N

10

11

12

13

14

15

16

17

18

19

Beclin-mediated autophagy drives dorsal longitudinal flight

muscle histolysis in the variable field cricket, Gryllus lineaticeps

Tomas Diaz!, Lisa A. Treidel?, Michael A. Menze?, Caroline M. Williams', Jacqueline E.
Lebenzon!*
"Department of Integrative Biology, University of California Berkeley, 2040 Valley Life
Sciences Building, Berkeley, CA 94720, USA
2School of Biological Sciences, University of Nebraska Lincoln, 1104 T Street, Lincoln, NE
68588, USA
*Department of Biology, University of Louisville, 139 Life Sciences Bldg. Louisville, KY

40292, USA

* Author for correspondence: Jacqueline Lebenzon, jlebenzon@berkeley.edu

Other authors’ emails: tomasdiaz@berkeley.edu (TD), Itreidel2(@unl.edu (LAT),

michael.menze@louisville.edu (MAM), cmw(@berkeley.edu (CMW)

Keywords: Muscle breakdown, insect dispersal, life history trade-off, RNAi, beclin-mediated
autophagy, Gryllus, histolysis

Running title: Autophagy drives flight muscle histolysis in crickets


mailto:jlebenzon@berkeley.edu
mailto:tomasdiaz@berkeley.edu
mailto:ltreidel2@unl.edu
mailto:michael.menze@louisville.edu
mailto:cmw@berkeley.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

ABSTRACT

Flight muscle histolysis is a widespread strategy used by insects to break down functional flight
muscle and modulate the energetic costs associated with flight muscle use and maintenance. The
variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between
dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and
fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood.
Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation
process, drives breakdown of dorsal longitudinal flight muscle in female flight capable G.
lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal
flight muscle (DLM) during histolysis, but not in the neighboring dorsoventral flight muscle
(DVM), which remains functional. RNA interference knockdown of beclin, a gene which
encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM
histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs,
while maintaining DVM function for other fitness-relevant activities such as walking. Overall,
we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during
flight muscle histolysis, illuminating for the first time the mechanisms underlying a major life

history transition between dispersal and reproduction.
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INTRODUCTION

Tissue remodeling is commonly observed in metazoans (Pinet and McLaughlin 2019),
and many animals have evolved the capacity to match muscle function and structure with
varying energetic demands of their life cycle. Skeletal muscles are key to locomotor performance
and dispersal, making the ability to grow and maintain muscle crucial for increasing organismal
fitness (Irschick and Garland 2001). For example, migratory birds undergo massive hypertrophy
of their flight muscles to power long-haul flights between wintering and breeding grounds (Price
et al. 2011; Young et al. 2021); and hibernating ground squirrels resist skeletal muscle atrophy to
preserve locomotor ability throughout the winter, despite significant reductions in skeletal
muscle contraction and lack of food for months at a time (Zhang et al. 2016; Goropashnaya et al.
2020). However, growing, maintaining and using skeletal muscle is energetically expensive and
involves producing and expending vast amounts of ATP to maintain and restore muscle cell
membrane potentials, power myosin ATPase activity, facilitate active calcium reuptake, and
synthesize muscle protein (Romanello and Sandri 2016). Insect flight muscle is particularly
costly to use and maintain, and the energetic costs of flight muscles cause resource-based trade-
offs that limit early-life fecundity (Zera et al. 1997; Nespolo et al. 2008; Iwamoto 2011). Many
insects have evolved the ability to degrade their flight muscle altogether prior to the onset of
reproduction, in a process known as muscle histolysis (Marden 2000).

Flight muscle histolysis is an evolutionarily important process present in at least five
orders of insects (Coleoptera, e.g. Lebenzon et al. 2022; Hemiptera, e.g. Kaitala and Hulden
1990; Hymenoptera, e.g. Matte and Billen 2021; Orthoptera, e.g. Zera et al. 1997; Lepidoptera,
e.g. Cheng et al. 2016), which enables organisms to adaptively reallocate energy away from
dispersal within their life cycle. For example, diapausing Colorado potato beetles degrade their

flight muscle during winter, which drives lower metabolic rates and higher energy savings during
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periods of low resource availability when they do not need to fly (Lebenzon et al. 2022). In many

seasonally migrating and wing dimorphic insects, flight muscle histolysis coordinates the
cessation of dispersal and reallocation of energy towards reproductive development (Zera et al.
1997; Roff and Fairbairn 2007; Stahlschmidt 2022). In the latter example, timing of histolysis
appears to modulate trade-offs of the “flight-oogenesis syndrome” in females, such that
breakdown products from the flight muscle (i.e. amino acids) could be used as substrates directly
for oogenesis (Wheeler 1996; Lorenz 2007; Treidel et al. 2021). Despite the importance of flight
muscle histolysis on insect reproduction and fitness, we understand relatively little about the
underlying mechanisms driving this muscle breakdown. Further, the ability to selectively
degrade a single muscle type is a unique insect trait; most other vertebrate taxa maintain or grow
their muscles where possible, and any observed muscle breakdown and atrophy is simply a
pathological consequence of aging or disuse (Wall et al. 2013; Larsson et al. 2019). Thus,
understanding the mechanisms underlying muscle histolysis could contribute to a broader
understanding of how muscle plasticity has evolved to combat energetic challenges.

