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Abstract

Version 13 of XtalOpt, an evolutionary algorithm for crystal structure prediction, is now available for download from
the CPC program library or the XtalOpt website, https://xtalopt.github.io. In the new version of the XtalOpt code,
a general platform for multi-objective global optimization is implemented. This functionality is designed to facilitate
the search for (meta)stable phases of functional materials through minimization of the enthalpy of a crystalline system
coupled with the simultaneous optimization of any desired properties that are specified by the user. The code is also
able to perform a constrained search by filtering the parent pool of structures based on a user-specified feature, while
optimizing multiple objectives. Here, we present the implementation and various technical details, and we provide a
brief overview of additional improvements that have been introduced in the new version of XtalOpt.
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NEW VERSION PROGRAM SUMMARY

Program Title: XtalOpt
CPC Library link to program files: (to be added by Technical
Editor)
Developer’s repository link:
https://github.com/xtalopt/XtalOpt
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: 3-clause/BSD.
Programming language: C++.
Journal reference of previous version: Computer Physics
Communications 237 (2019) 274–275.
Does the new version supersede the previous version?: Yes.
Reasons for the new version:* Implementation of a multi-
objective evolutionary search within the XtalOpt program
package.
Summary of revisions: Implemented a general user-friendly
multi-objective search capability, made various improvements
to user interface and functionalities, performed bug fixes.
Nature of problem: The XtalOpt algorithm is designed to
search for (meta)stable crystal structures, optionally with
specific functionalities – a grand challenge in computational
materials science, chemistry and physics.
Solution method: A generalized scalar fitness function, where
a set of user-specified objectives contribute to the fitness value
for candidate structures, is implemented within XtalOpt. This
generalized fitness biases the search towards the discovery of
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(meta)stable phases with structural motifs that are key for the
desired characteristics. As a result, the evolutionary search
explores regions of the energy landscape of higher relevance
in terms of target properties.

1. Introduction

The computational prediction of novel materials has
recently come to the fore. Prolific examples in-
clude GNoME’s purported discovery of over 2 mil-
lion crystalline compounds whose energies fall below
the currently-known convex hulls [1], and the machine-
accelerated high-throughput identification of ambient-
pressure superconductors [2, 3]. In this manuscript
we describe a general method, an example of multi-
objective optimization, that can be used to predict novel
materials with specific functionalities. This method, im-
plemented within the XtalOpt program package, can be
paired with any external optimizer of crystalline lattices,
along with any program that can estimate a property of
a given material or output a descriptor that serves as a
proxy for the desired functionality. Therefore, this new
methodology can be used for the discovery of functional
materials, but, notably, it can target any property that
can be computed through the user’s choice of theoret-
ical approach including the predictive models such as
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those generated in the above examples [1, 2, 3] .

In the last two decades, global optimization (GO) al-
gorithms, typically interfaced with density functional
theory (DFT) optimizers, have become an integral part
of the materials-scientist’s toolbox to find approximate
solutions for the global minimum in the potential en-
ergy surface (PES). The basic techniques include ran-
dom search [4], simulated annealing [5], metadynam-
ics [6], minima [7] and basin [8] hopping, particle
swarm optimization [9], and evolutionary algorithms
[10, 11, 12, 13]. Until recently [14, 15], these GO
strategies have been used to minimize the 0 K energy
or enthalpy of a chemical system, and finite temper-
ature terms have been ignored due to their computa-
tional expense. While some of these algorithms are
more suited to a global exploration of the PES, others
sample local regions and are therefore more likely to
find metastable structures. Numerous manuscripts have
reviewed these methods, their successes, failures, and
more [16, 17, 18, 19, 20].

Despite the role that GO algorithms have played in aid-
ing the characterization of synthesized materials and
predicting novel materials for synthesis [21], their focus
on finding the minimum in the PES can be a limitation.
Indeed, most of the organic compounds that we know
are metastable, and in the solid state various synthesis
techniques for accessing metastable phases are actively
being developed [22]. The intense interest in metastable
compounds stems from their potential uses in a wide va-
riety of technological applications including as super-
conductors, superhard or refractory materials, thermo-
electrics, photovoltaics, and multiferroics. Simply put:
GO algorithms may fail to predict a phase with desirable
characteristics because it is metastable.

One way that researchers have worked around this lim-
itation is to perform GO searches that locally optimized
each structure, but the fitness was calculated using the
property of interest rather than the enthalpy. This strat-
egy has been adopted for the design and prediction of
phases with desired electronic structures [23, 24], as
well as super-dense [25], super-hard [26] and high di-
electric [27, 28] materials. Other techniques that have
been suggested include encoding the desired properties
into the structural information and evolving them dur-
ing the search process [29], or removing structures with
undesirable geometric characteristics from the breeding
pool by artificially assigning them a high enthalpy [30].

