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Abstract— In the context of Quadratically Constrained Quadratic
Programming (QCQP) with dynamic parameters, the effectiveness of
various optimization approaches is heavily influenced by the quality of
the initial guess. To address this challenge, this paper proposes a novel
approach that leverages reinforcement learning (RL) to generate high-
performing initial guesses for iterative algorithms, with the dynamic
parameters serving as inputs. Our approach aims to accelerate con-
vergence and improve the objective value, thereby enabling efficient
and effective solutions to the QCQP problem under variability. In
this study, we evaluate the proposed approach by applying it to an
iterative algorithm, specifically the Iterative Rank Minimization (IRM)
algorithm. Our empirical evaluations demonstrate the efficacy of the
proposed approach in solving QCQP problems with dynamic param-
eters. The RL-guided IRM algorithm yields high-quality solutions, as
evidenced by significantly improved optimality and faster convergence
when compared to the original IRM algorithm.

I. INTRODUCTION

Quadratically constrained quadratic programming (QCQP) is a
class of nonlinear optimization problems aimed at minimizing a
quadratic objective function under quadratic constraints. In recent
years, QCQP has garnered considerable attention due to its ex-
tensive range of applications in fields such as engineering [1],
economics [2], and finance [3]. Despite its numerous applications,
the real-world instances of QCQP often feature variability in the
problem settings. Such instances are referred to as QCQP under
variability, and their popularity has grown exponentially in recent
years due to the prevalence of dynamic parameters in real-world
optimization problems.

There has been considerable progress in the development of
numerical methods for solving general and nonconvex QCQP prob-
lems. Two main categories of methods have emerged: relaxation
[4] and successive convex approximation (SCA) [5], [6]. While
relaxation methods involve relaxing the constraints of the problem
to obtain a tractable optimization problem that can be solved using
standard techniques, SCA approximates the nonconvex problem
with a sequence of convex subproblems. Both approaches have been
extensively studied and have shown promising results in solving
QCQPs. However, while relaxation methods can obtain a lower
bound on the cost function, they do not ensure finding the optimal
or feasible solutions for most nonconvex QCQPs. On the other
hand, SCA approaches tackle QCQPs by using sequential convex
optimization, where each iteration is solved by a convex solver
like CVX [7]. Nevertheless, for large-scale QCQPs, SCA may not
be computationally efficient if another iterative approach is needed
to solve each sequential problem formulated in SCA, such as the
interior point method [8].

Many real-world optimization problems can be approximated by
a polynomial optimization problem and then equivalently trans-
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formed into a QCQP problem. However, real-world optimization
problems are often characterized by dynamic natures, with changing
parameters and constraints over time, under varying conditions or
different scenarios. For example, real-time optimal control is a
typical dynamic optimization problem where the objective function
and constraints change depending on the environment and sys-
tem dynamics. Another example is the power system scheduling
problem [9], which involves scheduling power generation units to
minimize operation costs while taking into account the time-varying
power demand and availability of the units. In these cases, the
formulated QCQP problem has dynamic parameters in the objective
or constraints or both, leading to varying solution space. Then the
optimization problem needs to be solved repeatedly, which can
be computationally expensive and require significant computing
resources to ensure efficient solving.

To enhance the efficiency of the optimization process in each
step, researchers have developed various techniques, such as ap-
proximation methods [10], decomposition methods [11], and heuris-
tic methods [12]. These methods can be effective in reducing the
computational burden of solving dynamic optimization problems.
However, they also have limitations in terms of optimality and
accuracy. To improve computational efficiency, generating a well-
informed initial guess for successive algorithms can be a game-
changer. A well-informed initial guess can significantly improve
the efficiency and optimality of the optimization algorithm. There-
fore, to address the challenges posed by the variability in QCQP
problems, this work proposes a reinforcement learning (RL)-based
method for generating high-quality initial guesses, which can lead
to significantly improved convergence performance and optimality.

