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Statement of Discovery

We introduce the first-known study demonstrating a unified theoretical, computational, and

experimental approach to determine laser safety for biological tissues other than skin or eyes.

ABSTRACT. Significance: Photoacoustic imaging holds promise to provide critical guidance

in surgical interventions, but its widespread use is challenged by the absence of

applicable safety guidelines across diverse target tissues. The biosafety of this

technology is primarily associated with the risk of necrosis generation, which is

an irreversible thermal effect that can result from prolonged, high-energy laser

applications.

Aim: We introduce the first known numerical simulation approaches to assess laser-

induced necrosis in liver tissue and present a novel microscopy analysis framework

to validate performance.

Approach: Our simulation methods integrate Monte Carlo simulations of laser-tis-

sue interaction with the COMSOL interface, model local tissue heating, and predict

associated tissue damage to quantify the percentage of tissue necrosis resulting

from laser application. Our initial predictions are based on 30 and 73 mJ mean laser

energies, laser irradiation times of 1, 10, and 20min, and a 750 nm laser wavelength.

Empirical validations with in vivo porcine liver exposed to a mean laser energy of

73 mJ and 750 nm laser wavelength were performed based on H&E and cleaved

Caspase-3 immunohistochemistry (IHC) results. Simulation results from the lower

30 mJ laser energy were additionally cross-referenced with previous qualitative

H&E-based reports.

Results: Negligible tissue damage was observed with necrosis predictions

≤15.05%, damage thresholds were determined to be within the 15.05% to 66.23%

necrosis prediction range, and necrosis predictions deviated from quantitative IHC

results by 0.01% to 8.1%.

Conclusions: We successfully demonstrated an in silico alternative to the other-

wise time-consuming and expensive empirical assessments that would be required

to create tissue-specific laser safety guidelines. The presented methods have the

potential to be translated to multiple tissues and additional laser properties.
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1 Introduction

Photoacoustic imaging is a beneficial technology that integrates the advantages of ultrasound and

optical imaging. Structures with high optical absorption coefficients absorb light, leading to a

localized temperature rise that generates thermal expansion. This expansion results in tissue

relaxation and the subsequent isotropic release of acoustic waves, which are ultimately detected

by ultrasound sensors. The broad range of targets that can be effectively imaged using photo-

acoustic imaging has been highlighted in many reports, positioning it as a valuable tool for sur-

gical guidance.1–4

Laser safety is an important biohazard consideration to ensure patient safety during photo-

acoustic interventional guidance. The maximum permissible exposure (MPE) is defined by the

American National Standards Institute, which provides guidelines to determine the maximum

allowable pulse energy per unit area to prevent any adverse biological effects. However, these

guidelines currently focus solely on eyes and skin. The MPE for skin is commonly used as a

reference for internal tissues during surgical and interventional guidance testing,1 but this

assumption can unnecessarily limit the MPE.1,5

Experiments were previously conducted to determine appropriate parameters to minimize

and control the risk of tissue damage in specific internal tissues, such as the liver5,6 and heart.7

Kempski et al.6 investigated suitable laser energies for in vivo photoacoustic imaging of porcine

hepatic blood vessels, demonstrating that a minimum energy of 30 mJ (153 mJ∕cm2 fluence),

emitted at a wavelength of 750 nm, was necessary for optimal visualization, even though this

energy exceeded the MPE limit for skin and revealed necrosis, hemorrhage, and inflammation

with the associated exposure time of 80 min. Building on these findings, Huang et al.5 inves-

tigated the impact of ∼30 mJ of laser energy on 35 swine liver specimens with exposure times of

1, 10, and 20 min and demonstrated the absence of necrosis under these shorter time durations.

Similarly, Graham et al.7 delivered 379.2 mJ∕cm2 fluence to cardiac tissue using a wavelength of

750 nm for a time duration of 23 min, without any observed pathological tissue changes due to

irradiation, despite exceeding the 25.6 mJ∕cm2 MPE for skin. In each case, the pulse duration

was 5 ns and the pulse repetition rate was 10 Hz.5–7

While these previous studies support the conclusion that safety limits for skin are not suit-

able when applied to internal tissue, the qualitative nature of the histological assessment cate-

gorizes tissue conditions into five distinct levels: not present, minimal, mild, moderate, and

severe. Retrospective studies have demonstrated that assigning categorical grades to tissue con-

ditions can lead to substantial inter- and intra-observer variability, making the process highly

subjective.8–11 In addition, the combined processes of tissue processing, digitization, and

pathologist reading can collectively be time consuming and resource-intensive, considering the

requirements for stains, fixatives, slides, histology equipment, and knowledgeable personnel who

can manage and allocate these resources. We hypothesize that theoretical modeling and in silico

validations have the potential to provide a more reliable, repeatable, less time-consuming, and

less resource-intensive approach to determine tissue-specific laser safety guidelines.

This paper presents a comprehensive theoretical, in silico, and experimental assessment of

laser-induced tissue necrosis on swine liver samples, with three primary contributions. First, we

rely on theoretical equations to present a novel simulation framework that predicts the percentage

of tissue necrosis based on laser energy, beam diameter, wavelength, and exposure time. Second,

we validate simulation predictions by focusing on the impact of delivering a mean laser energy of

∼73 mJ (372 mJ∕cm2 fluence) to in vivo liver tissue, with irradiation durations of 1, 10, and

20 min, a wavelength of 750 nm, 5 ns pulse duration, and 10 Hz pulse repetition frequency.