A more natural integration of the desired properties in
the GO process can be achieved by simultaneous opti-
mization of all target objectives. This can be addressed

using the family of “multi-objective” global optimiza-
tion (MOGO) algorithms [31, 32]. Since it is unlikely
that the optimal solutions for two (or more) objectives
are the same, typical MOGO algorithms aim to find
a set of solutions that offer the best trade-off between
various objectives. A common approach, the family
of Pareto-based algorithms, searches for a set of so-
lution candidates (known as Pareto optimal solutions)
such that for any solution no single objective can be im-
proved without worsening the others. Another common
technique, belonging to the category of decomposition-
based methods, is the scalarizing approach wherein a
scalar fitness measure is employed to represent the op-
timality of the candidate solutions. This approach, ef-
fectively, transforms the MOGO problem into a single-
objective problem tractable by traditional GO algo-
rithms.

Various MOGO algorithms have been utilized for ma-
terials discovery [33]. Most notable are several stud-
ies dedicated to the prediction of new functional ma-
terials through implementations of Bayesian global op-
timization [34, 35, 36], and evolutionary and differen-
tial evolution algorithms [37, 38, 39, 40, 41, 42, 43].
The focus of this manuscript is on the family of evo-
lutionary search (ES) algorithms, which are iterative
stochastic approaches to GO. Among the MOGO ap-
proaches, in particular, the multi-objective evolutionary
search (MOES) algorithms [44, 45, 46] are popular be-
cause they are inherently population-based and straight-
forward to implement.

The previous version of the XtalOpt code [47, 16] in-
cluded an implementation of the MOES algorithm to
search for (meta)stable phases of hard materials. In
this scheme, the Vickers hardness, obtained from the
AFLOW machine learning (ML) estimated shear mod-
ulus [48], was used in combination with the enthalpy
to evaluate the fitness of candidate structures. In addi-
tion to finding numerous superhard carbon polymorphs,
a superhard-superconducting phase was found [49].

In this work, we present a general implementation of
the XtalOpt MOES algorithm. The new implementa-
tion is designed to (i) accommodate an arbitrary number
of target objectives, (ii) allow the user to introduce any
desired objective as long as it can be represented with
a numerical value, and (iii) offer a general and easy-
to-setup interface that can be used with any external
code. Further, the XtalOpt MOES can perform vari-
ous types of optimizations (minimization or maximiza-
tion) depending on the target objective and can facilitate
a constrained search by filtering the pool of structures
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based on user-specified criteria. This functionality is
available in both the command-line interface (CLI) and
the graphical user interface (GUI) modes of XtalOpt.

This article describes the MOES functionality recently
implemented in XtalOpt. Section 2 introduces the gen-
eralized fitness function: it describes the main input
parameters of the MOES and details the properties of
the required external codes. Sections 3 and 4 illustrate
how to set up a search in the CLI and GUI versions of
XtalOpt, respectively, while Section 5 provides exam-
ples of scripts that can calculate objectives for either
version. The constrained search functionality is intro-
duced in Section 6, and Section 7 describes the changes
in the (legacy) hardness optimization. The MOES out-
put and general error handling is outlined in Section 8.
Finally, Section 9 lists a series of options and function-
alities, independent of the MOES, that have been added
to the latest version of the XtalOpt code.

2. Multi-objective search

2.1. Generalized fitness function
A typical ES [17] workflow begins with (i) generating a
population of candidate structures, (ii) locally relaxing
these structures, and (iii) assigning a fitness to a struc-
ture based on its enthalpy. From the pool of possible
parents (iv) a structure is chosen randomly, but with a
probability related to its fitness, to (v) generate a new
child structure via applying variations of bio-inspired
genetic operators, which include single parent distor-
tions (mutations) or two-parent cut-and-splice (breed-
ing). Steps (ii)-(v) are repeated until a pre-defined stop-
ping criterion is satisfied.

In a single-objective ES, such as the initial implemen-
tation of XtalOpt, the fitness, fs, is assigned to each
candidate structure s via:

fs =
Hmax − Hs

Hmax − Hmin
(1)

where Hs is the enthalpy of structure s, and Hmax and
Hmin are the maximum and minimum enthalpies, re-
spectively, of the relaxed structures. The calculated fit-
ness values fall between 0 and 1.0, and the (user de-
fined number of) structures with the highest fitness are
selected to be part of the breeding pool. The fitness of
the structures comprising the breeding pool is first nor-
malized so its sum is equal to unity, then employed to
determine a probability for each structure. The breeding
pool candidates are sorted according to the probabili-
ties, normalized such that the lowest enthalpy crystal is

assigned a probability of 1.0. A structure is chosen to
be a parent if its probability is above that of a random
number that falls between 0 and 1. This procedure gives
a relatively higher chance for procreation to those can-
didates that are more “fit”, i.e., have a lower enthalpy.

