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Statement of Discovery

We introduce the first-known study demonstrating a unified theoretical, computational, and
experimental approach to determine laser safety for biological tissues other than skin or eyes.

ABSTRACT. Significance: Photoacoustic imaging holds promise to provide critical guidance
in surgical interventions, but its widespread use is challenged by the absence of
applicable safety guidelines across diverse target tissues. The biosafety of this
technology is primarily associated with the risk of necrosis generation, which is
an irreversible thermal effect that can result from prolonged, high-energy laser
applications.

Aim: We introduce the first known numerical simulation approaches to assess laser-
induced necrosis in liver tissue and present a novel microscopy analysis framework
to validate performance.

Approach: Our simulation methods integrate Monte Carlo simulations of laser-tis-
sue interaction with the COMSOL interface, model local tissue heating, and predict
associated tissue damage to quantify the percentage of tissue necrosis resulting
from laser application. Our initial predictions are based on 30 and 73 mJ mean laser
energies, laser irradiation times of 1, 10, and 20 min, and a 750 nm laser wavelength.
Empirical validations with in vivo porcine liver exposed to a mean laser energy of
73 md and 750 nm laser wavelength were performed based on H&E and cleaved
Caspase-3 immunohistochemistry (IHC) results. Simulation results from the lower
30 mJ laser energy were additionally cross-referenced with previous qualitative
H&E-based reports.

Results: Negligible tissue damage was observed with necrosis predictions
<15.05%, damage thresholds were determined to be within the 15.05% to 66.23%
necrosis prediction range, and necrosis predictions deviated from quantitative IHC
results by 0.01% to 8.1%.

Conclusions: We successfully demonstrated an in silico alternative to the other-
wise time-consuming and expensive empirical assessments that would be required
to create tissue-specific laser safety guidelines. The presented methods have the
potential to be translated to multiple tissues and additional laser properties.
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1 Introduction

Photoacoustic imaging is a beneficial technology that integrates the advantages of ultrasound and
optical imaging. Structures with high optical absorption coefficients absorb light, leading to a
localized temperature rise that generates thermal expansion. This expansion results in tissue
relaxation and the subsequent isotropic release of acoustic waves, which are ultimately detected
by ultrasound sensors. The broad range of targets that can be effectively imaged using photo-
acoustic imaging has been highlighted in many reports, positioning it as a valuable tool for sur-
gical guidance.'™

Laser safety is an important biohazard consideration to ensure patient safety during photo-
acoustic interventional guidance. The maximum permissible exposure (MPE) is defined by the
American National Standards Institute, which provides guidelines to determine the maximum
allowable pulse energy per unit area to prevent any adverse biological effects. However, these
guidelines currently focus solely on eyes and skin. The MPE for skin is commonly used as a
reference for internal tissues during surgical and interventional guidance testing,' but this
assumption can unnecessarily limit the MPE.'*

Experiments were previously conducted to determine appropriate parameters to minimize
and control the risk of tissue damage in specific internal tissues, such as the liver’® and heart.”
Kempski et al.® investigated suitable laser energies for in vivo photoacoustic imaging of porcine
hepatic blood vessels, demonstrating that a minimum energy of 30 mJ (153 mJ/cm? fluence),
emitted at a wavelength of 750 nm, was necessary for optimal visualization, even though this
energy exceeded the MPE limit for skin and revealed necrosis, hemorrhage, and inflammation
with the associated exposure time of 80 min. Building on these findings, Huang et al.’ inves-
tigated the impact of ~30 mJ of laser energy on 35 swine liver specimens with exposure times of
1, 10, and 20 min and demonstrated the absence of necrosis under these shorter time durations.
Similarly, Graham et al.” delivered 379.2 mJ/cm? fluence to cardiac tissue using a wavelength of
750 nm for a time duration of 23 min, without any observed pathological tissue changes due to
irradiation, despite exceeding the 25.6 mJ/cm? MPE for skin. In each case, the pulse duration
was 5 ns and the pulse repetition rate was 10 Hz.””’

While these previous studies support the conclusion that safety limits for skin are not suit-
able when applied to internal tissue, the qualitative nature of the histological assessment cate-
gorizes tissue conditions into five distinct levels: not present, minimal, mild, moderate, and
severe. Retrospective studies have demonstrated that assigning categorical grades to tissue con-
ditions can lead to substantial inter- and intra-observer variability, making the process highly
subjective.*!! In addition, the combined processes of tissue processing, digitization, and
pathologist reading can collectively be time consuming and resource-intensive, considering the
requirements for stains, fixatives, slides, histology equipment, and knowledgeable personnel who
can manage and allocate these resources. We hypothesize that theoretical modeling and in silico
validations have the potential to provide a more reliable, repeatable, less time-consuming, and
less resource-intensive approach to determine tissue-specific laser safety guidelines.

This paper presents a comprehensive theoretical, in silico, and experimental assessment of
laser-induced tissue necrosis on swine liver samples, with three primary contributions. First, we
rely on theoretical equations to present a novel simulation framework that predicts the percentage
of tissue necrosis based on laser energy, beam diameter, wavelength, and exposure time. Second,
we validate simulation predictions by focusing on the impact of delivering a mean laser energy of
~73 mJ] (372 mJ /cm2 fluence) to in vivo liver tissue, with irradiation durations of 1, 10, and
20 min, a wavelength of 750 nm, 5 ns pulse duration, and 10 Hz pulse repetition frequency.
These choices are based on prior observations of necrosis occurring at the same laser parameters
(i.e., wavelength, pulse duration, and pulse repetition frequency) with 20 to 40 mJ laser energy
(102 to 204 mJ /cm? fluence) and 80 min laser duration.® In addition, damage was absent for
the same laser wavelength with ~30 mJ energy (153 mJ/cm? fluence) with a laser irradiation
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duration of 20 min.’ These prior results indicate that we can expect a spectrum of tissue necrosis
outcomes for the same wavelength with a factor of ~1.8 to 3.7 greater energy than 20 to 40 mJ
(i.e., 73 mJ) and 1 to 20 min irradiation times. Third, we introduce a method to quantitatively
assess tissue necrosis percentage from digitized immunohistochemistry sections, which is a sig-
nificant departure from previous qualitative approaches. This transition provides an unambigu-
ous interpretation of tissue conditions, eliminates the reliance on grading scales, and facilitates
an alternative predictive modeling approach.

