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Abstract

Objective. Muscle network modeling maps synergistic control during complex motor tasks.
Intermuscular coherence (IMC) is key to isolate synchronization underlying coupling in such
neuromuscular control. Model inputs, however, rely on electromyography, which can limit the
depth of muscle and spatial information acquisition across muscle fibers. Approach. We introduce
three-dimensional (3D) muscle networks based on vibrational mechanomyography (vMMG) and
IMC analysis to evaluate the functional co-modulation of muscles across frequency bands in
concert with the longitudinal, lateral, and transverse directions of muscle fibers. YMMG is collected
from twenty subjects using a bespoke armband of accelerometers while participants perform four
hand gestures. IMC from four superficial muscles (flexor carpi radialis, brachioradialis, extensor
digitorum communis, and flexor carpi ulnaris) is decomposed using matrix factorization into three
frequency bands. We further evaluate the practical utility of the proposed technique by analyzing
the network responses to various sensor-skin contact force levels, studying changes in quality, and
discriminative power of VMMG. Main results. Results show distinct topological differences, with
coherent coupling as high as 57% between specific muscle pairs, depending on the frequency band,
gesture, and direction. No statistical decrease in signal strength was observed with higher contact
force. Significance. Results support the usability vMMG as a tool for muscle connectivity analyses
and demonstrate the use of IMC as a new feature space for hand gesture classification. Comparison
of spectrotemporal and muscle network properties between levels of force support the robustness
of yYMMG-based network models to variations in tissue compression. We argue 3D models of
vMMG-based muscle networks provide a new foundation for studying synergistic muscle
activation, particularly in out-of-clinic scenarios where electrical recording is impractical.

1. Introduction

In the last decade, research on neural synchroniza-
tion has been extended from neuron pair coupling
[1] to the analysis of coherent neural organiza-
tion for collective function [2, 3]. This has led to
the study of the neural circuitry involved in the
motor function as it facilitates the execution of com-
plex motor activities [4] by coactivating collective
groups of muscles to integrate sets of movements
into a functional task [5, 6]. This coordinative activ-
ation of groups of muscles is driven by the central

nervous system (CNS) [7] and is possible through
synchronization and frequency encoding of neuronal
activity governing motor control [8]. Muscle network
analysis is an emerging tool (introduced in the last
decade) to decode interactions between the CNS and
the musculoskeletal system [9]. Drawing from graph
theory and brain connectivity networks [10], this
methodology describes the characteristics of com-
plex neurophysiological structures of the musculo-
skeletal system during motor activities by mapping
their topological representations and quantifying cor-
relations in their properties [11]. Functional muscle
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networks are constructed by characterizing spectral
synchronization of the neural motor control signals
driving groups of muscles. This is achieved by extract-
ing the intermuscular coherence (IMC) from sur-
face electromyography (EMG) signals recorded from
coordinative sets of muscles [9, 12].

Muscle connectivity is gaining traction as a tool
to isolate key spectral characteristics of neural con-
trol to trace the actions of groups of muscles during
complex repetitive motor control tasks [9, 13, 14]. For
example, in [9], muscle network analysis was used
to show distinct patterns of connectivity between
muscles not only across the different postural tasks
but also across constituent frequency bands. More
recently, in [15] analysis of muscle networks was
extended to different stages of the gait cycle, showing
how network characteristics vary according to the gait
cycle, how the neuromuscular system couples ana-
tomical and functional linked muscles during loco-
motion, and how this information is encoded into
different frequency band components. Studies in this
arena have established the existence of task-specific
changes with localized and widespread connectiv-
ity between muscles at multiple frequency bands
depending on the task.

Despite growing interest, there remain relatively
few studies regarding muscle connectivity network
analysis [9, 13, 14, 16], all of which rely on EMG
for muscle recording. EMG remains the gold stand-
ard for muscle measurement, however, it suffers from
well-documented limitations imposed by (a) arti-
facts caused by skin-related impedance (e.g. sweat
or scar tissue), (b) the need for specialized elec-
tronics, and (c) the pervasive electromagnetic noise
which can hamper its use out-of-clinic [17, 18].
Mechanomyography (MMG) has been offered as
an EMG alternative to surmount these limitations.
MMG is a myographic modality that traces the mech-
anical response of the active motor units during a
contraction as opposed to the electrical responses
from the neural drive [19]. MMG spectral features
have been found to contain valuable information
regarding the physiological and contractile properties
of skeletal muscles’ motor units [19].

MMG use is poorly established and suffers from
signal occlusion from vibrational artifacts, however,
benefits such as ease of application, multiple uses for
a single sensor, immunity to changes in skin imped-
ance, and elimination of the need for skin prepara-
tion and conductive gel [20] offer significant poten-
tial for use in the field (i.e. out of laboratory/clinic).
Muscle network analysis by the use of acoustic MMG
(aMMG) was previously introduced by the authors
n [21] for the evaluation of functional intermus-
cular connectivity alterations linked to upper-limb
loss and differences in muscle network topologies
derived from different hand gesture tasks. The res-
ults showed evidence that the spectral features of
the aMMG signal can be used to construct muscle

C S Mancero Castillo et al

connectivity network modelS reflecting the common
spectral patterns shared by upper-limb muscle groups
when performing different motor tasks. Even though
results support the suitability and information con-
text of aMMG for muscle connectivity network ana-
lysis, aMMG is limited by the unidirectionality of sig-
nal acquisition without the ability to discriminate the
information present along each of the different direc-
tions of propagation of MMG activity. The physiolo-
gical and mechanical characteristics determining the
direction of MMG propagation through muscle tis-
sue are not yet fully understood. It has been sugges-
ted that oscillations generated during a muscular con-
traction propagate evenly in all directions from its
origin (muscle central region [22] and active muscle
fibers [23]). Such mechanical oscillations are atten-
uated in time as they propagate through soft tissues
towards the skin surface [24]. However, other studies
suggest that the signal radiates mainly along the lon-
gitudinal and transverse directions with respect to the
muscle fiber alignment [25, 26]. These findings sug-
gest that the spectrotemporal properties of the MMG
signal are subject to changes depending on the direc-
tion of propagation of the same.

