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Abstract—In this paper, multi-target tracking in a radar
system is considered, and adaptive radar resource management is
addressed. In particular, time management in tracking multiple
maneuvering targets subject to budget constraints is studied
with the goal to minimize the total tracking cost of all targets
(or equivalently to maximize the tracking accuracies). The con-
strained optimization of the dwell time allocation to each target
is addressed via deep Q-network (DQN) based reinforcement
learning. In the proposed constrained deep reinforcement learn-
ing (CDRL) algorithm, both the parameters of the DQN and the
dual variable are learned simultaneously. The proposed CDRL
framework consists of two components, namely online CDRL
and offline CDRL. Training a DQN in the deep reinforcement
learning algorithm usually requires a large amount of data, which
may not be available in a target tracking task due to the scarcity
of measurements. We address this challenge by proposing an
offline CDRL framework, in which the algorithm evolves in a
virtual environment generated based on the current observations
and prior knowledge of the environment. Simulation results
show that both offline CDRL and online CDRL are critical for
effective target tracking and resource utilization. Offline CDRL
provides more training data to stabilize the learning process and
the online component can sense the change in the environment
and make the corresponding adaptation. Furthermore, a hybrid
CDRL algorithm that combines offline CDRL and online CDRL
is proposed to reduce the computational burden by performing
offline CDRL only periodically to stabilize the training process
of the online CDRL.

Index Terms—Constrained optimization, extended Kalman fil-
ter, multi-target tracking, radar, reinforcement learning, resource
allocation.

I. INTRODUCTION

Radar is an active remote-sensing technique that is widely
used for detection, tracking, and surveillance in various ap-
plications including e.g., remote sensing of the environment,
space exploration, aircraft navigation, air/sea traffic control,
law enforcement, military operations, etc. With the emergence
of autonomous vehicles and drones, radar operation in chal-
lenging environments has grown further in importance. How
to efficiently allocate radar resource becomes critical and has
been addressed extensively in the literature. The resource
allocation problem has been addressed with conventional op-
timization approaches in [1] and [2]. Another line of work in
the literature is based on game theoretical approaches. For
instance, the authors in [3] formulate the power allocation
problem in a multi-radar system as a non-cooperative game
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and perform an analysis of the Nash equilibrium and its
convergence. In [4], an overview of cognitive radar concepts
is provided, and three hierarchical levels of the cognitive
radar architecture, namely extracting the information, resource
management, and refining the knowledge of the environment,
are highlighted. The authors subsequently present a survey of
the development of radar resource management techniques,
each with increasing adaptivity, leading up to the recognition
of the term cognitive radar. For more details on studies on
active tracking, adaptive tracking, and cognitive radar resource
management techniques, we refer to [4] and references therein.

Radar environment is typically nonstationary and this has
a significant impact on the radar returns (i.e. echoes). Due to
this, it is desired to design a cognitive radar that can keep
updating its knowledge of the surrounding environment and
make dynamic decisions to adapt to the environment. Cogni-
tive radar is a rapidly developing field that utilizes artificial
intelligence (AI) techniques to improve the performance of
radar in complex and dynamic environments. Related work of
cognitive radar includes various approaches such as machine
learning, game theory, and cognitive radio [S]. An overview
of cognitive radar systems is provided in [6], in which the
focus is on signal processing, dynamic feedback from the
receiver, and preservation of the information in a cognitive
radar system. We note that cognitive radar techniques enable
the development of multifunction radar, which, equipped with
arbitrary waveform generation and electronic beam steering,
is capable of supporting multiple radar functionalities [4],
including multi-target tracking.

