
Timed Data Release using Smart Contracts
Jingzhe Wang†, Haocheng Wang†, Chao Li⇤, Balaji Palanisamy†

† University of Pittsburgh, School of Computing and Information, Pittsburgh, PA, USA
⇤Beijing Jiaotong University, Beijing, China

Abstract—We present a decentralized secure data release ap-

plication built on Ethereum, named Timed Data Release (TDR).

TDR allows users to encrypt sensitive data by enabling the

decryption of the data only after a predetermined period of time

has elapsed. We present the technical foundation for TDR and

its implementation on Ethereum. Our demonstration features a

microblogging application that enables scheduled publication of

microblogs, showing a practical application of timed data release

using smart contracts.

Index Terms—Timed Release, Blockchain, Smart Contract

I. INTRODUCTION

Consider a scenario where a data owner would like to
publish their message at a future time point, while hiding the
message until the release time. Several real-world applications
employ this primitive; for example, secure auction systems
require protection of important bidding information until all
the bids arrive. Effectively protecting such messages before
the release time is the central focus of the timed data release
primitive. May [13] first introduced this problem. Later, Rivest
et al. [14] suggested two promising solutions, namely time-

lock puzzle and timed encryption with trusted time servers,
which opened two directions of research in the literature. The
most recent efforts in this line are those of [6], [16]. As a
concurrent work, Liu et al. [12] had shown that incorporating
witness encryption with blockchains is also feasible. Though
these theoretical constructions ensure strong properties, their
efficiency and scalability for large-scale data applications is
still limited.

To resolve such tension, the notion of Timed Data Release
(TDR for short) using blockchains was proposed, offering
practical solutions for this problem. Recently, decentralizing
TDR using blockchains has gained attention. Roughly, such
a design constructs TDR on top of a blockchain network,
where a group of participating nodes jointly protects the data.
Since the first proposal of the blockchain-based design, there
have been several efforts to develop this line of work, and
their constructions have focused on the following aspects: (i)
survivability in various adversarial contexts [5], [9], [10], [17],
[18]; (ii) anonymization and efficiency [11]; (iii) enriching data
control [19].

In this paper, we realize the notion of decentralized TDR
using smart contracts. Our toolkit represents an engineering
effort of the existing TDR protocol [11], [18] in such a way
that users can use TDR in a black-box fashion. It consists
of two key components: front-end interface and back-end
TDR protocol. In detail, the front end allows potential users
to provision key service parameters, required by the TDR

protocol. The back end, upon observing service requirements,
starts the TDR protocol. Later, when the release time arrives,
users can issue requests to the front-end interface for releasing
the protected data, realized through the interaction between the
interface and TDR protocol.

Our toolkit emphasizes several features of our design. First,
our design is not novel in theory; instead, it is a re-engineering
of the status quo TDR, in a black-box fashion, offering the no-
tion of ”TDR as a Service”; second, our design is application-
agnostic and can be integrated into potential applications
seamlessly. To demonstrate the effectiveness, we showcase
a demo system, capturing a microblogging application with
an additional feature namely scheduled blog publication, sup-
ported by our TDR design. Through the demonstration, we
show that our design is practical and we shed light on the
effectiveness to other potential applications.

Ethereum Blockchain Network

Release Time Tr

Data
Split

Reconstruct

(1)

(2)

(3)

Data
Sender Data

Recipient

(2)

Smart Contract

……

Trustee Trustee

Trustee

Miners

Fig. 1: Sketch of TDR

II. TDR PROTOCOL

We introduce the preliminaries of TDR in this section. In
Section II-A, we discuss the working of TDR and we present
a concrete initialization of TDR in Section II-B.

A. TDR in a Nutshell

We illustrate the working of TDR with the help of Fig-
ure 1. Typically, the blockchain-based TDR consists of the
following three key entities, namely data sender, the Ethereum

blockchain, and data recipient. Specifically, data sender spec-
ifies a message requiring timed release and a prescribed
time after which the message can be published. The sender
then delegates the protection of the data to the Ethereum
Blockchain Network.