The phenomenon of wave propagation of the
MMG signal during the assessment of muscle activ-
ity needs to be further explored. For this purpose,
vibrational MMG (VMMG) is a modality that gives
the ability to measure the mechanical response of
the muscle along the 3-axis (longitudinal, lateral, and
transverse) with respect to the muscle fibers’ align-
ment. In this work, we propose the analysis of the
multi-directional space of the signal by introducing
for the first time the concept of three-dimensional
(3D) muscle networks based on vVMMG for the
analysis of the degree with which the mechanical
responses caused by muscle activity propagate along
the different directions of the muscle fiber alignment.
This analysis allows for a more detailed evaluation of
the muscle function from MMG activity as it detects
the synergistic functionality of muscles during hand
gesture tasks across the different directions of MMG
propagation. We hypothesize that these 3D muscle
networks will show distinct topological characterist-
ics not only between hand gestures at multiple fre-
quency bands but also between the three directions
of propagation, enabling a new perspective to study
the intensity of MMG activity along the different dir-
ections of propagation. Furthermore, we hypothesize
that the coherent activation of muscles, showing the
common spectral patterns of muscle activity, is dis-
tinct enough between gestures and directions and can
be further exploited to build discriminative models
for hand gesture prediction.

Different myographic transducers have been
applied in investigations to successfully capture the
MMG signal. Typically, MMG modalities are affected
by different factors, such as the length of the muscle
being tested, external artifacts, cross-talk, and skin
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thickness [19]. Particularly, all MMG sensing mod-
alities have been found to be influenced by the pres-
sure with which the sensor is secured to the skin
[27-29]. A recent study regarding the association of
anthropometric parameters and the temporal fea-
tures of vYMMG [30] found that the signal remains
invariant and robust to changes in arm diameter,
muscle length, and skin-fold thickness, with also
minimal crosstalk between arm and forearm muscles.
However, there is a minimal investigation on the effect
of changes in contact force between the sensor and
the skin on not only the temporal but also the spectral
features of the vYMMG signal.

In [31], the authors demonstrated how different
levels of contact force affect the temporal and spec-
tral properties of the acoustic MMG signal, evident in
changes in the signal-to-noise ratio and bandwidth,
resulting in alterations in the discriminative power
of the signal when discerning multiple hand gesture
tasks. Results of the study indicate that increasing the
normal force between the MMG sensor and the skin
causes subject-specific variations in the quality and
discriminative power information for the classifica-
tion of gestures. Previous studies on the effect of con-
tact force on MMG activity indicate that higher levels
of contact force result in an increase in the amplitude
of the signal [27, 28]. However, in the case of the
vMMG, there is minimal investigation into this phe-
nomenon. An initial study showed that progressively
adding higher loads to the sensor (from 2 g to 50 g),
thereof increasing the level of contact force, results in
gradual signal distortion [29]. The lack of systematic
investigation and understanding of this phenomenon
on VMMG motivates the analysis of the quality and
discriminative power of the signal under different
levels of contact force.

To answer the above-mentioned research ques-
tions, four superficial muscles are considered to for-
mulate the functional muscle networks during vari-
ous hand gesture tasks. IMC is evaluated for all
muscle pairs and used as the input space to generate
the multi-directional muscle networks and to train
classifier models for the prediction of hand gestures.
In addition, we have previously shown how the spec-
trotemporal features of aMMG have sensitivity to the
level of contact force attachment and how these vari-
ations can impact the usability of the signal [31]. In
order to validate the robustness of VYMMG to different
levels of contact force in the context of muscle net-
work analysis, we also perform the evaluation of the
quality and discriminative content of yYMMG under
different levels of contact force.

The main objectives of this study are:

e Derivation of functional intermuscular connectiv-
ity between forearm muscle pairs at low, medium,
and high-frequency bands by the use of a YMMG
armband during the execution of four hand gesture
tasks.
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e Identification of multi-dimensional muscle net-
works, based on IMC extracted from each axis of
vMMG.

e Identification of distinctive characteristics in
muscle network topologies based on the gesture
performed, frequency band, and the direction of
propagation.

e Implementation of classification models based on
IMC derived from vMMG to explore the gradient
of discriminative information distributed along the
different directions of propagation of the signal.

e Evaluation of the vYMMG signal quality and dis-
criminative power information to different levels of
contact force.

2. Method

2.1. Participants

Twenty individuals (12 males, 8 females, mean age
254+ 7years old) participated in this study. All par-
ticipants provided their written informed consent to
take part in the study. All experiments were approved
by the Imperial College Research Ethics Committee
(ICREC reference: 151C3068). This research was con-
ducted in accordance with the principles embodied
in the Declaration of Helsinki and in accordance with
local statutory requirements.

2.2. Experimental design

For this study, a four-channel accelerometer-based
MMG armband was assembled following the design
described in [31]. Data was collected using the
custom-made VMMG armband comprised of four
MC3635 3-axis accelerometer sensors configured
with a resolution of +£2 g. Accelerometers were posi-
tioned such that the axes were aligned with respect
to the muscle fibers. The x-axis was aligned with the
longitudinal direction, the y-axis was aligned with the
lateral direction, and the z-axis was aligned with the
transverse direction of the muscle fibers. Information
was recorded while participants performed different
hand gesture tasks. The experimental protocol fol-
lowed the one described in [21]. For this study, ges-
tures and target muscles were maintained. Namely
wrist Flexion, Extension, Pronation, and Supination
for gestures and flexor carpi radialis (FCR), bra-
chioradialis (BRD), extensor digitorum communis
(EDC), and flexor carpi ulnaris (FCU) for target
muscles. Each participant was asked to follow a square
wave presented on a monitor in front of them to
keep track of the timing of the contractions (see
figure 1 for an illustration of the experimental layout).
Participants were asked to stay still for the duration
of the experiment to minimize motion-induced arti-
facts. All participants performed a training trial which
consisted of performing a series of sustained contrac-
tions of two randomly selected gestures. Each par-
ticipant performed seven repetitions of each gesture
with intervals of 5 s of rest between each contraction.
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Figure 1. Experimental Layout. Participants were asked to perform four different hand gestures by following a square wave with a
period of 10 s. The signal was displayed on a monitor to keep track of the duration of the contractions. Each contraction was
sustained for a period of 5 s with the same time duration to rest between contractions. The cross-section view of the forearm is
presented to illustrate the muscles of interest and sensor placement. Sensors were positioned over the flexor carpi radialis (FCR),
brachioradialis (BRD), extensor digitorum communis (EDC), and flexor carpi ulnaris (FCU) muscles. A detailed cross-section
view is shown on the right side to illustrate the accelerometer positioning in contact with the skin.

The experiment consisted of the same process as
that of the training trial with gestures divided into
two groups, each of two randomly ordered gestures.
Intervals of 10 s of duration were applied at the begin-
ning and the end of each of the two groups of record-
ings. The order of the gestures was randomized for
each participant.