In recent years, machine learning, particularly RL, has gained
significant traction as a powerful tool for optimization [13], [14].
An illustrative application of this trend lies in solving quadratic
programming problems [13], where RL techniques have been har-
nessed to fine-tune parameters and expedite convergence. While ex-
isting research predominantly focuses on augmenting convergence
speed, there remains a relative dearth of exploration concerning
the optimization of objective values. Notably, some alternative
methods have leveraged RL for solving QCQP problems. For
instance, [14] showcases RL’s effectiveness in tackling constrained
0-1 quadratic programming problems. However, few approaches
address the broader domain of utilizing RL techniques for tackling
general QCQP problems with dynamic settings.

In the context of QCQP with dynamic settings, where the
problem parameters exhibit variability, a good initial guess is crucial
to ensure convergence to a desirable solution. However, the current
literature lacks a comprehensive investigation into the generation of
high-quality initial guesses through the use of RL techniques. To
address this gap, we propose to apply RL to generate a good initial
guess for the employed optimization algorithm, thus improving both
convergence performance and optimality of the solution. Unlike
using RL alone to search for an optimal solution, which can suffer
from low precision, the combined approach of RL and QCQP
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algorithm provides an initial guess that is less sensitive to precision
while accelerating the convergence of the iterative algorithm.

In conclusion, this paper presents two significant contributions.
Firstly, it proposes a novel framework for enhancing the per-
formance of iterative algorithms for QCQP by generating high-
quality initial guesses. Secondly, it demonstrates the effectiveness of
integrating RL with QCQP to efficiently produce initial guesses for
enhanced optimality and convergence speed. Empirical evaluations
of the proposed approach show substantial improvements in objec-
tive values and faster convergence when compared to the existing
iterative algorithms.

The structure of this paper is organized as follows. In Section
II, we provide the problem formulation for QCQP with dynamic
parameters and its equivalent reformulation. Section III elaboratefs
on the proposed RL-based method for generating high-quality
initial guesses. In Section IV, we present a simulation example
to demonstrate the effectiveness of our proposed approach, and
analyze the results. Finally, we summarize and conclude the paper
in Section V.

II. PROBLEM FORMULATION

In this section, we discuss the problem formulation of a general
inhomogeneous QCQP and its transformation into a homogeneous
QCQP and rank-1 constrained semidefinite programming (SDP)
problem. The QCQP problem involves minimizing a quadratic
objective function subject to a set of quadratic constraints. A general
inhomogeneous QCQP problem can be defined as

min
x

xTA0x+ dT
0 x

s.t. xTAix+ dT
i x ≤ bi, i = 1, . . . ,m

(1)

where x ∈ Rd is the unknown variable vector, Ai ∈ Rd×d, i =
0, . . . ,m, are symmetric matrices, di ∈ Rd, i = 0, . . . ,m, are
parameter vectors and bi ∈ R, i = 1, . . . ,m, are scalars.

An inhomogeneous QCQP can be equivalently converted into
a homogeneous one by introducing an auxiliary variable z =[
xT 1

]T ∈ Rd+1 and incorporating it into the problem formulation
in (1), leading to a homogeneous QCQP, written as

min
z

zT Ā0z

s.t. zT Āiz ≤ 0, i = 1, . . . ,m
(2)

where Ā0 =

[
A0

1
2
d0

1
2
dT
0 0

]
, and Āi =

[
Ai

1
2
di

1
2
dT
i −bi

]
, i =

1, · · · ,m.
Considering variability in the problem objective and constraints,

we introduce an variability matrix Ei, i = 0, . . . ,m, into the QCQP
formulation, resulting in the following optimization problem:

min
z

zT (Ā0 +E0)z

s.t. zT (Āi +Ei)z ≤ 0, i = 1, . . . ,m
(3)

where the matrix E0 models the dynamic parameters in the objec-
tive function, and Ei, i = 1, . . . ,m represents variability in the
constraints.