A. Related Work

Several recent studies considered resource allocation in
radar systems. For instance, the authors in [7] address time
allocation in multi-target tracking with the method of ex-
tended Kalman filter and the framework of partially observable
Markov decision processes and policy rollout. In [8], model
predictive control (MPC) is employed for time allocation in a
radar system. Simulation results show that policy rollout and
MPC enable the effective determination of both the revisit
interval and the dwell time to reduce the variance of the
estimations. Policy rollout and MPC are offline methods in
which the decisions are made based on the experience in an en-
vironment generated following the prior statistical knowledge
(e.g., regarding the measurement noise and maneuverability
noise). However, radar environment is nonstationary and it



may become difficult for offline algorithms to sense and
determine sudden changes in the environment.

In such cases, an online approach that can adapt to the
changes in the environment can be preferred. Recently, deep
reinforcement learning (DRL) has been used to train agents
in various complex decision-making scenarios and is shown
to demonstrate strong performance [9]. DRL is a model-
free algorithm with features making it suitable for solving
problems in dynamic radar applications. Indeed, several recent
studies have incorporated DRL in decision-making for radar
applications. For instance, the work in [10] applies DRL to a
spectrum allocation problem for multi-target detection, where
it is shown that DRL is able to improve the performance of
detection while mitigating interference to the other coexisting
wireless system. Other related DRL work in radar environment
has been conducted in [11] and [12].

In this paper, we formulate the multi-target tracking problem
as a constrained Markov decision process (CMDP). Under a
budget constraint, it is often desired to describe the problem
as a CMDP and have one cost minimized while keeping the
other types of costs constrained subject to certain specific
requirements [13]. Recent learning-based characterizations and
results related to decision-making within a CMDP can be
found in [14], [15], [16], [17] and [18]. Specifically, in [14], a
multi-timescale constrained reinforcement learning framework
is proposed to address a constrained optimization problem, and
solving the optimization problem is converted into a task of
learning the parameters of the neural network and the value of
the dual variables. The authors in [19] have proposed a similar
approach to address a resource allocation problem in a wireless
system. In [20], a learning-based algorithm is proposed for the
UAVs to adjust their altitudes and channel access strategies to
maximize the total network capacity while satisfying energy
constraints. The application of DRL in CDMP problems in the
context of radar resource management has not been adequately
addressed yet. Additionally, conventional DRL algorithms may
not be directly applicable in a radar environment due to the
scarcity of radar return signals, the high maneuverability of the
targets, and the rapid variations in the environment, motivating
the work in this paper.

B. Contributions

In this work, we first formulate the resource allocation
problem in multi-target tracking as a CMDP. We have the goal
to minimize the variance of the estimations in tracking while
complying with the budget constraint. Following the CMDP
formulation, we propose a constrained deep reinforcement
learning (CDRL) framework to find a near-optimal budget
allocation strategy in the considered problem, in which the
parameters of the DQN and the dual variables are learned
simultaneously.

Training data for DRL algorithms can be scarce and a
DRL algorithm with insufficient training data can easily fail,
especially in a fast-varying radar environment. To address
this challenge, we periodically employ CDRL in an offline
manner, where the algorithm evolves in a virtual environment

generated based on the current estimations and prior statistical
knowledge on the problem. The proposed offline CDRL can
provide more data to the algorithm and we demonstrate that
employing offline CDRL periodically can stabilize the perfor-
mance of the proposed CDRL algorithm. We also show that
the proposed CDRL framework is robust to sudden changes in
the environment. It is also scalable and can adapt its strategy
when there is a new target joining the environment.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the radar target tracking model and briefly
discuss the operation of the extended Kalman filter. In Section
III, we formulate the problem of time allocation in multi-target
radar tracking as a constrained Markov decision process. In
Section IV, we address this problem via deep reinforcement
learning and develop an online CDRL algorithm. We further
design an offline algorithm in Section V to complement the
online algorithm and develop a hybrid CDRL framework. We
present the simulation results in Section VI and conclude the
paper in Section VIIL.

II. RADAR TRACKING MODEL

We consider a 2D multi-target tracking problem with ex-
tended Kalman filter. In this section, details of the radar
tracking model are discussed first and then the application of
the extended Kalman filter is illustrated.

