
Characterizing In-Kernel Observability of

Latency-Sensitive Request-level Metrics with eBPF

Mohammadreza Rezvani∗, Ali Jahanshahi†, Daniel Wong‡

∗†Department of Computer Science and Engineering, ‡Department of Electrical and Computer Engineering

University of California, Riverside

Riverside, CA, USA

Email: ∗mrezv002@ucr.edu, †ajaha004@ucr.edu, ‡danwong@ucr.edu

Abstract—This paper explores a novel server observability
approach using eBPF (extended Berkeley Packet Filter) for
detailed request-level performance metrics of data center latency-
sensitive applications. Utilizing eBPF system call tracing, we
evaluate if syscall activity can reconstruct high-level application
behaviors and bypass the need for direct userspace reporting of
performance metrics. Through careful selection of eBPF events,
we demonstrate that certain syscall statistics can provide robust
insight into request-level metrics. In addition, we demonstrate
that these metrics can also be robust to networking effects, such
as packet loss. By demonstrating the ability for eBPF to pro-
vide request-level observability, we can potentially enable many
non-intrusive, low-overhead use cases for feedback in system
management runtime frameworks, such as resource allocation,
scheduling, and power management.

Index Terms—eBPF, performance, latency-sensitive

I. INTRODUCTION

Modern data centers are characterized by dynamic and de-

manding environments, necessitating efficient management for

a multitude of hosted applications. Achieving this efficiency

is particularly challenging due to the lack of portable and

non-invasive methods for capturing critical application-level

metrics. To provide greater insight into the complex behavior

of modern data centers, non-invasive tools for observability

have become increasingly important for data center man-

agement and optimization. Observability tools aim to collect

various telemetries and measurements of various data center

components, such as metrics (bandwidth utilization, memory

utilization, etc.), logs, or distributed traces of applications.

The emergence of eBPF (extended Berkeley Packet Fil-

ter) [1] has revolutionized observability and monitoring tools

in the Linux ecosystem. eBPF allows the execution of custom

programs in a secure, in-kernel virtual machine, thus providing

a unique vantage point for monitoring system-level activities.

Many observability tools have been built with eBPF to pro-

vide observability for security, networking activity, container

activity, and monitoring of distributed infrastructures, such

as Kubernetes. eBPF is able to transparently obtain various

performance metrics and tracing mainly through analyzing

network traffic activity and network protocol requests. Due

to their approach of analyzing network-based activity, eBPF

observability tools mainly target infrastructure and workloads

in distributed or cloud-based environments. However, this

powerful tool has not been explored for observability into more

traditional server systems which would equally benefit from

non-invasive observability tools.

Non-invasive observability tools for application instrumen-

tation can have several major benefits. For example, many

system management frameworks that control resource allo-

cation, power management, or workload scheduling require

direct feedback of the application’s performance metrics which

are typically reported by the application itself. However,

this direct feedback requirement can introduce several limita-

tions to many management frameworks. For example, power

management frameworks, such as DVFS or sleep-states are

carried out by drivers in the kernel. Many prior works that

proposed advanced DVFS and/or sleep-state management [2]–

[5] assume the availability of request-level metrics directly

reporting to the power management runtime. However, in

practice, it would be impractical to provide timely request-

level inquiries to the driver as passing user-space application-

level information to the driver would require significant over-

head. Similarly, resource allocation management runtimes also

rely on application-level feedback to guide various resource

allocation techniques, such as core allocation and cache par-

titioning [6]–[8]. Thus, providing non-intrusive observability

for applications to kernel-space management runtimes would

enable significant new opportunities for practical implementa-

tions of advanced kernel-space management runtimes.

Currently, observability into application workloads running

on a server system typically relies on traditional performance

counters provided by the underlying server hardware. While

existing eBPF tools effectively measure distributed workload

metrics and traditional performance counters gauge underly-

ing server hardware, a significant gap remains in capturing

application-specific metrics needed by many system manage-

ment runtimes. Applications typically fall into two categories:

compute-intensive batch applications and user-facing latency-

sensitive applications. For the former, traditional hardware per-

formance counters like Instructions Per Cycle (IPC) effectively

reflect performance. However, for latency-sensitive applica-

tions, the need for request-level metrics such as request per

second (RPS) and request latency presents a unique challenge.

Hardware metrics lack visibility into request boundaries, and

there is often a poor correlation between these performance

counter metrics and key performance indicators like RPS or

tail latency.

In this paper, we characterize the ability of using eBPF to

provide observability into application-level metrics of user-

facing, latency-sensitive workloads. Our research specifically

addresses the intricacies of user-facing, latency-sensitive ser-

vices, which are governed by request-based metrics such as

requests per second, latency, and tail latency percentiles, which

are difficult to capture using traditional hardware performance

counters. These services are inherently dependent on the

request-response cycle, where the client’s perceived perfor-

mance is directly linked to server-side application behavior.