The next step in our approach is to transform the QCQP problem
with dynamic parameters into a rank-1 constrained SDP problem by
introducing an unknown matrix Y = zzT ∈ Rn×n with n = d+1.
To simplify the notation, we introduce Q0 = Ā + E0 and Qi =
Āi +Ei. Then the homogeneous QCQP in (3) is then rewritten as

min
Y

tr (Q0Y)

s.t. tr (QiY) ≤ 0, i = 1, . . . ,m

Y ⪰ 0 rank(Y) = 1

(4)

where tr(·) denotes the trace of a matrix, and Y ⪰ 0 indicates
that Y is a positive semidefinite matrix. The rank-1 constraint on
Y implies that there exists a vector z ∈ Rn such that Y = zzT .
This rank-1 constrained SDP problem allows for the application
of various relaxation techniques to find a relaxed solution of the
original QCQP, such as SDP relaxation or spectral relaxation.

III. RL-GUIDDED QCQP ALGORITHM

This section presents a framework that utilizes RL to enhance
the computational performance of iterative algorithms for solving
QCQP problems with dynamic parameters. The primary solver
used in this framework is the Iterative Rank Minimization (IRM)
algorithm developed in [15], [16]. We introduce RL to generate
high-quality initial guesses for IRM, and analyze the guaranteed
improvements in terms of convergence and objective value resulting
from this approach. Finally, we present the framework of our
proposed algorithm, which combines the IRM solver with the RL-
guided initialization strategy.

A. Iterative Rank Minimization Algorithm

IRM was developed to solve general QCQPs with guaranteed
local convergence [15], [16]. Specifically, for a symmetric positive
semi-definite matrix Y ∈ Sn, if its rank is one, it has at least n−1
zero eigenvalues. By sorting the eigenvalues of Y, we obtain the
matrix V ∈ Rn×(n−1) consisting of the eigenvectors of the n− 1
smallest eigenvalues of Y. The IRM algorithm aims to gradually
reduce the n−1 smallest eigenvalues of Y to zero through iterations
while minimizing the cost function. More details about the IRM
algorithm can be found in [15], [16].

When applying the IRM algorithm to solve the QCQP in (4), at
the lth step, the iterative optimization problem is formulated as

min
Yl,el

J = tr (Q0Y) + ωlel (5a)

s.t. tr (QiY) ≤ 0, i = 1, . . . ,m (5b)

elIn−1 − (Vl−1)TYlVl−1 ⪰ 0, (5c)

el ≤ el−1, Yl ∈ Sn+, (5d)

where Yl is the matrix to be optimized at the lth iteration of the
IRM method and Vl−1 are the eigenvectors corresponding to the
n − 1 smallest eigenvalues of Yl−1, which is solved at iteration
l− 1. Constraint (5c) provides an upper bound for VTYV, which
is elIn−1. Moreover, ωl is a weighting factor used to balance the
trade-off between minimizing the cost function and satisfying the
rank-1 constraint in the IRM algorithm. Typically, ωl is chosen
to escalate exponentially across iterations. This strategic choice of
ωl allows us to strike a balance between enhancing convergence
speed and optimizing the objective value. By iteratively solving the
convex optimization problem (5) and minimizing el as a penalty
term of the objective function, we approach the rank constraint
gradually. We assume the iteration converges when el ≤ ϵ, where
ϵ is a sufficiently small value used for the convergence criterion.

In the first iteration, the initial guess of Y0 is usually generated
by ignoring the rank-1 constraint in (4). Then a relaxed solution of
(4) by solving an SDP problem is obtained and used as the initial
guess Y0. Its corresponding eigenvectors V0 are then used for the
first iteration in (5). The convergence rate of the IRM algorithm can
be improved significantly if the algorithm starts with a good initial
guess of the unknown Y. Specifically, if the initial guess satisfies
certain conditions, the algorithm can converge within a single step.
In this paper, we present the conditions under which the algorithm
can achieve this rapid convergence and provide rigorous proof of
this theorem.
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Definition 3.1: Let [v1, ...,vn] ∈ Rn×n be the eigenvectors
of an initial guess Y0 ∈ Rn×n, corresponding to its eigenval-
ues [λ1, ..., λn], where λ1 ≤ λ2 ≤ ... ≤ λn. Similarly, let
[u1, ...,un] ∈ Rn×n be the eigenvectors of a local optimal solution
Y∗ ∈ Rn×n of problem (4), corresponding to its eigenvalues
[β1, ..., βn], where β1 ≤ β2 ≤ ... ≤ βn.