A. Target Motion Model

In time slot ¢, the current state of a target is described as
Xt = (T4, Ys, @e, 9¢)T, where (z4,7;) are the coordinates of
the current location and ;, 1; are the current horizontal and
vertical velocities of the target. Considering a constant velocity
model within the revisit interval, the next state evolves from
Xt tO

Xt+1 = Fexy + wy, (D

where Fy € R**? is the transition matrix defined as

1 0T, 0
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Fe=1g 0 1 o0 )
00 0 1

where T is the revisit interval at time ¢ chosen by the radar
system for tracking the given target [7]. Above, wy denotes
the maneuverability noise, which is a multivariate zero-mean
Gaussian noise with the covariance matrix

T4 0 TH2 0
_| 0 T4 0 TP/2|
Q=lgpp o 1@ o | ©)

0 T3 /2 0 T?

where o,, is the maneuverability noise variance of the target
at time ¢ [7].

B. Measurement Model

It is assumed that radar obtains the measurements of the
target’s current range r and azimuth angle 6 for estimating



its location. Let us denote the measurement vector by z¢ and
denote the non-linear function that maps x¢ to z¢ by h(:).
Now, we can express

T
zt = h(x¢) + vy = [\/zf +y?, tan~! (i’tﬂ +ve (4)

t

where v¢ = [v,., v97t]T denotes the measurement noise vector,
which consists of the range measurement noise (v, ;) and the
angle measurement noise (vg;) at time ¢. v,; and vg, are
zero-mean Gaussian noise components with variances 0’31)5 and
Ug,t’ respectively. Without loss of generality, it is assumed that
the radar is located at the origin of the Cartesian coordinate
system.

The variance of the measurement noise is dynamic and
depends on the signal-to-noise ratio (SNR;) of the echo radar
signal reflected from the target in time slot ¢. In this work, it
is assumed that the SNR; only depends on the dwell time 7
of the radar system and the distance r; between the target and
the radar. SNR; can be formulated as [7], [21]

—4
SNR; (7, 74) = SNR (”) (”) (5)

70 To

where SNR(, 79 and r( are the reference values of the SNR,
dwell time and the distance from target to radar. Then, the
relationship between the variance of measurement noise and
the SNR can be determined as [22]

2
2 Oe.0

0.’t - SNRt(Tt7 Tt)

(6)
where e € (r,6). 07, denotes the reference value of the
corresponding measurement noise variance whose values will
be introduced later in the simulation settings. Note that the
variance of the measurement noise for a target decreases when
longer dwell time is allocated to this target or when the target
moves closer to the radar.

Note also that the mapping function h(-) between measure-
ments and states is non-linear and hence extended Kalman
filter (EKF) is employed in this work. When using EKF, an
observation matrix Hy € R?*4 is introduced to linearize the
relationship between z; and x¢. Hy is defined as the Jacobian
of the measurement function A(-):

. Tt yt 0 O
H, — %M — \/'i%;fy? \/afzjry? NG
% T e 00

Considering independent measurements, the covariance ma-
trix of measurements is given by
o2 0 }

_ Tt
m{o oo (8)

C. Extended Kalman Filter

Kalman filter is a well-known algorithm for estimating
the state of a process, using a series of measurements over
time [23]. Extended Kalman filter is the non-linear version of
Kalman filter, which can be employed for target tracking in
radar systems with non-linear measurements.

Extended Kalman filter consists of two phases, namely
predict and update. For a target-tracking problem, a simplified
version of the procedure is as follows:

1) Predict:
Xejp—1 = FeXeo1je-1 )
Pyi-1=FePeqje1Fe +Qq (10)

2) Update:
K =Py He (HPypH" + Re) ™ (11)
Xejt = Xeje—1 + Ke(ze — M(Xeje—1)) (12)
Py = (I - K¢He)Pypoq (13)

where X¢¢_; and f’m,l are the prior estimate and the cor-
responding covariance matrix. xg¢ and Py are the posterior
estimate and the corresponding covariance matrix.