2.3. Data processing
There have been various investigations dedicated
to mitigating the presence of motion artifacts in
the MMG signal [32-34]. The most common are
Fourier-based techniques which include the use of
Butterworth band-pass filters of different orders
[32]. In this study, the raw signal of each MMG
transducer was filtered using a fourth-order band-
pass Butterworth filter in the range of 1-150 Hz, in
accordance with previous literature regarding the act-
ive frequencies of MMG activity [19, 35]. The raw
MMG signal of each channel was analyzed to extract
only the steady-state phase of the contraction whilst
discarding 1s of information post-onset and pre-
offset of the contraction. Three seconds of informa-
tion were extracted for each contraction. MMG data
was collected using a sampling frequency of 1 kHz.
Due to the time-varying properties of the MMG
signal across multiple frequencies, it requires for its
analysis the use of time-variant, frequency-selective
techniques. A method commonly used is the Hilbert
transform, an approach equivalent to Fourier and
wavelet analysis [36] from which coupling meas-
ures such as coherence can be derived. In this study,
the Hilbert transform was applied to obtain the

analytic representation of the filtered MMG signal
which is necessary for the estimation of the cross-
spectrum and the power spectral density, both meas-
ures required in the generation of IMC. These data
processing steps were applied for information collec-
ted along each of the three directions of propagation
of the signal.

2.4. Intermuscular coherence

IMC is a neurophysiological measure to evaluate the
synchronization of neural activity between muscles
during a motor task. IMC is confined between the val-
ues of 0 to 1. The higher the value of IMC, the more
coupling of the muscles in the frequency domain.
IMC was extracted between each muscle pair follow-
ing the calculation described in [21] for the com-
putation of modified magnitude squared coherence.
In order to consider the entire spectral space of
the samples and to avoid the presence of spurious
coherence caused by edge effects, each 3 s trial of data
was zero-padded at both ends by a number of samples
equal to half the samples needed to account for 1024
segments for the calculation of coherence. Coherence
was then evaluated using Welch’s method with seg-
ments of 1024 samples, a Nuttall window, and 50%
of overlap. To prevent spurious coherence resulting
from edge effects caused by the zero-padding pro-
cess, each 3 s trial of information was first multiplied
by a Tukey window using a cosine-tapered section
of 0.05 [37]. Following these processing steps, IMC
was calculated for each one of the seven trials. These
IMC profiles were then averaged across trials. The
resulting IMC profiles were subsequently averaged
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across participants for the purpose of obtaining a
singular representation of muscle connectivity net-
works for each gesture. The IMC profiles from each
participant were also maintained for further statist-
ical evaluation of muscle network characteristics (see
section 2.10). In this way, IMC was obtained for each
participant and for the average of all participants for
all muscle pairs, gestures, and directions, resulting in
two matrices: one matrix of (¢ m,g.dyp), denoting ¢
coherence values, m muscle pairs, g number of ges-
tures, d number of directions, and p participants; and
another matrix of only (¢,m,g,d) for the average IMC
of all participants.

2.5. Spectral decomposition

Non-negative matrix factorization (NNMF) was used
to decompose the generated IMC profiles into fre-
quency band components to identify the common
frequency space of the MMG signal at which the tar-
get muscles are co-modulated by the neural drive
when performing different hand gestures and utilize
these spectral characteristics to subsequently gener-
ate their corresponding muscle networks. Frequency
band components were defined as 1-5 Hz for
low-frequency information, 5-12 Hz for medium-
frequency oscillations caused by tremor, and 12—
40 Hz to capture high-frequency information pro-
duced by the inner muscle fibers oscillations, all of
which constitute the MMG spectral space [38—40].
In this way, NNMF was applied to all coherence
matrices ¢,m corresponding to each muscle pair, ges-
ture, and direction. A multiplicative update rule was
used to minimize the objective function and con-
straint the scope of each component to that of the
frequency bands, as described in [21]. IMC of all
muscle pairs was decomposed over the intervals spe-
cified above into non-negative factors using an altern-
ating least squares algorithm, thus resulting in two
non-negative matrices reflecting the spectral signa-
tures (basis vectors) and the corresponding coupling
strengths between all muscle pairs for each gesture
and each direction.

2.6. Muscle networks

Basis vectors along with the coupling strengths gen-
erated for each of the frequency band components
were used to extract task- and frequency-specific
matrices for each gesture and each direction. The res-
ulting adjacency matrices were then used to generate
the undirected weighted functional connectivity net-
works. Muscle networks are constructed so that each
target muscle represents a node in the network and
the edges of the network are defined by the connec-
tions between the nodes, denoted by the basis vec-
tors obtained from the NNMF process. Figure 4 shows
the muscle networks generated for the average IMC
of all participants for each gesture (columns) and fre-
quency component (rows) for each direction.
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The clustering coefficient (CC) of a network is
a measure that quantifies the degree of connectiv-
ity between the nodes. It provides insights into the
local structure of the network by assessing how closely
connected the immediate neighbors of a node are to
each other. The CC is averaged across nodes to obtain
a global measure of the network. In an undirected
weighted network, global efficiency (GE) is a meas-
ure to quantify the efficiency of information trans-
fer across the entire network. It provides insights
into how well a network facilitates communication
and integration between its nodes, with higher val-
ues of GE indicating a more functionally integrated
network. The computation of CC and GE was com-
puted for all connectivity networks generated from
each participant along all directions, frequency com-
ponents, and gestures. The CC values were aver-
aged across nodes to obtain a global measure of each
network [11].

2.7. Feature extraction

For the purpose of training a multi-class classi-
fication model based on IMC, information from
each trial was segmented into windows of 0.97 ms
(1024 samples) with 50% of overlap. IMC was cal-
culated following the same process mentioned above
for each one of the generated segments. In order
to improve computational speed, the feature space
was reduced to discard IMC information at fre-
quencies higher than 256 Hz as they have a neg-
ligible effect on classification performance. IMC
data from all muscle pairs for the entire frequency
domain were concatenated to generate the feature
space. The feature space was subsequently segmen-
ted using a hold-out validation method consisting
of 80% of the data used for training and 20% used
for testing. A multi-class support vector machine
model was used as it is a relatively simple and
computationally effective machine-learning tech-
nique that has been successfully used in biosignal
classification [41, 42].