2 Methods and Materials

2.1 Simulation Framework for Thermal Damage Estimation

To determine damage, tissue-photon interactions were first modeled during laser energy delivery
using three-dimensional (3D) Monte Carlo simulations.'> These simulations were performed
with the optical properties summarized in Table 1, which are specific to swine liver tissue char-
acteristics at a wavelength of 750 nm, for later comparisons with experimental results. The opti-
cal absorption coefficient dictates the depth of photons penetrating tissue prior to being absorbed.
The scattering coefficient dictates how the tissue scatters photons outside of the laser beam, and
the anisotropic factor determines the amount of forward direction propagation retained after scat-
tering. These parameters were modeled within a 20 x 20 X 20 mm? homogeneous porcine liver
block. A 5 mm-diameter laser source touching one surface of this cubic volume irradiated energy
for 1, 10, and 20 min with an optical wavelength of 750 nm. The output of the 3D Monte Carlo
simulations is a spatial distribution of normalized energy density, which can be used to assist with
defining the optical laser delivery as a heat source.

To define a heat source, heat conduction was modeled using COMSOL Multiphysics 6.
A homogeneous cubic tissue with the same size as the porcine liver block described above (i.e.,
20 % 20 X 20 mm?) was also modeled considering three domains. In the first domain, which
constitutes the surface directly exposed to the 5 mm-diameter laser beam, triangular elements
with a maximum size of 2 mm were used. In the second domain, which covers the surface not
exposed to the laser beam, triangular elements with a maximum size of 3 mm were used. In the
third domain, which is the remainder of the modeled volume, quadrilateral elements with a maxi-
mum size of 3 mm were used. All boundaries were kept at constant temperature except for the
liver surface. Heat exchange in the liver surface was based on free convection in air, resulting
from the liver exposure to the environment. This convective effect influences the local temper-
ature dynamics induced by the laser.

To monitor the tissue temperature over time and ultimately predict local tissue damage, the
Time-Dependent Bioheat Transfer interface within COMSOL Multiphysics 6.1 was used to solve
the Pennes Bioheat Transfer equation. This equation describes the time-dependent biological
heat transfer to model hyperthermia processes in perfused tissue, as follows:

1.1

Table 1 Optical and thermodynamic parameters utilized in simulations.

Parameter Value Units Ref.

Optical Absorption coefficient 0.1 1/mm 13
Scattering coefficient 6.14 1/mm 13

Anisotropic factor 0.9 — 13

Thermodynamic Blood perfusion rate (wp) 0.0175 1/s 14
Blood specific heat (c;) 3617 J/(kg - K) 15

Blood density (pp) 1050 kg/m3 15

Arterial blood temperature (T,) 310.15 K 16

Frequency factor (A) 5.51 x 104 1/s 17

Activation energy (AE) 2.77 x 10° J/mole 17
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where g is the heat flux density, defined as
q=—kVT. 2)

The remaining variables are based on properties of the liver (i.e., p, T, Cps k), associated
blood (i.e., p,, Ty, c;,, @), and heat sources (i.e., Q, Q). In particular, p and p,, are the liver and
blood density, respectively; T and T, are the temperatures of the liver and blood, respectively;
¢, and ¢, are the specific heat capacities of the liver and blood, respectively (representing the
energies required to raise 7' and T, respectively, by one unit of temperature per unit mass);
k is the thermal conductivity (which quantifies the ability of the liver to conduct and retain heat);
)y, is the blood perfusion rate (which accounts for the circulation of blood through an in vivo
vascularized liver); Q and Q. are the laser and metabolic heat sources, respectively; and ¢ is the
time. The values of w,, ¢, p;,, T, employed in our study are reported in Table 1 for the porcine
liver, whereas p, c,, and k were considered to be temperature-dependent, based on the details
reported by Rossmann and Haemmerich.'” The impact of body heat production on temperature
was not considered due to the lack of sufficient literature values for the porcine liver (i.e.,
Omet = 0), and Q in Eq. (1) was obtained as follows:

Q = P - Energy Density - ONOFF, 3)

where P is the laser power (converted from the associated laser energy per pulse duration),
Energy Density is the normalized energy density distribution from the Monte Carlo simulations
described above, and ONOFF is a trigger that periodically turns the laser on and off to replicate
a pulsed laser source. Energy Density was exported from MATLAB as a four-column csv file
depicting 3D coordinates and the density value, then imported into COMSOL. The ONOFF
function forms a square wave when plotted over time. In our implementation, a pulse energy
of 73 mJ (371.79 mJ /cm? fluence) was delivered using a 10 Hz pulse repetition frequency with
a 5 ns pulse duration. Consequently, the laser power was 1.46 X 107 W. With one pulse emitted
every 0.1 seconds (i.e., 10 Hz pulse repetition frequency), the ONOFF function takes a value of 1
for the first 5 ns and then reverts to O during each interval. As a result, Energy Density from
Monte Carlo simulations was modeled to be delivered for 5 ns every 0.1 s. For comparison with
our previous report,” this process was repeated after decreasing the energy to 30 mJ (i.e., laser
power 6 X 10® W) while preserving pulse duration and pulse repetition frequency.