In the prediction phase, we use (9) to compute the prior state
estimate X¢|¢_y with its covariance matrix defined in (10). In
the update phase, the optimal Kalman gain Ky is defined as
in (11), which is a weight given to the measurements and
current estimation. (12) can be utilized to fuse the received
measurements with the current estimation and obtain the
posterior state estimate Xg;. And the posterior covariance
matrix Py is computed via (13).

In this work, x¢¢ is initialized as a zero vector and Pyt
is initialized as an identity matrix, assuming that the system
has no prior knowledge of the targets. Extended Kalman filter
recursively refines x|¢ by minimizing the trace of the posterior
estimate covariance matrix Pys.

D. Tracking Cost Function

We consider a similar cost function as defined in [7].
Specifically, the tracking cost function at time ¢ is defined
as

c(Ty, 1) = trace(EPt‘tET) (14)
where L0 0 0
E:{O Lo 0] (15)

According to (14), the tracking cost is a function of both
the revisit interval (71%) and the dwell time (7;) and can be
interpreted as the sum of the posterior estimate variances of
the target’s current estimated z-axis and y-axis position.

III. PROBLEM FORMULATION
A. Constrained Markov Decision Processes (CMDP)

A constrained Markov decision process [24] is defined by
the tuple (S, A, C, 0, T, u,~). Here, S denotes the set of states,
A is the set of available actions, C : S x A x S — R is
the cost function, ©® : S x A x S — R is the budget, T :
S x Ax S — [0,1] is the transition probability, 4 is the
distribution of the initial state. v € [0, 1) is the discount factor
for future rewards and costs. In this paper, we consider finding
an optimal policy 7 : S x A — [0, 1], which maps the states
to the actions, to minimize the discounted sum of the future



costs, while constraining the discounted sum budget violation,
ie.,
oo
min e
tin Yy erm

m=0

o (16)
s.t. Z ’ym(@tﬁLm - Gmaw> < 0
m=0
where ¢; is the tracking cost defined in (14) and ©,,,, is the
total budget constraint. More details and generalization of the
above optimization to multi-target tracking are discussed next.

B. Multi-target Tracking with Budget Constraint

We introduced EKF for tracking a single target in Section
II. Since our objective is to address multi-target tracking, we
consider in the remainder of the paper a radar system for
tracking N targets. To synchronize the tracking process for
all the targets, it is assumed that the revisit interval for all the
targets is the same, i.e. for target n during time ¢, the selected
revisit interval will be T}* = Ty. Hence, the primary focus is
on the allocation of the dwell time 7;* for different targets.

Following [14] and [24], the problem considered in this
paper can be formulated as the following constrained opti-
mization problem:

) N
m n n
max E - E Cipm (Teem)
m=0 n=1

a7

s.t i m<N Tiim _ g ><0
m:OPy n=1 TO )

Since a multi-target scenario is considered, we denote the
tracking cost for target m at time t as c}'(7/*), which is a
function of the dwell time 7" allocated to target n at time ¢
and is defined in (14).

The problem can be treated as a time-slotted system with
the assumption of fixed revisit interval 7. Each time slot will
last 7T seconds starting from the beginning of the current
radar pulse and ending before sending the next pulse for the
same target. It is assumed that the measurements are taken
independently and we have 77" € [0, Tp] for all possible ¢ and
n.

Budget for target n during time slot ¢ is defined as the ratio
of the selected dwell time 7;* and the fixed revisit interval 7o,
ie., O, = %0 Omaz € [0,1] is the total budget constraint for
tracking all IV targets in the radar system.

As shown in the optimization problem (17), the goal of
this work is to find a budget (or equivalently dwell time)
allocation policy 7 for minimizing the discounted sum of the
future total tracking costs of all the targets while constraining
the discounted sum budget violation. In this work, we employ
deep reinforcement learning, and hence policy 7 is determined
by N deep Q-networks (DQNs) of the deep reinforcement
learning (DRL) algorithm. Details are provided in the next
section.