2.8. Contact force

Making use of the sensor design described in [31]
adapted for vMMG sensors, the experimental pro-
tocol described above was also performed using a
second level of contact force. To ensure consistency,
during the first part of the experiment described
above the first level of contact force was determ-
ined by matching the length of the armband with
the arm diameter of each participant. The second
level of contact force consisted of protruding each
sensor 3 mm onto the skin while maintaining the
same length of the armband and without remov-
ing it, effectively increasing the level of contact force
between the sensor and the skin and ensuring the
same sensor location.
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2.9. Spectrotemporal features variations

Temporal and spectral features of the MMG signal
have been shown to contain essential information
regarding neuromuscular control of muscles, provid-
ing important insights into the strategies of motor
unit recruitment and firing rate [43, 44]. Gaining a
better understating of how changes in contact force
alter the features of vVMMG could improve the usab-
ility of the signal for the analysis of the neuromus-
cular function of the muscles. In order to evaluate
the spectrotemporal changes between the levels of
contact force for the MMG response, three temporal
metrics and three spectral metrics were extracted for
each channel/muscle, gesture, and level of force in all
directions.

Temporal domain features include:

e Root mean square (RMS): RMS is a widely used
feature in MMG activity commonly employed for
the analysis of fatigue, force production, toque
[45], and has also been used for hand gesture
classification [46].

e Log detector (LOG): LOG is a feature commonly
used in EMG to obtain an estimate of muscle
contraction [47] and it has recently been used in
MMG for the estimation of muscle strength [48].

e Waveform length (WL): WL is defined as the
cumulative length of the signal over time segments
and it is a measure of the complexity of the signal.

Frequency domain features include:

e Mean frequency (MNF): MNF is a spectral fea-
ture calculated as the summation of the product
between the frequency and the power present at
that frequency divided by the total power spectrum.

e Peak frequency (PKF): PKF is known as the fre-
quency at which the maximum power occurs.

e Mean power (MNP): MNP is defined as the average
power of the spectral response of the MMG signal.
Similar to RMS, this feature has been used in the
literature for the analysis of torque [44].

All the extracted features were averaged across par-
ticipants. To show variations of the spectrotemporal
features between the first and second level of con-
tact force, the percentage change for each feature was
computed as follows:

featurep, — feature
Uregr2 u FLI.IOO (1)

Yofeaturechange =
featurepy

with, FL referring to force levels.

2.10. Statistical analysis

In this study, four statistical comparisons were per-
formed. The first consisted of comparing the tem-
poral and spectral features between levels of force for
each muscle, gesture, and direction to evaluate stat-
istically significant changes in the quality of the signal
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when different levels of contact forces are applied. The
second statistical comparison consisted of comparing
the CC and GE of the muscle networks between the
levels of force to statistically evaluate changes in the
muscle network characteristics at different levels of
contact force. The third statistical comparison con-
sisted of comparing the performance accuracy of
the classification models between levels of force for
each classification model. The fourth statistic was
performed to compare the performance accuracy of
classification models between the single-direction vs
multi-direction trained models.

Data from the second statistical comparison did
not pass the normality test. The statistical compar-
ison for this dataset was performed using Wilcoxon
signed rank test. Data from the rest of the statist-
ical comparison passed the Shapiro—Wilk normality
test. These statistical comparisons were performed
using a f-test to determine significance. Statistical
significance was considered for values of p-values
<0.05. Bonferroni-adjusted significance was com-
puted to minimize type-I errors. The adjusted sig-
nificance level for the first statistical comparison
was adjusted-p-value = 0.0031. The adjusted signific-
ance level for the second statistical comparison was
adjusted-p-value = 0.0041. The adjusted significance
level for the third statistical comparison was adjusted-
p-value=0.0125. The adjusted significance level for
the fourth statistical comparison was adjusted-p-
value =0.0166.

3. Results and discussion

In this study, we analyzed the IMC between muscle
pairs from four superficial muscles in the forearm
for the generation of task-specific muscle networks
and the evaluation of a classification model for the
detection of hand gestures. Following the signal pro-
cessing steps and after obtaining the analytic repres-
entation of the signal, the power spectral densities
(PSDs) were extracted for each of the trials for all
gestures. PSDs were averaged across trials and sub-
sequently averaged across participants to obtain a sin-
gular power spectral response for each muscle when
performing the different gestures along each direc-
tion of propagation. Figure 2 shows the PSDs for all
gestures for each muscle (columns) and each direc-
tion/axis (rows). PSDs of all directions showed power
information at frequencies no higher than 40 Hz,
with minimal power found at higher frequencies.
Interestingly, the PSDs across directions show similar
profiles with distinct power information depending
on the gesture, muscle, and direction.

3.1. Muscle-pairs coherence

IMC was calculated for each muscle pair for all ges-
tures, participants, and directions. Figure 3 shows the
IMC activity for all muscle pairs (columns) for each
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Figure 2. To obtain a unified spectral representation for each gesture, muscle, and direction of propagation, the power spectral
densities obtained from all trials were averaged across both trials and participants. Power spectral densities shown for the different
muscles (columns: FCR, BRD, EDC, and FCU) for all gestures (red: Flexion, yellow: Extension, purple: Pronation, and green:
Supination) for each direction of propagation (rows: Longitudinal, Lateral, and Transverse).
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Figure 3. Intermuscular coherence between all muscle pairs (columns). Coherence is shown between all muscles for each gesture
across every direction of propagation captured by the accelerometer (rows). Dashed line: confidence interval (CI).

direction/axis (rows). The confidence interval is cal-
culated following the method described in [49] for
overlapped segments. IMC values ranged from val-
ues of 0.3—0.57. Previous studies based on EMG have
found coupling strengths between muscle pairs no
higher than 0.2 [9, 50] for lower- and upper-limb,
respectively. IMC based on MMG is a new area of
study initially proposed by the authors. In [21] we
found coupling strengths as high as 0.55 by the use of
acoustic MMG. In line with these previous findings,
results here show similar values of coupling strengths
for vMMG.