Rather than monitoring network traffic activity as in existing

eBPF observability tools, we aim to explore if eBPF can use

the characterization of syscall activity to enable observability

of application-level metrics.

This paper evaluates a novel observability methodology

using eBPF for kernel-level tracing, thereby enabling the

non-invasive capture of application-level metrics critical for

optimizing the performance of latency-sensitive services. Sig-

nificantly, no previous study has extensively explored the

potential of syscall traces to yield meaningful information for

performance optimization in such applications. Our methodol-

ogy focuses on leveraging kernel-level activity to infer request

metrics non-invasively, a critical advancement in understand-

ing and optimizing user-facing application workloads. The key

contributions of our research are:

• We present an eBPF-based approach for in-kernel observ-

ability of request-level metrics.

• We thoroughly evaluate the feasibility of utilizing eBPF

system call activity for the observability of application-

level metrics using a wide range of latency-sensitive

workloads.

• We identify that eBPF-monitored syscall activity can

provide strong observability of throughput and system

saturation metrics.

• We discuss the implications and potential of enabling

in-kernel observability of application-level metrics of

latency-sensitive workloads.

In Section II we delve into related work, discussing the

limitations of existing methods in estimating request-level

metrics. Section III, explores the potential of using eBPF for

monitoring critical metrics in latency-sensitive applications.

The subsequent sections build upon this foundation, presenting

a case study (Section IV), discussing challenges (Section V

and concluding with the study’s implications and potential

for future research in application performance optimization

(Section VI).

II. RELATED WORK

We summarize below the related works that aim to estimate

request-level metrics and their limitations.

Performance counters. The kernel already presents a rich

set of hardware and software performance counters, such as

utilization, IPC, cache misses, stalls, etc. These metrics have

been demonstrated to have poor correlation with request-level

metrics [9]–[13]. Due to their poor ability to accurately predict

request-level metrics, performance counters present limitations

for many system management runtimes. While performance

metrics may be correlated to throughput, they are ineffective

during QoS violations and latency-based metrics. For example,

Seer [13] argues that utilization metrics have limitations in

predicting QoS violation.

Queue pressure. Requests in user-facing workloads tend

to flow through a series of queues during processing. For

example, networking queues and potentially application-level

request queues, such as between application stages in Mem-

cached workloads [13]. Therefore, request-level metrics may

be reflected in the queue pressure. Prior works, such as Seer

[13], identified that queue depth is a strong indicator of

predicting QoS violation. However, the major limitation here

is that the networking queues and various software queues

have to be instrumented, and that may require knowledge of

the queuing structures in the program.

eBPF applications. eBPF can be a very efficient tool for

monitoring the system behavior and detecting failures [14]–

[16]. Aside from monitoring and observability applications,

eBPF has been used as a lightweight virtual machine inside

the kernel to run programs with low overhead [17], [18] and

to provide light-weight serverless functions [19].

System Calls as a tool and a threat. Syscalls can

provide a great deal of information regarding the behavior of

an application. In this paper, we explore the use of syscalls

to extract valuable performance information. However, syscall

activity can also be used in malicious ways. Some studies

aimed to reduce the attack surface in the operating system

caused by system calls [20]–[23]; whereas other studies used

modern machine learning approaches to detect anomalous

activities [24]. As well as this, studies have been conducted

to enhance the security of system calls by modifying the

operating system architecture [25]. While security is a major

issue, in this work, we mainly focus on the feasibility of

utilizing syscall activity to characterize request-level metrics.

III. A CASE FOR REQUEST-LEVEL OBSERVABILITY WITH

EBPF AND SYSCALL ACTIVITY

We aim to explore the feasibility of utilizing eBPF for

the observability of essential request-level metrics like request

processing rate and latency. In this study, we examine latency-

sensitive applications within cloud and data center environ-

ments, leveraging eBPF (extended Berkeley Packet Filter) for

capturing and analyzing system call activities. The strength

of our methodology lies in the non-invasive nature of eBPF,

which allows us to collect in-depth observability without

altering the normal operation of the application or causing

significant overhead.

A. Monitoring with eBPF

eBPF revolutionizes kernel capability extension in Linux

systems, allowing sandboxed programs to run within the kernel

without altering its source code or adding kernel modules.