A domain point probe was placed at the irradiated surface in the COMSOL simulations to
monitor T(#) in Eq. (1), and the associated degree of tissue injury, a(f), was obtained by solving
the following differential equation of the Arrhenius Kinetics model:

oo

or
where n is the polynomial order of the Arrhenius equation (specifically, n = 3 was empirically
determined to best match simulation outcomes with experimental results), R is the universal gas
constant, A is the frequency factor that refers to the likelihood of damage-inducing events occur-
ring within a time frame, and AE is the activation energy that represents the energy threshold that
must be exceeded to induce tissue damage. The values of A and AE employed in our study are
associated with the onset of irreversible thermal damage in swine liver and are reported in
Table 1. The fraction of necrotic tissue, 6,, was then computed from Eq. (4) as follows:

0, = min(max(a, 0), 1). 5)

(1 — a)" Ac(AE/RT) 4)

Finally, Eq. (5) was multiplied by 100% to report the percentage of necrotic tissue predicted by
simulations.

2.2 Experimental Procedures to Assess Necrosis

A 5 mm-diameter fiber bundle was connected to a Phocus Mobile laser containing an internal
power meter (Opotek, Carlsbad, California) to deliver output desired energies to the surface of
exposed in vivo liver tissue. The laser delivered 5 ns pulse widths at a pulse repetition frequency
of 10 Hz. To monitor and compensate for known fluctuations in energy and maintain a desired
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Fig. 1 Distribution of laser energy delivery per laser application duration, shown as box-and-
whisker plots. The median energy is indicated by the red horizontal line, the interquartile range
is indicated by the top and bottom bounds of each box, and the maximum and minimum values
(excluding outliers, appearing as red datapoints and defined as values >1.5 times the interquartile
range) are indicated by the lines extending from each box.

sliding-average pulse-to-pulse energy range (with a 50-pulse window) of 71 to 75 mJ, the internal
power meter of the laser and a custom command-line interface were employed.® In particular, a
calibration between the internal power meter and an external power meter was performed prior to
the start of the procedure, and the internal power meter was used to record and adjust real-time
laser energies throughout the duration of the laser application. Figure 1 shows the pulse-to-pulse
energy measurements during different laser application times. The interquartile ranges of deliv-
ered energy was 70.29 to 76.75 mJ, 70.28 to 73.50 mJ, and 71.37 to 74.59 mJ for the 1, 10, and
20 min time durations, respectively. The mean energy is reported in Table 2.

A laparotomy was performed on the abdomen of a female Yorkshire swine (36 to 40 kg) to
access and expose the left lateral liver lobe. Laser energy was applied to three positions on the
surface of the left lateral lobe for 1, 10, and 20 min, creating three samples for analysis, as
detailed in Table 2. The three differences in irradiation time are expected to induce minimal,
moderate, and severe necrosis, based on our previous results.” The irradiated positions were
marked by first placing a line of suture perpendicular to and 3 cm away from each intended
laser application site. The three suture lines are observable in Fig. 2(a). After laser application,
the irradiated regions were directly inked using a tissue marking dye. After euthanasia, the entire
left lateral liver lobe was removed from the abdomen, irradiated regions were excised [Fig. 2(b)],
and immediately fixed in a 10% formalin solution. This study was approved by the Johns
Hopkins University Institutional Animal Care and Use Committee.

2.3 Qualitative Histopathology Assessment

To provide baseline comparisons with previous qualitative reports, the excised samples described
in Sec. 2.2 were embedded in paraffin, then placed in a microtome with the irradiated surface
oriented approximately parallel to the microtome blade. Each sample was sectioned into 250
slides with a section thickness of 4 ym. Out of the collection of 250 sections, one section was
selected for staining with Hematoxylin and Eosin (H&E), which was extracted from a depth of
928 um, to guarantee the representation of the entire cross-section of the tissue sample. As H&E
was previously used to qualitatively identify the presence of necrosis, hemorrhage, and inflam-
mation,’ the samples described above were similarly assessed for these three pathological fea-
tures (i.e., absent, minimal, mild, moderate, or severe).

Table 2 Laser energy delivery positions and duration.

Lobe region Mean energy (mJ) Duration (min)
Sample 1 Left lateral lobe (cranial) 73.0 20
Sample 2 Left lateral lobe (center) 72.5 10
Sample 3 Left lateral lobe (caudal) 73.6 1
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Fig. 2 The marking strategies to identify irradiated areas on the swine liver samples included
(a) sutures before laser application and (b) tissue dye after liver lobe resection (and prior to sample
fixation).

2.4 Qualitative Inmunohistochemistry Assessment

Out of the collection of 250 sections per liver sample described in Sec. 2.3, a representative
subset consisting of one per every 10 sections (i.e., 40 ym spacing) was selected for immuno-
histochemistry (IHC) staining with an antibody specific to cleaved Caspase-3, diluted at a ratio of
1:1000. In addition, three additional sections near the surface of each sample, separated by 8 ym
per section, were stained with IHC to provide mean and standard measurements for comparison
to surface simulation results. Cleaved Caspase-3 was the antibody chosen to identify necrosis
biomarkers because of its well-established role in apoptosis, a programmed cell death mecha-
nism. This choice was additionally motivated by our preliminary qualitative observations, which
revealed a positive correlation between cleaved Caspase-3 and the identification of necrotic areas
resulting from prolonged laser irradiation.