IMC shows functional activation at multiple fre-
quencies with distinct profiles across muscle pairs
and similar spectral common responses across ges-
tures with different scaling factors. Coherent activa-
tion across muscles is observed at multiple frequen-
cies below 40 Hz. IMC results show high levels of con-
nectivity for FCR-BDR, FCR-EDC, and EDC-FCU
muscle pairs along the longitudinal direction, wide-
spread common spectral activity across the lateral dir-
ection, and high connectivity for FCR-EDC, FCR-
FCU, and BDR-FCU muscle pairs for the transverse
direction. For the transverse direction, different from
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Figure 4. Intermuscular coherence between muscle pairs was decomposed into three frequency bands using non-negative matrix
factorization. The three frequency components were defined as: k1: 1-5 Hz, k2: 5-12 Hz, and k3: 12-40 Hz. Left-side, muscle
connectivity networks were extracted for each gesture (columns) at each of the frequency components (rows) for all axes (groups
of rows). Functional networks were generated using the common spectral patterns and the corresponding weightings across
frequency bands. Weightings were used to define the strength of the connections (edges) between muscles (nodes). Connectivity
strength is illustrated by the gradient of color defined by the color bar and the thickness of the connection. Node strength is
illustrated by the size of the node and it is defined by the weightings of the edges connected to the muscle. Right-side,
cross-section view of the forearm for illustration of the positioning of a single accelerometer sensor over a target muscle. Each
accelerometer was aligned such the x-axis was co-lineal with the longitudinal direction of the muscle fiber, the y-axis was co-lineal
with the lateral direction, and the z-axis was aligned with the normal direction.

x-axis -Longitudinal

_~ z-axis -Transverse

y-axis - lateral

the other two directions, low levels of IMC were found
for FCR-BDR, BDR-EDC, and EDC-FCU muscle
pairs. IMC for the different hand gestures shows com-
mon frequency information across directions with
distinct profiles for specific muscle pairs. Flexion
shows the highest IMC for FCR-BDR and EDC-FCU
muscle pairs along the longitudinal and lateral direc-
tions, with low IMC along the transverse direction.
Extension shows a distinct higher activity of IMC in
the lateral direction across muscle pairs BDR-EDC,
BDR-FCU, and EDC-FCU. Higher coherent activity
compared to Flexion was found along the transverse
direction for Extension. Pronation shows the highest
IMC in the longitudinal direction for the FCR-BDR
muscle pair. Supination shows distinctively higher
levels of IMC compared to the other gestures across all
muscle pairs in the transverse direction. The highest
peak of IMC for Supination was found for FCR-EDC.

3.2. Muscle networks

IMC found across the frequency spectra were decom-
posed into frequency ranges according to the spec-
tral bands of interest (i.e. 1-5, 5-12, 12-40 Hz).
Basis vectors and coupling strengths resulting from
the spectral decomposition were used to generate
muscle connectivity networks for each gesture at each
frequency component for every direction. Figure 4
shows the functional connectivity networks for all
gestures (columns) at each frequency band compon-
ent (rows) for the three directions of YMMG (groups
of rows). Symmetric networks are illustrated for bet-
ter identification of connectivity distinctions between
muscle pairs.

3.2.1. Longitudinal networks
The first component, capturing IMC at frequencies
from 1-5 Hz, yields distinct connectivity topologies
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between gestures. Flexion shows strong connections
between medial forearm muscles (FCR-BRD) and
lateral muscles (FCU-EDC). Extension shows a sim-
ilar topology with higher connectivity compared to
flexion between FCR-EDC muscles. Pronation shows
strong connectivity between FCR-BRD. Supination
shows a strong connection between FCR-EDC
muscles. The second frequency component yielded
similar topologies to those of the first frequency com-
ponent with stronger and more evident distinctions
in connections between muscle pairs. In this com-
ponent. Flexion shows stronger connectivity between
FCR-BRD. High connectivity is also found between
FCU-EDC. Similarly, Extension shows strong con-
nectivity between FCR-BRD and FCU-EDC, with
a stronger connection between FCR-EDC muscles.
Pronation shows a similar topology to that of Flexion,
with strong connections between FCR-BRD and
FCU-EDC. Supination presents a similar topology
to Extension, with strong connections between FCR-
BRD, FCU-EDC, and even stronger connectivity for
FCR-EDC. The lowest levels of connectivity across
gestures and components were found between FCU-
BRD. The third frequency component shows wide-
spread medium levels of connectivity across muscles
for all gestures. This component shows stronger
connectivity for all gestures between anterior and
posterior muscle pair connections compared to the
first two components. Figure 4 indicates a transition
from localized connectivity between muscle pairs at
low frequencies (i.e. 1-5 Hz) to stronger localized
connections at medium frequencies and widespread
connectivity at high frequencies.

3.2.2. Lateral networks

The first component shows medium-to-high con-
nectivity between the FCU-BRD-EDC triplet for
Flexion. High connectivity between FCU-EDC and
medium connectivity for FCU-BRD and FCR-
BRD was found for Extension. Pronation shows
strong connectivity for the FCU-EDC muscle pair.
Supination shows strong connectivity for FCU-EDC
with medium to high levels of connectivity for FCU-
BRD and FCR-EDC. In general, the muscle pair
FCU-EDC shows strong levels of connectivity across
gestures, with FCU-BRD showing a similar charac-
teristic with medium levels of connectivity. For the
second component, a phenomenon similar to the
longitudinal direction was found, where the con-
nectivity between muscles shows a higher level of
connectivity compared to those of the first com-
ponent. Flexion shows strong connectivity between
FCR-BRD muscles. Extension shows a similar topo-
logy to Flexion with medium levels of connectivity
between FCU-BRD. Pronation shows high connectiv-
ity between FCU-EDC with low levels of connectivity
between the rest of the muscles. Supination shows
strong connectivity between FCR-BRD, FCU-BRD,
and FCU-EDC. Interestingly, the second component
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for the lateral direction shows characteristic low
connectivity between FCU-BRD muscles across all
gestures and medium to low connectivity between
anterior and posterior muscle pair connections. The
third component shows medium levels of connectiv-
ity across muscles and gestures. This component
shows an increase in connectivity for FCU-BRD
across all gestures compared to the previous com-
ponent and a similar behavior for FCU-FCR and
BRD-EDC.

3.2.3. Transverse networks

The first component for the transverse direction
shows widespread connectivity for most muscle
pairs across gestures with distinctive low connectiv-
ity between FCR-FCU and FCU-EDC. Medium to
high levels of connectivity are found between FCU-
BRD and FCR-EDC and medium to low levels
of connectivity are found between FCU-EDC and
FCR-FCU across gestures. The second component
shows topologies similar to the first component with
more evident differences in connectivity strength
between muscle pairs. Flexion shows strong con-
nectivity between FCU-BRD and FCR-EDC and het-
erogeneous connectivity between the rest of the
muscle pairs. Extension shows distinctively strong
connectivity between the same muscles (FCU-BRD
and FCR-EDC). Pronation shows the highest con-
nectivity across gestures, components, and directions
between FCU-BRD. Medium to high connectiv-
ity is found between FCR-EDC and a character-
istic low connectivity strength is found between the
peripheral connections. Supination shows a similar
topology to those of Flexion and Extension. For this
component, characteristic low connectivity between
FCR-BRD and BRD-EDC is found across gestures.
In the third component, similar topologies to those
of the first two directions are found with wide-
spread connectivity between all muscle pairs across
gestures. Muscle connectivity strength increased for
muscle pairs FCR-BRD and BRD-EDC compared to
the second component.