Proposition 3.2: (Proposition 10 in [15]) When liml→∞ el =
0, and each sequential problem (5) has only one optimum, the
corresponding solution Yl = Y∗ is the local optimum of (4).

Proposition 3.3: If an initial guess Y0 leads to a solution of
(5) that satisfies the convergence criterion el ≤ ϵ at l = 1, there
exists a local optimal solution Y∗ that shares the same eigenvectors
corresponding to the n− 1 smallest eigenvalues of Y0, i.e., v1 =
u1,v2 = u2, ...,vn−1 = un−1.

Proof: Assume that the initial guess Y0 leads to a solution
of (5) satisfying el ≤ ϵ at l = 1, then in the first iteration of the
IRM algorithm, we have

min
Y1,e1

J = tr
(
Q0Y

1)+ ω1e1 (6a)

s.t. tr
(
QiY

1) ≤ 0, i = 1, . . . ,m (6b)

e1In−1 − (V0)TY1V0 ⪰ 0, (6c)

e1 ≤ e1−1, Y1 ∈ Sn+, (6d)

where Y1 is the optimized matrix at l = 1, and V0 are the eigen-
vector matrix corresponding to the n−1 smallest eigenvalues of Y0.
By Proposition 3.2, the IRM algorithm guarantees convergence to
a local optimum of the original problem (4). Therefore, the optimal
solution Y∗ obtained by solving problem (6) is a local optimum
of (4).

Since the convergence criterion for the IRM algorithm is el < ϵ,
the rank constraint in (6) is satisfied, i.e., (V0)TY∗V0 ≤ ϵIn−1.
Because ϵ is sufficiently small and Y∗ is a positive semidefinite
matrix, we have (V0)TY∗V0 → (V∗)TY∗V∗ = 0. Hence, Y∗

shares the same eigenvectors as Y0, up to a permutation. Since
the eigenvectors are orthonormal, the permutation does not affect
the orthogonality of the eigenvectors. Thus, we have shown that
the existence of a local optimum Y∗ that satisfies v1 = u1,v2 =
u2, ...,vn−1 = un−1 is a necessary consequence of Y0 leading
the IRM algorithm to converge within one step.

To validate Proposition 3.3, Section IV presents simulation results
of a QCQP example. Particularly, we compare the eigenvectors
of the initial guess Y 0 obtained from RL and the corresponding
eigenvectors from its global optimal solution Y ∗. The comparative
results demonstrate the practical relevance of this proposition in
solving QCQP problems.

B. Reinforcement Learning

A good initial guess is crucial for enhancing the convergence and
optimality of the IRM algorithm when dealing with QCQP problems
with dynamic parameters. However, there is currently no universal
method for finding a good initial guess. To address this issue,
we propose using model-free deep reinforcement learning to au-
tomatically fine-tune a neural network for generating an optimized
initial guess for the IRM algorithm. While RL employing solvers
like Markov decision processes adds computational complexity, this
complexity is managed offline during training. Once trained, the
model offers efficient online deployment, optimizing memory and
time usage.

The basic framework of RL includes two major components,
agent and environment. The agent will determine the policy of
taking actions at for different input states st, where ∗t means

∗ at stage t. The environment will give feedback for different
input actions at. Generally, the feedback includes the corresponding
rewards Rt and next states st+1. For the studied QCQP, we define
state, action, and rewards as

at = z0 st = δ Rt = h(at, st) (7)

where Y0 = z0(z0)T is the initial guess for IRM. δ represents the
variability of parameters. In addition, as only one step is required
to find the initial guess for IRM, the next stage will be the terminal
stage, the corresponding Rt can be accurately obtained without
estimating Rt+1, which makes the learning process more effective.

According to the type of action space, the existing RL algorithms
can be divided into two categories. For the discrete action space, ex-
amples of developed methods include Q-learning [17], State-action-
reward-state-action [18], and deep Q network (DQN) [19]. For
continuous action space, examples include asynchronous advantage
actor-critic algorithm, deep deterministic policy gradient (DDPG),
proximal policy optimization, and twin-delayed deep deterministic
(TD3) policy gradient. Since we focus on general QCQP problems
with continuous action spaces, TD3 is introduced in this context.