With Lagrangian relaxation, the budget constraint in (17)
can be incorporated into the objective function. By introducing

a non-negative dual variable \;, problem (17) can be relaxed
to the following unconstrained optimization problem:

00 N
: § m § n n
min max — C T.
<0 7 Y t+m( t+m)
m=0 n=1

N n
Y (Z Tf;om - @,m> ] T

n=1

The optimization problem in (18) is known as the dual of
the prime problem in (17) and the duality gap between the two
problems becomes null for convex optimization problems. It is
worth noting that \; is a time-varying variable and arbitrarily
selecting its value will lead to a sub-optimal solution.

In the next section, we propose a constrained DRL (CDRL)
framework to address the unconstrained optimization problem
in (18). In the proposed framework, values of the DQN
parameters and the dual variable are learned simultaneously.

IV. CONSTRAINED DEEP REINFORCEMENT LEARNING
FOR MULTI-TARGET TRACKING

In this section, we introduce the proposed CDRL framework
for multi-target tracking in a radar system. The goal is to find
a budget allocation policy 7 such that the total cost for all the
targets is minimized, i.e., the total variance of estimating the
locations of the targets is minimized, while the total budget
is constrained to be under a certain threshold. As discussed
next, we utilize deep Q-learning (DQL) to achieve this goal.

A. Deep Q-Learning

In reinforcement learning, agents learn an optimal or near-
optimal policy by interacting with the environment and ob-
taining a reward for the action taken. The objective of the
agent is to learn a policy that can maximize the discounted
sum reward,

o0
R=> " 9"Ttim (19)
m=0
where ~ is the discount factor and r; is the instantaneous
reward at time .

In Q-learning, Q7 (st,a) is defined as the action-value
function, which quantifies the expected discounted future sum
reward that can be obtained by taking action a, in state sy and
following policy 7 thereafter. Q values are updated as

Q7 (st,a1) = Q7 (s¢, ar) + alr + ymax Q" (sg11,a')) (20)

where s is the next state and « is the learning rate.

We assume that the agent selects the actions based on the
e-greedy method. In this scheme, the agent chooses the action
with the largest Q™ (s, a:) value with probability 1 — € and
selects an action randomly with probability e.

Classical tabular Q-learning stores Q values in a Q-table,
and functions well with small state and action spaces. As
the size of the state space or the number of available actions
increases, deep Q-learning starts to outperform the tabular Q-
learning. In deep Q-learning, a deep Q network (DQN) is used



to map the state-action pairs to the corresponding Q-values.
Parameters 6™ of the DQN are updated by minimizing the
following loss function L via experience replay and back-
propagation:

L(O™) = (Q"(se, ar) — (re + ymax Q" (se41,a')))*.

In this work, we employ DRL with multiple agents. Specif-
ically, it is assumed that there exist N agents or equivalently
N DQNs in the radar system, and each is assigned to tracking
one of the IV targets. Each DQN autonomously selects its
action ay based on its current state si'. The DQN parameters
of agent n are denoted as 6™".

2y

B. Proposed CDRL Framework

1) State: State sy denotes the current state of agent n at
time ¢, which consists of partial observations of the underlying
MDP. In this work, si' is defined as

(22)

n __ . . 7
Sy = [Ccn,t—ly Yn,t—1>Tnt—15Yn,t—1, dn,t—la dt—l]

where Ty ¢—1, Yn,t—1, Tn,t—1 and Y, 1 are the posterior
estimated location and velocity of target n in the previous
time slot ¢ — 1 (estimated using the radar returns and ex-
tended Kalman filter (EKF) as described in Section II-C).

dpi—1 = /ol , 1 +yp, ; is the estimated distance from
- iem dit—1 .
radar to target n. d;_; = % is the average of the

estimated distances of the other N — 1 targets. With the last
term d;_1, agent n has access to limited knowledge on the
other targets.