Flight muscle histolysis is often associated with protein degradation. For example, the
house cricket, Acheta domesticus, reduces the expression of genes that encode crucial muscle
protein [notably troponin and actin; Lu et al. 2023) during histolysis, and there is a pattern of
overall lower protein content in histolyzed muscle of several species of Gryllus field crickets
(Zera et al. 1997; Lorenz 2007). Flight muscle histolysis in diapausing Colorado potato beetles
not only involves the degradation of muscle protein but also widespread degradation of flight
muscle mitochondria through mitophagy, mitochondrion-specific autophagy (Lebenzon et al.

2022). Given these observed patterns of protein degradation in crickets and beetles, autophagy
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could play a ubiquitous role in driving insect muscle histolysis, especially in species where
histolysis coordinates life history transitions associated with reduced investment into dispersal.

Autophagy is a conserved lysosomal-dependent pathway that degrades and recycles
intracellular proteins and organelles (Mizushima 2007). Proteins and organelles destined for
degradation are tagged by ubiquitin ligases, and then recognized and surrounded by a suite of
autophagy-related proteins (ATG proteins) including GABARAPL (ATGS family) and Beclin
(ATG6 family). ATG proteins are required to initiate and aid in the formation of a double-
membraned autophagosome that engulfs and sequesters cargo destined for degradation (Sun et
al. 2009; Schaaf et al. 2016). Autophagosomes then fuse with lysosomes to form an
autolysosome, where the cargo will eventually be degraded, and the macromolecules will be
recycled (Mizushima 2007). Autophagy is especially important for nutrient recycling in energy-
stressed cells and is partially regulated by upstream energy-sensing pathways (e.g. mTOR and
AMPK signaling; Kim et al. 2011). Thus, we hypothesize that autophagy facilitates the
breakdown of proteins for energy reallocation during insect flight muscle histolysis.

Here, we explored the putative role of autophagy in driving flight muscle histolysis of
adult female, flight-cabable variable field crickets, Gryllus lineaticeps (Stal 1858). Gryllus
lineaticeps are a common field cricket found throughout the Western United States and are an
emerging model system for studying the physiological basis of flight-fecundity trade-offs. Flight-
capable G. lineaticeps emerge at the start of adulthood with fully developed long wings and large
functional flight muscles (Treidel et al. 2021, 2023). Flight-capable females invest in flight
muscle maintenance and prepare for flight by accumulating large somatic lipid stores, but delay
reproduction and ovarian development until the end of the first week of adulthood. Muscle

histolysis of the flight muscles is closely tied to the onset of oogenesis in female flight-capable
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crickets, such that ovary mass only substantially increases once histolysis is initiated (Treidel et
al. 2021). Timing of flight muscle histolysis is controlled by integrated nutritional and
neuroendocrine signaling pathways, but histolysis occurs eventually in all individuals regardless
of environmental conditions, suggesting that histolysis is required for females of this species to
reach their full reproductive potential (Zera et al. 1998; Shiga et al. 2002; Treidel et al. 2021).
Thus, G. lineaticeps is a powerful model to better understand the precise mechanisms underlying
the cellular changes required for flight muscle histolysis in the context of reproductive onset.
Muscle histolysis in flight-capable G. lineaticeps results in the breakdown of both major
sets of thoracic flight muscles in Orthopterans — the dorsal longitudinal muscles (DLM), which
produce the power stroke of flight by depressing the wing, and the bifunctional dorsoventral
muscles (DVM), which produce the upstroke of wings in flight and control leg movement during
walking (Wilson 1962; Treidel et al. 2022). The downstream molecular processes driving the
selective degradation of these muscles are unknown. We begin to address this gap by testing the
hypothesis that autophagy is activated during histolysis of both sets of flight muscles (DLM and
DVM). We tested this first by using electron microscopy to visualize potential autophagic
structures in histolyzing flight muscles, and then by measuring the expression of beclin (a gene
encoding an important autophagy initiator; Cao and Klionsky 2007) during histolysis. We then
established a causal role of beclin-mediated autophagy in flight muscle histolysis by knocking
down beclin transcript abundance in female flight-capable crickets using RNA interference. If
beclin-mediated autophagy is necessary for muscle histolysis, we predicted that knocking down
beclin would 1) prevent autophagy activation and thus 2) prevent or delay muscle histolysis.
Further, if autophagy is necessary for both histolysis and the resulting onset of oogenesis, then

