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Abstract—This paper explores a novel server observability
approach using eBPF (extended Berkeley Packet Filter) for
detailed request-level performance metrics of data center latency-
sensitive applications. Utilizing eBPF system call tracing, we
evaluate if syscall activity can reconstruct high-level application
behaviors and bypass the need for direct userspace reporting of
performance metrics. Through careful selection of eBPF events,
we demonstrate that certain syscall statistics can provide robust
insight into request-level metrics. In addition, we demonstrate
that these metrics can also be robust to networking effects, such
as packet loss. By demonstrating the ability for eBPF to pro-
vide request-level observability, we can potentially enable many
non-intrusive, low-overhead use cases for feedback in system
management runtime frameworks, such as resource allocation,
scheduling, and power management.

Index Terms—eBPF, performance, latency-sensitive

I. INTRODUCTION

Modern data centers are characterized by dynamic and de-
manding environments, necessitating efficient management for
a multitude of hosted applications. Achieving this efficiency
is particularly challenging due to the lack of portable and
non-invasive methods for capturing critical application-level
metrics. To provide greater insight into the complex behavior
of modern data centers, non-invasive tools for observability
have become increasingly important for data center man-
agement and optimization. Observability tools aim to collect
various telemetries and measurements of various data center
components, such as metrics (bandwidth utilization, memory
utilization, etc.), logs, or distributed traces of applications.

The emergence of eBPF (extended Berkeley Packet Fil-
ter) [1] has revolutionized observability and monitoring tools
in the Linux ecosystem. eBPF allows the execution of custom
programs in a secure, in-kernel virtual machine, thus providing
a unique vantage point for monitoring system-level activities.
Many observability tools have been built with eBPF to pro-
vide observability for security, networking activity, container
activity, and monitoring of distributed infrastructures, such
as Kubernetes. eBPF is able to transparently obtain various
performance metrics and tracing mainly through analyzing
network traffic activity and network protocol requests. Due
to their approach of analyzing network-based activity, eBPF
observability tools mainly target infrastructure and workloads
in distributed or cloud-based environments. However, this
powerful tool has not been explored for observability into more

traditional server systems which would equally benefit from
non-invasive observability tools.

Non-invasive observability tools for application instrumen-
tation can have several major benefits. For example, many
system management frameworks that control resource allo-
cation, power management, or workload scheduling require
direct feedback of the application’s performance metrics which
are typically reported by the application itself. However,
this direct feedback requirement can introduce several limita-
tions to many management frameworks. For example, power
management frameworks, such as DVFS or sleep-states are
carried out by drivers in the kernel. Many prior works that
proposed advanced DVFS and/or sleep-state management [2]—
[5] assume the availability of request-level metrics directly
reporting to the power management runtime. However, in
practice, it would be impractical to provide timely request-
level inquiries to the driver as passing user-space application-
level information to the driver would require significant over-
head. Similarly, resource allocation management runtimes also
rely on application-level feedback to guide various resource
allocation techniques, such as core allocation and cache par-
titioning [6]-[8]. Thus, providing non-intrusive observability
for applications to kernel-space management runtimes would
enable significant new opportunities for practical implementa-
tions of advanced kernel-space management runtimes.

Currently, observability into application workloads running
on a server system typically relies on traditional performance
counters provided by the underlying server hardware. While
existing eBPF tools effectively measure distributed workload
metrics and traditional performance counters gauge underly-
ing server hardware, a significant gap remains in capturing
application-specific metrics needed by many system manage-
ment runtimes. Applications typically fall into two categories:
compute-intensive batch applications and user-facing latency-
sensitive applications. For the former, traditional hardware per-
formance counters like Instructions Per Cycle (IPC) effectively
reflect performance. However, for latency-sensitive applica-
tions, the need for request-level metrics such as request per
second (RPS) and request latency presents a unique challenge.
Hardware metrics lack visibility into request boundaries, and
there is often a poor correlation between these performance
counter metrics and key performance indicators like RPS or
tail latency.



In this paper, we characterize the ability of using eBPF to
provide observability into application-level metrics of user-
facing, latency-sensitive workloads. Our research specifically
addresses the intricacies of user-facing, latency-sensitive ser-
vices, which are governed by request-based metrics such as
requests per second, latency, and tail latency percentiles, which
are difficult to capture using traditional hardware performance
counters. These services are inherently dependent on the
request-response cycle, where the client’s perceived perfor-
mance is directly linked to server-side application behavior.
Rather than monitoring network traffic activity as in existing
eBPF observability tools, we aim to explore if eBPF can use
the characterization of syscall activity to enable observability
of application-level metrics.

This paper evaluates a novel observability methodology
using eBPF for kernel-level tracing, thereby enabling the
non-invasive capture of application-level metrics critical for
optimizing the performance of latency-sensitive services. Sig-
nificantly, no previous study has extensively explored the
potential of syscall traces to yield meaningful information for
performance optimization in such applications. Our methodol-
ogy focuses on leveraging kernel-level activity to infer request
metrics non-invasively, a critical advancement in understand-
ing and optimizing user-facing application workloads. The key
contributions of our research are:

o We present an eBPF-based approach for in-kernel observ-

ability of request-level metrics.

o We thoroughly evaluate the feasibility of utilizing eBPF
system call activity for the observability of application-
level metrics using a wide range of latency-sensitive
workloads.

o We identify that eBPF-monitored syscall activity can
provide strong observability of throughput and system
saturation metrics.

o We discuss the implications and potential of enabling
in-kernel observability of application-level metrics of
latency-sensitive workloads.