To systematically characterize our qualitative observations, individual IHC sections were
digitized at 40X magnification using a Hamamatsu NanoZoomer S210 to generate NDPI files.
The NDPITools Plugin Bundle of ImageJ*® was used to extract the content of the NDPI file by
dividing each digitized IHC section into a mosaic of adjacent JPEG images, encoding color
information using Red-Blue-Green (RGB) channels. NDPITools automatically selected mosaic
dimensions that were powers of two in each image dimension, resulting in individual JPEG
image sizes ranging 700 to 1300 x 700 to 1300 pixels, based on a 4MB storage restriction.
When these multiple JPEG images were spatially arranged, aligned, and stitched together, the
IHC section was accurately reconstructed. As the area of the digitized tissue sections generally
increased with depth (see Fig. 3), due to the curved surface of the samples, the number of JPEG
images that composed each mosaic varied. For example, the sizes of the IHC sections in
Figs. 3(a)-3(c) are 30,720 x 30,976, 76, 800 x 81, 664, and 103,680 x 101,376 pixels, respec-
tively, which were decomposed into 32 x 32, 128 X 64, and 128 X 128 mosaics, respectively,

2 mm [ 5mm | | 10mm |
(a) (b) (©

Fig. 3 Digitized immunohistochemistry sections extracted at depths of (a) 0 zm, (b) 480 ym, and
(c) 960 um from a porcine liver sample irradiated for 10 min. The tissue section size increases with
depth due to the tissue curvature.
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Fig. 4 Visual inspection of a representative digitized IHC section. Blue cells are pointed out by
arrows. The overall cell density was higher outside than inside the irradiated area. The boundary
of the irradiated area presented a high concentration of brown cells.

each comprising individual JPEG images sized 960 x 968, 1200 x 638, and 810 X 792 pixels,
respectively (i.e., 1024, 8192, and 16,384 individual JPEG images, respectively). Overall, the
number of individual JPEG images from the IHC sections associated with the 1, 10, and 20-min
laser irradiation samples was 16,384 (constant for each section), 1024 to 16,384, and 2048 to
16,384, respectively.

To qualitatively identify the presence of biomarkers at the cellular level, we conducted a
visual inspection of the digitized IHC sections, revealing two distinct types of cells: (1) cleaved
Caspase-3-positive cells stained in intense brown and (2) cleaved Caspase-3-negative cells
stained in intense blue, which will be referred to as brown and blue cells, respectively. The dis-
tribution of these cells presented four notable characteristics, which are shown in Fig. 4. First, a
decrease in cell density was observed inside the irradiated region compared to non-irradiated
areas. Second, blue cells (examples denoted with arrows in Fig. 4) were present both inside and
outside visibly irradiated areas. Third, brown cells were predominantly observed surrounding the
irradiated region. Fourth, the number of brown cells detected within the irradiated area was
inversely proportional to the irradiation time.

To segment blue and brown cells from the digitized THC sections, an Attention U-Net*!' was
employed. The architecture of the Attention U-Net consisted of four encoder layers, four decoder
layers, and four attention gates. This network was trained using the Adam optimizer, a batch size
of four samples, and standard data augmentation techniques (i.e., flip, elastic transformation, grid
distortion, and optical distortion). Early stopping with a patience of 10 was employed to avoid
overfitting. The Attention U-Net was trained with images from the current dataset. The network
dataset contained 50 images along with their manual segmentations, with an 80%—20% training—
testing set split, and 20% of the training set forming the validation set. Performance was quan-
tified using the Dice similarity coefficient (DSC) as the main metric, following the guidelines of
evaluation metrics for medical image segmentation.? In addition, the associated intersection over
union (IoU), recall, and precision were calculated. The weights obtained from this training proc-
ess were stored and utilized for cell segmentation in each JPEG image. This segmentation was
performed using Python 3.9.15 in a Jupyter Notebook.

Following cell segmentation, individual cells were analyzed for classification into blue or
brown. A cell was categorized as brown if its RGB components satisfied the condition
60 < R <210, G £ 151, and B < 130. A cell was categorized as blue if its RGB components
satisfied the condition 150 < R < 186, G > 155, and B > 160. These specific thresholds were
empirically chosen based on the analysis of multiple images from our dataset. To reconstruct a
section segmentation of blue and brown cells, the segmentation masks obtained from individual
JPEG images were spatially arranged, aligned, and stitched together to achieve the same size and
relative orientations that existed prior to creating the mosaic. This image processing was per-
formed using MATLAB R2023a (Mathworks, Natick, Massachusetts) software.
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2.5 Quantitative Necrosis Mapping
To quantify necrosis as a percentage based on the digitized IHC sections, the observed spatial
distributions and qualitative characteristics of blue and brown cells noted in Sec. 2.4 were mod-
eled as an exponential decay, as follows:

Necrosis = T'e™* x 100%, (6)

where I and p represent the fractions of the areas of blue or brown cells, and £ = 100 enables us
to define p as a fraction rather than the percentage that kp represents. The fractions were defined
as

blue cell area

)

- blue cell area + brown cell area’
and

brown cell area

p )

~ total patch area’

where the total patch area is 200 ym X 200 ym, which was selected to display ~20 to 200 cells
per patch (i.e., the cells were ~5 to 10 ym in diameter). Smaller-sized patch areas captured
regions devoid of blue cells or completely covered by clusters of brown cells, while larger sizes
compromised the intent of this local calculation. When there are no brown cells within the irra-
diated region, the model presented in Egs. (6)—(8) successfully achievedI" = 1, p = 0, and 100%
necrosis, with a lower necrosis percentage achievable when brown cells are present. The multi-
plicative exponential term, e, was introduced to proportionally scale the fraction of blue cells
(i.e., I') present by the local density of brown cells (i.e., p). This exponential term produced
a steep change in the % necrosis near the boundary of the irradiated region.