We describe the workflow of TDR as follows: A data sender
first prepares the data, specifies the prescribed release time



Microblogging
Web InterfaceRequest

Service
Contract

Aggregator
Contract

Trustee-1

Trustee-3

Trustee-2

Onion1

Onion2

Onion3

Release Time Tr

Trustee-1 Trustee-3

Onion1
Onion2

Onion3

Message
Request

（1）

（2）

（3）

（4）

（5）

（5） （6） TDR Protocol

Front-end Interface

Smart Contract
……

User

Trustee-2

,Tr ,(2,3)

Aggregator
Contract

Microblogging
Web Interface User

Fig. 2: Initialization of TDR

Tr of the data, and splits the data into multiple shares by
adopting a specific coding scheme, such as shamir secret

sharing [15](Step 1). The data sender then randomly recruits
a set of nodes on the Ethereum network, called trustees,
who are willing to provide service protecting the shares of
the data. After that, the data sender disseminates the shares
to the trustees(Step 2), which starts a TDR service. Later,
when time hits the prescribed release time point, the recruited
trustees publish their held shares. The data recipient can then
reconstruct the data, by adopting a reconstruction algorithm
from the specific coding scheme (Step 3).

Here, we would like to stress the role of the Ethereum
blockchain network. First, Ethereum provides a decentralized
context where a number of peers, holding Ethereum accounts,
can actively participate in the decentralized TDR protocol.
This feature enables Ethereum-based TDR to delegate the
protection of the data to the crowd in Ethereum, avoiding the
risks of a single point of trust; second, the TDR on Ethereum
is typically governed by smart contracts, under the assumption
that participating peers are rational, making any misbehaviors
publicly verifiable and economically punishable [10].

B. Initialization of TDR

Our initialization of TDR, detailed in Figure 2, consists
of two modules: front-end interface and the TDR protocol.
The front end provides a unified interface that welcomes
any user who is interested in using the TDR to schedule
his/her future publication. Specifically, a user can provide the
interface the data that needs to be scheduled and protected, the
time that he/she would like to publish the data, and security
parameters relevant to the Shamir secret sharing scheme (Step
1). Upon finalizing the parameters, an event will be triggered,
which results in the following actions: (i) two smart contracts,
Service Contract, and Aggregator Contract, will be deployed in
Ethereum (Step 2). The former files and publishes the critical
service parameter mentioned above while the latter will be in

charge of releasing the protected data ; (2) the data will be split
into multiple shares and encapsulated into onions by following
the notion of onion routing [7], and distributed to the selected
trustees (Step 3). After that, a TDR service normally starts and
the time clock starts ticking. We refer the interested readers
to [11], [18] for additional details on this protocol.

When the data is on-the-fly, it is protected jointly by the
selected trustees. Later, once the time clock hits the release
time, the reconstruction procedure will start. It consists of the
following steps: the trustees submit their own onions and their
private keys to Aggregator Contract (Step 4). If a data recipient
would like to release the data, the recipient can trigger a
release by requesting the web interface (Step 5). Based on
the eligibility of releasing the data, the Aggregator Contract
will reconstruct the message and send it to the web interface,
which makes the data public (Step 6).

III. DEMONSTRATION: MICROBLOGGING USING TDR

In this section, we provide the implementation details of our
toolkit based on the design outlined in Section II-B and we
further expand the use of our protocol to support scheduled
blog publications using a microblogging application.

To support the interactions with Ethereum [1], we imple-
ment our design in the Truffle framework [4]. We program the
smart contracts in Solidity [3] and deploy them using Ganache.
We implement our web front end in Node.js [2].

We next demonstrate a concrete microblogging application
for supporting scheduled blog publication. Here, for ease
of demonstration, we build a Twitter-like web interface. As
Figure 3a shows, any user can start scheduling their message
by hitting the Schedule button. It will prompt a new page
that requests the TDR parameters, including Message, De-
layed Release Time, Reconstruction Threshold, and Number
of Shares. Specifically, the Message field allows users to
attach the blog content that requires a scheduled publication.
In the example shown in Figure 3a, “hello” is the content



(a) Schedule Blog (b) Service Provisioning (c) Legal Message Release (d) Illegal Message Release

Fig. 3: Microblogging Application using TDR

of the scheduled blog. The Delayed Release Time is also
specified by the user, which captures the time elapsed until
the release of the message. We represent time in seconds. In
the example, the time value ”259200 secs”(3 days) indicates
that the user would like to release the message after 3 days.
To finalize the service configurations, the user should tell
the interface the scheme parameters of shamir secret sharing,
including Reconstruction Threshold and the number of shares.
In the example, the user requires a (2,3) shamir secret sharing

scheme to protect their message. After such provisioning, by
clicking PublishMessage, the back-end TDR service starts.