3.2.4. Functional muscle networks
The longitudinal direction shows strong connectiv-
ity between FCR-BRD and FCU-EDC across gestures
and low connectivity between FCU-BRD. The lateral
direction shows high connectivity between FCU-EDC
and low connectivity between the diagonal connec-
tion FCR-EDC across gestures. The transverse direc-
tion shows strong connectivity between the diagonal
muscle connections FCU-BRD and FCR-EDC.
Regarding the role of each muscle during the ges-
tures, both flexor muscles and the extensor digitorum
communis play a role in wrist Flexion and Extension,
therefore it is to expect a high functional activ-
ation of the FCR-FCU-EDC muscles. FCU shows
high connectivity with the EDC muscle across direc-
tions. FCR-EDC shows high connectivity along the
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transverse direction only. The BRD muscle shows
high connectivity with the FCR along the longitudinal
direction. Similarly, high connectivity was found for
FCU and EDC muscles for Extension along the lon-
gitudinal and lateral dimensions, and a strong con-
nection between FCR-EDC muscles for the lateral and
transverse direction. The brachioradialis muscle is in
its majority responsible for gestures Pronation and
Supination; therefore, a higher level of connectivity
is expected for vertices connected to the BRD muscle
during those gestures. High connectivity between
FCU-BRD is found for the lateral direction and more
evidently for the transverse direction. Similar topo-
logies were found between Extension and Supination
across directions for the second frequency compon-
ent. The highest levels of connectivity were found
along the longitudinal and transverse directions, sug-
gesting a higher propagation of the MMG signal in
these directions in line with the directional propaga-
tion of MMG activity longitudinally and normal with
respect to the muscle fibers according to previous
findings [25].

The functional strengthening of muscle con-
nectivity from the first to the second frequency com-
ponent seen across directions suggests overlapping
spectral responses between low-frequency oscilla-
tions caused by movement and tremor, respectively,
with tremor accounting for the majority of the com-
mon spectral power between muscles. This common
characteristic for the first two components across dir-
ections suggests a multi-directional propagation of
the MMG activity along the longitudinal, lateral, and
transverse directions. The distinct differences in the
topology of the networks between directions suggest
unique spectral information of the MMG contained
along each of the three directions of muscle fiber
alignment. The MMG signal originates from a con-
traction as the length of the muscle fibers shortens
and the fiber diameter increases [51]. During a con-
traction, as the muscle fibers shorten and the muscle
is being pulled towards its origin, the transverse dia-
meter of the muscle changes in shape (increases) at
the level of the muscle belly [52]. The lateral oscil-
lations of the muscles as well as the dimensional
changes of the muscle fibers produce pressure waves
that propagate through muscle tissue and are detect-
able on the surface of the skin. This characteristic of
the MMG signal could explain the differences in topo-
logies found across directions. In [53], their analysis
showed that during isometric voluntary contractions,
the muscle remains in a state of vibration in which
all locations along the longitudinal axis of the muscle
vibrate in phase, and sensors located perpendicular
to the longitudinal axis vibrate with opposite phases,
suggesting that the MMG signal is a reflection of the
muscle as a global resonant structure to the local
fluctuations of pressure which propagate along all the
different directions of muscle fiber alignment. The
similar topological signatures found for the different
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directions along the third frequency component sug-
gest common oscillatory activity across directions
at high frequencies, in line with previous findings
of coherent analysis between directions of MMG
propagation [53].

For future studies, we expect that the func-
tional muscular connectivity analysis by the use of
MMG could provide a better tool for the study of
the underlying neuromuscular parameters respons-
ible for muscle contraction, making it a reliable tool
for muscle function assessment [54]. The MMG sig-
nal properties have proved to be fundamental when
assessing muscle function and performance in the
medical field [55]. Numerous investigations have
shown how properties derived from vibration can
be used to evaluate muscle activity and muscular
performance [19]. MMG has been used in clinical
applications to detect and monitor muscular pain
[41], diagnose muscle hypertrophy and atrophy [56],
and for the examination of neuromuscular disorders
[57]. A better understanding of the composition and
characteristics of the MMG signal could strengthen
the usability of the myographic signal. Thus, the ana-
lysis of the multi-directional space of the MMG sig-
nal is essential not only for a better understanding
of the physiological aspects responsible for muscle
contraction but also for making MMG a more reli-
able tool for muscle function assessment while broad-
ening the potential use of the signal into new fields
of study.

3.2.5. Muscle network properties

Figure 5 shows results for the CC and GE for all fre-
quency components (rows), gestures (color-coded),
and levels of force (FL1, FL2) for the Transverse
direction.

For both metrics, GE and CC, the possible values
can range from 0 to 1 depending on the efficiency in
facilitating information exchange between nodes and
the degree of local clustering among nodes, respect-
ively. For the first frequency component, the values of
the CC varied minimally between levels of force and
between gestures, with a similar behavior found for
GE. The second component shows more variations
compared to the first component, with Extension and
Pronation showingan increase (p < 0.05) between the
first and second levels of contact force for GE and
CC. For the third component, results for CC and GE
yielded values between 0.407 and 0.408 across ges-
tures for both levels of force. Similar to the second fre-
quency component, Extension and Pronation showed
an evident increase in GE and CC between the first
and second levels of contact force. All these differ-
ences for the second and third frequency compon-
ent were found to be not significant at the adjus-
ted p-value: 0.0041. The results of GE showed similar
values to those of CC for all gestures and frequency
components. The highest value of GE and CC was
0.408. The smallest value of GE and CC was found
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Figure 5. Boxplots for the transverse direction of global efficiency (left) and clustering coefficient (right) of muscle networks
generated from all participants for force level (FL) 1 and 2 for all gestures within each of the frequency band components.
Significance is shown with * for p-value <0.05. The statistical comparison showed no significance at Bonferroni adjusted-p-value
<0.0041.

at the first level of contact force for Extension, yield-
ing 0.362 and 0.330, respectively. A CC of 0.330 and
no higher than 0.408 means that, on average, nodes
in the network have relatively strong local connec-
tions with their neighbors. A GE between 0.362 and
0.408 suggests that, on average, it is relatively effi-
cient to transmit information between nodes in the
networks. However, having similar levels of GE and
CC in the network suggests a balance between local
clustering and global information exchange within
the networks, indicating the formation of network
structures with a balance between well-defined local
clusters, while still maintaining a relatively efficient
exchange of information between distant parts of
the network. In the context of muscle networks, this

means that during a motor action (e.g. hand gesture)
muscles that are actively involved in that particular
action tend to form a cluster (synergy), but the net-
work of muscles allows for the information or influ-
ence of the cluster to propagate through the different
connections to reach muscles which are not directly
involved in that particular motor activity. This previ-
ously mentioned analysis was also performed for the
longitudinal and lateral directions. Results showed
minimal variations between levels of force for GE
and CC with no significant differences found between
levels of force.