knocking down beclin should also delay oogenesis in adult female flight capable crickets. Our
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study is the first to experimentally determine autophagy’s role in orthopteran flight muscle
histolysis, and provides new insights into how organisms can use autophagy to coordinate

transitions and allocations of energy between expensive life history traits.

MATERIALS & METHODS
Cricket Rearing and maintenance

Variable field crickets, G. lineaticeps, were reared as described in Treidel et al. (2023).
Briefly, laboratory colonies at UC Berkeley (Berkeley, CA, USA) were kept at approximately 27
°C with a light: dark cycle of 16 h: 8 h and given ad /ibitum access to water and a standard diet
composed of wheat bran, wheat germ, milk powder, and nutritional yeast. Each week, new
reproductively mature adults are added into breeding colonies maintained at a 50:50 ratio of
wing morph (50% long wing, 50% short wing) and provided with wet substrate (mixture of soil
and sand) for oviposition in plastic cups. After 1 week, the egg cups were removed and placed in
individual plastic containers to develop and hatch. For all experiments, we isolated adult flight
capable (long winged) female crickets from cages of juvenile crickets on their day of emergence,
which we deem “Day 0”. These individuals were subsequently housed in individual plastic

containers, in the same environmental conditions, with ad libitum access to water and food.

Experimental framework and flight muscle color classification

The timing of muscle histolysis in G. lineaticeps was previously established by Treidel et
al. (2021). When females emerge (Day 0), both types of flight muscle (DLM and DVM) are
large in mass and appear red in color. Most female crickets histolyze their flight muscle by day 5

of adulthood, which is concurrent with a reduction in muscle mass and a red-to-white color
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transition (Treidel et al. 2021, 2023). Here, we use muscle color as an indicator of histolysis
progression and classify functional muscle as red, histolyzing muscle as pink, and histolyzed
muscle as white (Figure 1). Since insects rely on simple diffusion of oxygen from tracheoles to
muscles and do not have muscle myoglobin (Weis-Fogh 1964), we expect that these color
changes are due to changes in cytochrome compounds as muscles histolyze. We analyzed and
classified the status of DLM and DVM separately because of the putative differences in their
function (DLM for flight, DVM for flight and walking) and observed differences in histolysis

timing (DLM is histolyzed first; Fig. 1).

Functional = red
Histolyzing = pink
Histolyzed = white

Figure 1. Flight muscle status classification in female G. lineaticeps, illustrating selective
histolysis of the DLM muscle. Illustrations in circles show the position of the dorsal
longitudinal (DLM) and dorsoventral (DVM) muscle in the cricket thorax. Photographs of each
stage of muscle histolysis are shown in boxes below the illustrations, and arrows point to the
color and muscle type.
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Sample preparation and imaging for transmission electron microscopy

We used transmission electron microscopy to visualize any potential autophagic
structures in flight muscle cells. We euthanized female long-winged crickets by decapitation, and
a longitudinal incision was made on the ventral thorax and abdomen to expose the flight muscles.
We then dissected histolyzing (pink) DLM and DVM from 3-day-old crickets and placed the
tissues straight into ice-cold fixative (2% glutaraldehyde, 2.5% paraformaldehyde in 0.2 M
sodium phosphate buffer, pH=7.4), for storage at 4 °C until staining. We only dissected from
pink because if autophagy is active during histolysis, we would expect to observe autophagic
structures during this “histolyzing” time point. On the day of staining, we washed the tissues (1 x
5 min, 5 x 15 mins) in double distilled water to ensure the removal of any residual fixative, and
stained tissues with 1% osmium tetroxide with 1.6% potassium ferricyanide (KFeCn) at room
temperature for 45 mins in the dark. Next, we washed fixed muscle samples with double distilled
water (1 x 5 min, 5 x 15 min) to ensure the removal of residual osmium tetroxide and KFeChn,
and then stained with 2% uranyl acetate overnight at 4 °C in the dark. We rewashed tissues (1 x 5
min, 5 x 15 min) with double distilled water to ensure the removal of excess uranyl acetate, and
then serially dehydrated the tissue in acetone, and embedded them in Epon-Araldite resin that
was polymerized in resin molds at 60 °C for four days. We cut 0.5 um sections of the sample,
stained each section with 2% uranyl acetate immediately followed by Reynold’s lead citrate, and
then finally imaged sections using an FEI Tecnai 12 Transmission Electron Microscope equipped

with a Gatan Rio 16 4K CMOS camera (Gatan, Pleasanton California, USA).
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Quantification of beclin mRNA abundance during muscle histolysis

