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Abstract—In this paper, we investigate a reconfigurable in-
telligent surface (RIS)-assisted mobile edge computing (MEC)
network aiming to maximize the energy efficiency in the fi-
nite blocklength (FBL) regime under both coding length and
maximum decoding error rate constraints. We first analyze
the single user equipment (UE) case and propose a three-
step alternating optimization algorithm to solve the problem.
Extending the system model, we subsequently investigate a
network with multiple UEs, in which non-orthogonal multiple
access (NOMA) transmission is adopted. In this more general
setting, we also conduct a convergence analysis. Furthermore,
we introduce a UE-grouping scheme for hybrid NOMA-TDMA
transmission and develop a dynamic CPU frequency allocation
algorithm at the mobile edge computing (MEC) server. Numerical
results show that the proposed algorithms solve the problem
efficiently. Via numerical results, we also identify the impact
of various parameters (e.g., coding blocklength, the number of
RIS elements, computational resources, number of UEs) on the
energy efficiency. Furthermore, with the numerical results, we
verify the validity of UE grouping method and demonstrate that
the proposed dynamic CPU frequency allocation can enhance the
performance substantially.

Index Terms—Energy efficiency, edge computing, finite block-
length regime, non-orthogonal multiple access (NOMA), recon-
figurable intelligent surface (RIS).

I. INTRODUCTION

Mobile edge computing (MEC) is an architecture that
can be utilized to alleviate communication and computation
bottlenecks experienced due to increasing demand on high
data traffic and growing number of applications with high
computational requirements [1]. In MEC, the user equipments
(UEs) can fully or partially offload their services/tasks to the
edge nodes of networks rather than the remote cloud center
[2][3]. The MEC servers are usually deployed at the base
stations (BSs) to process the users’ offloaded tasks to mitigate
the congestion in the network [4]. A hierarchical architecture
can be further formed by the data center, BSs and UEs to
improve the energy efficiency and storage capacity.

As another novel technology, reconfigurable intelligent sur-
faces (RISs) are considered as an effective means to improve
both the spectral efficiency and coverage of wireless communi-
cation systems [5]. In particular, the propagation environment
can be significantly enhanced by properly setting the phase
shift matrix at the RIS [6]. This is accomplished via the
meta-surface, whose phase and amplitude responses can be
adjusted by a programmable controller so that the RIS can
modify how the incident signal is reflected. In [7], the authors
have provided an overview of the RIS technology, including
its main applications in wireless communications, competitive
advantages over other technologies, its hardware architecture
and the corresponding new signaling models. The authors in
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[8] have studied an RIS-enhanced multiple-input single-output
(MISO) wireless system where an RIS is deployed to assist
the communication from a multi-antenna access point (AP)
to a single-antenna user. Note that the phase shift matrix of
the RIS should be properly adjusted since the reflected signals
from various paths can be combined coherently so that it can
enhance the link achievable rate at the MEC receiver [9].

Non-orthogonal multiple access (NOMA) is also increas-
ingly being adopted as a promising technology to improve the
spectral usage of the network by allowing multiple users to
perform simultaneous transmissions in the same bandwidth
[10]. It is expected that when NOMA transmission with
successive interference cancellation (SIC) at the receiver is
combined with the RIS, the wireless propagation environment
will be further improved.

Ultra-reliable and low latency communication (URLLC)
[11] is considered as one of the three main service categories
that can satisfy the critical requirements when mission-critical
and delay-sensitive applications in both communication and
computation are addressed [12]. The achievable rate and de-
coding error probability when the coding blocklength is finite
have been explicitly investigated in [13] and the authors in [14]
have combined the RIS technology with short packet transmis-
sions in the finite blocklength (FBL) regime (as required in
URLLC settings) and investigated the average achievable rate
and error probability. RIS-aided downlink multi-user commu-
nication from a multi-antenna BS is investigated in [15], where
the authors have proposed a realistic power consumption
model for RIS-based systems and analyzed the performance
of the proposed methods in a realistic outdoor environment.

A promising study in [16] demonstrates that an RIS-aided
MIMO system can attain the same rate performance as the
benchmark massive MIMO system without employing IRS,
but with much fewer active antennas/RF chains. In [17], an
RIS-assisted wireless powered hybrid NOMA and time divi-
sion multiple access (TDMA) network has been studied, where
the authors have designed the time allocation to maximize the
throughput of the network. A similar analysis is conducted in
[18], where an RIS-aided wireless powered mobile edge com-
puting (WP-MEC) system is considered and the authors have
investigated which multiple access scheme among NOMA
and TDMA is superior for MEC uplink offloading. Another
study in [19] has revealed that RIS-assisted NOMA leads
to a higher uplink sum rate compared with the RIS-assisted
orthogonal multiple access (OMA). Moreover, a novel RIS-
aided NOMA downlink transmission framework is proposed
in [20] where the authors have utilized a deep deterministic
policy gradient (DDPG) algorithm to collaboratively control
multiple reflecting elements (REs) of the RIS. The authors in
[20] have developed a long-term self-adjusting learning model,
which differs from standard training-then-testing learning in
that the intelligent agent is capable of discovering the optimal
action to take for each state through exploration and exploita-



tion. These works demonstrate the interests in combining RIS
with NOMA to improve the transmission either in uplink or
downlink. We further notice that a study in [21] reveals an
attracting scheme that can endow the system with resiliency
and robustness to satisfy the stringent requirements in the
URLLC scenario by deploying an IRS.

In this paper, we combine the FBL regime with the RIS-
aided MEC network aiming to maximize the energy efficiency
under both coding length and maximum decoding error rate
constraints in a URLLC scenario, where the offloading deci-
sions at the UEs, the RIS reflecting coefficients, the length
of offloading phase and the computational resource alloca-
tions at the MEC server are critically important in achieving
the highest efficiency levels. We iteratively optimize those
parameters to attain an optimal energy efficiency. A major
departure in this paper from aforementioned prior work is
the practical considerations of the FBL regime and RIS-aided
NOMA transmissions in decision-making in MEC networks,
motivated by low-latency scenarios and applications such as
augmented/virtual reality. Additionally, different from [17] and
[18], we investigate the offloaded data bits rather than the time
allocation in hybrid NOMA and OMA. Unlike [19], we aim
at maximizing the energy efficiency instead of the sum rate.
Our work focus on the uplink of the MEC network, while in
[20] the authors analyze the downlink transmission. Finally,
in contrast to our recent conference papers [22]-[23], in this
paper we provide extensions to the more general scenario with
multiple UEs, and conduct a detailed convergence analysis for
the proposed algorithms. In particular, our main contributions
are summarized as follows:

1) We describe and analyze the model when FBL coding,
RIS and NOMA transmission are utilized in an MEC
network.

2) We investigate the maximization of the energy efficiency
under both coding blocklength and maximum decoding
error rate constraints.

3) We develop three-step optimization algorithms to solve
the proposed problems in both single-UE and multiple-
UE cases, and analyze the convergence of the proposed
approach.

4) We introduce a UE grouping method and develop a
dynamic CPU frequency allocation algorithm to improve
the optimization by reducing the complexity as the
number of UEs increases.

The remainder of this paper is organized as follows. We
describe the system model, characterize the decoding error rate
as well as the signal-to-interference-plus-noise ratio (SINR)
in NOMA, and provide the energy efficiency formula in
Section II. In Section III, we state the optimization problem
in the single-UE case and subsequently provide a three-step
algorithm to address it. In Section IV, we investigate the
energy efficiency maximization in the case with multiple UEs
and NOMA, and propose a solution approach and analyze
the convergence of the proposed algorithm. In Section V,
we consider hybrid NOMA-TDMA, introduce a UE grouping
method to improve the efficacy of the optimization algorithm
when the number of UEs increases, and then we develop a
dynamic CPU frequency allocation algorithm to better take
advantage of hybrid NOMA-TDMA. Simulation results are
provided in Section VI. Finally, in Section VII, we draw
conclusions.

Fig. 1: An illustration of the considered MEC network.

Fig. 2: System topology and frame structure.

II. SYSTEM MODEL

An RIS-aided MEC network where the BS is equipped with
an MEC server is considered in this paper. There are N UEs in
the network and each UE, i.e., UE n, ∀n ∈ N = {1, 2, ..., N},
has a single antenna. The BS has B antennas and the RIS has
K reflecting components. A wireless controller is used by the
BS to operate the RIS so that it is capable of dynamically
adjusting the RIS phase shift matrix (i.e., the phase shift of
each reflecting element). Fig. 1 depicts the network.

In this paper, each task requested by the UE requires a
certain computational resource (e.g., CPU frequency) and has
a latency constraint. The UE can either fully or partially
offload the delay-critical task to the MEC server located
at the BS by using FBL codes to complete the compute-
intensive application. We consider service as an abstraction
of a requested task and a three-parameter notation S(I, T,X)
is introduced to represent the service [2]. In this notation, I
is the task-input size (in bits), T is the completion latency
constraint (in seconds) and X is the computation intensity (in
CPU cycles per bit).

A. FBL Transmission

In this paper, all the channels between the UE and the BS
as well as the RIS are assumed to experience block fading,
and thus the channels remain constant within a transmission
block.