These choices are based on prior observations of necrosis occurring at the same laser parameters

(i.e., wavelength, pulse duration, and pulse repetition frequency) with 20 to 40 mJ laser energy

(102 to 204 mJ∕cm2 fluence) and 80 min laser duration.6 In addition, damage was absent for

the same laser wavelength with ∼30 mJ energy (153 mJ∕cm2 fluence) with a laser irradiation
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duration of 20 min.5 These prior results indicate that we can expect a spectrum of tissue necrosis

outcomes for the same wavelength with a factor of ∼1.8 to 3.7 greater energy than 20 to 40 mJ

(i.e., 73 mJ) and 1 to 20 min irradiation times. Third, we introduce a method to quantitatively

assess tissue necrosis percentage from digitized immunohistochemistry sections, which is a sig-

nificant departure from previous qualitative approaches. This transition provides an unambigu-

ous interpretation of tissue conditions, eliminates the reliance on grading scales, and facilitates

an alternative predictive modeling approach.

2 Methods and Materials

2.1 Simulation Framework for Thermal Damage Estimation

To determine damage, tissue-photon interactions were first modeled during laser energy delivery

using three-dimensional (3D) Monte Carlo simulations.12 These simulations were performed

with the optical properties summarized in Table 1, which are specific to swine liver tissue char-

acteristics at a wavelength of 750 nm, for later comparisons with experimental results. The opti-

cal absorption coefficient dictates the depth of photons penetrating tissue prior to being absorbed.

The scattering coefficient dictates how the tissue scatters photons outside of the laser beam, and

the anisotropic factor determines the amount of forward direction propagation retained after scat-

tering. These parameters were modeled within a 20 × 20 × 20 mm3 homogeneous porcine liver

block. A 5 mm-diameter laser source touching one surface of this cubic volume irradiated energy

for 1, 10, and 20 min with an optical wavelength of 750 nm. The output of the 3D Monte Carlo

simulations is a spatial distribution of normalized energy density, which can be used to assist with

defining the optical laser delivery as a heat source.

To define a heat source, heat conduction was modeled using COMSOL Multiphysics 6.1.18

A homogeneous cubic tissue with the same size as the porcine liver block described above (i.e.,

20 × 20 × 20 mm3) was also modeled considering three domains. In the first domain, which

constitutes the surface directly exposed to the 5 mm-diameter laser beam, triangular elements

with a maximum size of 2 mm were used. In the second domain, which covers the surface not

exposed to the laser beam, triangular elements with a maximum size of 3 mm were used. In the

third domain, which is the remainder of the modeled volume, quadrilateral elements with a maxi-

mum size of 3 mm were used. All boundaries were kept at constant temperature except for the

liver surface. Heat exchange in the liver surface was based on free convection in air, resulting

from the liver exposure to the environment. This convective effect influences the local temper-

ature dynamics induced by the laser.

To monitor the tissue temperature over time and ultimately predict local tissue damage, the

Time-Dependent Bioheat Transfer interface within COMSOLMultiphysics 6.1 was used to solve

the Pennes Bioheat Transfer equation. This equation describes the time-dependent biological

heat transfer to model hyperthermia processes in perfused tissue, as follows:

Table 1 Optical and thermodynamic parameters utilized in simulations.

Parameter Value Units Ref.

Optical Absorption coefficient 0.1 1/mm 13

Scattering coefficient 6.14 1/mm 13

Anisotropic factor 0.9 — 13

Thermodynamic Blood perfusion rate (ωb) 0.0175 1/s 14

Blood specific heat (cb) 3617 J∕ðkg · KÞ 15

Blood density (ρb) 1050 kg∕m3 15

Arterial blood temperature (T b) 310.15 K 16

Frequency factor (A) 5.51 × 1041 1/s 17

Activation energy (ΔE ) 2.77 × 105 J/mole 17
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EQ-TARGET;temp:intralink-;e001;114;736ρcp
∂T

∂t
þ ρcp · ∇Tþ∇ · q ¼ Qþ ρbcbωbðTb − TÞþQmet; (1)

where q is the heat flux density, defined as

EQ-TARGET;temp:intralink-;e002;114;696q ¼ −k∇T: (2)

The remaining variables are based on properties of the liver (i.e., ρ, T, cp, k), associated

blood (i.e., ρb, Tb, cb, ωb), and heat sources (i.e.,Q,Qmet). In particular, ρ and ρb are the liver and

blood density, respectively; T and Tb are the temperatures of the liver and blood, respectively;

cp and cb are the specific heat capacities of the liver and blood, respectively (representing the

energies required to raise T and Tb, respectively, by one unit of temperature per unit mass);

k is the thermal conductivity (which quantifies the ability of the liver to conduct and retain heat);

ωb is the blood perfusion rate (which accounts for the circulation of blood through an in vivo

vascularized liver);Q andQmet are the laser and metabolic heat sources, respectively; and t is the

time. The values of ωb, cb, ρb, Tb employed in our study are reported in Table 1 for the porcine

liver, whereas ρ, cp, and k were considered to be temperature-dependent, based on the details

reported by Rossmann and Haemmerich.19 The impact of body heat production on temperature

was not considered due to the lack of sufficient literature values for the porcine liver (i.e.,

Qmet ¼ 0), and Q in Eq. (1) was obtained as follows:

EQ-TARGET;temp:intralink-;e003;114;514Q ¼ P · Energy Density · ONOFF; (3)

where P is the laser power (converted from the associated laser energy per pulse duration),

Energy Density is the normalized energy density distribution from the Monte Carlo simulations

described above, and ONOFF is a trigger that periodically turns the laser on and off to replicate

a pulsed laser source. Energy Density was exported from MATLAB as a four-column csv file

depicting 3D coordinates and the density value, then imported into COMSOL. The ONOFF

function forms a square wave when plotted over time. In our implementation, a pulse energy

of 73 mJ (371.79 mJ∕cm2 fluence) was delivered using a 10 Hz pulse repetition frequency with

a 5 ns pulse duration. Consequently, the laser power was 1.46 × 107 W. With one pulse emitted

every 0.1 seconds (i.e., 10 Hz pulse repetition frequency), the ONOFF function takes a value of 1

for the first 5 ns and then reverts to 0 during each interval. As a result, Energy Density from

Monte Carlo simulations was modeled to be delivered for 5 ns every 0.1 s. For comparison with

our previous report,5 this process was repeated after decreasing the energy to 30 mJ (i.e., laser

power 6 × 106 W) while preserving pulse duration and pulse repetition frequency.