We used quantitative real time PCR (qPCR) to measure changes in transcript abundance
of beclin in crickets in functional, histolyzing, and histolyzed flight muscle (Figure 1). We
dissected dorsal longitudinal and dorsoventral flight muscles (as described above) from five-day
old adult female long-winged crickets with functional (red), histolyzing (pink), and histolyzed
(white) muscles. Tissues were immediately flash-frozen in liquid nitrogen and stored at -80°C
until RNA extractions. We extracted RNA using TRIzol according to the manufacturer’s
instructions (ThermoFisher Scientific, Emeryville, CA, USA), removed residual genomic DNA
using DNase (Quanta Biosciences, Beverly, MA, USA), and measured the absorbance of the
final preparation at A = 260 nm and A = 280 nm using a Nanodrop spectrophotometer
(ThermoFisher scientific, Mississauga, ON, Canada) to determine RNA purity and concentration.
We used the qScript cDNA synthesis kit (Quanta Biosciences, Beverly, MA, USA) to synthesize
cDNA from 1000 ng of RNA and then stored samples at -20 °C until qPCR was performed.
cDNA was diluted to a consistent concentration in all reactions prior to use in qPCR reactions
and was amplified using Applied Biosystems PowerUp SYBR Mastermix (ThermoFisher
Scientific, Waltham Massachusetts, USA). In each qPCR reaction, we added the forward and
reverse primers at a concentration of 0.4 uM and 1 pg of cDNA, and we ran each reaction in
triplicate on a QuantStudio 3 thermal cycler (ThermoFisher scientific, Waltham Massachusetts,
USA). We designed beclin primers (Table S1) with Primer3 software (v4.1.0,

https://primer3.ut.ee/) using the beclin mRNA sequence from the publicly available Gryllus

bimaculatus genome database (https://gbimaculatusgenome.rc.fas.harvard.edu/, GBI _06202-RA;
Ylla et al. 2021) and validated their efficiencies (to ensure 95-100% primer efficiency) as

described in Lebenzon et al. 2022. Transcript abundance was normalized to the expression of
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two reference genes, vesicle transport protein (VTP) and calcium binding protein (CaBP)

(validated for stability in Vellichirammal et al. 2014). Relative normalized transcript abundance

was calculated using the comparative Cr (2'A ACT ) method (Livak and Schmittgen 2001), and
we compared differences in mean raw Cr values among muscle states using separate one-way

ANOVAs in R for DLM and DVM (version 4.3.2, R core team, Vienna Austria).

dsRNA production and validation of RNA interference knockdown of beclin

We designed and synthesized dsRNA constructs complementary to 1) beclin, which when
introduced into crickets would elicit an RNAi response and knock down beclin expression and 2)
green fluorescent protein (GFP) which is not complementary to any endogenous mRNA
transcript in crickets and therefore acts as a negative control. We used E-RNA1 software

(https://www.dkfz.de/signaling/e-rnai3/; Horn and Boutros 2010) to design primers which

amplified beclin from cricket cDNA or GFP from a CRISPR Universal Negative Control
plasmid (Sigma Aldrich). Each primer contained a T7 promoter sequence on the 5’ end, which is
required for downstream dsRNA synthesis by a T7 RNA polymerase. According to the
manufacturer’s instructions, we used these primers to then generate templates for dSRNA from
cricket cDNA and the CRISPR Universal Negative Control plasmid via PCR. To synthesize
dsRNA, we used the MEGAScript RNAI kit (ThermoFisher Scientific, Waltham Massachusetts,
USA) following the manufacturer’s protocol. We incubated dsRNA reactions at 37°C for 4 hours
for synthesis, performed a final nuclease digestion to remove residual DNA, and confirmed
successful dsSRNA synthesis by performing gel electrophoresis and observing bands at 485 bp

(for dsBeclin) and 411 bp (for dsGFP) (Figures S1).
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Two days after adult emergence, we injected crickets with a 10 pl Hamilton syringe
(Hamilton Company, Reno, Nevada, USA) with a 30 G needle, with 1000 ng (inc. 5 pl of 1X
sterile phosphate buffered saline) of either dsBeclin or dsGFP, to reduce beclin transcript
abundance or serve as a negative control, respectively. Timing of injection (2-days post-
emergence) was chosen to allow for full flight muscle development (Treidel et al. 2021). We
dissected both DLM and DVM from crickets as described above two- and four-days post-dsRNA
injection, to verify the extent and timing of transcript knockdown. We then used qPCR to verify
transcript knockdown in both DLM and DVM samples as described above, and compared Cr
values using a Student’s t-test in Microsoft Excel. Data for beclin expression in DLM and DVM

in crickets two days post-dsRNA injection are in Figure S3.