The duration of a transmission symbol is defined as Tsyb,
indicating that the delay limitation of T in seconds corre-
sponds to M = T/Tsyb symbol periods. More specifically,
T seconds or equivalently M symbol durations serve as a
bound on the frame length of the service completion of the
requested task. An uplink (UL) offloading phase with a length
of ma symbols and a computation phase with a length of mb

symbols (equivalent to mbTsyb seconds) are the two phases in
a frame, as depicted in Fig. 2. The n-th UE transmits Dn bits
to the MEC server via a wireless link in the UL phase, and the
MEC server at the BS processes all the received requests in
the computation phase. The BS will then provide the results



back to the UEs1. It is obvious that the total service time of
the application is constrained by ma + mb = M . Following
[13], the coding rate R in the FBL regime is approximated as

R ≈ log2(1 + γ)−
√

V

ma

Q−1(ε)

ln 2
, (1)

where ε is the decoding error probability, γ is the signal-
to-noise ratio (SNR) or signal-to-interference-plus-noise ratio
(SINR) at the receiver, Q−1 is the inverse function of Q(x) =
1√
2π

∫∞
x

e−
t2

2 dt and V is the channel dispersion defined as
V = 1− (1 + γ)−2.

Considering R = D
ma

as the target achievable coding rate,
the decoding error probability of the transmission in the UL
phase can be expressed as

ε ≈Q

(√
ma

V

(
log2(1 + γ)− D

ma

)
loge2

)
. (2)

Note that since we operate in the FBL regime, the blocklength
of each frame is limited by M and the decoding error
probability at the receiver is non-negligible.

B. Transmission Model with RIS

With the introduction of the RIS, there are two links in
the channel from the UE to the BS: the direct link and the
reflected link (UE to RIS to BS), as also depicted in Fig. 1.
Consequently, we can express the channel fading vector hn

from the n-th UE to the BS as [16]

hn = hH
d,n + hH

r,nΘG, (3)

where hH
d,n ∈ C1×B is the channel vector from the UE to the

BS (where H in the superscript indicates conjugate transpose),
hH
r,n ∈ C1×K is the channel vector from the UE to the RIS

and G ∈ CK×B is the matrix from the RIS to the BS. Θ
denotes the phase shift matrix of the RIS which is defined as
Θ = βdiag(eiθ1 , ..., eiθK ) ∈ CK×K where θk ∈ [0, 2π], k ∈
K = {1, 2, ...,K} and β ∈ [0, 1] is the amplitude reflection
coefficient and we have β = 1 in this article. Consequently,
at the MEC server the received signal y can be written as

y =

N∑
n=1

hnxn + η, (4)

where xn is the signal that the n-th UE transmits, with an
average power of E[||xn||2] = Pn, and η is the additive white
Gaussian noise (AWGN) at the BS, e.g., η ∼ CN (0, σ2IN ).

C. SINR in NOMA

In NOMA transmission, since the reflected link depends on
the unknown RIS phase shift matrix Θ, according to [19], we
replace Θ by an identity matrix I so that all the N UEs can
be sorted in an increasing order, i.e.,

||hH
d,1 + hH

r,1IG|| ≤ ||hH
d,2 + hH

r,2IG|| ≤ ...,≤ ||hH
d,N + hH

r,N IG||.
(5)

By considering the signals from all other UEs as interference,
the BS will first decode the signal from the last UE N

1Due to the small sizes of computation results, the time needed for
downloading from the BS is typically negligible compared to the time required
for offloading and computing.

in this order. Consequently, the n-th UE’s SINR in NOMA
transmission is expressed as

γn =
Pn||hH

d,n + hH
r,nΘG||2∑n−1

t=1 Pt||hH
d,t + hH

r,tΘG||2 + σ2
(6)

for n = 2, . . . , N .
By employing the SIC technique in NOMA, the SINR of

UE 1 can be expressed as

γ1 =
P1||hH

d,1 + hH
r,1ΘG||2

σ2
. (7)

Note that this is actually the SNR since UE 1 does not
experience interference.

D. Energy Efficiency

Within the considered the system model, energy consump-
tion for offloading transmission EO

n , energy consumption
for local processing EL

n , and energy consumption for MEC
processing EM

n are the three components in the energy con-
sumption for the n-th UE in a frame.

For the n-th UE, EO
n is formulated as the product of the

offloading transmission power Pn and the offloading time
maTsyb of the UE:

EO
n = PnmaTsyb. (8)

Note that since NOMA transmission is adopted, all UEs share
the same offloading time of maTsyb in the UL phase.

According to [2], the local CPU frequency fn and the lo-
cally processed data size In−Dn of the n-th UE determine the
energy consumption for local processing, which is expressed
as follows:

EL
n = (In −Dn)XnΓnfn

2, (9)

where Γn, which varies depending on the processor’s archi-
tecture, is the n-th UE’s effective capacitance coefficient.

Similar to EL
n , the allocated computational resource (CPU

frequency) Fn and the Dn data bits processed at the MEC
server determine the MEC processing energy consumption
EM

n for the n-th UE at the BS:

EM
n = DnXnΓMFn

2, (10)

where ΓM is the MEC server’s effective capacitance coeffi-
cient, which depends on the processor’s design. In this paper,
we presume ΓM ≪ Γn, ∀n ∈ N .

Accordingly, the overall energy consumption for the n-th
UE in a frame is En = EO

n + EL
n + EM

n . In this paper,
our objective is to maximize the energy efficiency, which is
defined as the ratio of total processed data bits over total
energy consumption in a frame, i.e.,

EE =

∑N
n=1 In∑N
n=1 En

. (11)

E. Notations

The key parameters of the system and their notations are
summarized in Table I.

III. ENERGY EFFICIENCY WITH A SINGLE UE

To analyze the RIS-aided MEC network in the finite block-
length regime, we first study the scenario in which there



N Number of UEs
K Number of reflecting components at the RIS
B Number of antennas at the BS
I Task-input size
T Completion latency constraint
X Computation intensity
M Blocklength constraint of a frame
Tsyb Duration of a transmission symbol
ma Symbol lengths of the uplink (UL) offloading phase
mb Symbol lengths of the computation phase
ε Decoding error probability in the UL phase

εmax Maximum decoding error rate constraint
Dn Data bits offloaded to the MEC server from UE n
hn Fading vector from UE n to the BS
hH
d,n Fading vector of the direct link from UE n to the BS

hH
r,n Fading vector from UE n to the RIS
G Fading matrix from the RIS to the BS
Θ Phase shift matrix of the RIS
γ Signal-to-noise ratio (SNR)/signal-to-interference-plus-noise ratio (SINR)
Pn Average power of the transmitted signal of UE n
η Additive white Gaussian noise (AWGN)
σ2 Noise power of the AWGN
Γn Effective capacitance coefficient of UE n
ΓM Effective capacitance coefficient of MEC server
Fn Allocated computational resource (CPU frequency) of UE n at the MEC server
Fmax Maximal CPU frequency at the BS
Imax Maximal number of iterations in alternating optimization algorithm

TABLE I: Summary of symbols and notations.
is only one UE in the system model. We hereby formulate
the problem of energy efficiency maximization and propose
a solution method for optimizing the RIS reflecting coef-
ficients, offloaded data bits, and offloading duration. The
consideration of the single UE case enables us to elucidate the
main approach and proposed techniques in a simpler setting.
Subsequently extend the analysis to the more challenging and
higher-dimensional multiuser cases with NOMA and hybrid
NOMA-TDMA in Sections IV and V.

A. Problem Formulation for the Single UE Case

Our goal is to maximize the overall energy efficiency by
optimally determining the length of the UL phase as well
as the UEs’ offloaded data bits and RIS phase shift matrix
subject to coding blocklength and maximum decoding error
rate constraints. Hence, the overall optimization problem for
the single UE case is formulated as follows:

P1: Maximize
{D,ma,θ}

I

E
(12)

s. t. ε ≤ εmax, (12a)
0 ≤ D ≤ I, (12b)
(I −D)X

f
≤ MTsyb, (12c)

DX

F
≤ mbTsyb, (12d)

ma,mb ∈ Z, (12e)

where εmax is the maximum decoding error rate constraint.
Moreover, (12b) is the range of D. (12c) and (12d) are the
local computing delay constraint and the MEC computing
delay constraint, respectively.

P1 is a non-convex optimization problem due to the non-
convex constraints and the strongly coupled optimization
variables D,ma,θ. Hence, finding the globally optimal so-
lution is challenging. To address this, we propose a three-step
alternating optimization method to decouple the optimization
variables and solve this problem iteratively.

B. Three-step Alternating Optimization

To decouple the optimization variables, in the i-th iteration,
we first fix D,ma as Di−1,ma,i−1 (by adopting the optimiza-

tion results in the i−1-th iteration) to design the RIS reflecting
coefficients θi. Then, with fixed θi,ma,i−1, we can optimally
obtain Di. We further optimize ma,i with the fixed Di,θi and
use it in the i+ 1-th iteration.

1) Optimization of the RIS Reflecting Coefficients: In the
i-th iteration, it is obvious that I

E is fixed when D = Di−1

and ma = ma,i−1, and hence we now seek to find a proper θ
under the maximum error rate constraint. Since the Q function
is monotonically decreasing, we know based on (2) that
increasing the value of L =

√
ma

V (log2(1 + γ)− D
ma

)loge2
decreases ε. We further observe that L (defined above) is
monotonically increasing with the SNR γ. Therefore, when
the RIS coefficients are being optimized, P1 reduces to P1A:

P1A: Find θ (13)

s. t. |eiθk | = 1, ∀k ∈ K (13a)
γ ≥ γth, (13b)

where γth is the minimum SNR needed to satisfy the error
rate constraint εmax. Even though one feasible solution for
P1A is sufficient for continuing the algorithm, we can improve
the convergence speed by finding the maximum SNR we can
obtain by adjusting θ since larger SNR enables us to offload
more data bits with a given uploading blocklength and hence
improves the energy efficiency. So instead of solving P1A, we
equivalently solve P1B:

P1B: Maximize
θ

ρ||hH
d + hH

r ΘG||2 (14)

s. t. |eiθk | = 1, ∀k ∈ K, (14a)

where ρ = P
σ2 . P1B is still a non-convex optimization

problem in general. According to [16], we define a vector
ϕ = [ϕ1, ϕ2, ..., ϕK ]H , where ϕk = eiθk . We further define
Φ = diag(hH

r )G ∈ CK×V so that hH
r ΘG = ϕHΦ, and hence

we have ρ||hH
d + hH

r ΘG||2 = ρ||hH
d + ϕHΦ||2.