1) Introduction of TD3 Algorithm: TD3 is an extension of
DDPG, which can be regarded as the combination of actor-critic
algorithm and DQN, where the neural networks can be divided into
two levels, local network and target network. In each episode, the
target network is softly updated, which means it will be updated
slowly, and the local network will copy the target network after a
fixed number of episodes. The actor network takes in observation
states and outputs actions, while the critic network takes in both
the state and action and outputs a reward value. The local and
target networks each contain an actor and two critic networks.
Then, the target critic and actor network will update “softly” by
minimizing the TD error between local-network and target-network.
Note that, updating “softly” means it will update these networks via
discounting between the old and new target network. After that,
it will transfer its network to the local network. In the following
subsection, more details of implementing RL in finding initial guess
are described below.

2) Initial Guess Generation via Reinforcement Learning: In this
section, we will introduce the implementation details of using RL
to generate a high-performing initial guess for the IRM algorithm.
In order to simultaneously reduce the number of IRM iterations and
improve the objective value, we formulate the initial guess gener-
ation problem as a suitable RL problem. This involves identifying
the environment, choosing the appropriate state space, action space,
and reward function to maximize the cumulative reward collected
by the RL agent.
Environment: In our RL-based approach, the process of solving
QCQP problem is modeled as an environment. The dynamic pa-
rameters in the problem setting are observed by the RL agent in
each episode, and the agent selects an initial guess as the action
while also receiving a reward based on the convergence iteration
and the objective value. The interaction between the RL agent and
the IRM solver is illustrated in Fig. 1.

Fig. 1: IRM and RL Agent Interaction

State: In the proposed RL process, each episode involves a single
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step, and the state at each step is represented by the dynamic
parameters in the QCQP problem, which can be expressed as
δ = [δk1, δk2, ..., δkt], where δkj , j = 1, ..., t, are the non-zero
entries in the dynamic matrices Ej , j = 0, ...,m in (3).
Action: To comply with the requirements of the IRM algorithm, an
n×n initial guess matrix Y0 is needed, as shown in (4). However,
in order to reduce the dimension of actions and improve efficiency,
we represent the action space as a vector z0 ∈ Rn, and obtain
Y0 by computing the outer product of z0, i.e., Y0 = z0(z0)T .
This approach allows us to significantly reduce the dimension of
the action space without compromising the quality of the generated
initial guess. Furthermore, the rank-1 constraint is naturally satisfied
by this initial guess construction. The action space provides a wide
range of possible initial guesses which can be used by the IRM
algorithm to solve the QCQP problem. However, to increase the
efficiency of the RL-IRM algorithm, we restrict the action space to
initial guesses that are close to the feasible region of the problem.
This ensures that the agent selects initial guesses that are likely to
converge to the optimal solution with fewer IRM iterations.
Reward Function: Our reward function is designed to encourage
the IRM to converge quickly to the optimal solution. Specifically,

Reward =


γ − iter if obj > σ

2γ − iter if obj = σ

3γ − iter if obj < σ

(8)

where obj is the objective value, iter is the number of iterations
taken to converge, σ is the estimated optimal solution obtained by
solving the dynamic QCQP problem using SDP initial guess. The
weight γ is a positive scalar that can be adjusted to balance the
importance of convergence speed and objective value reduction in
the reward function. A larger γ prioritizes objective value, while
a smaller value emphasizes convergence speed. When tuning γ,
estimating the iterations helps ensure that γ and the iteration count
(iter) are within the same order of magnitude. By providing different
reward values based on the objective value, our reward function
incentivizes the IRM to converge quickly to the optimal solution.
Then, we can have the following proposition.

Proposition 3.4: For the studied QCQP problem (4), there exist
some feasible initial guesses z0, which can achieve Reward = 2γ−
1 or = 3γ − 1.