Effects of beclin knockdown on muscle histolysis progression and autophagy-related protein
abundance

After validating our RNAi knockdown of beclin, we used a new subset of dSRNA-
injected crickets to investigate the effects of this beclin knockdown on muscle histolysis
progression. Adult crickets two days after emergence were weighed and then injected with
dsBeclin or dsGFP as a negative control as described above. Three days after the injection,
crickets were re-weighed, their ovaries were dissected and weighed, and then both muscle types
were dissected as described above (Figure S2). Dorsal longitudinal and dorsoventral muscles
were photographed using an SMZ18 stereomicroscope equipped with a DS-Fi3 camera (Nikon,
Minato City, Tokyo, Japan) and then immediately flash-frozen in liquid nitrogen and stored at -
80 °C until they were used in western blots (described below). We used muscle photographs to

score muscle color as a proxy for muscle histolysis progression (Figure 1). Two authors (TD and
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JEL) scored each photograph for consensus while blind to dsSRNA injection treatment (dsBeclin
or dsGFP). We then used a Fisher’s exact test in R (v4.3.2, R core team, Vienna, Austria) to
compare differences in the proportion of crickets with functional and histolyzed muscle and a
Welch’s t-test in Graphpad prism to compare differences in ovary mass between dsBeclin and

dsGFP-injected crickets. We normalized ovary mass according to the equation

ovary mass (mg)

body mass (mg)—ovary mass (mg)’

Finally, to explore fine-scale changes in flight muscle histolysis progression induced by
beclin knockdown, we used immunoblots to assess the abundance of Cytochrome c oxidase
(COX, to assess impacts of beclin knockdown on mitochondrial abundance; Treidel et al. 2023)
and GABARALP1/2 (to assess autophagy activation; Willot et al. 2023) in the DLM of crickets
(Figure S2). To extract protein, we added 300 pl of lysis buffer (1% Triton X100, 1% SDS, 1X
TBS, ImM EDTA, 1% Protease inhibitor cocktail) per 5 mg of DLM. We homogenized the
samples manually using a plastic pestle, and then sonicated each sample using a handheld
sonicator (1 x 10 sec; Model 50, Fisher Scientific, Hampton, New Hampshire, USA). Following
sonication, samples were centrifuged (15,000 G, 10 min, 4°C) and the resulting supernatant was
collected. We quantified protein using the Pierce BCA Assay Kit (ThermoFisher Scientific,
Waltham, Massachusetts, USA) and then prepared samples for loading by combining 20 pg of
protein in water, 5 pul LDS sample buffer (ThermoFisher Scientific, Waltham Massachusetts,
USA), and 2 ul Beta-mercaptoethanol. Samples were then boiled for 10 min at 70°C and stored
at -20°C until use.

We used Invitrogen Bolt Bis-Tris Plus Mini Protein Gels (4-12%, 1.0 mm, ThermoFisher
Scientific, Waltham Massachusetts, USA) for electrophoretic protein separation. We loaded 20

ul of each protein sample (each containing 20 pg of protein), or 8 ul of PageRuler Prestained

13
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NIR Protein Ladder (ThermoFisher Scientific, Waltham Massachusetts, USA) into wells of the
gel and ran each gel in 1x running buffer (MES or MOPS depending on protein size of interest)
at 150 V for 35 mins.

We then transferred the proteins to a polyvinylidene fluoride (PVFD) membrane at 20 V
for 60 min. The membrane was washed with TBS and then incubated with Licor 700 Total
protein stain (LI-COR Biosystems, Lincoln, Nebraska, USA) for 5 min. Following incubation,
the membrane was imaged on an Azure c500 Imager (Azure Biosystems, Dublin, California,
USA) with NIR Red (700 Channel, auto exposure). After imaging, the membrane was washed 3
times with TBS and then incubated with 6 mL of TBS Blocking Buffer (LI-COR Biosystems,
Lincoln, Nebraska, USA) for 2 hours at room temperature. After incubation, the membrane was
incubated in primary antibody (in 1X TBST, 0.05% BSA, 10% NaN3) at a dilution of 1:1000 for
COX-1V (Novus Biologicals NB110-39115), and 1:2000 for GABARAPL1/2 (Abcam EPR4805)
overnight at 4°C. The membrane was then washed with TBST and then incubated in the
secondary antibody (LI-COR Biosystems 926-32211) at a dilution of 1:10000 for one hour at
room temperature. Following the incubation, the membranes were washed 2X with TBST and
then 2X with TBS. Finally, the membrane was imaged with an Azure ¢500 Imager (Azure
Biosystems, Dublin, California, USA) using NIR Red (800 Channel, auto exposure). We used
Imagel to quantify COX-IV abundance and GABARAP1/2 based on the density of bands present
at c. 19 kDa (COX-1V) and c. 17 kDa/15 kDa (GABARAPL1/2). We standardized each protein
sample to the total protein before statistical analysis and then used a Student’s t-test in excel to
compare differences in protein (COX, GABARAPLI or GABARAPL?2) abundance between