The MOES, however, needs a different measure for
evaluating the suitability of candidate structures to be
parents for the next generation. Since an ES is typically
followed by high-accuracy local optimization of the best
candidates, we found it sufficient to resort to the scalar-
izing technique by using a generalized scalar function
that merges all objectives to obtain a single measure
of fitness for each structure [50]. Assuming that {X}
and {Y} represent sets of objectives to be minimized and
maximized, respectively, the generalized fitness for the
sth structure can be obtained as:

fs =
∑︂

i

wi
X

⎛⎜⎜⎜⎜⎝ Xi
max − Xi

s

Xi
max − Xi

min

⎞⎟⎟⎟⎟⎠+∑︂
j

w j
Y

⎛⎜⎜⎜⎜⎜⎝ Y j
s − Y j

min

Y j
max − Y j

min

⎞⎟⎟⎟⎟⎟⎠ , (2)

where {Xs} and {Ys} are the values of the corresponding
objectives calculated for the sth structure, and {w} is the
set of weights associated with the objectives chosen to
reflect their relative significance.

Given a total weight of 1.0 for all objectives, the
above fitness measure will be normalized to [0, 1.0],
and the MOES is converted to a single-objective search
for which the standard ES workflow can be followed.
Figure 1 illustrates schematically the workflow of the
MOES implementation within XtalOpt. Following a
local optimization, the structural coordinates are used
to calculate the desired objectives, whose values are
employed to obtain the generalized fitness function for
choosing the next parent(s). Otherwise, the workflow
resembles that of a single-objective ES.

In practice, enthalpy is always set to be one of the ob-
jectives to be minimized. While this is not necessary in
our implementation, inclusion of enthalpy enables the
search for low lying local minima that potentially fea-
ture the target properties, though they may not have the
lowest enthalpy. This procedure effectively increases
the chance of finding “metastable” phases with the de-
sired properties. Relying on the target property alone
may result in the identification of phases with too-high-
enthalpies that can never be synthesized, or those lo-
cated in extremely shallow potential wells whose barri-
ers can be easily overcome at ambient temperatures.

For utilizing the XtalOptMOES, the user must specify
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Figure 1: Workflow of the XtalOpt MOES (Multi-Objective Evolutionary Search) algorithm. After producing the initial set of structures, local
relaxations can be performed via various first-principles approaches or by using interatomic potentials. The locally optimized structures are then
passed on to external code(s) introduced by the user for calculating desired properties (a few are shown as examples). Subsequently, the fitness
function is evaluated for all structures and the parent pool is selected accordingly. New structures are generated by applying various evolutionary
operations to the structures chosen from the parent pool.

a (potentially external) code to compute the target prop-
erty for each objective considered in the search, and pro-
vide the corresponding weight for the fitness calculation
(Equation 2), as described in the next section.

2.2. User-defined objectives
For any property employed as an objective in the
MOES, there should be an (executable) user-provided
script or code that (i) calculates that property from the
coordinates of a structure generated during the course
of a regular XtalOpt search, and (ii) produces an output
file with a single number (integer or double) as the value
of the desired objective. The script should be available
either in the local path (for a local run) or on the clus-
ter access path (for a remote queue). XtalOpt will call
this script automatically and will read and use its output
for the MOES; either for determining a structure’s fit-
ness for procreation or for filtering the parent pool (see
Section 6).

After each local relaxation is performed using any
of the total energy calculation methods available in
XtalOpt, a structure file is generated. This file is named
output.POSCAR, irrespective of the external optimizer,
and it is written in the format used by the Vienna Ab
initio Simulation Package (VASP) [51, 52]. The user-
provided script should be able to read and employ this
file (or convert it to another structural data format if
needed) to perform the intended calculations and pro-
duce the required output file, which should be a text file

with the numerical value of the corresponding objective
written as the first entry of the first line of the file.

The aforementioned script can simply contain a se-
quence of commands that use the output.POSCAR file
and call some program to produce a result. However, if
the intended calculations are computationally demand-
ing, it may be preferable if the script generates a cluster
job file and submits the job to the computational cluster.
If input data not present in the output of the structural
relaxation is required by the script (e.g., a file contain-
ing the ab initio charge density, the density of states at
the Fermi level, etc.), commands to generate this data
should be present in the script. Alternatively, the re-
quired values or files can be obtained by adding the ap-
propriate entries to the XtalOpt job template used in
the structure search. Samples scripts are provided in
Section 5.

2.3. Multi-objective search parameters

To invoke the MOES functionality the user should pro-
vide the following information to the XtalOpt code for
every desired objective:

• optimization type: instructions on how to use the
value of a calculated objective in determining a
structure’s fitness. XtalOpt can minimize or max-
imize an objective, filter the parent pool according
to user-defined criteria (see Section 6), or maxi-
mize the AFLOW-ML hardness (see Section 7).
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• path to the user-defined script: the full path
to the script that retrieves or calculates the de-
sired property corresponding to the introduced ob-
jective. The script is automatically run by the
XtalOpt code for each locally relaxed structure.