Expanding ||hH
d + ϕHΦ||2 we have γ = ρ(||hH

d ||2 +
hH
d ΦHϕ+ ϕHΦhd + ϕHΦΦHϕ). Similar to [16], we now

introduce an auxiliary variable χ and define

W =

[
ΦΦH Φhd

hH
d ΦH 0

]
, ϕ̃ =

[
ϕ
χ

]
.

Hence, the SNR γ can be further expressed as γ = ρ(||hH
d ||2+

ϕ̃
H
Wϕ̃). We then construct a positive semidefinite matrix

(PSD) Ψ related to the RIS reflecting coefficients and define
Ψ = ϕ̃ϕ̃

H
with the constraints Ψ ⪰ 0 and rank(Ψ) = 1. With

this, we have ϕ̃
H
Wϕ̃ = Tr(Wϕ̃ϕ̃

H
) = Tr(WΨ). Note that

rank(Ψ) = 1 is a non-convex constraint, and we relax this
constraint and adopt semidefinite relaxation (SDR) method to
solve P1B-1 formulated below:

P1B-1: Maximize
Ψ

ρ(||hH
d ||2 + Tr(WΨ)) (15)

s. t. Ψk,k = 1, k = 1, 2, ...,K + 1, (15a)
Ψ ⪰ 0. (15b)

P1B-1 is a convex semidefinite program (SDP) that can be
solved optimally by readily available software packages like
CVX. Note that solving P1B-1 will not necessarily give us
a rank-one solution. If rank(Ψ) = 1, we can obtain an
optimal solution ϕ̃

∗
from Ψ = ϕ̃ϕ̃

H
, otherwise the Gaussian

randomization can be used to recover a sub-optimal ϕ̃
∗
, as

discussed in [8].



Now we can obtain θ∗ from ϕ̃
∗

resulting in the maximum
γ as being the solution of P1B-1. θ∗ is a solution of P1A
unless P1A is not feasible. We denote the obtained θ∗ in the
i-th iteration as θi.

2) Optimization of Offloaded Data Bits: By fixing θ = θi

and ma = ma,i−1, we formulate P1C below to obtain the
optimal number of data bits to be offloaded:

P1C: Maximize
D

I

E
(16)

s. t. ε ≤ εmax, (16a)
0 ≤ D ≤ I, (16b)
(I −D)X

f
≤ MTsyb, (16c)

DX

F
≤ mbTsyb. (16d)

From (2), we know that increasing D will also increase the
ε, and hence (16a) will give us a upper bound on D. (16c)
and (16d) will provide a lower bound and an upper bound on
D, respectively. Combining all the bounds with (16b), we can
obtain a range of D. Based on ΓM ≪ ΓL and (9), (10), the
total energy efficiency I

E is a monotonic function of D, and
therefore the optimal D∗ in P1C can be easily determined
from the feasible range, and we set Di = D∗.

3) Optimization of the Offloading Blocklength: With fixed
θ = θi and D = Di, problem P1 now becomes P1D:

P1D: Maximize
ma

I

E
(17)

s. t. ε ≤ εmax, (17a)
DX

F
≤ mbTsyb. (17b)

ma,mb ∈ Z. (17c)

According to (2), decreasing ma will increase the ε, and
therefore (17a) leads to a lower bound on ma. Moreover, (17b)
will give us an upper bound on ma since ma = M−mb. With
these, we can obtain a feasible range of ma. Additionally, due
to (8), the total energy efficiency I

E is a monotonic function
of ma in this case. Hence the optimal m∗

a in P1D can be
identified from the feasible range, and we set ma,i = m∗

a.
By iteratively solving P1B-1, P1C and P1D, we can obtain

the solutions for P1 once they converge. The proposed three-
step algorithm for the single UE case is described in Algorithm
1 below.

Algorithm 1 Three-step alternating optimization for the
single UE case

Initialization:
1) Initialize D0, ma,0.

Actions:
1) For i = 1 : Imax

2) Obtain θi by solving P1B-1 with Di−1, ma,i−1.
3) Obtain Di by solving P1C with θi, ma,i−1.
4) Obtain ma,i by solving P1D with θi, Di.
5) End If converge.

C. Convergence Analysis with a Single UE

Since in the i-th iteration in P1B, γth,i−1 is the threshold
SNR with which εmax is attained, we have

εmax ≈Q

(√
ma,i−1

Vth,i
(log2(1 + γth,i)−

Di−1

ma,i−1
)loge2

)
,

(18)

where Vth,i = 1− (1 + γth,i)
−2.

We further have in the i− 1-th iteration

εi−1 ≈Q

(√
ma,i−1

Vi−1
(log2(1 + γi−1)−

Di−1

ma,i−1
)loge2

)
.

(19)
In the i − 1-th iteration, by solving P1D, we can obtain

ma,i−1 based on the constraint (17a) which leads to a lower
bound on ma, and ma,i−1 will be determined by this lower
bound. In other words, ma,i−1 is achieved only when the
equality in (17a) holds, so we have εi−1 = εmax. Compared
with (18) and (19), this equality leads to γi−1 = γth,i. In
addition, in the i-th iteration (13b) ensures γi ≥ γth,i, which
results in γi ≥ γi−1. This indicates that γ grows with the
increase in the iteration index. Note that γ has an upper
bound due to ρ being finite. Hence, the proposed Algorithm
1 converges.

D. Stopping Point Analysis with a Single UE

We first present the key characterization as a remark and
subsequently provide arguments to establish the result.

Remark 1: Algorithm 1 will stop in the j + 1-th iteration
when the offloaded data Dj is determined via (16a), i.e., ε =
εmax in solving problem P1C in the j-th iteration.

This remark establishes that the optimal number of bits to
be offloaded is determined when the decoding error constraint
is satisfied with equality. When this occurs, the other variables,
e.g., RIS coefficient matrix and offloading blocklength, remain
the same in the following iteration and are optimized as well.
This can be shown as follows. Assume in the j-th iteration
that problem P1C is solved and Dj is determined by having
ε = εmax. In solving the problem P1D in the same iteration,
θj and Dj will be used, and hence with the same ma we still
have ε = εmax in P1D. Furthermore, the optimal ma should
take the minimum value in its feasible range, which is simply
decided by (17a), and thereby the same ma,j = ma,j−1 will
be obtained due to ε = εmax.

In the j+1-th iteration, θj+1 = θj since nothing changes in
solving problem P1B-1 and we should have the same results.
In addition, we should also have Dj+1 = Dj due to θj+1 =
θj and ma,j = ma,j−1, which are the same fixed values as in
the j-th iteration. Moreover, ma,j+1 = ma,j can be obtained
due to the same reason as in the j-th iteration.

Finally, according to θj+1 = θj , Dj+1 = Dj and ma,j+1 =
ma,j we can claim that Algorithm 1 will stop at the j-th
iteration when Dj is determined via (16a), i.e., ε = εmax in
solving problem P1C in the j-th iteration. □

IV. ENERGY EFFICIENCY WITH MULTIPLE UES AND
NOMA

In this section, we first formulate and analyze the global
optimization problem with N UEs (that utilize NOMA for
their transmissions) and then propose a three-step alternating
optimization method to solve the problem. Note that, com-
pared to the single UE case, we now have a more challenging
and higher-dimensional optimization problem. In particular, as
major differences from the previous case, we need to optimize
the offloaded data of multiple UEs, address interference and
consider SINR rather than SNR, and determine the optimal
computational resource allocation at the MEC.



A. Problem Formulation

By jointly determining the UEs’ offloaded data bits {Dn},
the length of the UL NOMA phase ma, CPU frequencies
allocated to the tasks of different UEs {Fn}, and the RIS
reflecting coefficients θ subject to both coding blocklength and
maximum decoding error rate constraints, we aim to maximize
the overall energy efficiency. Consequently, the global energy
efficiency maximization problem with N UEs is formulated
as follows:

P2: Maximize
{Dn,ma,Fn,θ}

∑N
n=1 In∑N
n=1 En

(20)

s. t. εn ≤ εmax,n, ∀n ∈ N (20a)
0 ≤ Dn ≤ In, ∀n ∈ N (20b)
(In −Dn)Xn

fn
≤ MTsyb, ∀n ∈ N (20c)

DnXn

Fn
≤ mbTsyb, ∀n ∈ N (20d)

N∑
n=1

Fn ≤ Fmax, (20e)

ma,mb ∈ Z, (20f)

where Fmax is the maximal CPU frequency at the BS, εmax,n

is the maximum decoding error rate constraint for the n-th
UE. Moreover, (20b) is the range of offloaded data bits. (20c)
and (20d) are the delay constraints in local computing and the
MEC processing, respectively.

Note that the BS will decode the signal from the last UE
N first. If ε̂N is our desired decoding error rate for the N -th
UE, then we let εmax,N = ε̂N in (20a). However, the signal
from the n-th UE can be successfully decoded only when the
signals from all the previous N −n UEs are decoded without
error, otherwise the interference cannot be canceled via the
SIC technique. Based on iterative analysis, if the signal from
the n + 1-th UE is decoded successfully, then all the signals
from the previous N − n − 1 UEs are decoded perfectly. In
that case, the overall error rate of the n-th UE is given by
εn+εn+1−εnεn+1, where εn and εn+1 are the error rates of
the n-th UE and the n+1-th UE (in the offloading phase) that
can be calculated by using (2). Note that εnεn+1 is neglected
in this paper due to both εn and εn+1 having typically small
values in a URLLC setting. If ε̂n is the desired decoding error
rate for UE n, we should have εn + εn+1 ≤ ε̂n. Considering
that we have εn+1 ≤ ε̂n+1, if εn ≤ ε̂n − ε̂n+1 is satisfied,
then the n-th UE’s error rate requirement will also be satisfied
by setting εmax,n = ε̂n − ε̂n+1 in (20a).