dsBeclin and dsGFP-injected crickets.
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RESULTS

We found that autophagic structures (lysosomes, autophagosomes and autolysosomes)
are present in histolyzing dorsal longitudinal (DLM) and dorsoventral (DVM) flight muscle (Fig.
2A), suggesting that autophagy is activated in both sets of flight muscle during histolysis. Beclin
transcript abundance increases significantly in histolyzing and histolyzed dorsal longitudinal
muscle compared to functional muscle (F2,15=52.39, P <0.0001, Fig. 2B), but does not increase

significantly in dorsoventral muscle (F2,15=2.62, P = 0.11, Fig 2B).
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A: Transmission electron micrographs B: Patterns of beclin gene
of histolyzing muscle expression during histolysis

4“9pim b

DVM DLM

Relative normalized beclin transcript abundance

Lys = lysosome Mit = mitochondria 2]
AP = autophagosome Rer = rough endoplasmic
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DL Muscle state

Figure 2. Crickets activate autophagy in the flight muscles during histolysis A) Transmission
electron micrographs (6800x magnification) of “pink” (histolyzing) DVM (left) and DLM
(right), showing the appearance of autophagy-related structures in both muscle types
(autophagosomes; AP; autolysosomes, aly). B) Beclin expression is increased in the dorsal
longitudinal muscle (DLM; top) but not dorsoventral muscle (DVM; bottom) muscles during
histolysis. Data are mean + SD normalized beclin abundance (n=6 crickets/muscle type/muscle
state), normalized to two reference genes. Different letters denote statistically significant
differences among groups according to a one-way ANOVA (p<0.05).

To elicit an RNAI response and knockdown the expression of beclin, we injected flight-
capable females with dsBeclin (or dsGFP as a negative control). Four days post injection,
crickets injected with dsBeclin had lower beclin transcript abundance in both their dorsoventral
muscle (64% knocked down, P =0.019, ts&=-2.35) and dorsal longitudinal muscle (72%

knockdown down, P = 0.007, t=-2.92), compared to those injected with dsGFP (Fig. 3).
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Figure 3. Verification of RNA interference knockdown of beclin expression in female Gryllus
lineaticeps flight muscle via qPCR. Bars show mean + SD normalized beclin abundance in
muscles from crickets injected with either dsGPF (black) or dsBeclin (grey), four days after
injection (n=6 crickets/muscle type/dsRNA injection). An asterisk is used to show a significant
difference between treatments according to a Student’s T-test (P < 0.05). DVM = Dorsoventral
muscle, DLM = Dorsal longitudinal muscle.

Knocking down beclin transcript abundance in flight-capable female G. lineaticeps
delayed muscle histolysis progression. A significantly higher proportion of crickets treated with
dsBeclin maintained their dorsal longitudinal muscle (a red or pink muscle) compared to those
treated with dsGFP (Fisher’s exact test, P = 0.033). 21% of dsBeclin-injected crickets had red
muscle, 29% had pink muscle, and only 50% had white muscle (Fig. 4A). In comparison, only
13% of dsGFP-injected crickets had red muscle, 13% had pink muscle, and 73% had white
muscle (Fig 4A). Dorsoventral muscle of crickets, regardless of treatment, were maintained at
similar levels (Fisher’s exact test, P = 0.57, Fig. 4B). We found no significant differences in

ovary mass in crickets injected with dsBeclin or dsGFP (P = 0.8851, t27=0.15. Fig. 4C).
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352  Figure 4. Knocking down Beclin transcript abundance delays muscle histolysis in the DLM but
353  does not delay oogenesis in adult female Gryllus lineaticeps. Stacked bar graphs show the

354  differences in the proportion of red, pink (histolyzing), and white (histolyzed) muscles in the A)
355  dorsal longitudinal (DLM) and B) dorsoventral (DVM) flight muscles of crickets injected with
356 either dsBeclin or dsGFP. An asterisk indicates a significant difference in frequencies between
357  groups, according to a Fisher’s exact test (P<0.05). C) Normalized ovary mass is similar between
358 crickets injected with dsBeclin or dsGFP. Boxplots denote the median with whiskers denoting
359  the minimum and maximum of ovary mass values. The solid points show individual normalized
360  ovary masses corrected for body mass of the individual. Points are colored based on muscle color
361 and the associated muscle status (Red: functional muscle; pink: histolyzing muscle; white:

362  histolyzed muscle).