A domain point probe was placed at the irradiated surface in the COMSOL simulations to

monitor TðtÞ in Eq. (1), and the associated degree of tissue injury, αðtÞ, was obtained by solving

the following differential equation of the Arrhenius Kinetics model:

EQ-TARGET;temp:intralink-;e004;114;296

∂α

∂t
¼ ð1 − αÞnAeðΔE∕RTÞ; (4)

where n is the polynomial order of the Arrhenius equation (specifically, n ¼ 3 was empirically

determined to best match simulation outcomes with experimental results), R is the universal gas

constant, A is the frequency factor that refers to the likelihood of damage-inducing events occur-

ring within a time frame, and ΔE is the activation energy that represents the energy threshold that

must be exceeded to induce tissue damage. The values of A and ΔE employed in our study are

associated with the onset of irreversible thermal damage in swine liver and are reported in

Table 1. The fraction of necrotic tissue, θd, was then computed from Eq. (4) as follows:

EQ-TARGET;temp:intralink-;e005;114;181θd ¼ minðmaxðα; 0Þ; 1Þ: (5)

Finally, Eq. (5) was multiplied by 100% to report the percentage of necrotic tissue predicted by

simulations.

2.2 Experimental Procedures to Assess Necrosis

A 5 mm-diameter fiber bundle was connected to a Phocus Mobile laser containing an internal

power meter (Opotek, Carlsbad, California) to deliver output desired energies to the surface of

exposed in vivo liver tissue. The laser delivered 5 ns pulse widths at a pulse repetition frequency

of 10 Hz. To monitor and compensate for known fluctuations in energy and maintain a desired
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sliding-average pulse-to-pulse energy range (with a 50-pulse window) of 71 to 75 mJ, the internal

power meter of the laser and a custom command-line interface were employed.5 In particular, a

calibration between the internal power meter and an external power meter was performed prior to

the start of the procedure, and the internal power meter was used to record and adjust real-time

laser energies throughout the duration of the laser application. Figure 1 shows the pulse-to-pulse

energy measurements during different laser application times. The interquartile ranges of deliv-

ered energy was 70.29 to 76.75 mJ, 70.28 to 73.50 mJ, and 71.37 to 74.59 mJ for the 1, 10, and

20 min time durations, respectively. The mean energy is reported in Table 2.

A laparotomy was performed on the abdomen of a female Yorkshire swine (36 to 40 kg) to

access and expose the left lateral liver lobe. Laser energy was applied to three positions on the

surface of the left lateral lobe for 1, 10, and 20 min, creating three samples for analysis, as

detailed in Table 2. The three differences in irradiation time are expected to induce minimal,

moderate, and severe necrosis, based on our previous results.5 The irradiated positions were

marked by first placing a line of suture perpendicular to and 3 cm away from each intended

laser application site. The three suture lines are observable in Fig. 2(a). After laser application,

the irradiated regions were directly inked using a tissue marking dye. After euthanasia, the entire

left lateral liver lobe was removed from the abdomen, irradiated regions were excised [Fig. 2(b)],

and immediately fixed in a 10% formalin solution. This study was approved by the Johns

Hopkins University Institutional Animal Care and Use Committee.

2.3 Qualitative Histopathology Assessment

To provide baseline comparisons with previous qualitative reports, the excised samples described

in Sec. 2.2 were embedded in paraffin, then placed in a microtome with the irradiated surface

oriented approximately parallel to the microtome blade. Each sample was sectioned into 250

slides with a section thickness of 4 μm. Out of the collection of 250 sections, one section was

selected for staining with Hematoxylin and Eosin (H&E), which was extracted from a depth of

928 μm, to guarantee the representation of the entire cross-section of the tissue sample. As H&E

was previously used to qualitatively identify the presence of necrosis, hemorrhage, and inflam-

mation,5 the samples described above were similarly assessed for these three pathological fea-

tures (i.e., absent, minimal, mild, moderate, or severe).
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Fig. 1 Distribution of laser energy delivery per laser application duration, shown as box-and-

whisker plots. The median energy is indicated by the red horizontal line, the interquartile range

is indicated by the top and bottom bounds of each box, and the maximum and minimum values

(excluding outliers, appearing as red datapoints and defined as values >1.5 times the interquartile

range) are indicated by the lines extending from each box.

Table 2 Laser energy delivery positions and duration.

Lobe region Mean energy (mJ) Duration (min)

Sample 1 Left lateral lobe (cranial) 73.0 20

Sample 2 Left lateral lobe (center) 72.5 10

Sample 3 Left lateral lobe (caudal) 73.6 1
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2.4 Qualitative Immunohistochemistry Assessment

Out of the collection of 250 sections per liver sample described in Sec. 2.3, a representative

subset consisting of one per every 10 sections (i.e., 40 μm spacing) was selected for immuno-

histochemistry (IHC) staining with an antibody specific to cleaved Caspase-3, diluted at a ratio of

1:1000. In addition, three additional sections near the surface of each sample, separated by 8 μm

per section, were stained with IHC to provide mean and standard measurements for comparison

to surface simulation results. Cleaved Caspase-3 was the antibody chosen to identify necrosis

biomarkers because of its well-established role in apoptosis, a programmed cell death mecha-

nism. This choice was additionally motivated by our preliminary qualitative observations, which

revealed a positive correlation between cleaved Caspase-3 and the identification of necrotic areas

resulting from prolonged laser irradiation.