Proof: Assume the global optimal solution of the studied
problem (4) is Yopt, and the solution from IRM with the SDP
initial guess to be Ysdp. Then, we have

tr
(
Q0Y

opt) ≤ tr
(
Q0Y

sdp
)
= σ. (9)

Let Yopt = z0z0
T , and the solution for the first iteration of the

IRM algorithm (6) be (Y1∗, e1∗). For the convex subproblem (6),
the pair (Yopt, 0) satisfying all constraints in (6) is its feasible
solution. Then, the optimal solution pair (Y1∗, e1∗) and feasible
solution pair (Yopt, 0) for the convex problem (6) satisfy

tr
(
Q0Y

1∗)+ ω1e1∗ ≤ tr
(
Q0Y

opt) , (10)

where ω1e1∗ ≥ 0. Assume IRM converges at lth iteration, then the
optimal solution of (4), Yopt, should also be the optimal solution of
(5) at the lth iteration, with Vl being its eigenvectors corresponding
to its zero eigenvalues, which means

tr
(
Q0Y

opt) ≤ tr
(
Q0Y

1∗)+ ωle1∗. (11)

Let ωl = ω1, combining the above (10) and (11), we can have

tr
(
Q0Y

opt) = tr
(
Q0Y

1∗)+ ωle1∗. (12)

According to Proposition 3.2, as there is only one optimum for
problem (5), we can claim Yopt = Y1∗, which means IRM
algorithm can coverge to Yopt within one step with initial guess
z0 obtained from Yopt = z0z0

T . Next, according to (11), the
objective value satisfies obj = tr

(
Q0Y

opt
)
≤ σ. And according to

(8), when Yopt = z0z0
T , the corresponding reward function can

be

Reward =

{
2γ − 1 if obj = σ

3γ − 1 if obj < σ
(13)

Then we show the initial guesses z0 exists, which can achieve
Reward = 2γ − 1 or = 3γ − 1. It completes the proof.

Corollary 3.5: With sufficient exploration space for the designed
RL algorithm to learn and generate an appropriate initial guess z0,
it can lead to accelerated convergence and improved objective value
for the IRM algorithm, compared to using an initial guess obtained
from the SDP method.

Proof: Assume the designed RL algorithm has sufficient
exploration space to learn and generate an appropriate initial guess.
Then, proposition 3.4 suggests that the RL can identify some
feasible initial guesses resulting in a Reward of either 2γ − 1 or
3γ − 1. This implies that using the RL-generated initial guess, z0

can lead to faster convergence and better objective value for the
IRM algorithm in just one iteration, compared to using the SDP
initial guess. In other words, IRM with the RL-generated initial
guess can accelerate convergence and improve the objective value
for the IRM algorithm, compared to using an initial guess obtained
from the SDP method. Consequently, we have completed the proof.

C. Iterative Algorithm with Reinforcement Learning

Via integrating the RL with IRM, the iterative algorithm based on
RL is obtained. The flowchart of the proposed algorithm is shown
in Table. I. The proposed algorithm consists of two main phases:
offline training and online optimization. During the offline training
phase, the algorithm employs RL to establish the relationship
between dynamic parameters and the initial guess of IRM. This
phase involves five steps. First, a suitable reward function is defined.
Second, actor and critic neural networks are designed and initialized
with dynamic weights. Third, RL is performed with carefully
selected hyperparameters, such as learning rate and exploration
noise. Fourth, the TD3 agent is trained offline using the learning
results. Finally, the algorithm is ready for the online optimization
phase.

For the online optimization phase, the algorithm takes inputs from
values of the dynamic parameters δ. The goal is to determine the
initial matrix Y0. By leveraging the well-trained TD3 agent and
the given variability of parameters σ, an initial guess y0 can be
obtained. Subsequently, problem (5) is solved iteratively using a
convex solver. If the error el ≤ ϵ, Yl is the final output. Otherwise,
the algorithm updates Vl based on Yl and repeats the loop until
it converges or reaches the maximum iteration.