As a result of the non-convex constraints and the strongly
coupled optimization variables {Dn},ma, {Fn},θ, P2 is a
non-convex optimization problem, and obtaining the globally
optimal solution is challenging. In order to address this, we
again propose a three-step alternating optimization method
that decouples the optimization variables and iteratively solves
the problem.

B. Three-step Alternating Optimization for Multiple UEs

In the i-th iteration, we first fix Dn, Fn,ma as
Dn,i−1, Fn,i−1,ma,i−1 by adopting the optimization results in
the i−1-th iteration and design the RIS reflecting coefficients
θi in order to decouple the optimization variables. Then, with
given θi, Fn,i−1,ma,i−1, we can optimally obtain Dn,i in the

second step. Furthermore, we optimize ma,i and Fn,i with the
fixed Dn,i,θi in the third step and use them in the i + 1-th
iteration.

1) Optimization of RIS Reflecting Coefficient: In the i-th
iteration, when {Dn}, {Fn},ma are fixed it is obvious that∑N

n=1 In∑N
n=1 En

is also fixed, and hence we now seek to find a proper
θ to satisfy the maximum error rate constraints. Similar to
the single UE case, we increase the SINR γ to decrease the
decoding error rate ϵ, and hence P2 is transformed into P2A
when {Dn}, {Fn},ma are fixed:

P2A: Find θ (21)

s. t. |eiθk | = 1, ∀k ∈ K (21a)
γn ≥ γth,n, ∀n ∈ N (21b)

where γth,n is the minimum SINR required to comply with
the n-th UE’s error rate constraint εmax,n. Even though one
viable solution of θ suffices to continue the iterations, we can
speed up convergence by maximizing the SINR of UE 1, as
that signal will be the last to be decoded. As a result, we solve
P2B instead of solving P2A:

P2B: Maximize
θ

ρ1||hH
d,1 + hH

r,1ΘG||2 (22)

s. t. |eiθk | = 1, ∀k ∈ K (22a)
γn ≥ γth,n, ∀n ∈ {2, ..., N}. (22b)

In general, P2B is still a non-convex optimization problem.
Following the same analysis of P1B in Section III(B), we can
express the SINR of UE 1 as γ1 =

P1(||hH
d,1||

2+Tr(W 1Ψ))

σ2 , and
the SINR of the n-th UE can thus be expressed as

γn =
Pn(||hH

d,n||2 + Tr(W nΨ))∑n−1
t=1 Pt(||hH

d,t||2 + Tr(W tΨ)) + σ2
. (23)

In P2B, we now know that (22b) requires us to satisfy γn =
Pn(||hH

d,n||
2+Tr(WnΨ))∑n−1

t=1 Pt(||hH
d,t||2+Tr(W tΨ))+σ2

≥ γth,n, ∀n ∈ {2, ..., N},
which is equivalent to satisfying the following inequalities:

PnTr(W nΨ)− γth,n

n−1∑
t=1

PtTr(W tΨ) ≥ γth,n

n−1∑
t=1

Pt||hH
d,t||2

+γth,nσ
2 − Pn||hH

d,n||2, ∀n ∈ {2, ..., N}
(24)

Therefore, instead of solving P2B, we equivalently solve P2B-
1:

P2B-1: Maximize
Ψ

P1(||hH
d,1||2 + Tr(W1Ψ))

σ2
(25)

s. t. Ψk,k = 1, k = 1, 2, ...,K + 1, (25a)

PnTr(W nΨ)− γth,n

n−1∑
t=1

PtTr(W tΨ) ≥ γth,n

n−1∑
t=1

Pt||hH
d,t||2

+ γth,nσ
2 − Pn||hH

d,n||2, ∀n ∈ {2, ..., N}, (25b)
Ψ ⪰ 0. (25c)

When solving P2B-1, we relax the non-convex constraint
rank(Ψ) = 1 and adopt the semidefinite relaxation (SDR)
method to address it. Therefore, P2B-1 becomes a convex
semidefinite program (SDP) that can be solved optimally
by using a conventional convex optimization tool. As also
discussed before, solving P2B-1 will not necessarily give us
a rank-one solution. The optimal solution ϕ̃

∗
can be obtained

from the equation Ψ = ϕ̃ϕ̃
H

if rank(Ψ) = 1. Otherwise,



the Gaussian randomization [8] can be utilized to retrieve a
sub-optimal ϕ̃

∗
. Then, we may derive θ∗ from ϕ̃

∗
providing

the maximum γ1 as being the solution of P2B-1. Hence, this
θ∗ is a viable solution of P2A. Such obtained θ∗ in the i-th
iteration is denoted as θi.

2) Optimization of Offloaded Data: In the second step of
the three-step optimization algorithm, we fix θ = θi, ma =
ma,i−1 and Fn = Fn,i−1, and then P2C is formulated to
obtain the optimal number of data bits to be offloaded:

P2C: Maximize
{Dn}

∑N
n=1 In∑N
n=1 En

(26)

s. t. εn ≤ εmax,n, ∀n ∈ N (26a)
0 ≤ Dn ≤ In, ∀n ∈ N (26b)
(In −Dn)Xn

fn
≤ MTsyb, ∀n ∈ N (26c)

DnXn

Fn
≤ mbTsyb, ∀n ∈ N (26d)

Based on (2), it is obvious that increasing Dn will result
in a larger εn, so each inequality in (26a) will give us an
upper bound on Dn for n = 1, . . . , N . Besides, (26c) and
(26d) will provide a lower bound and an upper bound on
Dn, respectively. Considering (26b), all the bounds can be
combined to create a range of feasible Dn. Since we have
ΓM ≪ Γn, ∀n ∈ N and (9), (10), the total energy efficiency∑N

n=1 In∑N
n=1 En

is a monotonic function of Dn, and thus the optimal
D∗

n in P2C can be directly determined from the feasible range,
and we set Dn,i = D∗

n for n = 1, . . . , N in the i-th iteration.
3) Optimization of Offloading Blocklength and CPU Fre-

quency Allocation: In the third step of the proposed algorithm,
we first fix θ = θi, Dn = Dn,i, and P2 becomes P2D:

P2D: Maximize
ma,{Fn}

∑N
n=1 In∑N
n=1 En

(27)

s. t. εn ≤ εmax,n, ∀n ∈ N (27a)
DnXn

Fn
≤ mbTsyb, ∀n ∈ N (27b)

N∑
n=1

Fn ≤ Fmax, (27c)

ma,mb ∈ Z. (27d)

From (2), we know that decreasing ma will increase εn,
and hence (27a) will give us a lower bound on ma. Moreover,
based on (8), it is obvious that decreasing ma leads to a higher
value for

∑N
n=1 In∑N
n=1 En

. In addition, (27b) will give us an upper
bound on ma, and therefore ma

∗ can be obtained simply
based on (27a). According to (10), when m∗

a is determined,
we can transform the CPU frequency allocation into following
problem P2E:

P2E: Minimize
{Fn}

N∑
n=1

En (28)

s. t.
DnXn

Fn
≤ mbTsyb, ∀n ∈ N (28a)

N∑
n=1

Fn ≤ Fmax. (28b)

P2E is a convex problem and the optimal Fn
∗ in P2E can

be readily obtained. In the i-th iteration, we set ma,i = m∗
a,

Fn,i = F ∗
n .

By iteratively solving P2B-1, P2C and P2D as well as
P2E, we can obtain the solution of P2 once they converge.
Algorithm 2 below provides a description of the proposed
three-step optimization algorithm.

Algorithm 2 Three-step alternating optimization for multiple
UEs

Initialization:
1) Initialize {Dn,0}, ma,0, {Fn,0}.

Actions:
1) For i = 1 : Imax

2) Obtain θi by solving P2B-1 with {Dn,i−1}, ma,i−1,
{Fn,i−1}.

3) Obtain {Dn,i} by solving P2C with θi, ma,i−1,
{Fn,i−1}.

4) First obtain ma,i from (27a) in P2D with θi, {Dn,i}
and then obtain {Fn,i} by solving P2E with θi, ma,i,
{Dn,i}.

5) End If converge.

C. Convergence Analysis with Multiple UEs and NOMA

We first have the following proposition:
Proposition 1: γ1 is non-decreasing as the iteration index

i in the proposed three-step optimization in Algorithm 2
increases.

Proof : Let γ1(θi+1|Di,ma,i,F i) to be the SNR of UE
1 after solving P2B-1 in the i + 1-th iteration with given
parameters Di,ma,i,F i, and hence we have

γ1(θi+1|Di,ma,i,F i)
(a)

≥ γ1(θi|Di,ma,i,F i)

(b)
= γ1(θi|Di−1,ma,i−1,F i−1).

(29)

Inequality in (a) above is due to the fact that P2B is a
maximization problem, and hence in the i+1-th iteration the
optimal solution θi+1 should provide us a higher SNR for UE
1. Equality in (b) holds due to γ1 being only determined by
θ. Therefore, γ1 is non-decreasing. □

Based on the Proposition 1, since we have finite transmit
power P1, γ1 should converge. Note that

∂γ1
∂Ψ

=
∂P1(||hH

d,1||2 + Tr(ΨW 1))

σ2∂Ψ
=

P1W
T
1

σ2
̸= 0. (30)

When γ1 converges, Ψ should converge simultaneously. Note
that since the derivative above is nonzero, any variation in Ψ
will lead to a variation in γ1, contradicting its convergence.
Based on (23), we know γn is only decided by Ψ. Conse-
quently, {γn} should also converge.