• script’s output filename: the name of the file gen-
erated by the script that contains the calculated re-
sult of the corresponding objective.

• optimization weight: a number between 0.0 and
1.0 used as the weight for the corresponding ob-
jective in the fitness calculation. The total weight
of all objectives should not exceed 1.0, and the
weight for minimizing the enthalpy is calculated
by XtalOpt as: “1.0 - total weight of the objec-
tives”.

Any objective explicitly assigned a weight of 0.0 will be
calculated, but will not affect the optimization. More-
over, if the sum of the weights explicitly assigned equals
1.0, the enthalpy is assigned a weight of 0.0, i.e., the fit-
ness is determined only based on the values calculated
for the other objectives. If the total weight of the in-
troduced objectives exceeds 1.0, XtalOpt will quit after
producing an error message.

3. Multi-objective run in the XtalOpt CLI

In the MOES run in the CLI mode, for each user-defined
objective a line should be added to the XtalOpt input
file that starts with the keyword objective. This line in-
cludes the above-mentioned information for the objec-
tive and, generally, has the following format:

objective = "optimization_type"

"/path/script" "script_output_filename"

"weight"

It should be noted that in the CLI mode of XtalOpt:

1. Possible options for the “optimization type” are
“minimization”, “maximization”, “hardness”, and
“filtration”, as introduced above. This field is not
case-sensitive, and only the first three letters are
important in identifying the optimization type by
XtalOpt (i.e., “min”, “max”, “har”, and “fil”).

2. Providing the “script output filename” is op-
tional. If this is not specified, the default will
be objective#.out in which “#” is the num-
ber of the objectives in the order that they ap-
pear in the XtalOpt input file (excluding the
“hardness” objective), e.g., objective1.out,
objective2.out, etc.

3. Specifying the “weight” for the objective is op-
tional, as well. If this field is not given for a num-
ber of objectives, it will be calculated. Specifically,
if any weight is provided for any of the objectives,
it will be subtracted from 1.0 and the remaining
value will be divided between the enthalpy and ob-
jectives that don’t have a specified weight.

Let us now provide some examples of acceptable input
files. For a calculation that aims to minimize the vol-
ume per atom and maximize the electronic band-gap,
the following lines can be added to the XtalOpt input
file:

objective = min /path/vol.sh vol.dat 0.2

objective = max /path/gap.sh gap.dat 0.2

In this case, vol.sh and gap.sh are two executable
scripts (either in a local or remote location, depending
on the run) that use the output.POSCAR file to calcu-
late the volume per atom and the band-gap, respectively.
XtalOpt expects the calculated values to be written by
these scripts to the vol.dat and gap.dat files in the
structure’s directory. Since the weight for both objec-
tives is 0.2, the remaining weight of 0.6 will be assigned
to the enthalpy.

The following example illustrates the flexibility of the
input entries:

objective = min /path/vol.sh vol.dat

objective = max /path/gap.sh 0.2

Since the weight for the volume objective is not spec-
ified, the remaining total weight of 0.8 will be di-
vided equally between enthalpy and volume per atom,
and since the output filename for the band-gap calcu-
lation is not given, XtalOpt will expect a file named
objective2.out (as this is the second objective in the
list of objectives) to be present with the corresponding
value.

4. Multi-objective runs in the XtalOpt GUI

We now describe how the XtalOpt GUI has been mod-
ified to reflect the new options that are available in the
MOES run. In the Search Settings tab the AFLOW-ML
hardness related entries have been removed (green box
in Figure 2(a)), and a new Multiobjective Search tab is
introduced (red outline). In the Multiobjective Search
tab (Figure 2(b)), all entries relevant to a MOES run (de-
scribed in Section 2.3) can be entered in the correspond-
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ing fields by (1) choosing the MOES run type from a
drop-down menu, (2) specifying the weight associated
with a particular objective, entering the (3) name and
full path to the user-provided script and (4) output file
names, and (5) specifying how XtalOpt should handle
a structure that fails a filtration objective (as discussed
in Section 6). It should be noted that any weight left
as zero in the GUI input will result in the correspond-
ing objective being calculated without affecting the op-
timization. Finally, clicking the button “Add objective”
adds the defined objective to the list of objectives for the
run.

The aforementioned MOES run specifications in the
CLI mode apply to the GUI case, as well:

• The types of MOES runs are “maximization”,
“minimization”, “filtration”, and “hardness”; and
setting up an AFLOW-ML hardness calculation
only requires its weight to be specified (Figure
2(c)),

• No more than one instance of “hardness” objec-
tive is considered in each run; if more than one is
present, only the corresponding weight (if entered
differently) will be updated,

• Desired objectives can be arbitrarily added or re-
moved before the run is started. However, once the
search begins, the only MOES-related parameter
that can be altered is the one instructing the code
how to handle the structures discarded by a “filtra-
tion” objective (as detailed in Section 6).