IV. SIMULATION RESULTS

In this section, we present the simulation results of our proposed
RL-guided initial guess generator for solving a small-scale QCQP
problem with dynamic parameters. With the analytical global op-
timum solution available, this problem provides a comprehensive
evaluation of claimed advantages of the proposed method. The
example QCQP problem is formulated as

min
x

xTQ0x

s.t. 0.5x2 = x2
1 x1 + x2 ≤ 2.5 − x1 + x2 ≤ 2

(14)

7296

Authorized licensed use limited to: Purdue University. Downloaded on September 30,2024 at 04:28:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Flowchart of RL-guided iterative algorithm

Algorithm: Iterative Algorithm based on RL
Offline Training Phase:
1) Develop a proper reward function.
2) Design and initialize actor and critic neural networks with
dynamic weights.
3) Set hyperparameters such as learning rate and exploration noise.
4) Train the TD3 agent using the reinforcement learning results.
Online Optimization Phase:
Input: problem variability δ
Output: Unknown matrix Y
Initialization: Generate the initial guess z0 via the well-trained
TD3 agent, and calculate the eigenvector V0 based on z0z0

T .
begin
1) Set l = 1,
2) for l = 1, 2, ..., l̂max

3) Solve (5) to obtain solution Yl, el,
4) If el ≤ ϵ, break; else, Update Vl from eigenvectors of Yl

5) l = l + 1
end

where x = [x1, x2]
T is the unknown vector, and Q0 =

[
0 r1
r1 r2

]
is the objective matrix with dynamic parameters r1, r2 drawn
independently from the uniform distribution on the interval [−1, 1].

Traditionally, an initial guess for the IRM algorithm is generated
using SDP relaxation by ignoring the rank-1 constraint on X. Here
we use SDP-IRM with SDP initial guess as a benchmark to compare
the performance of the proposed RL-IRM approach with RL-guided
initial guess. Due to the simplicity of problem (14), the number of
iterations is anticipated to be around 3. Therefore, we select γ in the
reward function (8) as 1. Additionally, we set the weighing factor
ωl in (5) as ωl = αωl−1, where ω0 = 1 and α = 2.

We present the results of 100 test cases solved using both
algorithms, as depicted in Fig. 2. We observe that the RL-IRM
algorithm consistently converges within one single iteration for
all 100 cases, whereas SDP-IRM requires multiple iterations to
converge for 26 of the 100 cases. In terms of the objective value,
RL-IRM is able to converge to the global optimum in all cases
with an accuracy of 0.01, as demonstrated in Fig. 2b. Furthermore,
RL-IRM achieves a significantly lower objective value than SDP-
IRM in 10 out of the 100 cases, with a reduction of more than
0.05. In conclusion, RL-IRM has either enhanced or achieved the
same convergence rate and optimality compared to the SDP-IRM
approach.

(a) Number of convergence itera-
tions

(b) Objective Deviation from
Global Minima

Fig. 2: Comparison of Performance between RL and SDP

To provide a more comprehensive comparison between RL-
IRM and SDP-IRM, we analyzed the convergence iterations and
objective values of 10,000 cases. RL-IRM achieves an average of
1.0106 convergence iterations, outperforming SDP-IRM’s 1.3370
iterations, while also exhibiting an average optimization time of

0.0471 compared to SDP-IRM’s 0.0327. Moreover, in 9970 cases,
RL-IRM converged to the global optimum solution, while in 9260
cases, SDP-IRM converged to the global optimum. The mean
objective value of RL-IRM was -0.7389, compared to -0.7093 for
SDP-IRM. Overall, these results suggest that RL-IRM outperforms
SDP-IRM in terms of both convergence speed and objective value.
In addition, RL-IRM’s memory-efficient nature sets it apart from
the memory-intensive SDP-IRM. By employing a pre-optimized
model for initial guess generation, RL-IRM effectively addresses
memory constraints, making it particularly well-suited for on-board
optimization in scenarios where memory limitations are pivotal.

Next, we will delve into a detailed analysis of specific cases
and elaborate on why RL-IRM outperforms SDP-IRM in these
instances. Since RL-IRM is able to reach the optimal solution within
a single iteration in all cases, our analysis will mainly focus on cases
where the SDP initial guess requires multiple iterations to converge.
We discovered that in these cases, the objective matrices Q0 are
all in a certain range, resulting in the SDP relaxation problem
consistently yielding the same initial guess. This initial guess, along
with the feasible region of the SDP relaxation problem, are shown
in Fig. 3, providing an intuitive representation of the constraints
that need to be satisfied.