In Section II we delve into related work, discussing the
limitations of existing methods in estimating request-level
metrics. Section III, explores the potential of using eBPF for
monitoring critical metrics in latency-sensitive applications.
The subsequent sections build upon this foundation, presenting
a case study (Section IV), discussing challenges (Section V
and concluding with the study’s implications and potential
for future research in application performance optimization
(Section VI).

II. RELATED WORK

We summarize below the related works that aim to estimate
request-level metrics and their limitations.

Performance counters. The kernel already presents a rich
set of hardware and software performance counters, such as
utilization, IPC, cache misses, stalls, etc. These metrics have
been demonstrated to have poor correlation with request-level
metrics [9]-[13]. Due to their poor ability to accurately predict
request-level metrics, performance counters present limitations

for many system management runtimes. While performance
metrics may be correlated to throughput, they are ineffective
during QoS violations and latency-based metrics. For example,
Seer [13] argues that utilization metrics have limitations in
predicting QoS violation.

Queue pressure. Requests in user-facing workloads tend
to flow through a series of queues during processing. For
example, networking queues and potentially application-level
request queues, such as between application stages in Mem-
cached workloads [13]. Therefore, request-level metrics may
be reflected in the queue pressure. Prior works, such as Seer
[13], identified that queue depth is a strong indicator of
predicting QoS violation. However, the major limitation here
is that the networking queues and various software queues
have to be instrumented, and that may require knowledge of
the queuing structures in the program.

eBPF applications. eBPF can be a very efficient tool for
monitoring the system behavior and detecting failures [14]-
[16]. Aside from monitoring and observability applications,
eBPF has been used as a lightweight virtual machine inside
the kernel to run programs with low overhead [17], [18] and
to provide light-weight serverless functions [19].

System Calls as a tool and a threat. Syscalls can
provide a great deal of information regarding the behavior of
an application. In this paper, we explore the use of syscalls
to extract valuable performance information. However, syscall
activity can also be used in malicious ways. Some studies
aimed to reduce the attack surface in the operating system
caused by system calls [20]-[23]; whereas other studies used
modern machine learning approaches to detect anomalous
activities [24]. As well as this, studies have been conducted
to enhance the security of system calls by modifying the
operating system architecture [25]. While security is a major
issue, in this work, we mainly focus on the feasibility of
utilizing syscall activity to characterize request-level metrics.

III. A CASE FOR REQUEST-LEVEL OBSERVABILITY WITH
EBPF AND SYSCALL ACTIVITY

We aim to explore the feasibility of utilizing eBPF for
the observability of essential request-level metrics like request
processing rate and latency. In this study, we examine latency-
sensitive applications within cloud and data center environ-
ments, leveraging eBPF (extended Berkeley Packet Filter) for
capturing and analyzing system call activities. The strength
of our methodology lies in the non-invasive nature of eBPF,
which allows us to collect in-depth observability without
altering the normal operation of the application or causing
significant overhead.

A. Monitoring with eBPF

eBPF revolutionizes kernel capability extension in Linux
systems, allowing sandboxed programs to run within the kernel
without altering its source code or adding kernel modules.
This feature, with its remarkably low overhead demonstrated
in prior works [14], [19], [26], has gained widespread adop-
tion in industry applications [1]. Linux’s extended Berkeley



Packet Filter (eBPF) feature, which has undergone extensive
improvements particularly in the Linux Kernel versions 3.15+
and 4.15+, enables developers to run small, static programs
attached to kernel functions (kprobes), kernel tracepoints, or
userspace functions (uprobes), thus bringing eBPF to the
forefront of kernel tracing and metric collection. Kprobes and
tracepoints, integral to eBPF, have been part of the Linux
kernel since the early 2000s, but recent advances have made
writing more complex programs easier and more practical.

eBPF programs can be compiled by compilers like GCC and
LLVM from classic C into bytecode, which is then injected
into the kernel, ensuring that generated programs pass eBPF
verification before being loaded. This verification enforces
strict constraints such as fixed stack size, reduced instruction
set, and prohibition of floating-point arithmetic and loops
to ensure programs are verifiable in time and correctness,
preventing kernel crashes or slowdowns. Importantly, eBPF
supports shared data structures between user and kernel space,
allowing for the exchange of information between programs
and user processes. eBPF programs trigger upon specific
system events like system calls or network events, executing
attached instructions at predefined kernel hooks accessible
through tools like BCC [27] and bpftrace [28]. This allows
monitoring of various system aspects, including system calls,
network activities, and other system events.

The effectiveness of eBPF as an interface for system-level
tracing and monitoring lies in its ability to embed custom
code at crucial kernel points, particularly at system call entry
and exit points for this study. This enables comprehensive
data collection, including process identifiers, system call types,
timestamps, and other relevant metadata, thereby offering an
in-depth view of application behaviors and their interactions
with the system. eBPF’s dynamic bytecode insertion into the
Linux kernel, activated by specific events, positions it as a
valuable tool across multiple domains, enhancing security,
monitoring, and performance optimization without the lim-
itations of traditional monitoring methods. eBPF has found
applications in a wide range of areas, including TCP-Tuning,
L-4 load balancing, and DDOS protection at Facebook [29],
[30], and more broadly in cloud computing for security
[31], [32], network optimization [33], [34], virtualization [35],
[36], and monitoring [37]-[39], highlighting its versatility and
effectiveness.