Further, in the XtalOpt GUI MOES implementation,

• Common errors in the input parameters (e.g., leav-
ing script or file name fields empty, spaces in text
entries, total weight exceeding 1.0), result in an er-
ror message from the code (Figure 2(d)),

• In the Progress tab, the status of a structure that
has successfully finished local relaxations changes
to “Calculating objectives...”, after which the sta-
tus changes to “Optimized”, “ObjectiveDismiss”,
or “ObjectiveFail” according to the calculation re-
sults (Figure 2(e)),

• In the Plot tab, once a MOES run is started, the list
of introduced objectives appears among the avail-
able options for the x and y axes of the trend plots,
as well as the list of labeling symbols (Figure 2(f)).

5. Examples of user-defined scripts

In this section we provide an example of a MOES-
compatible script that can be employed with both
the CLI and GUI versions. We choose a simple
example, wherein the goal is to minimize the en-
thalpy, while simultaneously maximizing a structure’s
space group number calculated from the VASP format
output.POSCAR structure file. This can be done via a
simple Python script, e.g., /path/spg.py, where the
Atomic Simulation Environment (ASE) [53] is utilized
to resolve the space group of the structure as,

import ase.io as io

from ase import Atoms

from ase.spacegroup import get_spacegroup

s=io.read(’output.POSCAR’, index =’-1’,

format=’vasp’)

print(get_spacegroup(s, symprec=1e-3).no)

The output of this short Python code can be used via a
simple executable bash script, e.g., /path/spg.sh,

#!/bin/bash

/path/python /path/spg.py > spg.dat

to produce a spg.dat file containing the space group
number of the structure, which is readable by XtalOpt
for this objective. In the XtalOpt input file for the CLI
mode, this can be then introduced as:

objective = max /path/spg.sh spg.dat

along with the desired weight (or leaving the weight un-
specified for XtalOpt to adjust it).

Alternatively, if the user desires to submit this calcu-
lation to a computational cluster, the executable script
/path/spg queue.sh in its most basic form can be
written as:

#!/bin/bash

cat > fspg.slurm << EOF

#!/bin/bash

#SBATCH --nodes=1 --ntasks-per-node=1

#SBATCH --job-name=fspg

#SBATCH --output=fspg.out --error=fspg.err

#SBATCH --time=00:05:00

#SBATCH --cluster=slurm

##===== main task: calculating the objective

/path/python /paht/spg.py > spg.dat

##=====
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(a)

(d)

(b)

(e) (f)

(c)

Figure 2: Screenshots from a MOES run in the XtalOpt GUI mode. (a) The Search Settings tab no longer includes AFLOW-ML hardness entries
(green oval), and a new Multiobjective Search tab (b) is added. (c) Drop-down menu showing the multi-objective search type options, including
for an AFLOW-ML hardness calculation. (d) Pop-ups showing errors that arise from non-acceptable text entries, and entering weights that sum to
a value larger than one. (e) The Progress tab with new MOES-related status. (f) The Plot tab in a MOES run with user-defined objectives as labels
and tags.
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EOF

sbatch fspg.slurm

This particular executable script writes a job submis-
sion script for the slurm cluster to disk (fspg.slurm
file, which includes everything between the lines con-
taining the “EOF” keywords) and then submits this job
(with “sbatch fspg.slurm”) to the cluster. The job
submission script (fspg.slurm file) includes an intro-
ductory part (job- and cluster-related settings) and the
core task, just like a usual job submission script. It con-
tains the previous simple script for calculating the space
group number (which is enclosed between “##=====”
comment lines for clarity). The latter script can be em-
ployed in conjunction with the MOES to optimize the
space group number just as in the previous example,
only, this time each calculation is submitted to the clus-
ter instead of running through a simple executable bash
script.

While the examples provided in Section 3 and Section
5 illustrate the structure of the input file that must be
present when the CLI version is employed and the files
required to calculate the property of interest, the objec-
tives chosen are somewhat artificial. Objectives such
as the calculated density of states at the Fermi level,
band-gap, Vickers or Knoops Hardness, superconduct-
ing critical temperature, zT figure of merit and more
could be chosen, as desired by the user. A follow up
publication will focus on application of the MOES-
XtalOpt methodology for identifying structures with
desired properties.