This feature, with its remarkably low overhead demonstrated

in prior works [14], [19], [26], has gained widespread adop-

tion in industry applications [1]. Linux’s extended Berkeley

Packet Filter (eBPF) feature, which has undergone extensive

improvements particularly in the Linux Kernel versions 3.15+

and 4.15+, enables developers to run small, static programs

attached to kernel functions (kprobes), kernel tracepoints, or

userspace functions (uprobes), thus bringing eBPF to the

forefront of kernel tracing and metric collection. Kprobes and

tracepoints, integral to eBPF, have been part of the Linux

kernel since the early 2000s, but recent advances have made

writing more complex programs easier and more practical.

eBPF programs can be compiled by compilers like GCC and

LLVM from classic C into bytecode, which is then injected

into the kernel, ensuring that generated programs pass eBPF

verification before being loaded. This verification enforces

strict constraints such as fixed stack size, reduced instruction

set, and prohibition of floating-point arithmetic and loops

to ensure programs are verifiable in time and correctness,

preventing kernel crashes or slowdowns. Importantly, eBPF

supports shared data structures between user and kernel space,

allowing for the exchange of information between programs

and user processes. eBPF programs trigger upon specific

system events like system calls or network events, executing

attached instructions at predefined kernel hooks accessible

through tools like BCC [27] and bpftrace [28]. This allows

monitoring of various system aspects, including system calls,

network activities, and other system events.

The effectiveness of eBPF as an interface for system-level

tracing and monitoring lies in its ability to embed custom

code at crucial kernel points, particularly at system call entry

and exit points for this study. This enables comprehensive

data collection, including process identifiers, system call types,

timestamps, and other relevant metadata, thereby offering an

in-depth view of application behaviors and their interactions

with the system. eBPF’s dynamic bytecode insertion into the

Linux kernel, activated by specific events, positions it as a

valuable tool across multiple domains, enhancing security,

monitoring, and performance optimization without the lim-

itations of traditional monitoring methods. eBPF has found

applications in a wide range of areas, including TCP-Tuning,

L-4 load balancing, and DDOS protection at Facebook [29],

[30], and more broadly in cloud computing for security

[31], [32], network optimization [33], [34], virtualization [35],

[36], and monitoring [37]–[39], highlighting its versatility and

effectiveness.

B. Motivating the Observability of Request-Level Metrics with

System Calls

Most user-facing workloads are request-response workloads

where servers process incoming requests from clients and then

send a response back. These workloads interact with various

sockets and queues through system calls (syscalls). Therefore,

our intuition is that these system call activities can indirectly

capture request activity intensity which can be used to observe

request-level metrics. For example, as server load increases,

more syscall activity would occur. Also, if QoS violation is

occurring, our intuition is that there are more irregular activity

patterns in syscalls which in turn will lead to more variance

PID_TGID: pid and tgid of the targeted application

// Hash map for looking up entry timestamp of each pid-tgid

BPF_HASH(start, u64, u64);

// Executed at the start of every syscall

TRACEPOINT_PROBE(raw_syscalls, sys_enter) {

// Get pid_tgid of the application calling this syscall

u64 pid_tgid = bpf_get_current_pid_tgid();

if(pid_tgid != PID_TGID) return 0; // Filter application

if(args->id != 232) return 0; // Filter epoll_wait

u64 t = bpf_ktime_get_ns(); // Entry timestamp

start.update(&pid_tgid, &t); // Store start

return 0;

}

// Executed at the exit of every syscall

TRACEPOINT_PROBE(raw_syscalls, sys_exit) {

u64 pid_tgid = bpf_get_current_pid_tgid();

if(pid_tgid != PID_TGID) return 0;

if(args->id != 232) return 0;

u64 start_ns = start.lookup(&pid_tgid);// Retrieve entry

u64 end_ns = bpf_ktime_get_ns(); // Exit timestamp

u64 duration = end_ns - start_ns; // Latest duration

/* Update metrics or stream data */

return 0;

}

Listing 1. Example of eBPF probe that calculates the duration of system call
epoll_wait with the id of 232. Built-in types/functions indicated in bold.

in the request latency, and that would similarly reflect in the

syscall’s timing properties.

Collecting eBPF Events. In this paper, we collect and an-

alyze eBPF event traces to evaluate the observability potential

for request-level metrics. Initially, we streamed all available

eBPF trace data to user space to explore potential correlations

with request-level metrics. Subsequently, we leveraged eBPF

capabilities to compute these metrics directly within the eBPF

space in real-time.

In Listing 1, we show an example eBPF program snippet

that measures the duration of epoll_wait following the

syscall’s completion. In section IV-C, we discuss the signif-

icance of this metric in accurately estimating request-level

metrics. This eBPF program snippet places a probe at the

beginning and end of a syscall event, filtering for the desired

application and syscall, and records the timestamp for the

event.