2.6 Registration of Digitized IHC Sections and Necrosis Maps

To place the independent two-dimensional (2D) serial digitized IHC sections and necrosis maps
in a common coordinate frame for volumetric reconstruction, a rigid registration was first per-
formed between digitized IHC sections. This registration enabled the computation of deforma-
tion maps for each section. The deformation maps were then used to warp the corresponding
necrosis maps.

To perform digitized IHC sections registration, a section in the middle of the stack was
selected as the reference section based on overall appearance, optimal contrast, and depiction
of the entire irradiated area. This reference section selection is critical to avoid error propagation
and ensure accurate reconstruction results. We purposely avoided selecting the first section of the
stack as the reference, which can introduce reconstruction artifacts such as skewed or helical
volumes.”* The carefully selected reference section was then registered with its two direct neigh-
boring sections, and the registration process was performed in both forward and backward
directions (i.e., pairwise registration until the last and first sections, respectively). During this
automatic registration process, geometric features were extracted from the IHC sections with the
salient feature being the brown cell region surrounding the irradiated area. After registration, the
IHC sections were transformed from the RGB to the L*a*b color scale to highlight the irradiated
area and assist with automatic feature extraction. Each pair of adjacent IHC sections evaluated
produced a deformation map, which was then used to warp the corresponding necrosis map.

To remove artifacts from the registered necrosis maps [i.e., necrotic areas appearing in
addition to the irradiated region, which are artifacts introduced by Eq. (6)], we implemented
a two-stage filtering process consisting of identifying the centroid of necrosis from all maps
in a volume, followed by filtering individual maps in the volume, as illustrated in Fig. 5. In
Stage 1, the 25 registered necrosis maps were first averaged to yield an average necrosis map,
with the maximum value consistently located within the irradiated area. The histogram of the
average necrosis map exhibited a quadrimodal distribution, where four peaks represented
the background, low, intermediate, and high necrosis percentage values in increasing order of
pixel intensity. Using Otsu’s method,** three threshold values based on pixel intensities of the
average necrosis map were computed. As the irradiated region consistently presented regions
of intermediate and high necrosis values, the second threshold value was used, converting the

Biophotonics Discovery 025003-8 Jul-Sep 2024 e Vol. 1(2)



Thresholding and

. Maps average
25 Necrosis maps labelling

L)

Necrosis map  Thresholding and Solidity > 0.6 Binary mask Filtered necrosis
labelling map

Centroid

Stage 2

Fig. 5 Examples of intermediate and final outcomes of the two-stage artifact filtering process.

average necrosis map into a binary image. Each binary object within the binary image was
assigned a non-negative integer as a label. The binary object encompassing the maximum value
of the average necrosis map was preserved. The centroid of the selected binary object was com-
puted and utilized to filter individual necrosis maps in Stage 2, which was initiated by converting
each individual map to binary objects using the Otsu’s method described in Stage 1. Non-integer
numbers were assigned as labels to individual binary objects for easy reference during image
processing. Next, the solidity (i.e., a measure of compactness and convexity) of each individual
object was computed. Objects with a solidity lower than 0.6 were discarded, as they were
unlikely to represent the circular necrosis area. The distances between the centroid of each
remaining binary object and the centroid computed in Stage 1 were calculated, and the lowest
distance was identified as corresponding to the necrotic area, resulting in a filtered binary mask.
The initial individual necrosis map was multiplied by the filtered binary mask to remove artifacts.
The 25 filtered binary masks were used to generate a necrosis volume. These masks have a spatial
separation of 40 um, resulting from staining one out of every 10 sections using immunohisto-
chemistry (as described in Sec. 2.4). Therefore, linear interpolation was performed to recover the
masks from the missing sections and complete the volume. This image processing was performed
using MATLAB R2023a (Mathworks, Natick, Massachusetts) software.

2.7 Comparisons between Simulated and Experimental Results

To compare simulation predictions and experimental results, we first consider that a direct com-
parison is challenging due to the liver samples exhibiting a curved surface, whereas the simulated
tissue model was designed with a flat surface. To address this geometric disparity, we selected the
most superficial IHC section that fully displayed the irradiated region and its adjacent non-irra-
diated area. Following this protocol, the sections selected for comparison were extracted at
depths of 0, 280, and 160 um for the 1, 10, and 20-min irradiation times, respectively. We then
calculated the absolute error in percent necrotic tissue between simulated predictions (Sec. 2.1)
and experimental results for the selected sections (Sec. 2.5), as a function of irradiation time. To
strengthen the validity of our findings, five total sections at depths 280 to 320 ym and 160 to
200 pm from the 10- and 20-min samples, respectively, were each combined to report a mean and
standard deviation per sample for additional comparison to the corresponding simulation results.