To systematically characterize our qualitative observations, individual IHC sections were

digitized at 40× magnification using a Hamamatsu NanoZoomer S210 to generate NDPI files.

The NDPITools Plugin Bundle of ImageJ20 was used to extract the content of the NDPI file by

dividing each digitized IHC section into a mosaic of adjacent JPEG images, encoding color

information using Red-Blue-Green (RGB) channels. NDPITools automatically selected mosaic

dimensions that were powers of two in each image dimension, resulting in individual JPEG

image sizes ranging 700 to 1300 × 700 to 1300 pixels, based on a 4MB storage restriction.

When these multiple JPEG images were spatially arranged, aligned, and stitched together, the

IHC section was accurately reconstructed. As the area of the digitized tissue sections generally

increased with depth (see Fig. 3), due to the curved surface of the samples, the number of JPEG

images that composed each mosaic varied. For example, the sizes of the IHC sections in

Figs. 3(a)–3(c) are 30;720 × 30;976, 76; 800 × 81; 664, and 103;680 × 101;376 pixels, respec-

tively, which were decomposed into 32 × 32, 128 × 64, and 128 × 128 mosaics, respectively,

Fig. 3 Digitized immunohistochemistry sections extracted at depths of (a) 0 μm, (b) 480 μm, and

(c) 960 μm from a porcine liver sample irradiated for 10 min. The tissue section size increases with

depth due to the tissue curvature.

Fig. 2 The marking strategies to identify irradiated areas on the swine liver samples included

(a) sutures before laser application and (b) tissue dye after liver lobe resection (and prior to sample

fixation).

Arroyo et al.: Predictive model for laser-induced tissue necrosis. . .

Biophotonics Discovery 025003-6 Jul–Sep 2024 • Vol. 1(2)



each comprising individual JPEG images sized 960 × 968, 1200 × 638, and 810 × 792 pixels,

respectively (i.e., 1024, 8192, and 16,384 individual JPEG images, respectively). Overall, the

number of individual JPEG images from the IHC sections associated with the 1, 10, and 20-min

laser irradiation samples was 16,384 (constant for each section), 1024 to 16,384, and 2048 to

16,384, respectively.

To qualitatively identify the presence of biomarkers at the cellular level, we conducted a

visual inspection of the digitized IHC sections, revealing two distinct types of cells: (1) cleaved

Caspase-3-positive cells stained in intense brown and (2) cleaved Caspase-3-negative cells

stained in intense blue, which will be referred to as brown and blue cells, respectively. The dis-

tribution of these cells presented four notable characteristics, which are shown in Fig. 4. First, a

decrease in cell density was observed inside the irradiated region compared to non-irradiated

areas. Second, blue cells (examples denoted with arrows in Fig. 4) were present both inside and

outside visibly irradiated areas. Third, brown cells were predominantly observed surrounding the

irradiated region. Fourth, the number of brown cells detected within the irradiated area was

inversely proportional to the irradiation time.

To segment blue and brown cells from the digitized IHC sections, an Attention U-Net21 was

employed. The architecture of the Attention U-Net consisted of four encoder layers, four decoder

layers, and four attention gates. This network was trained using the Adam optimizer, a batch size

of four samples, and standard data augmentation techniques (i.e., flip, elastic transformation, grid

distortion, and optical distortion). Early stopping with a patience of 10 was employed to avoid

overfitting. The Attention U-Net was trained with images from the current dataset. The network

dataset contained 50 images along with their manual segmentations, with an 80%–20% training–

testing set split, and 20% of the training set forming the validation set. Performance was quan-

tified using the Dice similarity coefficient (DSC) as the main metric, following the guidelines of

evaluation metrics for medical image segmentation.22 In addition, the associated intersection over

union (IoU), recall, and precision were calculated. The weights obtained from this training proc-

ess were stored and utilized for cell segmentation in each JPEG image. This segmentation was

performed using Python 3.9.15 in a Jupyter Notebook.

Following cell segmentation, individual cells were analyzed for classification into blue or

brown. A cell was categorized as brown if its RGB components satisfied the condition

60 ≤ R ≤ 210, G ≤ 151, and B ≤ 130. A cell was categorized as blue if its RGB components

satisfied the condition 150 ≤ R ≤ 186, G ≥ 155, and B ≥ 160. These specific thresholds were

empirically chosen based on the analysis of multiple images from our dataset. To reconstruct a

section segmentation of blue and brown cells, the segmentation masks obtained from individual

JPEG images were spatially arranged, aligned, and stitched together to achieve the same size and

relative orientations that existed prior to creating the mosaic. This image processing was per-

formed using MATLAB R2023a (Mathworks, Natick, Massachusetts) software.

Fig. 4 Visual inspection of a representative digitized IHC section. Blue cells are pointed out by

arrows. The overall cell density was higher outside than inside the irradiated area. The boundary

of the irradiated area presented a high concentration of brown cells.
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2.5 Quantitative Necrosis Mapping

To quantify necrosis as a percentage based on the digitized IHC sections, the observed spatial

distributions and qualitative characteristics of blue and brown cells noted in Sec. 2.4 were mod-

eled as an exponential decay, as follows:

EQ-TARGET;temp:intralink-;e006;114;688Necrosis ¼ Γe−kρ × 100%; (6)

where Γ and ρ represent the fractions of the areas of blue or brown cells, and k ¼ 100 enables us

to define ρ as a fraction rather than the percentage that kρ represents. The fractions were defined

as

EQ-TARGET;temp:intralink-;e007;114;628Γ ¼
blue cell area

blue cell areaþ brown cell area
; (7)

and

EQ-TARGET;temp:intralink-;e008;114;582ρ ¼
brown cell area

total patch area
; (8)

where the total patch area is 200 μm × 200 μm, which was selected to display ∼20 to 200 cells

per patch (i.e., the cells were ∼5 to 10 μm in diameter). Smaller-sized patch areas captured

regions devoid of blue cells or completely covered by clusters of brown cells, while larger sizes

compromised the intent of this local calculation. When there are no brown cells within the irra-

diated region, the model presented in Eqs. (6)–(8) successfully achieved Γ ¼ 1, ρ ¼ 0, and 100%

necrosis, with a lower necrosis percentage achievable when brown cells are present. The multi-

plicative exponential term, e−kρ, was introduced to proportionally scale the fraction of blue cells

(i.e., Γ) present by the local density of brown cells (i.e., ρ). This exponential term produced

a steep change in the % necrosis near the boundary of the irradiated region.

2.6 Registration of Digitized IHC Sections and Necrosis Maps

To place the independent two-dimensional (2D) serial digitized IHC sections and necrosis maps

in a common coordinate frame for volumetric reconstruction, a rigid registration was first per-

formed between digitized IHC sections. This registration enabled the computation of deforma-

tion maps for each section. The deformation maps were then used to warp the corresponding

necrosis maps.

To perform digitized IHC sections registration, a section in the middle of the stack was

selected as the reference section based on overall appearance, optimal contrast, and depiction

of the entire irradiated area. This reference section selection is critical to avoid error propagation

and ensure accurate reconstruction results. We purposely avoided selecting the first section of the

stack as the reference, which can introduce reconstruction artifacts such as skewed or helical

volumes.23 The carefully selected reference section was then registered with its two direct neigh-

boring sections, and the registration process was performed in both forward and backward

directions (i.e., pairwise registration until the last and first sections, respectively). During this

automatic registration process, geometric features were extracted from the IHC sections with the

salient feature being the brown cell region surrounding the irradiated area. After registration, the

IHC sections were transformed from the RGB to the L�a�b color scale to highlight the irradiated

area and assist with automatic feature extraction. Each pair of adjacent IHC sections evaluated

produced a deformation map, which was then used to warp the corresponding necrosis map.

To remove artifacts from the registered necrosis maps [i.e., necrotic areas appearing in

addition to the irradiated region, which are artifacts introduced by Eq. (6)], we implemented

a two-stage filtering process consisting of identifying the centroid of necrosis from all maps

in a volume, followed by filtering individual maps in the volume, as illustrated in Fig. 5. In

Stage 1, the 25 registered necrosis maps were first averaged to yield an average necrosis map,

with the maximum value consistently located within the irradiated area. The histogram of the

average necrosis map exhibited a quadrimodal distribution, where four peaks represented

the background, low, intermediate, and high necrosis percentage values in increasing order of

pixel intensity. Using Otsu’s method,24 three threshold values based on pixel intensities of the

average necrosis map were computed. As the irradiated region consistently presented regions

of intermediate and high necrosis values, the second threshold value was used, converting the
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average necrosis map into a binary image. Each binary object within the binary image was

assigned a non-negative integer as a label. The binary object encompassing the maximum value

of the average necrosis map was preserved. The centroid of the selected binary object was com-

puted and utilized to filter individual necrosis maps in Stage 2, which was initiated by converting

each individual map to binary objects using the Otsu’s method described in Stage 1. Non-integer

numbers were assigned as labels to individual binary objects for easy reference during image

processing. Next, the solidity (i.e., a measure of compactness and convexity) of each individual

object was computed. Objects with a solidity lower than 0.6 were discarded, as they were

unlikely to represent the circular necrosis area. The distances between the centroid of each

remaining binary object and the centroid computed in Stage 1 were calculated, and the lowest

distance was identified as corresponding to the necrotic area, resulting in a filtered binary mask.

The initial individual necrosis map was multiplied by the filtered binary mask to remove artifacts.

The 25 filtered binary masks were used to generate a necrosis volume. These masks have a spatial

separation of 40 um, resulting from staining one out of every 10 sections using immunohisto-

chemistry (as described in Sec. 2.4). Therefore, linear interpolation was performed to recover the

masks from the missing sections and complete the volume. This image processing was performed

using MATLAB R2023a (Mathworks, Natick, Massachusetts) software.

2.7 Comparisons between Simulated and Experimental Results

To compare simulation predictions and experimental results, we first consider that a direct com-

parison is challenging due to the liver samples exhibiting a curved surface, whereas the simulated

tissue model was designed with a flat surface. To address this geometric disparity, we selected the

most superficial IHC section that fully displayed the irradiated region and its adjacent non-irra-

diated area. Following this protocol, the sections selected for comparison were extracted at

depths of 0, 280, and 160 μm for the 1, 10, and 20-min irradiation times, respectively. We then

calculated the absolute error in percent necrotic tissue between simulated predictions (Sec. 2.1)

and experimental results for the selected sections (Sec. 2.5), as a function of irradiation time. To

strengthen the validity of our findings, five total sections at depths 280 to 320 μm and 160 to

200 μm from the 10- and 20-min samples, respectively, were each combined to report a mean and

standard deviation per sample for additional comparison to the corresponding simulation results.