To illustrate the convergence of {Dn}, we have the follow-
ing proposition:

Proposition 2: Dn is non-increasing as the iteration index
i in Algorithm 2 increases2.

Proof : P2E is a convex problem when θ, {Dn} and ma

are fixed. According to (8), (9), (10) and (11), we know that
smaller {Fn} leads to a higher energy efficiency. Considering
the constraint in (28a), we can claim that

F ∗
n =

Dn,iXn

mb,iTsyb
= Fn,i, (31)

2In order to achieve the optimal solutions, we set Dn = In for all UEs in
the initialization of Algorithm 2.



for all UEs in the i-th iteration. Hence, in the i+1-th iteration,
based on (26d) in P2C, we have

Dn,i+1 ≤ mb,iTsybFn,i

Xn
= Dn,i. (32)

Therefore, Dn is non-increasing for all UEs. □
We further have Dn ≥ In − MTsybfn

Xn
from (26c) in P2C.

Since the right side of the inequality is a constant, combining
with Proposition 2, {Dn} will converge.

With converged {γn} and {Dn}, ma will converge since
ma is determined by (27a) in P2D, which is independent of
{Fn}.

Finally, with converged {γn}, {Dn} and ma, {Fn} should
also converge since P2E is a convex problem.

Therefore, Algorithm 2 will converge for all UEs.

D. Stopping Point Analysis with Multiple UEs

In order to identify the optimal operating points, We again
first present the characterization as a remark and then provide
arguments that lead to this characterization.

Remark 2: Algorithm 2 will stop in the j + 1-th iteration
when there is at least one UE (and assume, without loss of
generality, that it is the p-th UE) whose offloaded data Dp,j

is determined via (26a), i.e., εp,j = εmax,p in solving problem
P2C in the j-th iteration.

Assume that the condition introduced in Remark 2 holds,
i.e., in the j-th iteration, the p-th UE’s offloaded data Dp,j is
determined by satisfying εp,j = εmax,p in solving problem
P2C. In the same iteration, θj and Dp,j will be used in
solving problem P2D, and hence with the same ma we still
have εp,j = εmax,p in P2D. Therefore, the optimal ma in
P2D in the j-th iteration is simply decided by εp,j = εmax,p.
This is because any decrease in ma will lead to a violation
in εp,j = εmax,p, and smaller ma results in a better energy
efficiency. Consequently, the same ma,j = ma,j−1 will be
obtained since this is the minimum value that ma can take to
satisfy εp,j = εmax,p, which is one of the constraints in (27a).

Additionally, in solving problem P2E in the j-th iteration,
in the results we should have Dn,jXn

Fn,j
= mb,jTsyb due to

ΓM ≪ Γn, ∀n ∈ N which indicates that all {Fn} should be
as small as possible and (28a) provides the lower bounds of
{Fn}. Therefore, for the p-th UE in solving problem P2E in
the j-th iteration, we have Dp,jXp

Fp,j
= mb,jTsyb.

For any other UE n ∈ N \ p, in the j-th iteration, Dn,j

should be obtained from (26d), and thereby we have Dn,jXn

Fn,j−1
=

mb,j−1Tsyb, ∀n ∈ N \ p. Based on our previous analysis and
ma,j = ma,j−1, we also have Dn,jXn

Fn,j
= mb,jTsyb, and thus

Fn,j = Fn,j−1, ∀n ∈ N \ p.
In the j + 1-th iteration, in solving P2C, based

on the definition of γth,p,j+1 we have εmax,p =

Q
(√

ma,j

Vth,p,j+1
(log2(1 + γth,p,j+1)− Dp,j

ma,j
)loge2

)
= εp,j =

Q
(√

ma,j

Vp,j
(log2(1 + γp,j)− Dp,j

ma,j
)loge2

)
3, which indicates

γp,j = γth,p,j+1, resulting in γp,j ≤ γp,j+1 since
γth,p,j+1 ≤ γp,j+1 (see in (27b)). We also have εmax,p =

Q
(√

ma,j

Vp,j+1
(log2(1 + γp,j+1)− D̂p,j+1

ma,j
)loge2

)
= εp,j =

Q
(√

ma,j

Vp,j
(log2(1 + γp,j)− Dp,j

ma,j
)loge2

)
, where D̂p,j+1 de-

notes the upper bound of Dp provided by (26a) in the j+1-th

3Here we use ma,j = ma,j−1.

iteration, and due to γp,j ≤ γp,j+1 we have Dp,j ≤ D̂p,j+1,
combining with Dp,jXp

Fp,j
= mb,jTsyb, Dp,j+1 is then de-

termined by (26d) in the j + 1-th iteration, and we have
Dp,j+1 = Dp,j .

Furthermore, for any other UE n ∈ N \ p,
when D̂n,j+1 denotes the upper bound of {Dn}
provided by (26a) in the j + 1-th iteration, we have
εmax,n = Q

(√
ma,j

Vn,j+1
(log2(1 + γn,j+1)− D̂n,j+1

ma,j
)loge2

)
=

Q
(√

ma,j

Vth,n,j+1
(log2(1 + γth,n,j+1)− Dn,j

ma,j
)loge2

)
, and

thereby Dn,j ≤ D̂n,j+1 according to γth,n,j+1 ≤ γn,j+1

(see in (27b)). Consequently, for any UE n, n ∈ N \ p, its
Dn,j+1 is still determined by (26d) in the j + 1-th iteration.
Therefore, Dn,j+1 = Dn,j , ∀n ∈ N \ p.

Moreover, since {Fn,j+1} are obtained simply from (28a),
{Fn,j+1} should maintain the same values as in the j-th
iteration, e.g., Fn,j+1 = Fn,j .

Finally, when {Fn,j+1}, ma,j+1 and {Dn,j+1} all keep the
same values as in the j-th iteration, θj+2 = θj+1 is assured
since nothing changes in solving problem P2B-1 in the j+2-th
iteration, and we should attain the same results, e.g., θj+2 =
θj+1 . At last, we can claim that Algorithm 2 will stop at the
j+1-th iteration when there is at least one UE (without loss of
generality, p-th UE) whose offloaded data Dp,j is determined
via (26a), i.e., εp,j = εmax,p in solving problem P2C in the
j-th iteration. □

V. ENERGY EFFICIENCY WITH HYBRID NOMA-TDMA

We note that the algorithm runtime can become a bottleneck
in the proposed Algorithm 2 due to the iterative optimization
structure. Especially, as the number of UEs increases, the
number of constraints in the SDP also grows, as expressed in
(25b), and hence increasing the execution time of the entire
optimization algorithm.

One approach to reduce the complexity is to execute the
optimization algorithm for each UE sequentially. In this case,
each UE offloads its own data via OMA and the offloading
phase duration maTsyb is allocated equally to all UEs. Even
though such sequential offloading structure is capable of
addressing scenarios with large number of UEs, we note
that with the increase in the number of UEs, the offloading
time allocated to each UE becomes smaller. In that case,
it is difficult for UEs to offload their data on time, which
correspondingly deteriorates the energy efficiency.

Hence, in order to strike a balance between complexity
reduction and performance improvement, we consider hybrid
NOMA-TDMA scheme in this section by dividing the UEs
into groups.

A. UE Grouping and Hybrid NOMA-TDMA Transmissions

We consider that UEs are grouped such that the task data
bits of UEs in the same group are offloaded simultaneously
via NOMA transmission, and OMA transmission (i.e., TDMA)
is adopted among different groups. We first propose the
UE grouping method, and then we develop a dynamic CPU
frequency allocation algorithm at the BS to better take advan-
tage of the UE grouping method and hybrid NOMA-TDMA
transmissions. In the following, we initially describe the global
energy efficiency optimization problem when UE grouping is
adopted. Subsequently, a four-step algorithm is introduced to
solve the problem. As also noted above, when UE grouping is



adopted, we utilize TDMA in the UL phase among different
groups. And if we divide the N UEs into G groups, the N

G
UEs within each group perform NOMA transmission.

B. Utility Metric for UE Grouping

The criterion on how to group the UEs is of vital
importance. Traditional UE grouping methods in NOMA
are typically based on the channel vectors [24]. However,
such a grouping method does not take the latency require-
ments/constraints into account. In this paper, we construct a
utility metric for UE grouping that balances the weight of
channel vectors and the latency constraints.

We first construct a latency-related parameter for UE n:
Ln = InXn

fn
that represents the required time if the entire

task/service is processed locally. Larger Ln indicates a higher
urgency for UE n to offload its data to the MEC server in
the UL phase. One important fact that should be noticed
is that the transmission order of groups significantly affects
the performance. The UEs in the first group will complete
their offloading transmissions ahead of other UEs and hence
can utilize all the CPU computational resources at the BS
(MEC server) until the UEs in the second group complete
their transmissions (if dynamic CPU frequency allocation at
the BS is adopted). Therefore, it is intuitively better to place
the UE with higher Ln in the front groups.

However, channel vector h is still an important factor in
grouping especially in NOMA transmissions. From (6), we
note that UEs with larger difference between their chan-
nel gains can reduce the transmission power requirement to
achieve the desired SINR and hence improve the energy
efficiency. Now, taking into account both the channel strengths
and latency factors, we construct the following utility metric
for UE grouping to indicate the importance/urgency of UE n
in the g-th group:

Sg,n = α
Zg − Zn

Zg
+ (1− α)

Ln − L0

Ln
, (33)

where we define Zg = ||hH
d,g+hH

r,gIG|| as the largest channel
gain in the g-th group and Zn = ||hH

d,n + hH
r,nIG||. L0 is a

constant satisfying L0 ≤ Ln, ∀n ∈ N . Note that the above
metric is used if there is at least one other UE in the group. If
there is no UE in the g-the group yet, the UE with the largest
gain among the remaining UEs is selected as the first UE.
Accordingly, we can describe the UE grouping method based
on UE grouping utility in Algorithm 3 below.