3 Results

3.1 Simulated Necrosis Predictions

Figure 6 shows simulated temperature as a function of time for the delivery of 30 and 73 mJ laser
energies. The initial temperature of each sample was 293.15 K (because laparotomy typically
exposes the liver to the environment). The temperature profile for the 73 mJ laser energy exhib-
ited three phases. During the first phase (0 to 0.34 min), there was a rapid linear temperature

Biophotonics Discovery 025003-9 Jul-Sep 2024 e Vol. 1(2)



o

Arroyo et al.: Predictive modeli“for: i;’:ls

340 T T T T T T T T T
g 330 - 1
&
El 320
«
b
g 310 j
g
= 300

—30 mJ
290 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time [min]

Fig. 6 Time-resolved temperature prediction at the tissue-laser interface for a simulated liver
exposed to 73 and 30 mJ laser energy.
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Fig. 7 Time-resolved necrosis percentage prediction at the tissue-laser interface for simulated
liver samples irradiated for (a) 1 min, (b) 10 min, and (c) 20 min.

increase in the liver, up to 315.15 K where the inactivation of vital enzymes occurs.” In the
second phase (0.34 to 3.88 min), the temperature continued escalating at a lower rate, eventually
reaching a maximum temperature of 333.15 K, which is the threshold temperature for protein
denaturation.? In the third phase, the temperature stabilized and was maintained at 333.44 K. In
contrast, the temperature profile associated with the 30 mJ laser energy has two phases, with the
first stage (O to 4.94 min) characterized by a gradual temperature increase (up to 319.56 K, which
surpasses the temperature known to inactivate vital enzymes>’) and the second phase character-
ized by temperature stabilizing at 319.66 K.

Figure 7 shows the time-resolved predictions for necrosis percentage at the tissue-laser inter-
face for different exposure times and laser energies. The induced damage slowly progressed
during the first minute of irradiation, resulting in necrotic tissue percentages of 0.03% and
1.23% for 30 and 73 ml, respectively. Extending the laser exposure to 10 min led to necrotic
tissue percentages of 7.49% and 66.23% for 30 and 73 mJ, respectively. Following 20 min of
laser irradiation, the necrotic tissue percentage escalated to 15.05% and 76.84% for 30 and
73 ml, respectively. Table 3 summarizes these simulation results.

Table 3 Comparison of simulated predictions and qualitative histopathological grading of necrosis
in swine liver samples irradiated with ~30 and 73 mJ laser energy for 1, 10, and 20 min.

Energy Laser time (min) Necrosis prediction (%) Necrosis grading
30 mJ 1 0.03 - -

10 7.49 - -

20 15.05 - -
73 mJ 1 1.23 - -

10 66.23 +

20 76.84 i

Necrosis is graded as absent (— —), minimal (=), mild (+), moderate (++), and severe (+++) based on H&E
stains. Experimental necrosis gradings for ~30 mJ energy (obtained with a laser pulse duration of 5 ns and
10 Hz pulse repetition frequency) were derived from previously reported results from 35 liver samples.’
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Fig. 8 H&E sections from porcine liver samples irradiated for 1, 10, and 20 min. Regions of interest
within the irradiated region were selected to perform necrosis and hemorrhage grading.

3.2 Empirical Necrosis Assessment
Figure 8 displays the characterization results of the H&E-stained sections. These sections were
extracted at depths of 4 ym below the most superficial section that fully displayed the irradiated
region and its adjacent non-irradiated area (i.e., 4, 284, and 164 ym for the 1, 10, and 20-min
irradiation times, respectively) to closely match the quantitative assessment depths described in
Sec. 2.7. Necrosis was defined by the loss of both hepatocellular and structural integrity, char-
acterized by the loss of cell nuclei, cellular fragmentation, and content leakage. Inflammation
manifested as aggregates of leukocytes within tissue. Hemorrhage was defined as the extrava-
sation of red blood cells into interstitial spaces between cells. Based on these criteria, the porcine
liver sample irradiated for 20 min exhibited severe necrosis and severe hemorrhage, whereas the
sample irradiated for 10 min displayed mild necrosis and severe hemorrhage. In contrast, the
porcine liver sample exposed to 1-min irradiation showed no pathological conditions. Minimal
to no inflammation was observed in the three samples, as no leukocyte clusters were seen.

Figure 9 shows example results from the digitized IHC section processing pipeline. A rep-
resentative IHC section from a swine liver sample irradiated for 10 min [Fig. 9(a)] was digitized
and subsequently divided into a mosaic composed of 16384 JPEG images [Fig. 9(b)], and
individual JPEG images were segmented [Fig. 9(c)]. These JPEG images were segmented with
acceptable performance by the Attention U-Net (i.e., 0.97 DSC, 0.94 IoU, 0.99 recall, and 0.95
precision). The arrangement of the segmentation masks [Fig. 9(d)] provided a clearer image of
the spatial distribution of blue and brown cells within the section. The overall cell density inside
the irradiated area was notably lower compared to external areas. In addition, blue and brown
cells were present throughout the section, whereas the presence of brown cells was reduced
within the irradiated area. This segmentation example confirms the features observed during
visual inspection of the IHC sections. The local necrosis map [Fig. 9(e)] computed using Eq. (6)
exhibited a rounded central region with the highest necrosis percentage (i.e., mean percentage
of 48.45%), surrounded by two scattered regions of lower and variable necrosis percentage
(e.g., 28.11% and 35.44% mean percentage per independent region, resulting in an unrealistic
combined necrosis percentage exceeding 100%, which leads to their classification as artifacts).
The necrosis values corresponding to the irradiated region were preserved after filtering the
artifacts [Fig. 9(f)].

Figure 10 shows the necrosis maps from the irradiated liver samples, each extracted from
a depth of 440 um below the tissue surface. Laser application for 20 min caused complete
disruption of cells in the illuminated area, yielding a mean necrosis percentage of 85.12%.
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Fig. 9 Image processing workflow for necrosis quantification of IHC sections: (a) IHC section,
(b) mosaic of 16,384 RGB images, (c) segmentation, (d) blue and brown cells segmentation,
(e) necrosis map, and (f) filtered map.
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Fig. 10 IHC section, blue and brown cells segmentation, initial necrosis map, and filtered necrosis
map for three swine liver samples.

Laser application for 10 min caused moderate disruption of cells in the illuminated area, resulting
in a mean necrosis percentage of 65.49%. There are no signs of cell disruption when the laser is
applied for 1 min, yielding 0% necrosis percentage in the irradiated region.