It is important to mention that the size of the net-
works (i.e. 4 nodes/muscles) could have an influence
on the similarity between values of GE and CC since
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Figure 6. To analyze the effect of contact force in the time and frequency domain of the MMG signal, three temporal (MNF, PKF,
MNP) and three spectral (RMS, LOG, WL) features of the MMG activity were extracted for all muscles, gestures, directions and
averaged across trials and participants. The percentage variations of the features from the first level of contact force to the second

level of contact force are shown for each spectrotemporal feature (rows) for every muscle (bars), gesture (color-coded groups of

bars), and for all directions (columns).

small networks provide fewer possible configurations
of both clusters and paths of information interchange
which can lead to similar values of these measures. As
a future direction of this study, we intend to include a
higher number of muscles during not only static but
also dynamic actions.

3.3. Spectrotemporal features variations

Figure 6 shows the percentage change of each spec-
trotemporal feature from force level one to force level
two for all muscles, gestures, and directions.

Results from the longitudinal direction show an
increase in the MNF values across muscles and ges-
tures, suggesting an increase in the power across fre-
quencies. A similar characteristic is also found for
the PKF for Flexion and Supination, with a com-
mon decrease for the FCU muscle for most gestures
except for Flexion. Results from MNP show a general
decrease in values across gestures, with the exception
of Pronation. RMS and LOG showed a similar charac-
teristic with decreases across gestures with the excep-
tion of Pronation, which showed a minimal increase
in both features. The decrease in RMS indicates a
lower average amplitude of the signal for the second
level of force, in line with results in MNP. The decrease
in LOG, implying a decrease in muscle contraction
could be explained as a result of limited mobility
of the muscles at higher levels of contact force. WL
showed heterogeneous variations across muscles and
gestures between levels of contact force.

Results from the lateral direction show a less
pronounced increase in the MNF compared to the

longitudinal direction, showing in general small
increases across gestures. Heterogeneous variations
were found for the PKF across gestures with small
variations of this feature between contact force levels.
Results from the MNP show a decrease across muscles
for Flexion and Supination, small increases across
muscles for Pronation, and small variations for
Extension. These results, similar to the longitudinal
direction, showing a decrease in the MNP and an
increase in MNF indicate lower power information
is found in the second level of contact force with a
shift of the active frequencies in the first level towards
higher frequencies at the second level of contact force,
resulting also in increases for the PKFE. Pronation
showed the opposite characteristic for both direc-
tions, showing an increase for both MNP and MNF
with a decrease in PKE. These results suggest a shift
of the power information of the active frequencies
in the first level of force towards lower frequencies
at the second level of contact force, hence producing
lower PKF at the second level of force. RMS and LOG
show a decrease across gestures except for Pronation
which, as expected from the spectral features, shows
the opposite characteristic compared to the rest of
the gestures. WL shows an increase across muscles for
Flexion, Extension, and Supination, and for anterior
muscles for Pronation. A decrease in WL was found
for posterior muscles during Pronation.

Results from the transverse direction show
increase in MNF for Flexion, Extension, and
Supination, and a decrease in Pronation.
Heterogeneous variations were found across muscles
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Figure 7. Top. Confusion matrices of classification accuracy of gestures for models based on every single axis and the combination
of axes (last column) of vVMMG for each level of contact force. Bottom. Violin plots illustrate the distribution of the classification
accuracies of the models across participants for single- and multi-axis-based models for each level of contact force.

and gestures for the PKF with Supination show-
ing an increase across all muscles. MNP presents
a decrease in the average power information for
Flexion, Extension, and Supination. Minimal changes
were found for Supination across muscles with a
characteristic increase for EDC muscle. Similar char-
acteristic variations across muscles and gestures were
found for RMS and LOG. WL shows the lowest vari-
ations across directions and heterogeneous variations
across muscles depending on the gesture. Results of
WL across directions show that the characteristic
complexity of the signal for each muscle and gesture
is detected in all directions of vYMMG. The lowest
variations across temporal and spectral features were
found for Pronation across all directions.

3.4. Gesture classification

Figure 7 shows the confusion matrices and the dis-
tribution of the accuracies for the gesture classifica-
tion models trained using IMC from individual direc-
tions and from the combination of all directions. For
the longitudinal direction, Extension, and Pronation
were classified correctly more generally than Flexion
and Supination. Extension shows the highest rate of
classification across gestures for both levels of con-
tact force. Supination shows the lowest classification
rate across gestures for both contact force levels, with
the majority of miss-classifications being identified
as Pronation for the first level of contact force and
as Extension for the second level of contact force.
In the lateral direction, Flexion showed the highest
rate of classification for the first level of force, with
Pronation and Supination showing the lowest rates.
In the second level of force, Pronation yielded the

highest classification rate and Supination showed the
lowest. In general, classification rates decreased in
performance between the first and second levels of
contact force with the exception of Pronation, which
showed an increase in the classification rate. For the
transverse direction, the highest classification rate
was found for Pronation and the lowest accuracy was
found for Flexion in the first level of contact force,
with the majority of miss-classifications identified as
Pronation. The second level of contact force showed
in general a decrease in classification performance
compared to the first level of force and similar levels of
classification accuracies across gestures. In the case of
the multi-directional trained model, the highest clas-
sification rate was found for Flexion for the first level
of contact force and Extension for the second level of
contact force. The lowest classification performance
was found for Supination for both force levels.