363

364 Because we did not observe any significant effects of knockdown on muscle histolysis in
365 the DVM, we only measured COX and GABARAPL1/2 protein abundance in DLM. There were
366  significantly higher levels of COX protein in the DLM of dsBeclin treated crickets compared to
367  dsGFP treated crickets (P = 0.0004, t14=4.16; Fig 5A), suggesting that knocking down beclin
368 transcript abundance in female crickets prevented mitochondrial breakdown. Beclin knockdown
369 also altered GABARAP protein levels, but with opposing effects on each of the Atg8-family

370 members, GABARAPLI1/2. GABARAPLI relative protein abundance was increased (P = 0.02,
371 t14=2.12, Fig 5B), while GABARAPL?2 relative protein abundance was decreased (P = 0.02,

372 t14=2.22, Fig 5C) in the DLM of crickets treated with dsBeclin compared to dsGFP.
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Figure 5. Protein abundance of cytochrome ¢ oxidase IV (COX) and GABARAP1/2 in the
dorsal longitudinal (DLM) flight muscles of adult female Gryllus lineaticeps crickets injected
with dsGFP and dsBeclin. Relative normalized protein abundance of (A) COX, (B)
GABARAPLI, and (C) GABARAPL2 in protein lysates from DLM of dsGFP (n=8) and
dsBeclin (n=8) treated crickets with a representative western blot shown. Boxplots show the
median with whiskers showing the minimum and maximum of normalized protein abundance
values. Letter above sample represents color of DLM (R: Red, P: Pink, W: White). Asterisks
represent significant differences between treatments according to a Student’s t-test (*: P < 0.05,
**%: P <0.001).

DISCUSSION

Insect flight muscle histolysis is a conserved process that plays an important role in
modulating energetic trade-offs during important life history transitions (Zera et al. 1997; Roff
and Fairbairn 2007; Stahlschmidt 2022). Despite the ubiquitous nature of histolysis in at least
five insect orders, the molecular mechanisms driving this muscle breakdown are not well

understood. In this study, we examined the role of autophagy in flight muscle histolysis in adult

female long-winged G. lineaticeps. Consistent with our hypothesis, we confirmed that autophagy

was activated in histolyzing muscle based on the presence of autophagic structures. Although

these structures were present in both the dorsal longitudinal (DLM) and dorsoventral (DVM)
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flight muscle, the expression of a critical autophagy-related gene, beclin, increases in expression
in only the DLM during histolysis, suggesting autophagy is selectively activated in the DLM. To
further determine the importance of autophagy in histolysis, we took an RNAi approach to
experimentally knock down beclin transcript abundance. On the fifth day of adulthood,
compared to our negative control group (dsGFP), the DLM of crickets injected with dsBeclin
were less frequently histolyzed, had elevated abundance of the mitochondrial protein COX, and
lower abundance of GABARAPL?2, a protein activated downstream of beclin during autophagy.
Taken together, these findings suggest that reducing beclin expression disrupted autophagy and
promoted dorsal longitudinal flight muscle maintenance in females, providing strong support for
our conclusion that autophagy acts as a key molecular mechanism driving flight muscle
breakdown of insects.

Knocking down beclin delayed flight muscle histolysis in the DLM, but we did not
observe any impacts of beclin knockdown on DVM histolysis. Given that beclin only
significantly increases in expression in DLM, these results suggest that beclin-mediated
autophagy is primarily important for DLM break-down in the time frame in which we assessed
autophagy (up to five days post adult emergence). During dissections of crickets early in
histolysis progression, we observed visual differences in the status and color of the DLM and
DVM (see Fig 1C for example), and in our knockdown experiments, we observed complete
histolysis in the DLM but not in the DVM irrespective of dsSRNA treatment (Fig. 4). We
therefore suggest that autophagy is differentially activated in the different groups of muscles,
with DLM histolyzing first, in the first five days post adult emergence. Dorsal longitudinal
muscle is primarily used for flight and DVM is used for flight and walking (Wilson 1962). It

could be beneficial for crickets to decouple the timing of autophagy in both muscles such that
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DVM is histolyzed later and/or to a less extent compared to DLM, especially since crickets must
maintain locomotory capacity on the ground to escape predators and, when reproductively active,
locate mates and find substrates for egg-laying (Dupuy et al. 2011; Samietz and Koéhler 2012).
We speculate that female crickets delay the onset of autophagy in DVM to maintain the clear
fitness benefits of walking. Because locomotor performance declines with age in crickets, the
eventual histolysis of DVM would reduce locomotor function, but at a time in their life cycle
past reproduction (FaBold et al. 2010).