Algorithm 3 UE Grouping
Initialization:

1) Calculate Ln, Zn for UE n, n ∈ N .
Actions:

1) For g = 1 : G
2) For all the UEs in the UE set N , place UE p having

the largest Zp (among all remaining unplaced UEs)
into group g, set Zg = Zp.

3) Remove UE p from the UE set N .
4) While the g-th group is not full
5) Calculate Sg,n for all the UEs in the UE set N .
6) Place UE q having the largest Sg,q into group g.
7) Set Zg = Zq .
8) Remove UE q from the UE set N .
9) end while

10) end for

According to Algorithm 3, we can divide N UEs into G
groups where each group includes N

G UEs and each group
is allocated τ =

maTsyb

G seconds in the offloading phase.

C. Dynamic CPU Frequency Allocation at the BS

In [22], CPU frequencies are allocated once all transmis-
sions are completed and MEC server has all the data task bits.
However, different from [22], we develop a dynamic CPU
frequency (computational resource) allocation to better take
advantage of UE grouping and scheduling. For instance, as
also noted before, the UEs in the first group will complete
their offloading transmissions ahead of other UEs and hence
it is possible for them to utilize all the CPU computational
resources at the BS until the UEs in the second group finish
their transmissions.

Before we introduce the dynamic CPU frequency allocation
algorithm, we first introduce two lemmas.

Lemma 1: To minimize the MEC processing energy con-
sumption, for each UE, the optimal approach is to utilize
all the available processing time at the MEC server while
satisfying the task deadline.

Proof : From (10), we see that the MEC processing energy
consumption is proportional to the square of the allocated fre-
quency. Due to the fact that the result of the MEC processing
time multiplied with the allocated frequency should be equal
or greater than the data bits offloaded from each UE times the
required computational intensity, in the optimal situation the
UE should take advantage of all the possible processing time
at the MEC server since the square of the frequency grows
much faster, leading to higher energy consumption. □

Lemma 2: In the optimal scenario, for each UE, the
allocated frequency within each time slot of duration τ should
be equally distributed among all the possible processing time
slots while ensuring the timely completion of the processing
of all offloaded task data bits.

Proof : From the grouping method, we know the available
number of time slots that can be utilized for each UE. Note
also that the slot length is a constant τ =

maTsyb

G . Once
the allocated data bits Dn is fixed, the only parameter that
will influence the MEC processing energy consumption is
the square of the allocated frequency among all the possible
processing time slots of each UE. In addition, by timely
completing the processing of all offloaded task data bits, we
have a sum constraint for the allocated frequencies across
all the possible processing time slots for each UE. Under a
sum constraint, for each UE, the frequency should be equally
allocated among all the possible processing time slots in order
to minimize the MEC processing energy consumption. □

Based on Lemma 1 and Lemma 2, we propose Algorithm
4 below for the dynamic CPU frequency allocation. Note that
a UE group is now dynamically allocated CPU frequencies at
the MEC/BS once its transmission is completed (instead of
waiting for the transmissions of all groups to be completed).
This provides more flexibility in resource allocation, leading
to improved energy efficiency. In the algorithm below, we first
initialize the frequency allocation for all groups, depending on
their transmission completion times in the offloading phase.
Subsequently, we check whether the maximum CPU frequency
limit Fmax is exceeded in any interval with such initialization.
If exceeded, we determine how to optimally reallocate the
CPU frequencies to minimize the MEC energy consumption.



Algorithm 4 Dynamic CPU Frequency Allocation
Initialization:

1) Reorder all the UEs according to the UE grouping
results. The first and second UE in the g-th group
should be the U(g−1)

G + 1-th and U(g−1)
G + 2-th UE.

2) For n = 1 : N
for g = 1 : G+ 1
if g ≤ Gn

Fn,g = 0
else calculate Fn,g = DnXn

mbTsyb+(G−Gn)τ
.

end if
end for

3) end for

Actions:

1) For g = 1 : G
2) If

∑N
n=1 Fn,G+2−g ≤ Fmax

g = g + 1. else calculate ∆ =
∑N

n=1 Fn,G+2−g −
Fmax
Solve: P0:
Minimize

Y

N−Ng
G∑

n=1

{DnXn(Fn,G+2−g − Yn)
2+

G+1−g∑
v=Gn+1

DnXn(Fn,v+
Ig=1(g)mbTsybYn

(G−Gn)τ
+

Ig≥2(g)Yn

G+ 1− g −Gn
)2}

(34)

Subject to
N−Ng

G∑
j=1

Yn ≥ ∆,

where I(•) is the indicator function.
for n = 1 : N − Ng

G
Fn,G+2−g = Fn,G+2−g − Yn

for v = Gn + 1 : G+ 1− g

Fn,v = Fn,v +
Ig=1(g)mbTsybYn

(G−Gn)τ
+

Ig≥2(g)Yn

G+1−g−Gn

end for
end for

3) end if
4) end for

In Algorithm 4, Gn is the allocated group index of UE n
from Algorithm 3. Fn,g denotes the allocated frequency at the
BS to the n-th UE when the g-th group is in transmitting and
Fn,G+1 is the allocated frequency to the n-th UE in the com-
putation phase. In Algorithm 4, we first allocate the required
CPU resources/frequencies (for remote processing at the MEC
server) equally to all available time slots among all UEs. Then,
we check each time slot to make sure whether there is a
violation at the MEC server (i.e.,

∑N
n=1 Fn,G+2−g > Fmax,

for the g-th time slot). If there is no violation, we keep the
previous CPU frequency allocation as the optimal strategy
(following the characterizations in Lemmas 1 and 2). If there is
any violation in the currently checked time slot, we then spread
the overflowed required CPU frequencies to the unchecked
time slots so that the allocated CPU frequencies in each time
slot become as small as possible, thereby reducing the energy
consumption and hence improving the energy efficiency, as
shown in Fig. 3. Note that in Fig. 3, l ∈ {1, ..., N/G} is
the UE index within each group. With the introduction of the
dynamic computational resource allocation, it is possible for
us to dynamically update/allocate the remaining computational
resources at the BS.

D. Problem Formulation in UE Grouping

When UE grouping is adopted, by jointly determining the
UEs’ offloading data bits {Dn}, the length of the UL phase
ma, CPU frequencies allocated to the tasks of different UEs
among different group transmission durations as well as the
computation phase {Fn,g}, and the RIS reflecting coefficients
θ, we aim to achieve the optimal energy efficiency subject to
both coding blocklength and maximum decoding error rate
constraints. With the introduction of UE grouping method
and dynamic CPU frequency allocation, the global energy
efficiency maximization problem is formulated as follows:

P3: Maximize
{Dn,ma,Fn,g,θ}

∑N
n=1 In∑N
n=1 En

(35)

s. t. εn ≤ εmax,n, ∀n ∈ N (35a)
0 ≤ Dn ≤ In, ∀n ∈ N (35b)
(In −Dn)Xn

fn
≤ MTsyb, ∀n ∈ N (35c)(

G∑
g=1

Fn,gma

G
+ Fn,G+1mb

)
Tsyb ≥ DnXn, ∀n ∈ N

(35d)
N∑

n=1

Fn,g ≤ Fmax, ∀g ∈ {1, 2, ..., G+ 1} (35e)

ma,mb ∈ Z. (35f)

where εmax,n is the maximum decoding error rate constraint
for the n-th UE. Moreover, (35b) is the range of offloaded data
bits and (35c) provides the local computing delay constraint.
(35d) ensures that all of UEs’ offloaded tasks/services can
be completed on time. (35e) is the maximum CPU frequency
constraint at the BS (MEC server).

E. Four-step Alternating Optimization

Due to the non-convex constraints and the strongly coupled
optimization variables {Dn,ma, Fn,g,θ}, P3 is a non-convex
optimization problem, and a four-step alternating optimization
method is introduced to decouple the optimization variables
and solve the problem iteratively.

1) Optimization of the RIS Reflecting Coefficients: Our first
step is to optimize the RIS reflecting coefficients. Note that
the RIS will adjust its reflecting coefficients during different
group transmissions, which means we need to obtain θg for
the g-th group by solving P3A below individually by fixing
Dn, Fn,g and ma:

P3A: Find θg (36)

s. t. |eiθk | = 1, ∀k ∈ K (36a)
γl,g ≥ γth,l,g, ∀l ∈ {1, ..., N/G} (36b)

where γth,l,g is the threshold SINR value with which the error
rate constraint εmax,l for the l-th UE in the g-th group is
attained with equality.

Following a similar analysis as in Section IV-B, we equiv-
alently solve P3A-1 instead of solving P3A:

P3A-1: Maximize
Ψ

P1,g(||hH
d,1,g||2 + Tr(W 1,gΨ))

σ2

(37)
s. t. Ψk,k = 1, k = 1, 2, ...,K + 1, (37a)

Pl,gTr(W l,gΨ)− γth,l,gP1,gTr(W 1,gΨ) ≥



Fig. 3: Demonstration of action 2 in Algorithm 4.