The lowest accuracies were found for the mod-
els trained using longitudinal direction IMC features.
Models trained using IMC features along the lateral
direction yielded the highest performance between
directions. The model performance for the second
level of force shows higher variance compared to
the first level of force across directions. However,
the opposite results are found for the model trained
using features from all directions, showing less vari-
ance in accuracy distribution for both levels of force.
The classification accuracy of the models shows sim-
ilar performance between the two levels of force
across directions. The average accuracy of classifica-
tion for the first level of force in the longitudinal dir-
ection is 57.50%, which increased to 60.36% for the
second level of force. The accuracy of classification
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for the lateral direction and transverse direction
decreased between the first and the second level of
force. Classification for the lateral direction yielded
67.87% and 65.36% for the first and second levels
of force, respectively. Classification accuracy for the
transverse direction shows a decrease from 65.18%
to 61.25%. The average classification accuracy of
the multi-directional trained model showed a sub-
stantial increase in accuracy with similar perform-
ances between levels of force, yielding 84.11% and
83.75% for the first and second levels of contact force,
respectively.

There have only been a handful of investigations
in which solely vMIMG has been used for the clas-
sification of motor tasks. Investigations commonly
employ a combination of MMG features along with
other modalities such as IMU [58] and EMG [59]
in order to achieve higher rates of motor intention
detection. Studies in which advanced machine learn-
ing techniques have been used with vYMMG as a
standalone tool for gesture classification have found
accuracies of 87% [60] and 91% [61]. However, these
studies are limited to a small number of gestures and
isometric activities. The findings showcased in this
study are anticipated to serve as a catalyst for adopting
the novel feature space based on IMC and emphas-
ize the significance of considering the information
content across all the directions of MMG propaga-
tion to encourage the development of more robust
and accurate models for motor intention detection
for a larger number of muscles during statics as well
as dynamic tasks.

3.5. Statistical analysis

There is a lack of investigations in the analysis of the
effect on the MMG signal quality when using dif-
ferent levels of contact force. In this study, results
of the different levels of contact force on VMMG
show that both temporal and spectral features of
the signal are affected in a multi-directional man-
ner and these changes are captured along the differ-
ent directions of vMMG. However, statistical compar-
ison between forces for the spectrotemporal feature
changes showed no significant differences (p > 0.05)
of features between the first and the second level of
contact force. The non-parametric Wilcoxon signed
rank test showed significant differences at (p < 0.05)
between levels of force for GE and CC for the second
and the third frequency components for Extension
and Pronation. However, these differences were not
significant at the adjusted p-value (p > 0.0041). No
other significant differences were found between the
first and second levels of contact force for GE and
CC along any of the directions of MMG propaga-
tion. In terms of classification of gestures, accuracies
were statistically compared between levels of force for
each direction and the combination of directions. No
significant differences (p > 0.05) were found between
the classification performance of force level one and
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Table 1. Statistical comparison for classification performance.

Forcelevel  Direction *  Probability
Longitudinal p:0.253

FL1vs FL2  Lateral p:0.383
Transverse p:0.235
All-Directions p:0.884

p:4.162 x 10710
p:2.672x 107"
p:6.799 x 107%

Longitudinal vs. All
FL1 Lateral vs. All
Transverse vs. All

* %

*

p:8.451 x 107%
p:7.214x 107
p:5.277 x 107%

Longitudinal vs. All
FL2 Lateral vs. All *
Transverse vs. All *

Statistical comparison between uni-directional and
multi-directional trained classification models. Significance is
marked * and shown in red color for the Bonferroni-adjusted
value of adjusted-p-value <0.0166, df = 3.

force level two for all trained models. Statistical com-
parison between classification models trained using
features from each individual direction vs the multi-
directional trained model show statistical significance
(p<0.0166) for all models for both levels of con-
tact force. Table 1 summarizes the statistical results of
the comparison between levels of force and between
classification models. Significant differences between
gestures are shown in red.

This study is motivated by findings in the literat-
ure demonstrating the relevance of MMG for the ana-
lysis of neurophysiological parameters involved dur-
ing motor function [62, 63], by the recent studies
in muscle connectivity networks [15, 50] and by the
recent investigation on the application of MMG for
muscle connectivity analysis [21]. The present res-
ults show further evidence that MMG can be used
as a tool for functional muscle connectivity analysis.
Muscle connectivity results show distinct topologies
depending on frequency, gesture, and direction. The
differences in connectivity strength between muscles
for the multiple gestures suggest a characteristic spec-
tral profile at the different frequency ranges driven
by muscle activity during gestures. The analysis of
muscle connectivity as shown in figure 4 shows a clear
distinction of functional activity of muscles based on
the gesture, which can be registered by MMG. This
study also shows for the first time the use of IMC
derived from MMG for the classification of motor
tasks. As shown, the use of IMC obtained from each
individual direction yields a relatively high classific-
ation accuracy which can be enhanced by the com-
bination of IMC across directions, providing a more
robust framework for the classification of gestures.
Furthermore, this study also provides additional
evidence of spectrotemporal feature variations based
on the level of contact force between the sensor and
the skin for YMMG. Results show that the temporal
and spectral space of YMMG varies minimally when
increasing the level of contact force. It is worth
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mentioning that the design of the sensor allows for
the increase in contact pressure on the muscle while
adding no extra weight to the sensor, which could
explain the different findings reported in [29].

4. Conclusion

In this study we introduced: (a) the analysis of
IMC based on VMMG extracted from four super-
ficial muscles around the forearm, (b) the analysis
of multi-dimensional muscle networks derived from
the different directions of propagation with respect
to the muscle fiber alignment, (c) the use of IMC
for the generation of classification models for the
identification of multiple hand gesture tasks, and
(d) the analysis of YMMG network information in
terms of quality and discriminative power when dif-
ferent sensor-skin contact force levels are applied. The
results show distinct topologies of multi-directional
muscle networks across frequency components, ges-
tures, and directions. The analysis of vVMMG prop-
erties for the generation of muscle connectivity net-
works showed no significant changes in classifica-
tion accuracy between contact force levels. Results
of the classification accuracy between uni-directional
and multi-directional trained models showed signi-
ficant differences between all uni-directional trained
models when compared to the model trained using
the combination of all directions for both levels of
contact force. The findings of this investigation sup-
port the usability of vMMG as a tool for functional
muscle connectivity analysis and provide evidence of
the unique spectral characteristics of the vVMMG sig-
nal detected along the different directions of propaga-
tion when performing various motor tasks, enabling
the applicability of classification models based on
IMC. In addition, the present results show evidence
that the network properties of vYMMG do not vary
significantly when a higher level of contact force is
applied. Lastly, as a future perspective of this work, the
results presented in this study motivate the investiga-
tion of muscle network analysis based on vMMG dur-
ing complex dynamic motor tasks involving a higher
number of muscles and the use of more sophisticated
algorithms for motor activity detection of a higher
number of dynamic and static tasks.
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