3 Results

3.1 Simulated Necrosis Predictions

Figure 6 shows simulated temperature as a function of time for the delivery of 30 and 73 mJ laser

energies. The initial temperature of each sample was 293.15 K (because laparotomy typically

exposes the liver to the environment). The temperature profile for the 73 mJ laser energy exhib-

ited three phases. During the first phase (0 to 0.34 min), there was a rapid linear temperature

Fig. 5 Examples of intermediate and final outcomes of the two-stage artifact filtering process.
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increase in the liver, up to 315.15 K where the inactivation of vital enzymes occurs.25 In the

second phase (0.34 to 3.88 min), the temperature continued escalating at a lower rate, eventually

reaching a maximum temperature of 333.15 K, which is the threshold temperature for protein

denaturation.25 In the third phase, the temperature stabilized and was maintained at 333.44 K. In

contrast, the temperature profile associated with the 30 mJ laser energy has two phases, with the

first stage (0 to 4.94 min) characterized by a gradual temperature increase (up to 319.56 K, which

surpasses the temperature known to inactivate vital enzymes25) and the second phase character-

ized by temperature stabilizing at 319.66 K.

Figure 7 shows the time-resolved predictions for necrosis percentage at the tissue-laser inter-

face for different exposure times and laser energies. The induced damage slowly progressed

during the first minute of irradiation, resulting in necrotic tissue percentages of 0.03% and

1.23% for 30 and 73 mJ, respectively. Extending the laser exposure to 10 min led to necrotic

tissue percentages of 7.49% and 66.23% for 30 and 73 mJ, respectively. Following 20 min of

laser irradiation, the necrotic tissue percentage escalated to 15.05% and 76.84% for 30 and

73 mJ, respectively. Table 3 summarizes these simulation results.
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Fig. 6 Time-resolved temperature prediction at the tissue-laser interface for a simulated liver

exposed to 73 and 30 mJ laser energy.

Fig. 7 Time-resolved necrosis percentage prediction at the tissue-laser interface for simulated

liver samples irradiated for (a) 1 min, (b) 10 min, and (c) 20 min.

Table 3 Comparison of simulated predictions and qualitative histopathological grading of necrosis

in swine liver samples irradiated with ∼30 and 73 mJ laser energy for 1, 10, and 20 min.

Energy Laser time (min) Necrosis prediction (%) Necrosis grading

30 mJ 1 0.03 − −

10 7.49 − −

20 15.05 − −

73 mJ 1 1.23 − −

10 66.23 +

20 76.84 +++

Necrosis is graded as absent (− −), minimal (−), mild (+), moderate (++), and severe (+++) based on H&E
stains. Experimental necrosis gradings for ∼30 mJ energy (obtained with a laser pulse duration of 5 ns and
10 Hz pulse repetition frequency) were derived from previously reported results from 35 liver samples.5
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3.2 Empirical Necrosis Assessment

Figure 8 displays the characterization results of the H&E-stained sections. These sections were

extracted at depths of 4 μm below the most superficial section that fully displayed the irradiated

region and its adjacent non-irradiated area (i.e., 4, 284, and 164 μm for the 1, 10, and 20-min

irradiation times, respectively) to closely match the quantitative assessment depths described in

Sec. 2.7. Necrosis was defined by the loss of both hepatocellular and structural integrity, char-

acterized by the loss of cell nuclei, cellular fragmentation, and content leakage. Inflammation

manifested as aggregates of leukocytes within tissue. Hemorrhage was defined as the extrava-

sation of red blood cells into interstitial spaces between cells. Based on these criteria, the porcine

liver sample irradiated for 20 min exhibited severe necrosis and severe hemorrhage, whereas the

sample irradiated for 10 min displayed mild necrosis and severe hemorrhage. In contrast, the

porcine liver sample exposed to 1-min irradiation showed no pathological conditions. Minimal

to no inflammation was observed in the three samples, as no leukocyte clusters were seen.

Figure 9 shows example results from the digitized IHC section processing pipeline. A rep-

resentative IHC section from a swine liver sample irradiated for 10 min [Fig. 9(a)] was digitized

and subsequently divided into a mosaic composed of 16384 JPEG images [Fig. 9(b)], and

individual JPEG images were segmented [Fig. 9(c)]. These JPEG images were segmented with

acceptable performance by the Attention U-Net (i.e., 0.97 DSC, 0.94 IoU, 0.99 recall, and 0.95

precision). The arrangement of the segmentation masks [Fig. 9(d)] provided a clearer image of

the spatial distribution of blue and brown cells within the section. The overall cell density inside

the irradiated area was notably lower compared to external areas. In addition, blue and brown

cells were present throughout the section, whereas the presence of brown cells was reduced

within the irradiated area. This segmentation example confirms the features observed during

visual inspection of the IHC sections. The local necrosis map [Fig. 9(e)] computed using Eq. (6)

exhibited a rounded central region with the highest necrosis percentage (i.e., mean percentage

of 48.45%), surrounded by two scattered regions of lower and variable necrosis percentage

(e.g., 28.11% and 35.44% mean percentage per independent region, resulting in an unrealistic

combined necrosis percentage exceeding 100%, which leads to their classification as artifacts).

The necrosis values corresponding to the irradiated region were preserved after filtering the

artifacts [Fig. 9(f)].

Figure 10 shows the necrosis maps from the irradiated liver samples, each extracted from

a depth of 440 μm below the tissue surface. Laser application for 20 min caused complete

disruption of cells in the illuminated area, yielding a mean necrosis percentage of 85.12%.

Fig. 8 H&E sections from porcine liver samples irradiated for 1, 10, and 20 min. Regions of interest

within the irradiated region were selected to perform necrosis and hemorrhage grading.
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Laser application for 10 min caused moderate disruption of cells in the illuminated area, resulting

in a mean necrosis percentage of 65.49%. There are no signs of cell disruption when the laser is

applied for 1 min, yielding 0% necrosis percentage in the irradiated region.