Request-oriented Syscalls. Due to the variety of system

calls and their different applications across software, analyzing

raw traces directly can be challenging and sometimes mis-

leading without a thorough understanding of the application’s

architecture. Intuitively, the syscalls that we monitor should

capture request-level behavior. For instance, in Figure 1(b), a

variety of syscalls are observed during the setup and shutdown

phases. However, these syscalls do not provide substantial

information about the application’s behavior during the active

request processing phase. When examining request-response

workloads, it is reasonable to view these tasks as black-

boxes that interface with various sockets/file descriptors, such

as networking and various libraries such as libevent, gRPC,

etc. For example, in the case of memcached application, an

incoming request is enqueued in a TCP socket, then read

into the black-box application through libevent (which heavily

uses the epoll syscall), then processed, and finally transmitted

over a TCP connection via the send socket. By adopting this

abstract perspective, we focus on system calls that interface

Worker/Backend threads

No

No

accepting
requests? R

ea
d

re
qu

es
t

Pr
oc

es
s

da
ta

Se
nd

re
sp

on
se

cl
ea

nu
p

an
d

sh
ut

do
w

n

data
received?ep

ol
lYes

Se
tti

ng
up

 th
e

se
rv

ic
e

time

(a
)

(c
)

Yes

op
en

m
m

ap

ac
ce

pt

fu
te

x

ep
ol

l

re
cv

se
nd

re
cv

se
nd

fu
te

x

... ...

un
m

ap
cl

os
e

ex
it...(b
) ...

ep
ol

l

fu
te

x

fu
te

x

ep
ol

l

re
cv

se
nd

......

re
cv

pr
oc

es
s

re
qu

es
t

da
ta

se
nd

ep
ol

l

pr
oc

es
s

re
qu

es
t

da
ta

Fig. 1. (a) Example of an application providing a service to clients over
network. Worker threads process the clients’ request data and send the
response (results) back to them. (b) The stream of application’s system calls
traced by eBPF. (c) Extracted subset of system calls used for observability of
request-level metrics.

with networking during request processing. These syscalls

manage network communication tasks, making them valuable

for analyzing the application’s performance and behavior.

In latency-sensitive applications, system calls like send,

recv, and accept play crucial roles in managing network

communication. Their frequency and functions are key to

understanding application performance. For instance, as shown

in Figure 1(b), accept is typically used in the setup phase,

while recv and send are more prominent during the request

processing phase, handling the majority of data transfers and

communications. Analyzing these syscalls’ occurrence and

roles is vital for our study.

Challenges of reconstructing per-request syscall time-

lines. Our initial aim was to reconstruct the timeline of each

request to derive observable metrics. However, this approach is

feasible only in simple scenarios where a single thread handles

all request-related activities.

In this simple scenario, the thread enters a waiting state

for an incoming request, employing the epoll syscall. Once

epoll returns, signaling the availability of a request at the

specified file descriptor (typically a socket), the thread then

proceeds to read the request using a syscall from the recv

family. Following the processing of the request (which con-

stitutes the service time), the application responds by sending

back data through syscalls such as send. Subsequently, the

application reverts to waiting for the next request, again

utilizing epoll, thus establishing a continual cycle of request

handling.

In Figure 1(c), a straightforward example of request process-

ing reconstruction is showcased. In cases where a single thread

is responsible for handling a request, the recv and send

syscalls corresponding to that request can be paired. This

matching allows for an accurate depiction of the application’s

state and key metrics like service time, providing a clear

observability into the application’s performance during request

handling.

However, this methodology becomes complex with an in-

crease in the number of threads, and almost impractical when

requests are distributed across different threads and applica-

tion components. Essentially, eBPF has no observability into

request boundaries and cannot differentiate between syscalls of

different requests. Therefore, we shifted our focus to deriving

observability from broader syscall statistics.

Identifying System Calls of Interest. In our initial

experiments, we realized that syscalls occurring infrequently

and responsible for specific tasks – which might not directly

correlate with every request processing activity – were not

conducive to a generalized solution applicable across all ap-

plications. For instance, the accept syscall, while indicative

of a client-server connection establishment, does not provide

clear insights into how or for how long this connection is

utilized in the context of application metrics.

Our focus thus shifted to syscalls directly involved in the

transmission and reception of requests, pivotal in understand-

ing application behavior. For receiving messages, common

syscalls include read, recvmsg, recvfrom, and their

variants, while sending messages often involves syscalls like

write, sendmsg, sendto, and related functions. Addi-

tionally, polling syscalls such as epoll, epoll_wait, and

select, typically used to await incoming requests, emerged

as critical data sources in our analysis.

Observability Through Syscall Statistics. Dealing with

raw syscall traces, even when focused on specific syscalls,

presented challenges due to their sheer volume and potential

for misleading interpretations. To mitigate this, we extracted

higher-level statistics from these traces, enabling us to estab-

lish meaningful and explainable correlations between these

statistics and the actual metrics of the application.

We found that syscall duration is particularly informative in

scenarios where a syscall awaits an event, as observed with

epoll family of syscalls. In contrast, for syscalls like send

and recv, which perform defined tasks, the frequency of these

calls offers better insight into application behavior. Rather

than directly calculating call rates, we first measured the

intervals between consecutive syscalls, or ’deltas’, in a sorted

trace. Analyzing these deltas not only aids in determining call

rates at any given moment but also allows for a multifaceted

analysis, leading to a more comprehensive understanding of

the application’s behavior and performance.