B. Motivating the Observability of Request-Level Metrics with
System Calls

Most user-facing workloads are request-response workloads
where servers process incoming requests from clients and then
send a response back. These workloads interact with various
sockets and queues through system calls (syscalls). Therefore,
our intuition is that these system call activities can indirectly
capture request activity intensity which can be used to observe
request-level metrics. For example, as server load increases,
more syscall activity would occur. Also, if QoS violation is
occurring, our intuition is that there are more irregular activity
patterns in syscalls which in turn will lead to more variance

PID_TGID: pid and tgid of the targeted application
// Hash map for looking up entry timestamp of each pid-tgid
BPF_HASH (start, u64, u64);
// Executed at the start of every syscall
TRACEPOINT PROBE (raw_syscalls, sys_enter) {
// Get pid tgid of the application calling this syscall
u64 pid_tgid = bpf get current pid tgid();
if (pid_tgid != PID_TGID) return 0; // Filter application
if (args—->id != 232) return 0; // Filter epoll wait
u64 t = bpf ktime get_ns(); // Entry timestamp
start.update (spid_tgid, &t); // Store start
return 0;
}
// Executed at the exit of every syscall
TRACEPOINT_ PROBE (raw_syscalls, sys exit) {
u64 pid_tgid = bpf get_ current pid tgid();
if (pid_tgid != PID_TGID) return 0;
if (args—->id != 232) return 0;
u64 start_ns start.lookup(&pid_tgid);// Retrieve entry
u64 end_ns = bpf ktime get ns(); // Exit timestamp

u64 duration = end_ns - start_ns; // Latest duration
/* Update metrics or stream data #*/
return 0;

}

Listing 1. Example of eBPF probe that calculates the duration of system call
epoll_wait with the id of 232. Built-in types/functions indicated in bold.

in the request latency, and that would similarly reflect in the
syscall’s timing properties.

Collecting eBPF Events. In this paper, we collect and an-
alyze eBPF event traces to evaluate the observability potential
for request-level metrics. Initially, we streamed all available
eBPF trace data to user space to explore potential correlations
with request-level metrics. Subsequently, we leveraged eBPF
capabilities to compute these metrics directly within the eBPF
space in real-time.

In Listing 1, we show an example eBPF program snippet
that measures the duration of epoll_wait following the
syscall’s completion. In section IV-C, we discuss the signif-
icance of this metric in accurately estimating request-level
metrics. This eBPF program snippet places a probe at the
beginning and end of a syscall event, filtering for the desired
application and syscall, and records the timestamp for the
event.

Request-oriented Syscalls. Due to the variety of system
calls and their different applications across software, analyzing
raw traces directly can be challenging and sometimes mis-
leading without a thorough understanding of the application’s
architecture. Intuitively, the syscalls that we monitor should
capture request-level behavior. For instance, in Figure 1(b), a
variety of syscalls are observed during the setup and shutdown
phases. However, these syscalls do not provide substantial
information about the application’s behavior during the active
request processing phase. When examining request-response
workloads, it is reasonable to view these tasks as black-
boxes that interface with various sockets/file descriptors, such
as networking and various libraries such as libevent, gRPC,
etc. For example, in the case of memcached application, an
incoming request is enqueued in a TCP socket, then read
into the black-box application through libevent (which heavily
uses the epoll syscall), then processed, and finally transmitted
over a TCP connection via the send socket. By adopting this
abstract perspective, we focus on system calls that interface
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Fig. 1. (a) Example of an application providing a service to clients over
network. Worker threads process the clients’ request data and send the
response (results) back to them. (b) The stream of application’s system calls
traced by eBPF. (c) Extracted subset of system calls used for observability of
request-level metrics.

with networking during request processing. These syscalls
manage network communication tasks, making them valuable
for analyzing the application’s performance and behavior.

In latency-sensitive applications, system calls like send,
recv, and accept play crucial roles in managing network
communication. Their frequency and functions are key to
understanding application performance. For instance, as shown
in Figure 1(b), accept is typically used in the setup phase,
while recv and send are more prominent during the request
processing phase, handling the majority of data transfers and
communications. Analyzing these syscalls’ occurrence and
roles is vital for our study.

Challenges of reconstructing per-request syscall time-
lines. Our initial aim was to reconstruct the timeline of each
request to derive observable metrics. However, this approach is
feasible only in simple scenarios where a single thread handles
all request-related activities.

In this simple scenario, the thread enters a waiting state
for an incoming request, employing the epoll syscall. Once
epoll returns, signaling the availability of a request at the
specified file descriptor (typically a socket), the thread then
proceeds to read the request using a syscall from the recv
family. Following the processing of the request (which con-
stitutes the service time), the application responds by sending
back data through syscalls such as send. Subsequently, the
application reverts to waiting for the next request, again
utilizing epol1, thus establishing a continual cycle of request
handling.