γth,l,gP1,g||hH
d,1||2 + γth,l,gσ

2 − Pl,g||hH
d,l,g||2,

∀l ∈ {1, ..., N/G} (37b)
Ψ ⪰ 0. (37c)

P3A-1 is a convex problem and with a standard convex
optimization tool, it can be efficiently solved. If rank(Ψ) = 1,
an optimal solution ϕ̃

∗
can be obtained from Ψ = ϕ̃ϕ̃

H
,

otherwise we need to utilize the Gaussian randomization to
recover a sub-optimal ϕ̃

∗
[16][22]. P3A is processed individ-

ually for all G groups and we combine all the θg
∗ to construct

θ∗, which is denoted as θi in the i-th iteration.

2) Optimization of the Offloaded Data Bits: With fixed θ =
θi and ma = ma,i−1, Fn,g = Fn,g,i−1, we have P3B:

P3B: Maximize
{Dn}

∑N
n=1 In∑N
n=1 En

(38)

s. t. εn ≤ εmax,n, ∀n ∈ N (38a)
0 ≤ Dn ≤ In, ∀n ∈ N (38b)
(In −Dn)Xn

fn
≤ MTsyb, ∀n ∈ N (38c)(

G∑
g=1

Fn,gma

G
+ Fn,G+1mb

)
Tsyb ≥ DnXn, ∀n ∈ N

(38d)

Here D∗
n can be obtained easily since P3 becomes a convex

problem in this case and we define Dn,i = D∗
n.

3) Optimization of the Offloading Blocklength: By fixing
θ = θi, Dn = Dn,i and Fn,g = Fn,g,i−1, P3 now becomes
P3C:

P3C: Maximize
ma

∑N
n=1 In∑N
n=1 En

(39)

s. t. εn ≤ εmax,n, ∀n ∈ N (39a)(
G∑

g=1

Fn,gma

G
+ Fn,G+1mb

)
Tsyb ≥ DnXn, ∀n ∈ N

(39b)

ma,mb ∈ Z. (39c)

The optimal ma
∗ can be determined either based on (39a) or

(39b)4. We set ma,i = m∗
a.

4) Optimization of the Allocated Frequency: In the forth
step, once ma,i is obtained in the previous step, we fix θ = θi

and Dn = Dn,i and ma = ma,i to construct P3D:

P3D: Maximize
{Fn,g}

∑N
n=1 In∑N
n=1 En

(40)

s. t. Fn,g = 0, ∀g ∈ {1, 2, ..., Gn}, ∀n ∈ N (40a)(
G∑

g=1

Fn,gma

G
+ Fn,G+1mb

)
Tsyb ≥ DnXn, ∀n ∈ N

(40b)
N∑

n=1

Fn,g ≤ Fmax, ∀g ∈ {1, 2, ..., G+ 1} (40c)

In P3D, (40a) ensures that no CPU frequency will be allocated
to a user until the group that includes this user completes its
offloading transmission. P3D can be solved via Algorithm 4.

By iteratively solving P3A-1, P3B, P3C and P3D, the
solution of P3 can be obtained once they converge. The four-
step algorithm is described in Algorithm 5 below.

Algorithm 5 Four-step Alternating Optimization for P3
Initialization:

1) Initialize {Dn,0}, ma,0, {Fn,g,0}.
Actions:

1) For i = 1 : Imax

2) Obtain θi by solving P3A-1 with {Dn,i−1}, ma,i−1,
{Fn,g,i−1}.

3) Obtain {Dn,i} by solving P3B with θi, ma,i−1,
{Fn,g,i−1}.

4) Obtain ma,i from (39a) in P3C with θi, {Dn,i},
{Fn,g,i−1}.

4Both (39a) and (39b) provide lower bounds on ma, and the optimal
blocklength will be determined by the larger of these lower bounds.



5) Obtain {Fn,g,i} by solving P3D with θi, ma,i,
{Dn,i} via Algorithm 4.

6) End if converges.

F. Convergence Analysis with UE Grouping, Hybrid NOMA-
TDMA, and Dynamic Frequency Allocation

The convergence of Algorithm 5 is ensured by the following
propositions.

In the UE grouping method, since the RIS will adjust its
reflecting coefficients during different group transmissions,
solving P3A-1 to obtain θg for the g-th group is exactly
the same as solving P2B-1 in Algorithm 2, and therefore
Proposition 1 still holds for different groups, i.e., γ1,g is non-
decreasing as the iteration index i in the proposed Algorithm
5 increases.

Similarly as in the case with multiple UEs and NOMA,
due to finite transmit power P1,g , γ1,g should converge. Such
conclusion can be verified for all G groups, and hence all
γ1,g, ∀g ∈ {1, 2, ..., G} converge. Also note that

∂γ1,g
∂Ψ

=
∂P1,g(||hH

d,1,g||2 + Tr(ΨW 1,g))

σ2∂Ψ
=

P1W
T
1,g

σ2
̸= 0.

(41)
When γ1,g converges, Ψ should converge simultaneously in
the g-th group transmission. Note that since the derivative
above is nonzero, any variation in Ψ will lead to a variation
in γ1,g , contradicting its convergence. Based on (23), we
know γl,g is only decided by Ψ. Consequently, {γl,g}, ∀l ∈
{1, ..., N/G} should also converge.

To illustrate the convergence of {Dn}, we first have the
following proposition:

Proposition 3: The allocation {Fn,g} obtained from dy-
namic CPU frequency allocation can support/process the same
amount of CPU cycles at the MEC server compared to the
non-dynamic frequency allocation considered in Section IV.

Proof : In step 2 of the action phase of Algorithm 4, due
to the indicator function, we prove Proposition 3 considering
the following two cases:

I. When g = 1, ∀n ∈ {1, 2, ..., N − N
G }:

mbTsyb(Fn,G+1 − Yn) +
G∑

v=Gn+1

(Fn,v +
mbTsybYn

(G−Gn)τ
)τ

= mbTsybFn,G+1 −mbTsybYn +
G∑

v=Gn+1

(Fn,vτ +
mbTsybYn

G−Gn
)

= mbTsybFn,G+1 +
G∑

v=Gn+1

Fn,vτ −mbTsybYn +G−Gn−1+1
G−Gn

mbTsybYn

= mbTsybFn,G+1 +
G∑

v=Gn+1

Fn,vτ

= DnXn.

II. When g ≥ 2, ∀n ∈ {1, 2, ..., N − Ng
G }:

(Fn,G+2−g − Yn)τ +
G+1−g∑
v=Gn+1

(Fn,v +
Yn

G+1−g−Gn
)τ

= τFn,G+2−g − Ynτ +
G+1−g∑
v=Gn+1

Fn,vτ +
G+1−g∑
v=Gn+1

Ynτ
G+1−g−Gn

= τFn,G+2−g − Ynτ +
G+1−g∑
v=Gn+1

Fn,vτ + G+1−g−Gn−1+1
G+1−g−Gn

Ynτ

= τFn,G+2−g +
G+1−g∑
v=Gn+1

Fn,vτ

= DnXn −mbTsybFn,G+1 −
g−2∑
u=1

Fn,G+2−g+uτ.

In both cases, we observe that the total number of sup-
ported/processed CPU cycles at the MEC server after adopting
dynamic CPU frequency allocation via Algorithm 4 remains
the same, i.e., it is independent of Yj , which is the optimal
change in the allocated CPU frequency in dynamic allocation
in Algorithm 4. With this, Proposition 3 has been proved. □

We consequently have the following Proposition 4:
Proposition 4: Dn is non-increasing as the iteration index

i in Algorithm 5 increases5.
Proof : P3D is a convex problem when θ, {Dn} and ma

are fixed. According to (8), (9), (10) and (11), we know that
smaller {Fn,g} leads to a higher energy efficiency. Considering
the constraint in (40b), via Algorithm 4 in the i-th iteration
we have(

G∑
g=1

Fn,g,ima

G
+ Fn,G+1,imb

)
Tsyb = Dn,iXn. ∀n ∈ N

(42)
Dn,iXn is the amount of total processed CPU cycles at the
MEC server in the i-th iteration. According to Proposition 3,
Dn,iXn remains the same regardless of whether the dynamic
CPU frequency allocation is performed or not. Therefore, in
the i+ 1-th iteration, based on (38d) in P3B, we have

Dn,i+1 ≤

(
G∑

g=1

Fn,g,ima

G
+ Fn,G+1,imb

)
Tsyb

Xn
= Dn,i.

(43)
Therefore, Dn is non-increasing for all UEs. □

We further have Dn ≥ In − MTsybfn
Xn

from (38C) in P3B.
Since the right side of this inequality is a constant, combining
with Proposition 4, {Dn} will converge.

With converged {γl,g} and {Dn}, when ma is determined
by (39a) in P3C, which is independent of {Fn,g}, ma will
converge.

When ma is determined by (39b), in this case the equality
of (39b) must hold, and thereby in the i + 1-th iteration we
have(

G∑
g=1

Fn,g,ima,i+1

G
+ Fn,G+1,imb,i+1

)
Tsyb = Dn,i+1Xn.

(44)
In the i-th iteration, Algorithm 4 assures the equality of (40b),
and hence we have(

G∑
g=1

Fn,g,ima,i

G
+ Fn,G+1,imb,i

)
Tsyb = Dn,iXn (45)

When {Dn} converges, Dn,i+1 = Dn,i. Based on (44) and
(45), we further have:(

G∑
g=1

Fn,g,ima,i+1

G + Fn,G+1,imb,i+1

)
Tsyb

=

(
G∑

g=1

Fn,g,ima,i

G + Fn,G+1,imb,i

)
Tsyb,

and thereby the optimal m∗
a in the i+1-th iteration is exactly

the same as the optimal m∗
a in the i-th iteration, i.e., ma,i+1 =

ma,i. Consequently, ma will converge in all cases.
Finally, with converged {γl,g}, {Dn} and ma, {Fn,g}

should also converge since P3D is a convex problem.