Fig. 3: Feasible region and SDP initial guess

According to Proposition 3.3, if the initial guess X0 leads the
IRM to converge within one step, there exists a local optimal
solution X∗ that shares the same eigenvectors corresponding to
the n− 1 smallest eigenvalues of X0. For this particular problem,
we have n = 2, thus we can assume that v = [v1, v2] satisfies this
condition and serves as the eigenvector of both the optimal solution

X∗ and the initial matrix X0 =

[
x2
1 x1x2

x1x2 x2
2

]
. Consequently, we

can express Xv = λv as
[

x2
1 x1x2

x1x2 x2
2

] [
v1
v2

]
=

[
λv1
λv2

]
Expanding

this expression yields the following equations

x2
1v1 + x1x2v2 = λv1 x1x2v1 + x2

2v2 = λv2 (15)

Rearranging (15) gives

x2
1 + (v2/v1 − v1/v2)x1x2 − x2

2 = 0. (16)

Substituting a = v2/v1 − v1/v2, we can solve for x2 in (16) as
follows

x2
2 = x2

1 + ax1x2 ⇒ x2
2 − ax1x2 − x2

1 = 0 (17)

⇒ x2 =
ax1 ±

√
(ax1)2 + 4x2

1

2
. (18)

After solving the equation, it becomes evident that the plot of x2 ∼
x1 results in two intersecting lines. To illustrate this concept, we
consider a specific case and plot the two lines on a graph in Fig.
4a. In this case, RL-IRM starts at the initial guess represented by
the green dot and converges within a single iteration to the global
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optimal point marked by the red star. On the other hand, SDP-IRM
starts at the initial guess in the blue dot and converges to a local
optimum marked by the black circle.

Upon examining Fig. 4a, we observe that while the initial
guess from RL-IRM may appear further from the global optimal
solution than the initial guess from SDP relaxation, it lies on
the same eigenvector lines that we previously discussed in (18).
This implies that the initial guess from RL-IRM and the optimal
solution share the same eigenvector associated with the smaller
eigenvalue. Conversely, the SDP-IRM initial guess appears closer
to the global optimal solution, yet it is not on the same eigenvector
line. This observation provides an explanation for why the RL-
IRM initial guess converges within a single iteration to the global
optimum, while the SDP-IRM initial guess requires more iterations
and converges to a local optimum.

To provide a comparison, in Fig. 4b, we have presented a
case where RL-IRM and SDP-IRM perform equally well, as both
converge to the global optimum within a single iteration. In this
specific case, SDP-IRM obtained an initial guess that was very
close to the global optimal solution, and therefore, it also lay on
the eigenvector lines.

(a) SDP/RL initial guesses with
different solutions

(b) SDP/RL initial guesses with a
same solution

Fig. 4: Initial guesses from SDP/RL and eigenvector lines that leads
to samd/different solution

Through our analysis of these cases, we can deduce that RL
has learned a policy that can produce initial guesses with suitable
eigenvectors, derived from the dynamic settings in the problem.
This information cannot be obtained by solving the SDP relaxation
problem, highlighting the advantage of using RL over SDP for
initial guesses. Hence, we conclude that RL is a more effective
approach in generating initial guesses for IRM, which can converge
to a better optimum with an enhanced convergence rate.

V. CONCLUSION

This paper proposes a novel approach that leverages reinforce-
ment learning (RL) to generate high-performing initial guesses
for iterative algorithms to solve general quadratically constrained
quadratic programming (QCQP) problems with dynamic parame-
ters. The proposed approach is evaluated by applying it to the
iterative rank minimization (IRM) algorithm, and the results demon-
strate its effectiveness in enhancing convergence and optimality
when solving QCQP problems. The RL-guided IRM algorithm
yields high-quality solutions, as evidenced by significantly reduced
objective values and faster convergence compared to the original
IRM algorithm. Additionally, the approach shows promise in re-
ducing the dependence on SDP relaxation, which is widely used in
solving QCQP problems. Overall, the proposed approach provides
a promising solution for solving QCQP problems with dynamic
parameters, with potential applications in various fields such as
finance, engineering, and machine learning.
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