In Figure 1(c), a straightforward example of request process-
ing reconstruction is showcased. In cases where a single thread
is responsible for handling a request, the recv and send
syscalls corresponding to that request can be paired. This
matching allows for an accurate depiction of the application’s
state and key metrics like service time, providing a clear
observability into the application’s performance during request
handling.

However, this methodology becomes complex with an in-
crease in the number of threads, and almost impractical when
requests are distributed across different threads and applica-
tion components. Essentially, eBPF has no observability into

request boundaries and cannot differentiate between syscalls of
different requests. Therefore, we shifted our focus to deriving
observability from broader syscall statistics.

Identifying System Calls of Interest. In our initial
experiments, we realized that syscalls occurring infrequently
and responsible for specific tasks — which might not directly
correlate with every request processing activity — were not
conducive to a generalized solution applicable across all ap-
plications. For instance, the accept syscall, while indicative
of a client-server connection establishment, does not provide
clear insights into how or for how long this connection is
utilized in the context of application metrics.

Our focus thus shifted to syscalls directly involved in the
transmission and reception of requests, pivotal in understand-
ing application behavior. For receiving messages, common
syscalls include read, recvmsg, recvfrom, and their
variants, while sending messages often involves syscalls like
write, sendmsg, sendto, and related functions. Addi-
tionally, polling syscalls such as epoll, epoll_wait, and
select, typically used to await incoming requests, emerged
as critical data sources in our analysis.

Observability Through Syscall Statistics. Dealing with
raw syscall traces, even when focused on specific syscalls,
presented challenges due to their sheer volume and potential
for misleading interpretations. To mitigate this, we extracted
higher-level statistics from these traces, enabling us to estab-
lish meaningful and explainable correlations between these
statistics and the actual metrics of the application.

We found that syscall duration is particularly informative in
scenarios where a syscall awaits an event, as observed with
epoll family of syscalls. In contrast, for syscalls like send
and recv, which perform defined tasks, the frequency of these
calls offers better insight into application behavior. Rather
than directly calculating call rates, we first measured the
intervals between consecutive syscalls, or ’deltas’, in a sorted
trace. Analyzing these deltas not only aids in determining call
rates at any given moment but also allows for a multifaceted
analysis, leading to a more comprehensive understanding of
the application’s behavior and performance.

IV. CASE STUDY

In our case study, we adopt a comprehensive approach to
assess the efficacy of utilizing eBPF for the observability of
request-level metrics of latency-critical applications in cloud
and data center environments. Our analysis centers on gath-
ering detailed system call data, which is then meticulously
processed and analyzed. This analysis is not just limited to data
collection; our primary goal is to establish realistic relation-
ships between syscall timing statistics and actual application
performance metrics, specifically throughput and latency, thus
evaluating the observability of eBPF. By focusing on these
key areas, we aim to accurately measure and optimize crucial
performance indicators such as Requests Per Second (RPS)
and tail latency, thereby gaining deeper insights into the ap-
plication’s load handling capability and overall responsiveness.



TABLE I
SYSTEM SPECIFICATION

AMD
AMD EPYC 7302
Ubuntu 20.04.1
(5.15.0-52-generic)

INTEL
Intel Xeon CPU E5-2620
Red Hat 4.8.5-36
(4.20.13-1.el7.elrepo)

CPU Model

OS (Kernel)

Sockets 2 2
Cores/Socket 16 8
Threads/Core 2 1
Min/Max Frequency 1500/3000 MHz 1200/3000 MHz
L1 Inst/Data Cache 1/1 MB 32/32 KB
L2 Cache 16 MB 256 KB

L3 Cache 256 MB 20 MB
Memory 512 GB 128 GB
Disk 2 TB 2 TB

A. Experimental Setup

Our evaluation methodology consists of a diverse set of real-
world applications in a controlled environment. This validation
process includes comparing our eBPF-observed metrics with
reported application-level metrics, where available, to assess
the efficacy of request-level observability provided by eBPF.
Additionally, we perform robustness checks to ensure that
our methodology consistently produces reliable observability
results across different workload types and system configura-
tions.

Servers. Our experiments were performed on two high-end
servers, an AMD-based server and Intel-based server, shown in
Table 1. We utilize two different processors to demonstrate that
our technique is generalizable across hardware. We observe
similar trends across both servers, showing us that as long as
eBPF is supported, eBPF observability of request-level metrics
will work on any underlying hardware.

Workloads. We thoroughly evaluate our findings across a
wide range of latency-critical applications obtained from two
distinct benchmark suites and a state-of-the-art ML inference
server. This includes five applications from the tailbench
latency-critical benchmark suite [40], specifically img-dnn,
xapian, silo, specjbb, and moses. Furthermore, we
evaluate the only two latency-critical applications from
the CloudSuite benchmarks suite [41], Data Caching
(Memcached) and Web Search. Additionally, we evaluate
with the Triton Inference Server, an open-source
deep-learning inference server developed by NVIDIA [42],
[43], which supports both HTTP and gRPC protocols as
its inference API, providing us with a robust comparison
against different networking protocols and request queueing
structure. To guarantee the precision of our results, we
run all workloads inside docker containers. However, we
purposely placed the docker containers of both the client
and server on the same machine to control the quality
impact of the network by using Linux’s tc-netem tool [44].
The findings regarding these effects are further elaborated
and discussed in section V. The RPS at which failures
occurred for each benchmark in our high-end AMD server
is as follows: Img—dnn=1950, Xapian=970, Silo=2100,
Specjbb=3700, Moses=900, Data Caching=62000,

Web Search= 420, and Triton=21 (both with HTTP and
GRPCO).