Figure 11 shows the results obtained when quantifying the volume and area of necrotic cells
as a function of depth from the irradiated surface. In Figs. 11(a)-11(c), the necrosis volumes
measured 0, 3.27, and 24.68 mm?> after 1, 10, and 20 min of irradiation, respectively. In
Fig. 11(d), the cross-sectional necrotic area remained generally constant and large (0.21 to
0.24 cm?) within the analyzed depth range (1 mm of swine liver tissue) for a 20-min exposure
time. When the exposure time was shortened to 10 min, the cross-sectional necrotic area
decreased at shallow depths (i.e., 0.03 cm?), then further decreased to 0.01 cm? at a depth
of 960 um. No irradiation effects were observed with the 1-min laser irradiation time.

Figure 12 shows necrosis percentage as a function of depth for varying experimental laser
exposure times. With a 20-min exposure time, the measured necrosis percentage ranged from
77.69% to 87.06%. When the exposure time was decreased to 10 min, the necrosis percentage
ranged 38.95% to 66.22% for a similar mean energy of 73 mJ (see Fig. 1 and Table 2). There was
no necrosis for the 1 min exposure time. When compared to the simulated results in Table 3
(obtained at a depth of 0 um), the experimental results obtained at depths of 0, 280, and
160 pum for 1, 10, and 20-min irradiation times, respectively (due to the curvature of the exper-
imental tissue samples, as noted in Sec. 2.7) revealed 0%, 66.22%, and 84.94% tissue necrosis,
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Fig. 11 Volumetric necrosis reconstruction for swine liver samples irradiated for (a) 1 min,

(b) 10 min, (c) 20 min, and (d) cross-sectional necrosis area as a function of tissue depth and
laser duration.
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Fig. 12 Necrosis percentage as a function of tissue depth and laser duration.

respectively, whereas the simulation framework predicted 1.23%, 66.23%, and 76.84%, respec-
tively, which corresponds to deviations of 1.23%, 0.01%, and 8.1%, respectively. Therefore, the
overall experimental deviation from predicted values range 0.01% to 8.1%. The experimental
results obtained at depths of 280 to 320 ym and 160 to 200 ym for 10- and 20-min irradiation
times, respectively, yielded mean =+ one standard deviation tissue necrosis percentages of
61.24 £4.49% and 86.38 £ 1.15%, respectively. Therefore, the 0.01% to 8.1% deviations
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predicted with the simulation framework are within 1 to 2 standard deviations of the variations
obtained over a minimal depth of 40 pm.

Overall, our empirical results demonstrate that liver imaging with no necrosis can be
achieved with 73 mJ laser energy (371.79 mJ/cm? fluence) applied for 1 min, with a laser wave-
length of 750 nm, 5 ns pulse duration, and 10 Hz pulse repetition frequency. However, meas-
urable necrosis was observed for exposure durations of 10 and 20 min, which is not considered
safe under the same laser conditions (73 mJ energy, 750 nm, 5 ns pulse duration, and 10 Hz pulse
repetition frequency). The 0.01% to 8.1% agreement between quantitative experimental results
and simulation results, combined with <4.49% standard deviations on the quantitative measure-
ments and the consistency between quantitative experimental results and qualitative outcomes
from H&E staining collectively demonstrate the accuracy of our approach.

4 Discussion

This study is the first to quantify the thermal effects of laser exposure to in vivo liver tissue
with 0.01% to 8.1% simulated necrosis prediction deviations from experimental results.
Immunohistochemistry was successfully employed to provide the first known quantitative
necrosis assessment across multiple depths and laser application time durations (Fig. 12),
enabled by the exponential damage model introduced in Eqs. (6)—(8). These results are promising
to provide tissue-specific MPE guidelines to maintain healthy liver tissue during laser-based
optical and photoacoustic surgeries and interventions. In addition, the presented simulation
framework and corresponding experimental protocols may be applied to other organs to achieve
similar benefits.

Our primary simulation objective is to use simulated outputs to determine the threshold of
predicted necrosis percentage indicative of visible liver tissue necrosis onset (although the pre-
dicted necrosis percentage provided by the simulation framework may not be exactly equivalent
to the visible liver tissue necrosis observed in H&E-stained sections). When implementing the
simulation framework, Table 3 indicates that up to 15.05% predicted necrosis will not produce
visible liver tissue necrosis with H&E stains, while at least 66.23% predicted necrosis produces
visible necrosis. It is reasonable to assume that the damage threshold for liver tissue resides
within this range (i.e., 15.05% to 66.23%). In addition, the quantitative IHC results indicate that
0% necrosis occurred below this range (which supports the H&E observations). When the pre-
dicted necrosis at the tissue surface was above or equal to the upper limit of this range (i.e.,
>66.23%), the quantitative IHC results (Fig. 12) demonstrate that 38.95% to 87.06% necrosis
occurred at multiple tissue depths and laser time durations (which also supports the H&E obser-
vations reported in Table 3). Therefore, the quantitative IHC results support our conclusions
about the 15.05% to 66.23% predicted necrosis range wherein the damage threshold likely
resides.

Although damage overestimation seems to have occurred with the simulation framework
when compared to the quantitative THC results, particularly when no necrosis was visibly
detected (i.e., 1.23% deviation), experimental IHC results are generally consistent with the
H&E results, as noted above. In addition, the simulated temperature probe was placed at the
tissue surface, whereas the samples for the quantitative IHC comparison were taken from 0,
280, and 160 um depths below the tissue surface for 1, 10, and 20-min irradiation times, respec-
tively, as described in Sec. 2.7. While the unavoidable depth mismatch in the 10 and 20 min cases
is an additional potential source of the reported discrepancy, the discrepancy was largest well
beyond the range of the assumed damage threshold, and our ultimate goal is to develop standards
for safe laser application and associated image guidance technology that will ideally avoid
approaching tissue damage thresholds. It is promising that the simulation framework can predict
both damaging necrosis percentages and negligible necrosis that is not sufficiently extensive to
damage tissue, based on the qualitative and quantitative empirical H&E and IHC results in Figs. 8
and 12, respectively.