2) Action: Based on the current state si', each agent selects
an action ay. aj is defined as the dwell time 7;* selected by
agent n in time slot ¢. The possible values of the dwell time
are within the range 7;* € (0, Tp]. This range is quantized to
L levels and hence the size of the action space is L.

3) Reward: Given the value of \;, the reward function r;
is defined as

N N n
Tt:_zc?(ﬁn)_/\t (Zfo_

n=1 n=1

@maz> (23)

where c}(7}") is the tracking cost of target n in time slot .

The reward r; is shared among all N agents located at
the radar and hence the agents collaboratively maximize this
global objective function.

The value of )\; is critical and an arbitrary value may lead
to a sub-optimal solution for the optimization problem. In the
remainder of this section, we introduce how to simultaneously
learn the DQN parameters 6™" and the time-varying dual
variable \;.

C. Online CDRL Algorithm

The proposed CDRL algorithm can be divided into two
parts: update of the DQNs {#™"}N_, and update of the dual

n=1
variable )\;. The structure of the algorithm is depicted in Fig.
1.
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Fig. 1. CDRL Framework

1) Update of the DONs: At the beginning of time slot ¢,
agent n will have access to its current state si', which consists
of the posterior estimates obtained in the previous time slot.
Each agent (for any n) then selects its action ay* based on si!
using its DQN, i.e. a? = 7" (s?), where 7%"" denotes the
DQN with the parameters §7". Once agent n selects an action,
the cost ¢}’ (/') and the next state s{!, ; can be calculated with
the EKF as discussed in Section II.

A¢ 1s a constant during the entire time slot ¢ and it will only
be updated at the end of the time slot. Given \;, the reward
function r; is defined as in (23) and the experience tuple (sg,
ay, 7¢, Sgq) Will be stored into the experience replay buffer
for training the DQN.

The procedures are the same for all the N agents. By
setting the reward function as (23), the agents will learn to
collaboratively maximize the discounted reward r;:

max

0 N
{67} N Z ’Ym l - Z c?—i—m(Ttn-&-m)

n=1m=0 n=1
al Tﬁ&-m

230 T Omas | |- @4
n=1

From the perspective of agent n, solving the optimization
problem in (24) is equivalent to updating its DQN parameters
by minimizing the loss function (21)

07 = 00" —nep L(O7)

(25)

where 7 denotes the learning rate of the DQN parameters.
(25) can be handled via the method of experience replay and
backpropagation in the DRL algorithm.

2) Update of the Dual Variable: At the end of time slot
t, each agent has determined its action ay = 7;* with the
assistance of its DQN. We denote the objective function in
(18) as L. Then, \; is updated by minimizing £ over A, i.e.

)\t+1 = max(O, )\t — N/ )\, C)

> Lo (26)
= max | 0, >\t+OéZ’Ym Z Tfem(n"
0

m=0 n=1

where « is the learning rate of the dual variable. The gradient
WV, L can be estimated with an additional neural network but



we simplify instead as

N n
Apy1 = max (o, A+« (Z % — @mw>> @
0

n=1

Note that the dual variable )\; increases when the total
budget exceeds the threshold, which further increases the
violation penalty added to 7;. On the other hand, if the
total budget is always below the threshold, A\; will keep
decreasing to zero and problem (17) becomes an unconstrained
optimization problem. The value of \; varies along with the
evolving dynamic environment. Details of the proposed CDRL
framework can be found in Algorithm 1 below.

The proposed CDRL algorithm iteratively determined the
DQN parameters and the dual variable (6, ;). From the
proofs in [14] and also in Chapter 6 of [25], the iterative
method of solving (6, A;) can be seen as a multi-timescale
stochastic approximation process and converges to a fixed
point (65, A}).

Algorithm 1 Online CDRL Algorithm

1: Initialize DQNs parameters {6
ues.