All workloads are capable of handling concurrent requests
and can process multiple requests with multiple threads. They
were selected to exhibit a wide range of request-handling
software threading behavior. For example, Data Caching pro-
vides a straightforward and simple request-handling threading
behavior where each thread consumes and processes a request.
Web Search consists of two containers (and thus, two pro-
cesses), the front-end and index search, where requests enter
the front-end container process and are handled by the index
search container process. Triton has dedicated threads that
consume requests and dispatch them across other threads for
processing.

The syscalls used by each application are as follows: in
Tailbench, all applications use recvfrom and sendto, Data
Caching employs read and sendmsg, Web Search utilizes
read and write, Triton with GRPC protocol relies on
recvmsg and sendmsg and lastly Triton with HTTP proto-
col makes use of recvfrom and sendto. All applications
utilize epoll_wait as their polling mechanism; however,
Tailbench uses a legacy syscall called select.

B. Throughput Analysis: Observability of RPS

In the context of user-facing, latency-sensitive workloads,
throughput is a critical measure of performance. These work-
loads typically involve a client-server model where the client
sends requests to the server, and the server processes these
requests and responds. The efficiency of this interaction is
quantified as throughput, measured in requests per second
(RPS).

We propose a novel method to approximate RPS by moni-
toring the send syscall rate. This is based on the hypothesis
that the frequency of response dispatches from the server (as
captured by the send syscall) correlates strongly with the
application’s throughput. The formula for approximating RPS
(RPSppsy) is as follows:

r 1
RPSopse = tiend — t?end = W (1)

Here, r is the total count of send syscalls observed, and
Atsend represents the average interval between these syscalls.
Our approach is particularly effective over extended periods
(at least 2048 syscalls) where request distribution stabilizes.
However, for very short observation windows, variations in
request distribution can pose challenges.

Evaluation of Observed RPS. To assess the accuracy
of observed Requests Per Second (RPSopsy), we conducted
a comparative analysis with the actual Requests Per Second
(RPSReqr) reported by the benchmarks. This comparison is
illustrated in Figure 2, which includes two types of plots for
each workload: a correlation plot and a residual plot.

In the correlation plots, we present the relationship between
the normalized values of RPSpps, and RPSge,;. Here, the
x-axis indicates the normalized RPSopsy, While the y-axis




shows the normalized RPSg.q;- These plots are instrumental
in visualizing the degree of alignment between our estimated
and actual RPS values.

The residual plots, on the other hand, provide insights
into the error margin of our RP Sy, estimations at varying
levels of RPSgeq. Residuals are calculated by comparing
the RPSops, against a linear regression model fitted between
the two RPS variables. Essentially, a residual represents the
difference between the observed RPSRgeq and the predicted
value based on our linear regression model.

Each green dot in the residual plots signifies an individual
estimation based on syscall data, with ten such estimations
plotted for each actual RPS level. These plots are crucial
for understanding the nature of the errors in our estimations,
demonstrating whether they are random or biased (consistently
overestimating or underestimating).

Our findings reveal a strong positive correlation between
RPSopsy and RPSgeq across all workloads. Most of the
benchmarks exhibit a coefficient of determination (R?) greater
than 0.94. Notably, WebSearch had the lowest coefficient
of 0.86, but even in this case, the results were supportive of
RPSopsy being a valid estimate for RPSReq;.

The analysis of residuals further underscores the reliability
of our estimation method. The scatter of residuals across dif-
ferent RPS levels indicates that the errors in our RPSops, €S-
timations are generally random and not systematically skewed
in any one direction. This randomness in error suggests that
our method of estimating RPS using syscall data is not inher-
ently prone to consistent overestimation or underestimation,
reinforcing the validity of RP Sy, as a proxy for actual RPS
in various workloads.

C. Latency Analysis: Tail Latency Failure and Latency Slack

Latency analysis in our study involves two key aspects:
identifying tail latency failures and understanding latency
slack. Tail latency failure is crucial in evaluating service
quality, while latency slack helps in determining the buffer
before reaching critical latency thresholds which is used in
many resource management tools.

However, this analysis is not without challenges. The pri-
mary challenge is that end-to-end latency encompasses client
processing time, network transit times, and server processing
time (service time). Since system calls do not capture client-
side or network transit times, our focus is narrowed down to
analyzing the service time within the server. Additionally, the
threshold for tail latency failure is subjective and varies from
one application to another.

Our strategy, therefore, pivots around identifying server
saturation - a state where service times start increasing, leading
to higher overall latency and potential tail latency failures.
In scenarios where the server is the bottleneck, saturation
emerges as a primary cause of latency issues. In such cases,
analyzing syscall activities provides sufficient observability
for decision-making regarding the server’s status and resource
management. This method allows for effective monitoring and
timely interventions to maintain optimal server performance.
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Fig. 2. Comparison of the workload’s measured RPS and estimated observed
RPS calculated using system calls. A standard linear regression is carried out
to better illustrate the correlation of workload’s reported RPS. Residual figures
are shown to better capture the precision of linear regression. Eq. 1 provides
a robust methodology to derive observability of throughput.