Because flight muscle histolysis in G. /ineaticeps coordinates the cessation of flight with
onset of large-scale oogenesis (Treidel et al. 2021; Stahlschmidt 2022), we were interested in
exploring whether preventing flight muscle autophagy with RNAi also negatively impacts
oogenesis. The degradation of flight muscles by autophagy may produce a pool of free amino
acids that can be recycled and used for oogenesis to offset costs of the flight-for-reproduction
trade-off in insects (Stjernholm et al. 2005; Treidel et al. 2023). Our results suggest autophagy
may not be necessary for oogenesis because preventing beclin-mediated autophagy activation via
RNAI knockdown did not affect ovary mass. However, since we measured ovary mass on a
single day (five days post adult emergence) our data represent just a snapshot of oogenesis, and it
warrants further exploration to determine if any potential effects of a beclin knockdown could
emerge at a later point in reproductive development.

Knocking down beclin allowed crickets to maintain mitochondria in the DLM (as
observed by maintained levels of COX protein abundance in knockdown crickets compared to
non-knockdown controls), and reduced GABARAPL?2 protein abundance in their DLM. Taken
together, this provides evidence that crickets 1) do indeed activate autophagy during histolysis,

as GABARAPL2 is involved in the later stages of activated autophagy, where it drives the
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closure of the autophagosomal membrane and lysosomal fusion (Chan and Gorski 2022), and 2)
that beclin-mediated autophagy leads to widespread mitochondrial degradation in histolyzing
DLM. Mitochondria comprise a large proportion of insect flight muscle (c. 40% of cell volume;
Iwamoto 2011), and mitochondria are expensive to maintain. For example, proton leak across the
inner mitochondrial membrane leads to constant active ion pumping to maintain membrane
potential. The dynamic nature of mitochondrial pools means that new mitochondrial proteins
must be consistently synthesized (Lebenzon et al. 2023; Sokolova 2023). Thus, we propose that
female G. lineaticeps start histolysis by selectively degrading flight muscle mitochondria
(through mitochondrial-specific autophagy) to lower mitochondrial maintenance costs in their
life history transition away from dispersal towards reproduction. Indeed, mitophagy is implicated
in flight muscle histolysis of diapausing Colorado potato beetles (Lebenzon et al. 2022), and
beclin has been found to play an important role in mitophagy by ensuring the proper engulfment
of mitochondria by initiating autophagosome formation adjacent to the mitochondria (Quiles et
al. 2023). It would be worth exploring the extent to which mitophagy contributes to muscle
histolysis, in tandem with general autophagy.

Many insects activate autophagy in response to energetic challenges and unfavorable
conditions. For example, autophagy allows for better heat-shock recovery in Drosophila
melanogaster (Willot et al. 2023), drives the reduction of metabolism in diapausing Colorado
potato beetles (Lebenzon et al. 2022), supports growth and differentiation during metamorphosis
of Bombyx mori (Tian et al. 2013), and can save both Spodoptera litura and Bombyx mori cells
from death during starvation (Wu et al. 2011). In all these cases, autophagy is activated in
response to the need for more nutrients in poor environments and during energetic transitions,

such as development and dormancy (diapause). Interestingly, female G. lineaticeps do not

22



463

464

465

466

467

468

469

470

471

472

473

474

475

necessarily activate autophagy in response to energetic challenges because histolysis is an
obligate part of their life cycle. Rather, it appears that G. lineaticeps activates autophagy in
anticipation of shifting energetic demands away from flight toward reproduction.

Overall, in determining that bec/in-mediated autophagy drives muscle histolysis in G.
lineaticeps DLM, we confirmed a role of autophagy as a critical pathway used by Gryllus
crickets to remodel their flight muscle cells during a major life history transition between flight
and reproduction. Excitingly, since these crickets can selectively degrade one specific muscle
tissue and appear to differentially activate autophagy in muscle tissue types, future work in a
comparative context is warranted to elucidate how the pathological consequences of muscle

breakdown may mitigate or ameliorate diseases driven by aberrant rates of autophagy in humans.
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