IV. CASE STUDY

In our case study, we adopt a comprehensive approach to

assess the efficacy of utilizing eBPF for the observability of

request-level metrics of latency-critical applications in cloud

and data center environments. Our analysis centers on gath-

ering detailed system call data, which is then meticulously

processed and analyzed. This analysis is not just limited to data

collection; our primary goal is to establish realistic relation-

ships between syscall timing statistics and actual application

performance metrics, specifically throughput and latency, thus

evaluating the observability of eBPF. By focusing on these

key areas, we aim to accurately measure and optimize crucial

performance indicators such as Requests Per Second (RPS)

and tail latency, thereby gaining deeper insights into the ap-

plication’s load handling capability and overall responsiveness.

TABLE I
SYSTEM SPECIFICATION

AMD INTEL

CPU Model AMD EPYC 7302 Intel Xeon CPU E5-2620

OS (Kernel)
Ubuntu 20.04.1

(5.15.0-52-generic)

Red Hat 4.8.5-36

(4.20.13-1.el7.elrepo)

Sockets 2 2

Cores/Socket 16 8

Threads/Core 2 1

Min/Max Frequency 1500/3000 MHz 1200/3000 MHz

L1 Inst/Data Cache 1/1 MB 32/32 KB

L2 Cache 16 MB 256 KB

L3 Cache 256 MB 20 MB

Memory 512 GB 128 GB

Disk 2 TB 2 TB

A. Experimental Setup

Our evaluation methodology consists of a diverse set of real-

world applications in a controlled environment. This validation

process includes comparing our eBPF-observed metrics with

reported application-level metrics, where available, to assess

the efficacy of request-level observability provided by eBPF.

Additionally, we perform robustness checks to ensure that

our methodology consistently produces reliable observability

results across different workload types and system configura-

tions.

Servers. Our experiments were performed on two high-end

servers, an AMD-based server and Intel-based server, shown in

Table I. We utilize two different processors to demonstrate that

our technique is generalizable across hardware. We observe

similar trends across both servers, showing us that as long as

eBPF is supported, eBPF observability of request-level metrics

will work on any underlying hardware.

Workloads. We thoroughly evaluate our findings across a

wide range of latency-critical applications obtained from two

distinct benchmark suites and a state-of-the-art ML inference

server. This includes five applications from the tailbench

latency-critical benchmark suite [40], specifically img-dnn,

xapian, silo, specjbb, and moses. Furthermore, we

evaluate the only two latency-critical applications from

the CloudSuite benchmarks suite [41], Data Caching

(Memcached) and Web Search. Additionally, we evaluate

with the Triton Inference Server, an open-source

deep-learning inference server developed by NVIDIA [42],

[43], which supports both HTTP and gRPC protocols as

its inference API, providing us with a robust comparison

against different networking protocols and request queueing

structure. To guarantee the precision of our results, we

run all workloads inside docker containers. However, we

purposely placed the docker containers of both the client

and server on the same machine to control the quality

impact of the network by using Linux’s tc-netem tool [44].

The findings regarding these effects are further elaborated

and discussed in section V. The RPS at which failures

occurred for each benchmark in our high-end AMD server

is as follows: Img-dnn=1950, Xapian=970, Silo=2100,

Specjbb=3700, Moses=900, Data Caching=62000,

Web Search= 420, and Triton=21 (both with HTTP and

GRPC).

All workloads are capable of handling concurrent requests

and can process multiple requests with multiple threads. They

were selected to exhibit a wide range of request-handling

software threading behavior. For example, Data Caching pro-

vides a straightforward and simple request-handling threading

behavior where each thread consumes and processes a request.

Web Search consists of two containers (and thus, two pro-

cesses), the front-end and index search, where requests enter

the front-end container process and are handled by the index

search container process. Triton has dedicated threads that

consume requests and dispatch them across other threads for

processing.

The syscalls used by each application are as follows: in

Tailbench, all applications use recvfrom and sendto, Data

Caching employs read and sendmsg, Web Search utilizes

read and write, Triton with GRPC protocol relies on

recvmsg and sendmsg and lastly Triton with HTTP proto-

col makes use of recvfrom and sendto. All applications

utilize epoll_wait as their polling mechanism; however,

Tailbench uses a legacy syscall called select.

B. Throughput Analysis: Observability of RPS

In the context of user-facing, latency-sensitive workloads,

throughput is a critical measure of performance. These work-

loads typically involve a client-server model where the client

sends requests to the server, and the server processes these

requests and responds. The efficiency of this interaction is

quantified as throughput, measured in requests per second

(RPS).