6. Filtering structures: Constrained search

The MOES implementation within the XtalOpt code
can also facilitate a constrained ES. Besides maximiz-
ing or minimizing a particular objective, XtalOpt can
optionally filter the relaxed structures based on user de-
fined properties. The constrained search prevents crys-
tals deemed unsuitable from entering the parent pool,
hence promoting or prohibiting the propagation of a
specific genetic characteristic. A similar approach was
employed in Ref. [30], except that structures were ex-
cluded from the parent pool by artificially setting their
enthalpy to an unphysically high value. The filtration
technique introduced here has a similar effect, but with-
out the need of modifying the enthalpy.

To utilize the filtration functionality, similar to the “min-
imization” and “maximization” features, the user should

provide a script that marks the structures to keep or dis-
card based on the intended property. Structures that are
marked for discarding will not be allowed in the par-
ents’ pool, although they will remain in the set of gener-
ated structures. An example of the relevant entry in the
XtalOpt input file for the CLI mode is:

objective = fil /path/script out_file

The workflow differs compared to when an objective is
minimized or maximized by XtalOpt in the following
ways. Since the objective is not meant for optimiza-
tion, regardless of the user-defined weight, the objec-
tive’s weight will be automatically set to 0.0. More-
over, the numerical value written to the output file by
the script should be either 0 (instructing XtalOpt to dis-
card the structure) or 1 (instructing XtalOpt to keep it).
A structure that fails the filtration step, by default, will
be removed from the parents’ pool. However, the user
can optionally instruct XtalOpt for further handling of
a dismissed structure by adding the text

objectivesReDo = true # default is false

to the input file in the CLI mode. In this case, XtalOpt
proceeds depending on the value of the jobFailAction
flag in the input file. If the jobFailAction is set to
“replaceWithRandom” (default value) or “replaceWith-
Offspring” the failed structure is replaced with a new
structure generated randomly or by applying evolution-
ary operations, respectively. On the other hand, if job-
FailAction is set to “kill” or “keepTrying”, no further
action is taken. If the user instructions result in replac-
ing the failed structure with a new one, it will then be
submitted for local optimization and the subsequent cal-
culation of objectives, including the filtration objective.
It should be noted that this procedure will be performed
at most once for a failed structure, i.e., no more than
one replacement will be attempted for a structure that is
marked to be dismissed in filtration.

The same can be achieved in the GUI mode by check-
ing the “Handle structures discarded in filtration” box
in the Multiobjective Search tab; where the appropri-
ate follow-up action will be taken according to the “If
a job fails” entry in the Search Settings tab and similar
to the above workflow discussed for the CLI case.

7. AFLOW-ML hardness

Previously, maximizing the AFLOW-ML hardness was
invoked with the calculateHardness flag in the CLI
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XtalOpt version (or, setting relevant entries in the
GUI). In the current version the Vickers hardness is ob-
tained by introducing the “hardness” objective. In the
CLI mode, this can be performed by adding an objec-
tive with the “hardness” optimization type and, option-
ally, providing a corresponding weight, i.e.,

objective = hardness "weight"

Therefore, AFLOW-ML hardness calculations are now
treated as a user-defined objective. It should be noted
that the script name and the output file name inputs
do not need to be provided for a “hardness” objective,
and while an arbitrary number of objectives with “max-
imization”, “minimization”, and “filtration” type can be
introduced, no more than one “hardness” objective can
be added by the user. If there is more than one entry for
hardness calculations in the XtalOpt input file, only the
last one will be considered by the code (i.e., the weight
for hardness calculation will be that of the last entry).

An objective of the “hardness” type performs the hard-
ness optimization by obtaining the relevant data from
AFLOW-ML through internal functions of the XtalOpt
code. This is a legacy code and will be disabled in future
releases of XtalOpt to avoid compatibility issues. In-
stead of using this type of objective, a script to facilitate
AFLOW-ML hardness optimization, similar to any reg-
ular “maximization” objective, is strongly encouraged.
In this case, an example of a script that can be used to
retrieve the required information from the AFLOW-ML
platform is presented in Appendix A.

8. Error handling and outputs

The external script (or the code it is called by) may fail
to operate properly or fail to produce the output in a for-
mat that is readable by XtalOpt. In general, XtalOpt
considers the output file to be correct and contain a valid
value only if the “first entry” in the “first line” of the file
is a numerical value. Otherwise, e.g., the file is not pro-
duced, is empty, or its first entry is not a legitimate nu-
merical value, the calculation will be marked as failed,
and the structure will not be considered as a candidate
to enter the breeding pool.

Generally, the search settings (including the MOES set-
tings) are written to the xtaloptSettings.log and
xtalopt.state files, which can be used to verify
the initialization of the search. In the CLI mode the
xtalopt-runtime-options.txt file, which includes
the parameters that can be modified during the search, is

also produced. Among the MOES-related entries only
the objectivesReDo flag is output to this file, and is al-
lowed to be changed once the run is started.

For each structure, besides the corresponding out-
put files generated by the scripts, a summary of the
objective-related info (overall status of its calculations
and their value) is written to the structure.state file.