Once 3 days have passed, the message becomes eligi-
ble to be published. Our interface, as shown in Figure 3c,
prompts another page to support the message release. When
a user wants to get the protected message, he/she can hit the
getMessage button to trigger the reconstruction handled by the
Aggregator Contract, yielding the resultant message ”hello”
as scheduled originally. However, if someone aims to publish
the message at a time prior to the prescribed release time,
our interface will intercept the request and give an exception
message, as shown in Figure 3d.

IV. CONCLUSION AND FUTURE WORK

We provide a practical implementation of TDR and demon-
strate how to adopt its decentralized design for a microblog-
ging application. Our future work aims at incorporating TDR
in other data-oriented decentralized applications. Another di-
rection of future work is focused on enhancing current designs
of TDR by considering a more powerful mobile adversary [8],
who could threaten the protocol by continuously corrupting
trustees during their participation. In addition, further research
may also develop more rigorous TDR constructions with
additional provable security guarantees while retaining the
efficiency and scalability offered by the smart contract-based
decentralized approach.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant #2020071. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Ethereum. https://ethereum.org/en/, [Online].
[2] Nodejs. https://nodejs.org/en, [Online].
[3] Solidity. https://soliditylang.org/, [Online].
[4] Truffle suite. https://trufflesuite.com/, [Online].

[5] Enrico Bacis, Dario Facchinetti, Marco Guarnieri, Marco Rosa, Matthew
Rossi, and Stefano Paraboschi. I told you tomorrow: Practical time-
locked secrets using smart contracts. In Proceedings of the 16th

International Conference on Availability, Reliability and Security, pages
1–10, 2021.

[6] Leemon Baird, Pratyay Mukherjee, and Rohit Sinha. i-tire: Incremental
timed-release encryption or how to use timed-release encryption on
blockchains? In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security, pages 235–248, 2022.
[7] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.

Communications of the ACM, 42(2):39–41, 1999.
[8] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung.

Proactive secret sharing or: How to cope with perpetual leakage.
In Advances in Cryptology—CRYPT0’95: 15th Annual International

Cryptology Conference Santa Barbara, California, USA, August 27–31,

1995 Proceedings 15, pages 339–352. Springer, 1995.
[9] Chao Li and Balaji Palanisamy. Decentralized privacy-preserving timed

execution in blockchain-based smart contract platforms. In 2018 IEEE

25th International Conference on High Performance Computing (HiPC),
pages 265–274. IEEE, 2018.

[10] Chao Li and Balaji Palanisamy. Decentralized release of self-emerging
data using smart contracts. In 2018 IEEE 37th Symposium on Reliable

Distributed Systems (SRDS), pages 213–220. IEEE, 2018.
[11] Chao Li and Balaji Palanisamy. Silentdelivery: Practical timed-delivery

of private information using smart contracts. IEEE Transactions on

Services Computing, 15(6):3528–3540, 2022.
[12] Jia Liu, Tibor Jager, Saqib A Kakvi, and Bogdan Warinschi. How to

build time-lock encryption. Designs, Codes and Cryptography, 86:2549–
2586, 2018.

[13] Timothy C. May. Timed-release crypto.
http://www.hks.net/cpunks/cpunks-0/1460.html, 1993.

[14] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles
and timed-release crypto.

[15] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[16] Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kartik Nayak, Char-
alampos Papamanthou, and Sri AravindaKrishnan Thyagarajan. Trans-
parent batchable time-lock puzzles and applications to byzantine con-
sensus. In IACR International Conference on Public-Key Cryptography,
pages 554–584. Springer, 2023.

[17] Jingzhe Wang and Balaji Palanisamy. Securing blockchain-based timed
data release against adversarial attacks. Journal of Computer Security

(to appear).
[18] Jingzhe Wang and Balaji Palanisamy. Attack-resilient blockchain-based

decentralized timed data release. In IFIP Annual Conference on Data

and Applications Security and Privacy, pages 123–140. Springer, 2022.
[19] Jingzhe Wang and Balaji Palanisamy. Ctdrb: Controllable timed data

release using blockchains. In International Conference on Security and

Privacy in Communication Systems, pages 231–249. Springer, 2022.