1) Observability of Server Saturation: Quality of Service
(QoS) violations in data centers can arise from several factors,
including request inefficiencies, context switch delays, and
system saturation [13], [45]. We focus on the observability
of saturation-induced QoS violations, hypothesizing that satu-
ration will manifest as anomalous patterns in syscall timings,
specifically for recv and send syscalls.

We posit that under saturation-based QoS failure, the system
will experience some longer than usual delays, which will
affect the inter-syscall times captured for recv (At*<V) and
send (At5¢"9) syscalls. Therefore, we monitor the variance
of At*e®¥ and At5°"?. This unexpected increase in the vari-
ance of recv and send inter-syscall times indicates that
incoming requests are not processing as normal.

An increase in the variance of inter-syscall times is a strong
indicator of deviation from normal operation. We calculate this
variance using the following formula:

var(At*e%) = (Atreev)2 — (Afreev)? @)

An unexpected rise in this variance signals potential satura-
tion, indicating that the server is struggling to keep up with
incoming requests. This basic form of variance enables the
detection of anomalies in the eBPF space within the kernel.
It’s important to note that the observed behavior of increased
variance as a result of saturation is predominantly seen in
complex applications where saturation leads to contention.



In simpler, single-threaded applications, such contention is
absent. Requests in these applications queue up and are
processed sequentially and won’t exhibit significant variance
increases. However, this scenario is relatively rare. As detailed
in Section III, even in such simple applications, the complete
request handling timeline can be reconstructed from syscall
timings. In multi-threaded applications, this approach can be
extended, with each thread handling a segment of the request-
response cycle. The most effective strategy, therefore, is to
consider the application as a whole, aggregating all syscalls
into a single trace. By analyzing the variance of time intervals
(deltas) in this unified trace, we can effectively determine when
the application surpasses its saturation point.

Evaluation of Saturation Observability. Figure 3 show-
cases the normalized variances calculated for the send syscall
group in our benchmark studies. On this plot, the x-axis
denotes the normalized Requests Per Second (RPS), while
the y-axis illustrates the normalized variance derived from
the At*¢"¢ syscall family. It’s important to note that different
applications utilize various send syscalls, including send,
sendmsg, and others, contributing to the diversity of our
analysis.

A critical aspect of this plot is the vertical line represent-
ing the point where tail latency surpasses the predetermined
Quality of Service (QoS) threshold. This point may not align
with the application’s saturation point and is defined by the
tolerance of the service relied upon by the application. A
significant observation from the plot is that the variance
tends to increase as the QoS threshold is breached. This
increase suggests that the application is struggling to process
all incoming requests efficiently. This struggle leads to an
accumulation of pending requests, potentially overloading the
application’s queue management system or causing increased
contention among concurrent requests.

By monitoring the changes in variance alongside the trends
in RPSopsy, we can effectively identify abnormal behaviors
in the application, particularly those leading to QoS failures
under saturation conditions. In the plot, after saturation, we
observe a correlation where an increase in RPSoyps, is often
accompanied by a rise in variance.

2) Observability of Saturation Slack: Many management
runtimes rely on knowledge of how far an application is from
reaching its saturation point. Saturation in this context means
the application is operating at its maximum capacity, and any
additional incoming requests cannot be processed immediately
but must wait in the queue. Understanding this saturation slack
is vital for the observability of a latency slack.

Initially, we sought to identify specific system call patterns
or indicators that could reliably signal approaching saturation.
However, this proved challenging as no consistent syscall
information or pattern could universally indicate application
saturation across different workloads and configurations. This
led us to shift our focus from trying to detect saturation directly
to identifying signs of application idleness.

The logic behind this approach is that at the point of
saturation, an application’s idleness is at its minimum, as it
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Fig. 3. An illustration of variance for inter-system call timing under varying
RPS for system calls responsible for sending the response to the client. The
variance increases as the application reaches its saturation therefore, it can be
used as a reliable observability indicator for saturation detection.

is constantly busy processing requests. Conversely, below the
saturation threshold, the application experiences periods of
waiting for new requests to arrive. This distinction becomes
crucial in understanding and measuring the saturation slack.

We discovered that application idleness (a precursor to
saturation) can be clearly discerned through syscall activities.
Specifically, we focused on the duration of epoll family
syscalls, such as epoll, epoll_wait, and select. These
syscalls are commonly used in applications to wait for new
incoming network events, such as client requests.

By monitoring and analyzing the duration of these epoll
syscalls, we found a clear correlation: as the RPS increases, the
idle time, as indicated by the duration of epol1 syscalls, de-
creases. This inverse relationship provides a reliable measure
of the application’s idleness and, by extension, its proximity
to saturation.

For instance, longer duration in epoll syscalls suggest
lower request rates, indicating that the application operates
well below its capacity. In contrast, shorter epoll syscall
duration implies higher request rates, signaling that the ap-
plication is nearing its saturation point. By quantifying this
relationship, we can effectively gauge the saturation slack of
the application.