Figure 11 shows the results obtained when quantifying the volume and area of necrotic cells

as a function of depth from the irradiated surface. In Figs. 11(a)–11(c), the necrosis volumes

measured 0, 3.27, and 24.68 mm3 after 1, 10, and 20 min of irradiation, respectively. In

Fig. 11(d), the cross-sectional necrotic area remained generally constant and large (0.21 to

0.24 cm2) within the analyzed depth range (1 mm of swine liver tissue) for a 20-min exposure

time. When the exposure time was shortened to 10 min, the cross-sectional necrotic area

decreased at shallow depths (i.e., 0.03 cm2), then further decreased to 0.01 cm2 at a depth

of 960 μm. No irradiation effects were observed with the 1-min laser irradiation time.

Figure 12 shows necrosis percentage as a function of depth for varying experimental laser

exposure times. With a 20-min exposure time, the measured necrosis percentage ranged from

77.69% to 87.06%. When the exposure time was decreased to 10 min, the necrosis percentage

ranged 38.95% to 66.22% for a similar mean energy of 73 mJ (see Fig. 1 and Table 2). There was

no necrosis for the 1 min exposure time. When compared to the simulated results in Table 3

(obtained at a depth of 0 μm), the experimental results obtained at depths of 0, 280, and

160 μm for 1, 10, and 20-min irradiation times, respectively (due to the curvature of the exper-

imental tissue samples, as noted in Sec. 2.7) revealed 0%, 66.22%, and 84.94% tissue necrosis,

Fig. 9 Image processing workflow for necrosis quantification of IHC sections: (a) IHC section,

(b) mosaic of 16,384 RGB images, (c) segmentation, (d) blue and brown cells segmentation,

(e) necrosis map, and (f) filtered map.

Fig. 10 IHC section, blue and brown cells segmentation, initial necrosis map, and filtered necrosis

map for three swine liver samples.
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respectively, whereas the simulation framework predicted 1.23%, 66.23%, and 76.84%, respec-

tively, which corresponds to deviations of 1.23%, 0.01%, and 8.1%, respectively. Therefore, the

overall experimental deviation from predicted values range 0.01% to 8.1%. The experimental

results obtained at depths of 280 to 320 μm and 160 to 200 μm for 10- and 20-min irradiation

times, respectively, yielded mean ± one standard deviation tissue necrosis percentages of

61.24� 4.49% and 86.38� 1.15%, respectively. Therefore, the 0.01% to 8.1% deviations

Fig. 11 Volumetric necrosis reconstruction for swine liver samples irradiated for (a) 1 min,

(b) 10 min, (c) 20 min, and (d) cross-sectional necrosis area as a function of tissue depth and

laser duration.
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Fig. 12 Necrosis percentage as a function of tissue depth and laser duration.

Arroyo et al.: Predictive model for laser-induced tissue necrosis. . .

Biophotonics Discovery 025003-13 Jul–Sep 2024 • Vol. 1(2)



predicted with the simulation framework are within 1 to 2 standard deviations of the variations

obtained over a minimal depth of 40 μm.

Overall, our empirical results demonstrate that liver imaging with no necrosis can be

achieved with 73 mJ laser energy (371.79 mJ∕cm2 fluence) applied for 1 min, with a laser wave-

length of 750 nm, 5 ns pulse duration, and 10 Hz pulse repetition frequency. However, meas-

urable necrosis was observed for exposure durations of 10 and 20 min, which is not considered

safe under the same laser conditions (73 mJ energy, 750 nm, 5 ns pulse duration, and 10 Hz pulse

repetition frequency). The 0.01% to 8.1% agreement between quantitative experimental results

and simulation results, combined with ≤4.49% standard deviations on the quantitative measure-

ments and the consistency between quantitative experimental results and qualitative outcomes

from H&E staining collectively demonstrate the accuracy of our approach.

4 Discussion

This study is the first to quantify the thermal effects of laser exposure to in vivo liver tissue

with 0.01% to 8.1% simulated necrosis prediction deviations from experimental results.

Immunohistochemistry was successfully employed to provide the first known quantitative

necrosis assessment across multiple depths and laser application time durations (Fig. 12),

enabled by the exponential damage model introduced in Eqs. (6)–(8). These results are promising

to provide tissue-specific MPE guidelines to maintain healthy liver tissue during laser-based

optical and photoacoustic surgeries and interventions. In addition, the presented simulation

framework and corresponding experimental protocols may be applied to other organs to achieve

similar benefits.

Our primary simulation objective is to use simulated outputs to determine the threshold of

predicted necrosis percentage indicative of visible liver tissue necrosis onset (although the pre-

dicted necrosis percentage provided by the simulation framework may not be exactly equivalent

to the visible liver tissue necrosis observed in H&E-stained sections). When implementing the

simulation framework, Table 3 indicates that up to 15.05% predicted necrosis will not produce

visible liver tissue necrosis with H&E stains, while at least 66.23% predicted necrosis produces

visible necrosis. It is reasonable to assume that the damage threshold for liver tissue resides

within this range (i.e., 15.05% to 66.23%). In addition, the quantitative IHC results indicate that

0% necrosis occurred below this range (which supports the H&E observations). When the pre-

dicted necrosis at the tissue surface was above or equal to the upper limit of this range (i.e.,

≥66.23%), the quantitative IHC results (Fig. 12) demonstrate that 38.95% to 87.06% necrosis

occurred at multiple tissue depths and laser time durations (which also supports the H&E obser-

vations reported in Table 3). Therefore, the quantitative IHC results support our conclusions

about the 15.05% to 66.23% predicted necrosis range wherein the damage threshold likely

resides.