We propose a novel method to approximate RPS by moni-

toring the send syscall rate. This is based on the hypothesis

that the frequency of response dispatches from the server (as

captured by the send syscall) correlates strongly with the

application’s throughput. The formula for approximating RPS

(RPSObsv) is as follows:

RPSObsv =
r

tsendr − tsend
1

=
1

∆tsend
(1)

Here, r is the total count of send syscalls observed, and

∆tsend represents the average interval between these syscalls.

Our approach is particularly effective over extended periods

(at least 2048 syscalls) where request distribution stabilizes.

However, for very short observation windows, variations in

request distribution can pose challenges.

Evaluation of Observed RPS. To assess the accuracy

of observed Requests Per Second (RPSObsv), we conducted

a comparative analysis with the actual Requests Per Second

(RPSReal) reported by the benchmarks. This comparison is

illustrated in Figure 2, which includes two types of plots for

each workload: a correlation plot and a residual plot.

In the correlation plots, we present the relationship between

the normalized values of RPSObsv and RPSReal. Here, the

x-axis indicates the normalized RPSObsv , while the y-axis

[51]–[58] are crucial in data center operations; however, they

all rely on constant client-side feedback in order to operate.

Our methodology enables detailed monitoring of resource us-

age patterns at the system level, allowing for more efficient dis-

tribution and utilization of resources. This efficiency not only

optimizes performance but also contributes to energy savings

and reduced operational costs. More importantly, by relying

on in-kernel observability, we can break the dependency on

client-provided performance feedback and also enable kernel

components (such as drivers) to be aware of application-level

performance metrics.

Low overhead estimation. The metrics derived from our

syscall-based methodology are straightforward and can be

efficiently calculated within the eBPF space, leveraging the

inherent advantages of eBPF, such as its low overhead [14],

[19], [26]. This characteristic ensures that utilizing these met-

rics imposes a very low overhead on the system. By conducting

calculations directly in the eBPF environment, we minimize

the resource usage typically associated with data processing

and analysis, making this approach particularly advantageous

for performance-sensitive environments. This efficiency in

computation aligns well with the goal of optimizing applica-

tion performance without burdening the system. We measured

the overhead of running the eBPF program on tail latency

across our workloads and load levels. For all workloads,

the median and upper quartile overhead remains significantly

below 1% (typically below 0.5%). We will incorporate these

values into the final paper version.

Predictive Provisioning. By analyzing the system-level

behavior of applications, our approach facilitates predictive

provisioning in data centers. By understanding the resource

utilization patterns and performance characteristics of ap-

plications, data center operators can anticipate resource re-

quirements and optimize resource allocation proactively. This

predictive approach can lead to significant improvements in

resource utilization efficiency and cost savings.

VII. CONCLUSION

In this paper, we introduced a methodology using eBPF

for in-kernel observability of request-level metrics of latency-

senstive workloads in cloud and datacenter environments. Our

approach provided a non-invasive, detailed analysis of system

call activities, offering insights into application behavior and

optimization opportunities. We evaluate the feasibility of uti-

lizing eBPF for observability of various performance metrics

on a range of latency-sensitive workloads and demonstrate

that eBPF can provide robust observability to a wide-range

of metrics. We successfully navigated several challenges like

network delays and multithreading, demonstrating the utility of

eBPF in real-world scenarios. This study not only contributes

to the field of performance analysis but also sets the stage

for future advancements in efficient non-intrusive resource

management and application optimization.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

invaluable comments and suggestions. This work is partly

supported by the University of California, Riverside and

the National Science Foundation under grants CNS-1955650,

CNS-2047521, CCF-2324941, and CCF-2324940.

REFERENCES

[1] “eBPF - introduction, tutorials & community resources,” https://ebpf.io/,
accessed: 2022-11-12.

[2] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez,
“Rubik: Fast analytical power management for latency-critical
systems,” in Proceedings of the 48th International Symposium on

Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 598–610. [Online]. Available:
https://doi.org/10.1145/2830772.2830797

[3] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µdpm: Dynamic power
management for the microsecond era,” in 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 120–132.

[4] C.-H. Chou, D. Wong, and L. N. Bhuyan, “Dynsleep: Fine-grained
power management for a latency-critical data center application,” in
Proceedings of the 2016 International Symposium on Low Power

Electronics and Design, ser. ISLPED ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 212–217. [Online].
Available: https://doi.org/10.1145/2934583.2934616

[5] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs between
power management and tail latency in warehouse-scale applications,”
in 2014 IEEE International Symposium on Workload Characterization

(IISWC), 2014, pp. 31–40.

[6] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware
resource partitioning for multiple interactive services,” in Proceedings

of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
107–120. [Online]. Available: https://doi.org/10.1145/3297858.3304005

[7] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” in 2011 38th Annual International Symposium on

Computer Architecture (ISCA), 2011, pp. 57–68.