Evaluation of Saturation Slack Observability. Fig-
ure 4 presents an analysis of how the duration of the
epoll syscall group correlates with the measured Requests
Per Second (RPS) in various applications. It’s important
to note that while most modern applications predominantly
use the epoll_wait syscall, some older applications, like
Tailbench included in our study, still rely on the select
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Fig. 4. Average of event polling duration under varying load. The vertical
line indicates the point at which tail latency crosses the acceptable limit. epoll
duration tends to stabilize under saturation and provides good observability
of system saturation.

syscall. This diversity in syscall usage is reflected in our
analysis.

In this chart, the x-axis indicates the actual RPS achieved by
the application. A significant horizontal line is drawn across
the chart, marking the point where Quality of Service (QoS)
failure occurs, as reported by the client. This QoS failure point
might differ from the actual saturation point of the application.
On the y-axis, we display the normalized average duration of
the epoll syscall group.

A notable trend observed in the chart is that the duration
of the epoll syscall tends to decrease as the application
approaches its saturation point. Upon reaching this saturation
point, the duration typically stabilizes. This pattern is indica-
tive of the changing behavior of the application under varying
load conditions.

Furthermore, for certain workloads, such as the web
search workload, an interesting phenomenon is observed
post-saturation. Once the saturation point is breached, the
application experiences an increase in idleness. This increase is
attributed to heightened contention within the application and
its queues. Essentially, as the application becomes overloaded
and struggles to process incoming requests efficiently, it starts
experiencing periods of inactivity at the application level. This
scenario is often reflected in a decline in the achieved RPS,
particularly after the QoS target is violated.

The insights gleaned from Figure 4 are crucial in under-
standing the dynamic behavior of applications under varying
load conditions. By monitoring the epoll syscall duration
in relation to the actual RPS, we can effectively gauge the
application’s performance and calculate a slack for saturation.

TABLE II
THE EFFECT OF THE NETWORK ON APPROXIMATED RPS

Network Config for Oms Delay | 10ms Delay
RPS_Obsv (R?) 0% Loss 1% Loss

TailBench img-dnn 0.9997 0.9998
TailBench xapain 0.9976 0.9964
TailBench silo 0.9998 0.9986
TailBench specjbb 0.9997 0.9996
TailBench moses 0.9411 0.9435
CloudSuite Data Caching 0.9995 0.9989
CloudSuite Web Search 0.8642 0.8573
Triton w/ HTTP Protocol 0.9976 0.9981
Triton w/ GRPC Protocol 0.9711 0.9703

V. CHALLENGES OF EBPF OBSERVABILITY

Our analysis of using eBPF observability of application-
level metrics faced a series of challenges. As we discussed
previously, since system call activity has no observability of
request boundaries, eBPF can’t have observability of individ-
ual request latency. Another notable challenge is the impact of
network delays and loss and the intricacies introduced by var-
ious types of applications used in modern data centers. These
factors complicate the accurate attribution of performance
metrics to specific threads or processes within an application.

A. Impact of Network Delays and Packet Loss

Network-related issues, particularly delays and packet loss,
significantly influence the performance of latency-critical ap-
plications. Delays refer to the time taken for requests to
travel across the network, while loss denotes the failure of
data packets to reach their destination. Therefore, we analyze
the impact of networking quality on the efficacy of eBPF
observability of application-level metrics.

We aimed to assess the impact of these network factors on
the metrics analyzed in the previous sections. For this, we
simulated different combinations of delays and losses on the
loopback network interface, as the client and application were
hosted on the same server.

Impact on Observed RPS. Our observations revealed that
network delays, while impacting the latency perceived by the
client, did not affect the number of requests processed by the
server at any given time. Hence, our observed RPS remained
unaffected. In scenarios with non-uniform delays, only the tail
latency experienced fluctuations, but since our observed RPS
relies on counting the number of syscalls within a specific
duration, it remained consistent.

Loss, a common occurrence in TCP-based communications,
can significantly impact tail latency due to retransmission.
However, it did not markedly change the rate at which requests
were processed, thus leaving the syscall count relatively stable.
Consequently, the observed RPS still effectively mirrored the
actual RPS, even in the presence of packet loss.

To evaluate this, we report the coefficient of determination
(R?) from linear regression (discussed in section IV-B) un-
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Fig. 5. TIllustrating the impact of network loss on tail latency compared to
a metric derived from system calls for Triton Inference server with GRPC
communication protocol.

der various network configurations, as detailed in table II.
The R? results demonstrate that different network settings,
including those involving loss, which significantly impacts tail
latency, do not notably affect the observed RPS. This finding
underscores the robustness of an eBPF-derived observed RPS
measurement across diverse network conditions.

Impact on Tail Latency. This experiment reinforces the
understanding that system calls cannot fully capture actual la-
tency values or the latency experienced by the client. External
factors, particularly network elements, can significantly skew
perceived latency. As illustrated in Fig 5(top row), even a small
amount of network loss can substantially disturb tail latency.
Yet, this disruption isn’t mirrored in the metrics derived from
syscalls (bottom row).

Fig 5 (top row) compares the 99th percentile latency for
the triton workload with GRPC protocol under no loss and
1% loss scenarios. The bottom row of the figure, showing
the normalized average duration of epoll_wait, indicates
the application’s idleness and saturation slack. While tail
latency is significantly affected by network loss, this impact is
not observable in the epoll_wait duration. Despite this,
our focus on server saturation is justified, as the server’s
control over external factors like network conditions is limited
and saturation metrics can still be effectively used in server
management.