Additional confounding factors that could potentially impact experimental outcomes include
the anatomical location of samples from the same organ and the spatial variation of optical and
thermal parameters. However, our study analyzed three liver samples excised from the left lateral
liver lobe of the same porcine specimen to draw our final conclusions. As these three samples
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were derived from a shared anatomical environment, is it reasonable to assume that most optical
and thermodynamic parameters remained consistent across all specimens. Following the same
argument, arterial blood temperature and density gradients can also be regarded as minimal.

Caspase-3 activation is generally associated with cell apoptosis. In contrast, necrosis is char-
acterized in negative terms by the absence of caspase activation.”® Caspase-3 showed the pres-
ence of apoptotic cells surrounding the laser-exposed region and the absence of apoptotic cells
within the laser-exposed region, indirectly identifying necrotic areas. While there are no con-
clusive reports elucidating the initiation of cellular apoptosis in the context of laser-induced inju-
ries,”’ there are three potential biological explanations. First, when living organisms face stress
conditions, the synthesis of most proteins is suppressed. However, a group of highly conserved
proteins called heat shock proteins are rapidly synthesized. In general, these proteins effectively
inhibit apoptosis.”® Nevertheless, under specific circumstances such as prolonged stress condi-
tions, the role of these proteins in caspase activation becomes deregulated.?” Second, cell damage
caused by sudden shocks, such as radiation or heat, initially induces cellular swelling.*
Prolonged laser exposure can exacerbate this initial cell swelling by inducing mitochondria
injury, promoting the release of mitochondrial proteins, such as cyto c, that trigger the activation
of several caspase proteases.’’ Third, disruption of the endoplasmic reticulum (ER), a critical
organelle for cellular activities and survival, can contribute to the observed phenomenon.
Stress conditions that impair the normal functioning of the ER result in the accumulation of
unfolded proteins. If the stress persists and protein aggregation is persistent, signaling pathways
transition from pro-survival to pro-apoptotic.*

One limitation of our study is that the presented empirical equations for necrosis quantifi-
cation [i.e., Eqs. (6)—(8)] were proposed based on IHC sections for a cleaved Caspase-3 dilution
of 1:1000. Changing the dilution factor may reduce the signal intensity or introduce background
noise by exacerbating non-specific bindings, which may impact the applicability of our equa-
tions. Another limitation is that damage was produced in only two samples (quantified in 10
shallow sections total for comparison with simulations) out of the three samples reported herein
and out of the 41 samples previously reported (including six control samples).> While 10 sections
may seem like a small sample size for comparison with damage prediction simulation results,
there is agreement within 1-2 standard deviations, and ultimately our goal is to cause no harm
(i.e., avoid laser-related damage) with our imaging technology. Therefore, the number of dam-
aged samples out of 44 samples combined is considered as a positive attribute for photoacoustic
technology, because the majority of samples did not show signs of damage and agree with sim-
ulation predictions.

Based on the totality of the simulation results herein and the experimental results in this
publication and additional publications on this topic,™® we conclude that liver imaging with
750 nm laser wavelength, 5 ns pulse duration, 10 Hz pulse repetition frequency, and 30 mJ
of laser energy emitted from a 5-mm diameter source (i.e., 152.79 mJ/cm? fluence) is safe when
applied for at least 20 min, while 73 mJ (i.e., 371.79 mJ/cm? fluence) causes minimal (1.23% in
silico, 0% in vivo) necrosis when applied for 1 min. Otherwise, the remaining time points (i.e., 10
and 20 min) should be avoided with 73 mlJ energy, due to the 66.23% to 76.84% necrosis
in silico and corresponding 66.22% to 84.94% necrosis measured in vivo. Future work will
expand our experimental method and matching in silico model to determine safety with other
tissues and tissue parameters that differ from the liver tissue validated and studied herein. We will
additionally investigate motion-based methods to alleviate potential damage.*

5 Conclusion

This study introduces an innovative simulation framework to provide numerical estimations of
laser-related tissue damage. We demonstrated the capabilities of integrating Monte Carlo optical
simulations and COMSOL thermodynamic modeling to monitor the thermal impact of laser
delivery across varying time intervals. The simulated predictions are well aligned with the exper-
imental validation results. In addition, the temperature progression over time enabled the iden-
tification of critical time points related to important thermal processes, providing relevant
insights into the status of the tissue of interest. Notably, our findings support safe photoacoustic
liver imaging with a 5-mm diameter source emitting 750 nm wavelength laser light (with 5 ns
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pulse duration and 10 Hz pulse repetition frequency) when employing approximately 30 mJ of
laser energy (152.79 mJ/cm? fluence) with an imaging time <20 min. If opting for a higher
energy of 73 mJ (371.79 mJ/cm? fluence) for any reason (although this particular energy is
not necessary for photoacoustic imaging), the laser application time should not exceed 1 min,
as the next available validated temporal data point at this energy level (i.e., 10 min) causes severe
damage. The presented approach and associated outcomes are promising for the introduction of
tissue-specific safety guidelines for photoacoustic imaging and other optics-based imaging tech-
nologies that are designed to maximize signal-to-noise ratios while being designated as safe for
patient use.
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