)
( pla)p(b) pla’)p(¥)
We can use this generic expression to find the squared error for the estimator of
information between the variables X and T'x, where dp(z,t,) = p(t,|x)dp(z), and

E[SI(A, B)?
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E(0p(x)op(x')) = 1/N[6(x, 2")p(x) — p(x)p(x’)]. We calculate E[0I(X,Tx)?] as fol-
lows:

E[6I(X, Tx)Y
= S Bl t)op( )] (k)gM_l) (10gM_1)

XX\ T p(z)p(te) p(a)p(t,)

= 3 pltle)p(tla) E [p(a)p(a) (logM—l)

X, T, X/,T p(z)p(ts)

o (10g P& ta)

(lgpw)p(t;) 1)

_ / ,p(x)é(x,x’)—p(x)p(x’)
= > pltal)pt,l2) N

X7TX7X/7T£(

-+ D ko)

(o s st ~ ety )
- [§p<tx|x>p<x> (1o A=) 1)

« 2 Pt (1o F e 1)]

! / p(SE, t:c) p(:L’, t;)
N X’TXX;TS{ p(ta|z)p(ty|2)p(z) log () log SERA

—2I(X,Tx) + 1 — (I(X, Tx) — 1)*]

% Z p(te|z)p(t,]|z)p(x) log

X7TX7T3{

p(,t,) log p(x,t,)
p(x)p(ty) ~ p(x)p(t),)

—I(X, TX)Q} . (63)

Now let’s look at two limits when we can simplify the above expression. In the
first limit, we assume that the mapping is uniform, p(¢,|x) = 1/|Tx|, which means that
p(t:) = 1/|Tx| as well. Then

T Tx| 1 02
) | /TRl @/ L0
Tx [~ p(e)/|Tx| 7 p(x)/[Tx| N N
(64)
In the other limit, we assume a “winner-take-all” mapping, where p(t,.|z) = §(t,, 7(x)).

E[(I(X,Tx)-1(X,Tx))| = Y _

X Tx,Tx
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We can reduce the expression to:

E[61(X,Tx)?] =

D Olte, T(@)3(t, 7(x))p(x) log

i p(ts)
—I(X Tx)?]

==

2|H 2|H

1 2
2ot 8 iy 8 gy O

log(min(Tx ], |XD)? — 1(X,T5?] < = og(min(7l, 1XD)] . 69

1
N
The result for E[01(Y, Ty )?] is similar to that for E[01(X, Tx)?], Eq. (63:

E6I(Y,Ty)?] =

:% [ > ptyly)p(ty)p(y) log Py, 1) log Ply.f,) —I(Y,Ty)*| . (66)

YTy T, ! (y>p(ty) p<y)p(tfy)

Finally we can calculate the covariance of fluctuations in the compressed variables,
Tx and Ty. Here 0p(t.,t,) = > xy p(t:|2)p(ty|y)dp(z,y), and

Eop(t., t,)op(t,, t,)

Zpt |2)p(tyly)op(a,y) p(télx’)p(tgly’ﬁp(xﬁy’)]

XY

Z plta|e)p(tyly)p(t, | )p(t, |y El6p(z, y)op(z, y)]

= > pltl)pltyly)p(t,l)p(t,]y)
o p(x,y)0(x,2")o(y,y') — plz,y)p(a’, y')
N
[ZX,Y p(te|z)p(tyly)p(t,|2)p(t, ly)p(z, y)}
N
B lp(t  ty)p (témt;)}
I :

X

(67)
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Using the previous result and Eq. (62), we find:

BT Tf) = 3 Eldpltat)on(tty)] (1o Hte) 1)

Tx Ty T Tl p(tz)p(ty

ptit,)
g (l"gp(t;)p(t;) 1)

> xy P(telz)p(tyly)p(th|x)p(t,|y)p(z, y)
> o=

N
T, Ty Tl T,
pltaty) Pt t) ] 2
x log o — I(Tx,Ty)?/N.  (68)
pltwtty) 8 pinpley | I

In the “winner-take-all” limit, where p(t,|z) = &(t,, 7x(x)), and p(t,|y) =
d(ty, 7(y)), we find:
ElSI(Tx,Ty)?] =

> oxy O0(te, 7(2))0(ty, 7y (y)) 0 (L, 7 ()0 (L, 7y (y) )2(2, y)
_ [ e

Tx Ty, T} Tl
p(te,ty) p(ty, ty)

P(tp(ty) B ()
5 [eew) (@m0 V] :
—;[ 1 g( (7 (2) ))) ] I(Tx,Ty)?/N

x log } — I(Tx, Ty)?/N

)p(T,
1
< - log (min(|Tx], ITy|))? — I(Tx,Ty)?/N. (69)

Here we have calculate the average bias and variance for each term in the GSIB and the
GIB. We found, in general, that the variance decays as 1/N and depends only on the
cardinality of the compressed variables |T'x| and |Ty|. The expected bias for the GSIB
depends on the cardinality of the compressed variables, while the bias for the GIB can
depend on both the cardinality of the compressed variables and the cardinality of the
uncompressed supervisor variables | X | and |Y'].
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