5In order to achieve the optimal solutions, we set Dn = In for all UEs in
the initialization of Algorithm 5.
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Fig. 4: Baseline comparisons for single UE under different
channel conditions.

Therefore, Algorithm 5 will converge for all UEs.

G. Stopping Point Analysis with UE Grouping in Hyrid
NOMA-TDMA

Below, we first identify the stopping condition of Algorithm
5 in the remark and subsequently discuss how this result is
established.

Remark 3: Algorithm 5 will stop in the j + 1-th iteration
when in every NOMA group there is at least one UE (assume,
without loss of generality, that it is the (p, g)-th UE in the g-th
group) whose offloaded data D(p,g),j is determined via (38a),
i.e., ε(p,g),j = εmax,(p,g) in solving problem P3B in the j-th
iteration.

This result can be established in the same way as in the
multiple-UE case in Section IV(D), which can be considered
as the special case when G = 1. With TDMA, there is
only one group transmitting at one time, and during its
transmission period the decision-making is exactly the same
as in the multiple-UE case in Section IV(D). Therefore, in
the j-th iteration, if every NOMA group has at least one UE
(e.g., UE (p, g)) whose D(p,g),j is determined via (38a), i.e.,
ε(p,g),j = εmax,(p,g) in solving problem P3B, Algorithm 5
will stop in the j + 1-th iteration. □

VI. NUMERICAL RESULTS

In this section, we conduct a numerical analysis and
determine the maximum energy efficiency in the network
under different scenarios. In the simulations, the channels
are generated by hl,n =

√
ξ0d

−αl,n

l,n

∼
gl,n, l ∈ {d, r} and

G =
√

ξ0d
−αB

B

∼
gB . dl,n, αl,n and

∼
gl,n denote the distance

to the RIS/BS, path loss exponent, and complex Gaussian
distributed fading components for the n-th UE, respectively.
Similarly, dB , αB ,

∼
gB are the distance from the RIS to the BS,

path loss exponent, and complex Gaussian distributed fading
components of such links. The channel simulation parameters
setting is listed in Table. II below.

In the simulation results, we first provide Fig. 4 and Fig.
5 as baseline comparisons in which energy efficiency curves
are plotted as a function of the blocklength. In these figures,
we compare the performances when only direct links, only
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Fig. 5: Baseline comparisons for 3 UEs under different
channel conditions.

Parameter Definition Value
αd,n Path loss exponent for the n-th UE to the BS 5
αr,n Path loss exponent for the n-th UE to the RIS 2
αB Path loss exponent from the RIS to the BS 3.5
ξ0 Path loss at the reference point d0 = 1 m -30 dB
σ2 Noise power -95 dBm
Xn Task intensity for the n-th UE 500 cycles/bit

TABLE II: Summary of channel parameters.

RIS reflected links, or both direct and RIS reflected links are
available in the cases of single UE and 3 UEs, respectively.
We observe in these figures that the highest energy efficiency
levels are attained when both direct and RIS links are present.
We also notice that having only RIS-reflected links leads
to higher energy efficiency than that with only direct links,
highlighting the benefits of deploying RIS in the environment.

We then analyze the performance of the proposed alter-
nating optimization algorithm for a single UE in Fig. 6 for
different number of RIS elements. We immediately notice that
the energy efficiency is improved when the blocklength con-
straint M increases, which is expected since increasing M is
the same as loosening the latency constraint, resulting in more
time being left for the MEC server to process the offloaded
task. We further observe that enlarging the number of RIS
elements improves the performance as well. By increasing the
number of RIS elements, we are more likely to obtain our
desired SNR and hence improve the energy efficiency.

Next, we analyze the performance of the proposed opti-
mization algorithm for 3 UEs in Fig. 7 and Fig. 8, where
the curves of energy efficiency versus blocklength constraint
M are plotted. In Fig. 7, different curves are for different
number of RIS elements. From Fig. 7, we observe that larger
blocklength constraint M leads to a better energy efficiency,
which is again expected since increasing M results in more
time that can be used by the MEC server to process the
offloaded tasks. We further observe that the performance is
improved when the number of RIS elements increases. The
increase in the number of RIS elements provides us with
higher degrees of freedom to achieve the desired SINR levels,
thus improving the energy efficiency.

In Fig. 8, different curves stand for different maximum CPU
frequency (Fmax) constraints at the MEC server. Similar to
Fig. 7, the energy efficiency again improves with the increase
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Fig. 6: Optimized energy efficiency for single UE with
different number of RIS elements.
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Fig. 7: Optimized energy efficiency for 3 UEs with different
number of RIS elements.
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Fig. 8: Optimized energy efficiency for 3 UEs with different
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Fig. 9: Optimized energy efficiency for 4 UEs with different
grouping method.

in M . Additionally, increasing the maximum CPU frequency
Fmax at the MEC server also enhances the energy efficiency.
This is due to the fact that with larger Fmax, more data can
be processed at the MEC server, and based on our assumption
that ΓM ≪ Γn, ∀n ∈ N , less energy will be consumed
for processing the same amount of data, resulting in a better
energy efficiency.

In Fig. 9, we compare different grouping methods in the
case of 4 UEs. We have employed 4 grouping methods in
the numerical results. The first one is the case with all 4
UEs in a group (indicating that NOMA is utilized). In the
other cases, hybrid NOMA-TDMA is employed. In particular,
second scheme is 2 UEs per group and we have 2 groups
in total, and the offloading time is allocated equally to each
group as maTsyb

2 seconds. In the third and fourth methods,
we still have 2 groups while one group has only 1 UE and
the other includes 3 UEs. The difference between the last
two methods is in the offloading time allocation. In the third
grouping method, we equally allocate the total offloading time
of maTsyb seconds to the 2 groups, and each group has maTsyb

2
seconds in the offloading phase, which is similar to the second
grouping method. In the fourth method, we proportionally
allocate the offloading time, which means that for the group
with only 1 UE, the offloading time is maTsyb

4 seconds, and for
the group with 3 UEs, the offloading time is 3maTsyb

4 seconds.
From Fig. 6, we can observe that the more UEs we have in
one group, the better energy efficiency we can obtain. This
is because if more UEs are in one group, we can better take
advantage of NOMA transmissions. Furthermore, proportional
offloading time allocation outperforms equal offloading time
allocation, which is due to the fact that the more offloading
time we allocate to the group with more UEs, the more
benefits we can obtain by utilizing NOMA transmissions. Note
that even though all 4 UEs in one group attains the best
performance, this requires a much higher runtime compared
with other grouping methods.

Furthermore, considering UE grouping and dynamic CPU
frequency allocations, we initially demonstrate the perfor-
mance with 6 UEs and compare the energy efficiency with
and without dynamic CPU frequency allocation, and then we
move to the case in which we adjust the UE grouping utility
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Fig. 11: Optimized energy efficiency for the case of 6 UEs
with different UE grouping utility weights.

weight. In this case, we set Fmax = 10 GHz at the MEC
server.

Specifically, we analyze the performance of the proposed
UE grouping algorithm for 6 UEs in Fig. 10 and Fig. 11. In
Fig. 10, the curves of energy efficiency versus blocklength
constraint M at the MEC server are plotted with and without
dynamic CPU frequency allocation at the BS. From Fig. 10,
we observe that the energy efficiency with dynamic CPU fre-
quency allocation always exceeds the one that does not adopt
the dynamic CPU frequency allocation, which is expected
since utilizing dynamic CPU frequency allocation is equivalent
to extending the MEC processing time duration, resulting in
more time that can be used by the MEC server to process the
offloaded tasks, thereby improving the energy efficiency.

In Fig. 11, different curves are obtained under differ-
ent blocklength constraints. Specifically, we considered three
different values for the blocklength constraint, i.e., M =
100, 130, 160. The curves are plotted as a function of the
weight α in the grouping utility metric defined in (32). We first
observe that there is an optimal weight value that maximizes
the energy efficiency. Such optimal α balances the importance

between the channel gain and latency constraint. We further
observe that the optimal value of α becomes larger as the
blocklength constraint M is relaxed and M becomes larger.
This is mainly because with larger M , more time can be
allocated to the offloading transmission (in the UL phase) and
the UE with relatively favorable channel conditions benefits
more from a larger ma since it can offload more data bits
to the BS (MEC server), and therefore reduces the energy
consumption, leading to improved energy efficiency.

VII. CONCLUSION

In this work, we have analyzed an RIS-assisted MEC
network aiming to maximize the energy efficiency under
both coding blocklength and maximum decoding error rate
constraints in a low-latency scenario. We have initially in-
vestigated the single UE case and proposed an alternating
optimization method to solve the problem. Extending the
system model, we subsequently investigated an MEC network
with multiple UEs in which NOMA transmission is adopted.
We constructed a three-step alternating optimization algorithm
to tackle the problem, and conducted a convergence analysis.
Furthermore, we have proposed a UE grouping method (and
hybrid NOMA-TDMA transmissions) to alleviate the required
runtime when the number of UEs increases. We have also
developed a dynamic CPU frequency allocation algorithm to
better take advantage of the UE grouping method. Numerical
results demonstrate that the proposed alternating optimization
algorithms can solve the optimization problems efficiently. We
have observed that with larger blocklength value M and CPU
frequency Fmax at the MEC server, the energy efficiency is
improved. It is also noted that adjusting the RIS phase shift
matrix is equivalent to improving the SINR at the BS and
such an enhanced SINR leads to a higher energy efficiency.
Furthermore, the proposed dynamic CPU frequency allocation
algorithm can improve the performance substantially. It is also
noted that increasing M leads to a larger optimal value for the
UE grouping utility weight α and such an optimal α leads to
a higher energy efficiency. Our future work will address the
impact of having multiple MEC servers in the network.
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