[8] R. B. Roy, T. Patel, and D. Tiwari, “Satori: Efficient and fair resource
partitioning by sacrificing short-term benefits for long-term gains,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA), 2021, pp. 292–305.

[9] C. Delimitrou and C. Kozyrakis, “Qos-aware scheduling in
heterogeneous datacenters with paragon,” ACM Trans. Comput.

Syst., vol. 31, no. 4, dec 2013. [Online]. Available:
https://doi.org/10.1145/2556583

[10] ——, “Hcloud: Resource-efficient provisioning in shared cloud
systems,” SIGPLAN Not., vol. 51, no. 4, p. 473–488, mar 2016.
[Online]. Available: https://doi.org/10.1145/2954679.2872365

[11] ——, “Bolt: I know what you did last summer... in the cloud,”
SIGARCH Comput. Archit. News, vol. 45, no. 1, p. 599–613, apr 2017.
[Online]. Available: https://doi.org/10.1145/3093337.3037703

[12] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” in 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), 2014, pp. 301–312.

[13] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of

the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
19–33. [Online]. Available: https://doi.org/10.1145/3297858.3304004

[14] J. Levin and T. A. Benson, “Viperprobe: Rethinking microservice
observability with ebpf,” in 2020 IEEE 9th International Conference

on Cloud Networking (CloudNet), 2020, pp. 1–8.

[15] X. Dong and Z. Liu, “Multi-dimensional detection of linux network
congestion based on ebpf,” in 2022 14th International Conference on

Measuring Technology and Mechatronics Automation (ICMTMA), 2022,
pp. 925–930.

[16] K. Suo, Y. Zhao, W. Chen, and J. Rao, “vnettracer: Efficient and pro-
grammable packet tracing in virtualized networks,” in 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS),
2018, pp. 165–175.

[17] C. Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, “A protocol-independent
container network observability analysis system based on ebpf,” in 2020

IEEE 26th International Conference on Parallel and Distributed Systems

(ICPADS), 2020, pp. 697–702.

[18] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden,
J. Don, L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis,
“Ghost: Fast & flexible user-space delegation of linux scheduling,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, ser. SOSP ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 588–604. [Online]. Available:
https://doi.org/10.1145/3477132.3483542

[19] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
Extracting the server from serverless computing! high-performance
ebpf-based event-driven, shared-memory processing,” in Proceedings

of the ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
780–794. [Online]. Available: https://doi.org/10.1145/3544216.3544259

[20] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
system call specialization for attack surface reduction,” in USENIX

Security Symposium, 2020.

[21] A. Bulekov, R. Jahanshahi, and M. Egele, “Saphire: Sandboxing
PHP applications with tailored system call allowlists,” in
30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 2881–2898. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/bulekov

[22] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:
Automated system call policy generation for container attack surface
reduction,” in International Symposium on Recent Advances in Intrusion

Detection, 2020.

[23] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis,
“sysfilter: Automated system call filtering for commodity software,” in
International Symposium on Recent Advances in Intrusion Detection,
2020.

[24] S. K. Peddoju, H. Upadhyay, J. Soni, and N. Prabakar, “Natural
language processing based anomalous system call sequences detection
with virtual memory introspection,” International Journal of Advanced

Computer Science and Applications, vol. 11, no. 5, 2020. [Online].
Available: http://dx.doi.org/10.14569/IJACSA.2020.0110559

[25] D. Skarlatos, Q. Chen, J. Chen, T. Xu, and J. Torrellas, “Draco: Archi-
tectural and operating system support for system call security,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2020, pp. 42–57.

[26] V. Mittal, S. Qi, R. Bhattacharya, X. Lyu, J. Li, S. G. Kulkarni, D. Li,
J. Hwang, K. K. Ramakrishnan, and T. Wood, “Mu: An efficient,
fair and responsive serverless framework for resource-constrained
edge clouds,” in Proceedings of the ACM Symposium on Cloud

Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 168–181. [Online]. Available:
https://doi.org/10.1145/3472883.3487014

[27] “BCC - IO visor project,” https://www.iovisor.org/technology/bcc, Dec.
2016, accessed: 2022-11-12.

[28] “bpftrace: High-level tracing language for linux eBPF.”