Although damage overestimation seems to have occurred with the simulation framework

when compared to the quantitative IHC results, particularly when no necrosis was visibly

detected (i.e., 1.23% deviation), experimental IHC results are generally consistent with the

H&E results, as noted above. In addition, the simulated temperature probe was placed at the

tissue surface, whereas the samples for the quantitative IHC comparison were taken from 0,

280, and 160 μm depths below the tissue surface for 1, 10, and 20-min irradiation times, respec-

tively, as described in Sec. 2.7. While the unavoidable depth mismatch in the 10 and 20 min cases

is an additional potential source of the reported discrepancy, the discrepancy was largest well

beyond the range of the assumed damage threshold, and our ultimate goal is to develop standards

for safe laser application and associated image guidance technology that will ideally avoid

approaching tissue damage thresholds. It is promising that the simulation framework can predict

both damaging necrosis percentages and negligible necrosis that is not sufficiently extensive to

damage tissue, based on the qualitative and quantitative empirical H&E and IHC results in Figs. 8

and 12, respectively.

Additional confounding factors that could potentially impact experimental outcomes include

the anatomical location of samples from the same organ and the spatial variation of optical and

thermal parameters. However, our study analyzed three liver samples excised from the left lateral

liver lobe of the same porcine specimen to draw our final conclusions. As these three samples
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were derived from a shared anatomical environment, is it reasonable to assume that most optical

and thermodynamic parameters remained consistent across all specimens. Following the same

argument, arterial blood temperature and density gradients can also be regarded as minimal.

Caspase-3 activation is generally associated with cell apoptosis. In contrast, necrosis is char-

acterized in negative terms by the absence of caspase activation.26 Caspase-3 showed the pres-

ence of apoptotic cells surrounding the laser-exposed region and the absence of apoptotic cells

within the laser-exposed region, indirectly identifying necrotic areas. While there are no con-

clusive reports elucidating the initiation of cellular apoptosis in the context of laser-induced inju-

ries,27 there are three potential biological explanations. First, when living organisms face stress

conditions, the synthesis of most proteins is suppressed. However, a group of highly conserved

proteins called heat shock proteins are rapidly synthesized. In general, these proteins effectively

inhibit apoptosis.28 Nevertheless, under specific circumstances such as prolonged stress condi-

tions, the role of these proteins in caspase activation becomes deregulated.29 Second, cell damage

caused by sudden shocks, such as radiation or heat, initially induces cellular swelling.30

Prolonged laser exposure can exacerbate this initial cell swelling by inducing mitochondria

injury, promoting the release of mitochondrial proteins, such as cyto c, that trigger the activation

of several caspase proteases.31 Third, disruption of the endoplasmic reticulum (ER), a critical

organelle for cellular activities and survival, can contribute to the observed phenomenon.

Stress conditions that impair the normal functioning of the ER result in the accumulation of

unfolded proteins. If the stress persists and protein aggregation is persistent, signaling pathways

transition from pro-survival to pro-apoptotic.32

One limitation of our study is that the presented empirical equations for necrosis quantifi-

cation [i.e., Eqs. (6)–(8)] were proposed based on IHC sections for a cleaved Caspase-3 dilution

of 1:1000. Changing the dilution factor may reduce the signal intensity or introduce background

noise by exacerbating non-specific bindings, which may impact the applicability of our equa-

tions. Another limitation is that damage was produced in only two samples (quantified in 10

shallow sections total for comparison with simulations) out of the three samples reported herein

and out of the 41 samples previously reported (including six control samples).5While 10 sections

may seem like a small sample size for comparison with damage prediction simulation results,

there is agreement within 1-2 standard deviations, and ultimately our goal is to cause no harm

(i.e., avoid laser-related damage) with our imaging technology. Therefore, the number of dam-

aged samples out of 44 samples combined is considered as a positive attribute for photoacoustic

technology, because the majority of samples did not show signs of damage and agree with sim-

ulation predictions.

Based on the totality of the simulation results herein and the experimental results in this

publication and additional publications on this topic,5,6 we conclude that liver imaging with

750 nm laser wavelength, 5 ns pulse duration, 10 Hz pulse repetition frequency, and 30 mJ

of laser energy emitted from a 5-mm diameter source (i.e., 152.79 mJ∕cm2 fluence) is safe when

applied for at least 20 min, while 73 mJ (i.e., 371.79 mJ∕cm2 fluence) causes minimal (1.23% in

silico, 0% in vivo) necrosis when applied for 1 min. Otherwise, the remaining time points (i.e., 10

and 20 min) should be avoided with 73 mJ energy, due to the 66.23% to 76.84% necrosis

in silico and corresponding 66.22% to 84.94% necrosis measured in vivo. Future work will

expand our experimental method and matching in silico model to determine safety with other

tissues and tissue parameters that differ from the liver tissue validated and studied herein. We will

additionally investigate motion-based methods to alleviate potential damage.33

5 Conclusion

This study introduces an innovative simulation framework to provide numerical estimations of

laser-related tissue damage. We demonstrated the capabilities of integrating Monte Carlo optical

simulations and COMSOL thermodynamic modeling to monitor the thermal impact of laser

delivery across varying time intervals. The simulated predictions are well aligned with the exper-

imental validation results. In addition, the temperature progression over time enabled the iden-

tification of critical time points related to important thermal processes, providing relevant

insights into the status of the tissue of interest. Notably, our findings support safe photoacoustic

liver imaging with a 5-mm diameter source emitting 750 nm wavelength laser light (with 5 ns
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pulse duration and 10 Hz pulse repetition frequency) when employing approximately 30 mJ of

laser energy (152.79 mJ∕cm2 fluence) with an imaging time ≤20 min. If opting for a higher

energy of 73 mJ (371.79 mJ∕cm2 fluence) for any reason (although this particular energy is

not necessary for photoacoustic imaging), the laser application time should not exceed 1 min,

as the next available validated temporal data point at this energy level (i.e., 10 min) causes severe

damage. The presented approach and associated outcomes are promising for the introduction of

tissue-specific safety guidelines for photoacoustic imaging and other optics-based imaging tech-

nologies that are designed to maximize signal-to-noise ratios while being designated as safe for

patient use.
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