Finally, just as with any XtalOpt run, the live status is
available in the results.txt file, which summarizes
the ranking of structures generated during the course
of the ES. In the case of MOES runs, the status of a
structure that has successfully been locally optimized
changes to “ObjectiveCalculation”. Once the objec-
tives are obtained, the status changes to “Optimized”,
“ObjectiveDismiss”, or “ObjectiveFail” depending on
whether the calculations finished successfully, the struc-
ture was discarded during filtration, or the calculations
failed, respectively. Moreover, the results.txt file
contains an extra column for the calculated values of
each objective introduced by the user.

9. Miscellaneous

In the new release of the XtalOpt code, a number of op-
tions are implemented to address special situations the
user might encounter. These options are briefly intro-
duced in the following.

9.1. Scaled volume limits (CLI and GUI mode)
An important step in conducting a successful ES is
the specification of reasonable minimum and maximum
volumes for the unit cells. The previous versions of
XtalOpt allowed the user to either explicitly specify
these limits, or to introduce a fixed value for the gener-
ated unit cells’ volume. Now, a new option in XtalOpt
can facilitate a reasonable guess.

In the CLI mode, the user can optionally specify the pair
of flags:

volumeScaleMin = ####

volumeScaleMax = ####

with the corresponding values being real numbers
greater than zero (e.g., 0.8 and 1.2 for the minimum
and maximum values, respectively). If these flags are
properly provided, XtalOpt first calculates the total vol-
ume of spheres of van der Waals radii for all atoms
in the formula unit. Then, it multiplies that total vol-
ume by the scaling factors to obtain the minimum and
maximum volumes. One can check the final calculated

9



Figure 3: Screenshot of the “Structure Limits” tab in the new XtalOpt
GUI. The red circle highlights the settings used calculated the accept-
able volume range from the sum of van der Waals spheres multiplied
by a scaling factor.

values in the run output (i.e., the xtalopt.state or
xtalopt-runtime-options.txt files).

The GUI mode includes this option in the Structure
Limits tab, where the user can set the scaling factors
and access a live update of calculated minimum and
maximum volume limits while adjusting the scaling fac-
tors (Figure 3).

9.2. Running XtalOpt locally on a cluster (CLI mode)

Often when lengthy ES runs are performed, the
XtalOpt code is executed on the cluster where the jobs
are being submitted (i.e., running XtalOpt locally while
submitting the jobs to a queue). As the jobs are being
submitted to the cluster, a remote queue interface should
be specified in the XtalOpt input (e.g., slurm, pbs, etc.).
This, however, requires a ssh connection to the cluster
itself, which might or might not be allowed, depending
on the ssh configuration of the user’s account. For these
types of XtalOpt runs, in the CLI mode, the user can
add the following flag to the input file and run the code
as a regular remote run:

localQueue = true # default is false

9.3. Termination of the XtalOpt run (CLI mode)

In a regular XtalOpt run, and once the maximum num-
ber of structures (specified by the user) is generated,
the user can resume the run by increasing this maxi-
mum number (among other run-time flags that can be
changed). This functionality requires the code to not
quit automatically, and the user needs to terminate the

application manually after the desired output is ob-
tained. There are, however, situations where it is de-
sirable for the code to exit after producing a specified
number of structures (e.g., scripting a series of XtalOpt
runs over multiple directories, such that each run should
begin after the previous one is finished). For a run in the
CLI mode, the code can be instructed to exit after pro-
ducing the specified number of structures by adding the
following flag to the input file:

softExit = true # default is false

or by setting its value to true in the run-time setting
file xtalopt-runtime-options.txt during the run.
With this flag set to true, the code quits after all running
(and pending) jobs are finished and the output files are
updated.

On the other hand, and at any moment during
a run, the user can force the XtalOpt process
(hence, the run) to quit immediately by adding
the following line to the run-time settings file
(xtalopt-runtime-options.txt),

hardExit = true

It should be noted that the hardExit flag terminates the
XtalOpt running process regardless of any running or
pending jobs and without updating the output files, and
this is only a run-time option and the presence of the
flag in the input file is ignored by XtalOpt.

9.4. New options for the VASP optimizer (CLI and GUI
modes)

Recent versions of the VASP code allow for training and
using ML interatomic potentials. The new version of
XtalOpt supports the output (i.e., OUTCAR file) gener-
ated by structural optimizations performed using VASP
ML force fields.

In previous releases of XtalOpt, when the VASP op-
timizer was used, a POTCAR file was required for each
element type present in the system. In the new version,
it is possible to provide only a single POTCAR file for a
multi-element system. This option is especially useful
when XtalOpt is interfaced with an external code that
is not explicitly supported (e.g., an arbitrary optimizer,
which is scripted to produce VASP format output files).