[29] N. Shirokov and R. Dasineni, “Open-sourcing katran, a
scalable network load balancer,” May 2018. [Online]. Avail-
able: https://engineering.fb.com/2018/05/22/open-source/open-sourcing-
katran-a-scalable-network-load-balancer/

[30] H. Zhou, N. Shirokov, and M. Lau, “Xdp production usage:
Ddos protection and l4lb,” facebook, 2017. [Online]. Available:
https://netdevconf.info/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf

[31] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo,
and L. T. X. Phan, “Detecting asymmetric application-layer Denial-
of-Service attacks In-Flight with FineLame,” in 2019 USENIX

Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, Jul. 2019, pp. 693–708. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/demoulin

[32] L. Deri, S. Sabella, and S. Mainardi, “Combining system visibility and
security using ebpf,” in Italian Conference on Cybersecurity, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:59616648

[33] P. Chaignon, K. Lazri, J. François, T. Delmas, and O. Festor, “Oko:
Extending open vswitch with stateful filters,” in Proceedings of the

Symposium on SDN Research, ser. SOSR ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3185467.3185496

[34] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications,”
ACM Comput. Surv., vol. 53, no. 1, feb 2020. [Online]. Available:
https://doi.org/10.1145/3371038

[35] N. Amit and M. Wei, “The design and implementation of hyperupcalls,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 97–112. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/amit

[36] A. Bijlani and U. Ramachandran, “Extension framework for
file systems in user space,” in 2019 USENIX Annual

Technical Conference (USENIX ATC 19). Renton, WA: USENIX
Association, Jul. 2019, pp. 121–134. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/bijlani

[37] I. Babrou, “Debugging linux issues with ebpf,” Oct 2018. [Online].
Available: https://www.usenix.org/conference/lisa18/presentation/babrou

[38] “Monitoring containerised application environments with eBPF,”
https://www.ntop.org/ntop/monitoring-containerised-application-
environments-with-ebpf/, May 2019, accessed: 2024-4-8.

[39] J. Perry, “Monitoring service architecture and health with bpf,”
https://www.youtube.com/watch?v=J2NWvh3lgJI, 2019.

[40] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and eval-
uation methodology for latency-critical applications,” in 2016 IEEE

International Symposium on Workload Characterization (IISWC), 2016,
pp. 1–10.

[41] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” SIGPLAN Not., vol. 47, no. 4, p. 37–48, mar 2012.
[Online]. Available: https://doi.org/10.1145/2248487.2150982

[42] “server: The triton inference server provides an optimized cloud and
edge inferencing solution.”

[43] “NVIDIA triton inference server,” https://developer.nvidia.com/nvidia-
triton-inference-server, Mar. 2020, accessed: 2022-11-16.

[44] “tc-netem(8) — linux manual page,” https://man7.org/linux/man-
pages/man8/tc-netem.8.html, accessed: 2023-12-18.

[45] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing
the source of tail latency through precise load testing and statistical
inference,” in Proceedings of the 43rd International Symposium on

Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 456–468.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.47

[46] “io uring - asynchronous i/o facility,”
https://man.archlinux.org/man/io uring.7.en, accessed: 2023-12-18.

[47] A. Jahanshahi, M. Rezvani, and D. Wong, “Wattwiser: Power &
resource-efficient scheduling for multi-model multi-gpu inference
servers,” in 2023 IEEE 14th International Green and Sustainable

Computing Conference (IGSC), 2023.

[48] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” SIGARCH Comput.

Archit. News, vol. 43, no. 3S, p. 450–462, jun 2015. [Online]. Available:
https://doi.org/10.1145/2872887.2749475

[49] X. Wang, S. Chen, J. Setter, and J. F. Martı́nez, “Swap: Effective fine-
grain management of shared last-level caches with minimum hardware
support,” in 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2017, pp. 121–132.

[50] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in Proceedings of the 40th Annual International Symposium

on Computer Architecture, ser. ISCA ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 607–618. [Online].
Available: https://doi.org/10.1145/2485922.2485974

[51] X. Hou, C. Li, J. Liu, L. Zhang, Y. Hu, and M. Guo, “Ant-man: Towards
agile power management in the microservice era,” in SC20: International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2020, pp. 1–14.

[52] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating
server idle power,” in Proceedings of the 14th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS XIV. New York, NY, USA: Association
for Computing Machinery, 2009, p. 205–216. [Online]. Available:
https://doi.org/10.1145/1508244.1508269

[53] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, 2012, pp.
119–130.

[54] ——, “Implications of high energy proportional servers on cluster-wide
energy proportionality,” in 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), 2014, pp. 142–153.
[55] D. Wong, “Peak efficiency aware scheduling for highly energy

proportional servers,” in Proceedings of the 43rd International

Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 481–492. [Online]. Available: https://doi.org/10.1109/ISCA.2016.49

[56] L. Zhou, C.-H. Chou, L. N. Bhuyan, K. K. Ramakrishnan, and D. Wong,
“Joint server and network energy saving in data centers for latency-
sensitive applications,” in 2018 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), 2018, pp. 700–709.
[57] K. Kaffes, D. Sbirlea, Y. Lin, D. Lo, and C. Kozyrakis,

“Leveraging application classes to save power in highly-utilized
data centers,” in Proceedings of the 11th ACM Symposium on Cloud

Computing, ser. SoCC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 134–149. [Online]. Available:
https://doi.org/10.1145/3419111.3421274

[58] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Gemini: Learning
to manage cpu power for latency-critical search engines,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2020, pp. 637–349.