Impact on Saturation Observability. Our saturation de-
tection method, based on observing abnormalities in syscall
timing through variance, was not impacted by network delays.
These delays added to the total request latency but did not
alter the timing of syscall invocation or the point of system
saturation. However, delays did increase the gap between
the point of failure and saturation. Loss, while significantly
affecting tail latency, also did not change the saturation point.
Thus, saturation detection remains reliable even in the pres-
ence of network issues, although it cannot effectively be used
interchangeably with failure detection.

Impact on Saturation Slack Observability. Similarly,

network delays and loss created a discrepancy between the
points of saturation and failure. Delays pushed the failure point
further from the saturation point, while loss disrupted the tail
latency failure analysis. As a result, saturation slack could
not effectively replace latency slack, especially in scenarios
with network loss. Additional network information is required
to use saturation and failure metrics interchangeably and
effectively.

B. Complex, Multi-Stage Application.

Application structures can vary significantly even going as
far as distributed applications such as microservices, posing a
challenge in generalizing our analysis approach. We evaluate
the observability potential of a single-stage workload to evalu-
ate the feasibility of this approach. For multi-stage workloads,
like microservices, we would require eBPF observability of
individual services in the microservice workload in order to
then combine the request-level observability metrics together.

We aimed to identify metrics that would be broadly ap-
plicable across different application architectures, including
those with complex multi-threading. While simple applica-
tions with straightforward threading structures allow for the
reconstruction of request timelines as discussed in section III,
more complicated applications require reliance on the broader
metrics discussed in our analysis. However, we demonstrate
that eBPF provides good request-level observability of even
multi-threaded workloads.

C. Async I/O interface (I0_uring)

In the limitations of our approach, it’s crucial to note that
the effectiveness of syscall-based statistics is contingent on
the presence of syscall activities. In scenarios where advanced
I/0 frameworks like IO_uring [46] are used, which bypass
traditional syscalls for certain operations, our method may not
yield useful insights as the receiving and sending of the request
may not be observable by eBPF. Thus, further studies would be
warranted to explore the ability for eBPF-based request-level
observability of advanced I/O bypassing frameworks such as
10_uring.

VI. IMPLICATIONS OF IN-KERNEL OBSERVABILITY OF
APPLICATION-LEVEL METRICS

Our research opens several avenues for future applications
leveraging kernel-level tracing to characterize application be-
havior, which we discuss below.

Blackbox Application Optimization. For third-party ser-
vices lacking userspace access, eBPF kernel tracing offers a
non-invasive way to understand and optimize resource de-
mands and latency drivers. This enables the observability of
various metrics without any modification to instrument work-
loads and provides a non-intrusive way to present additional
feedback for optimization. For example, this methodology can
pinpoint opportunities for improvements in scheduling, disk
usage, or network configurations.

Resource Management. Efficient resource utilization tech-
niques [6]-[9], [47]-[50] and power management tools [2]-[5],



[51]-[58] are crucial in data center operations; however, they
all rely on constant client-side feedback in order to operate.
Our methodology enables detailed monitoring of resource us-
age patterns at the system level, allowing for more efficient dis-
tribution and utilization of resources. This efficiency not only
optimizes performance but also contributes to energy savings
and reduced operational costs. More importantly, by relying
on in-kernel observability, we can break the dependency on
client-provided performance feedback and also enable kernel
components (such as drivers) to be aware of application-level
performance metrics.

Low overhead estimation. The metrics derived from our
syscall-based methodology are straightforward and can be
efficiently calculated within the eBPF space, leveraging the
inherent advantages of eBPF, such as its low overhead [14],
[19], [26]. This characteristic ensures that utilizing these met-
rics imposes a very low overhead on the system. By conducting
calculations directly in the eBPF environment, we minimize
the resource usage typically associated with data processing
and analysis, making this approach particularly advantageous
for performance-sensitive environments. This efficiency in
computation aligns well with the goal of optimizing applica-
tion performance without burdening the system. We measured
the overhead of running the eBPF program on tail latency
across our workloads and load levels. For all workloads,
the median and upper quartile overhead remains significantly
below 1% (typically below 0.5%). We will incorporate these
values into the final paper version.

Predictive Provisioning. By analyzing the system-level
behavior of applications, our approach facilitates predictive
provisioning in data centers. By understanding the resource
utilization patterns and performance characteristics of ap-
plications, data center operators can anticipate resource re-
quirements and optimize resource allocation proactively. This
predictive approach can lead to significant improvements in
resource utilization efficiency and cost savings.

VII. CONCLUSION

In this paper, we introduced a methodology using eBPF
for in-kernel observability of request-level metrics of latency-
senstive workloads in cloud and datacenter environments. Our
approach provided a non-invasive, detailed analysis of system
call activities, offering insights into application behavior and
optimization opportunities. We evaluate the feasibility of uti-
lizing eBPF for observability of various performance metrics
on a range of latency-sensitive workloads and demonstrate
that eBPF can provide robust observability to a wide-range
of metrics. We successfully navigated several challenges like
network delays and multithreading, demonstrating the utility of
eBPF in real-world scenarios. This study not only contributes
to the field of performance analysis but also sets the stage
for future advancements in efficient non-intrusive resource
management and application optimization.
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