In the GUI, introducing a single POTCAR file for the sys-
tem can be accomplished by setting the path as:

%fileContents:/path/to/system/potcar%
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and in the CLI mode this can be done by introducing a
POTCAR file of the “system” type in the input file, i.e.,

potcarFile system = /path_to/potcar

It should be noted that as XtalOpt arranges the chemi-
cal elements in alphabetical order, individual POTCAR
files should be combined in the same order to produce
the correct results. Moreover, if a “system” POTCAR
is introduced, other entries of potcarFile flag in the
XtalOpt input file will be ignored by the code.

9.5. Run-time log file and debug options (CLI and GUI
modes)

In the previous versions of XtalOpt, the code output a
comprehensive list of messages regarding the progress
of the run in the CLI mode, while only a subset of this
information (i.e., key updates about the status of the run)
were available in the Log tab for a run in the GUI mode.
In the new XtalOpt release, compilation with the

-DXTALOPT_DEBUG=ON

configuration option saves a detailed list of output mes-
sages to the log file xtaloptDebug.log in the local
working directory for both the CLI and GUI modes.

Further, if the code is compiled with the

-DMOES_DEBUG=ON

configuration option, running a MOES produces a set of
output messages regarding the calculation of objectives
and the generalized fitness function. These lines, start-
ing with the keyword NOTE, contain information useful
in monitoring the sanity of the calculations and MOES
run.

10. Conclusions

Herein, we describe developments to the latest version
of the XtalOpt evolutionary algorithm that make it pos-
sible to perform a multi-objective global optimization
(MOGO) search for materials with a desired function-
ality. The resulting multi-objective evolutionary search
(MOES) employs a weighted linear sum of functions
for each introduced objective, and it belongs to the cat-
egory of decomposition-based MOGO techniques. This
makes it possible for the user to (optionally) minimize
the energy or enthalpy of a crystalline lattice, while at
the same time optimizing (minimizing or maximizing)

any arbitrary feature or objective for which a numerical
value can be obtained, optionally by a code other than
the one employed for structural relaxation. A further
option to filter structures with undesirable characteris-
tics from the breeding pool is also implemented.

The MOES implementations in both the graphical user
interface (GUI) and command line interface (CLI) ver-
sions are described, and example input files for the latter
are provided. Examples of user defined scripts, which
can be used to call the external codes either locally or
using a job submission script that is sent to the com-
putational cluster, are also given. Finally, a number of
miscellaneous fixes, regarding options for: choosing the
unit cell volumes, CLI-mode initialization and termina-
tion, run-time and log file generation, and for the VASP
optimizer are described.

The MOES implemented in XtalOpt will be useful for
the computational discovery of novel materials with
a wide range of functionalities. Work is underway
in developing descriptors, workflows and user-defined
scripts for the prediction of superconductors, electrides,
crystalline lattices with user-defined geometric features
and more.
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Appendix A. Retrieving AFLOW-ML data

The data within the AFLOW database has been used to
train a number of ML models, for example for obtaining
structure-dependent band-gaps (or metal/insulator clas-
sification), bulk and shear moduli, (constant volume or
pressure) heat capacity, Debye temperature, thermal ex-
pansion coefficient, and unit cell energy [54]. Given a
POSCAR with the VASP format, the following script [55]
can be used to obtain the AFLOW-ML data, to be used
in a MOES for one of the aforementioned objectives

#!/usr/bin/python3

import json, sys, os

from time import sleep

from urllib.parse import urlencode

from urllib.request import urlopen

from urllib.request import Request

from urllib.error import HTTPError
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SERVER="http://aflow.org"

API="/API/aflow-ml"

MODEL="plmf"

poscar=open(’POSCAR’, ’r’).read()

encoded_data = urlencode({’file’:

poscar,}).encode(’utf-8’)

url = SERVER + API + "/" + MODEL +

"/prediction"

request_task = Request(url, encoded_data)

task = urlopen(request_task).read()

task_json = json.loads(task.decode(’utf-8’))

results_endpoint =

task_json["results_endpoint"]

results_url = SERVER + API + results_endpoint

incomplete = True

while incomplete:

request_results = Request(results_url)

results = urlopen(request_results).read()

results_json = json.loads(results)

if results_json["status"] == ’PENDING’:

sleep(10)

continue

elif results_json["status"] == ’STARTED’:

sleep(10)

continue

elif results_json["status"] == ’FAILURE’:

print("Error: prediction failure")

incomplete = False

elif results_json["status"] == ’SUCCESS’:

print("Successful prediction")

print(results_json)

incomplete = False

It should be noted that AFLOW-ML models are
also available for a series of chemical-formula-only-
dependent properties, e.g., vibrational free energies and
entropies [56] and the superconducting critical tempera-
tures [57]. However, the outputs of these models are not
relevant to the MOES implementation within XtalOpt,
which uses a fixed chemical composition during the run.
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