2: Initialize states {s§})_, as zero vectors and \; as ).

3: for time slot t = 0,1, ..., T}, do

4. for each agent n =1,2,..., N do

N

+—, with random val-

5: Select an action ay* based on the current state si* with
its DQN 6" and e-greedy method.
6: Obtain c}'(7/') and s{, ; with the measurements z{
via extended Kalman filter.
end for

Compute reward r; according to (23).
for each agent n =1,2,..., N do

10: Store the experience (s{', a;, T¢, Sty 1) to its own
DQN experience buffer.

11: Update 67" to 6/} with experience replay and back-
propagation.

12:  end for

N
13: )\t+1 = maX(O, At - O[(anl %
14: end for

- emam))-

Algorithm 1 is performed in an online manner. For a
multi-target tracking problem in a radar system, each agent
can only obtain one training data (sg, a¢, 74, Sgyq) every
time slot since the cost c(7/') and the estimations s}, ;
cannot be generated without the measurements zy. Training
a neural network usually requires a large quantity of data.
DQN algorithm performs experience replay on the memory
buffer and reuses the past data to alleviate this issue. However,
challenges arise when dealing with a fast-varying environment
such as in the multi-target tracking problem in which all the
targets keep moving in a given area. In such cases, it is desired
to perform sufficiently many updates of the DQNs in a short
period of time for adapting to the fast-varying environment.
On the other hand, too many updates over a small amount of
training data will lead to overfitting and hence degrade the
performance.

In the next section, we develop an offline CDRL framework
to address this difficulty by generating virtual training data to
stabilize the training of DQNs.

V. OFFLINE AND HYBRID CONSTRAINED DEEP
REINFORCEMENT LEARNING FOR MULTI-TARGET
TRACKING

It is challenging to get access to enough training data in the
multi-target tracking problem. In the online CDRL algorithm
introduced in the previous section, each training data (sg, ax,
¢, Sgyq) for agent m requires a set of measurements zy =
[r,07]7 of target n in time slot . One can acquire more
data by decreasing the revisit interval 7g, but that renders the
tracking tasks more costly.

In this section, we propose an offline CDRL framework in
which a virtual future of the environment is generated based
on the current estimates and hence more training data can be
obtained without taking real measurements.

Fig. 2 and Fig. 3 depict the workflow of the online
and the offline CDRL algorithms, respectively. Note that in
offline CDRL, the agent in between two consecutive real
measurements is further is updated by the generated virtual
measurements as depicted by the upper branch in Fig. 3. How
frequently the agent is updated via virtual measurements is
controlled by the switch S. In offline CDRL, switch is always
closed. Hence, virtual measurements are generated and updates
are done in between each consecutive real measurements. If
the switch is on only periodically (to reduce the computational
complexity), we have hybrid CDRL as will described in more
detail towards the end of the section.

In this section, we focus on the following variables that
are critical to the learning algorithm: states {sP}_,, their
corresponding covariance matrices {P:‘lt}ﬁzl and the dual
variable );. After receiving the measurements zj', online
CDRL algorithm will perform the updates and compute the
reward 7, as shown in Fig. 2.
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Fig. 2. Block diagram of online CDRL

A. Generation of Virtual Future

For obtaining more training data, we generate multiple
episodes of virtual future within the environment and the
horizon of each episode is H. Subsequently, the CDRL frame-
work will be trained on this generated environment instead of
the real one, in an offline manner. Note that the goal is to
prepare the DQN well enough before employing it in the real
environment.
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Fig. 3. Block diagram of offline/hybrid CDRL

The Virtual future is generated after obtaining {sP}_,,
{Ptlt n—1> A+ and before receiving the upcoming measure-
ments z;'. The upper path in Fig. 3 demonstrates one possible
episode of the virtual future. Each episode starts from the same
copy of the current {sP}V_ | {P:‘lt}ﬁ;l and )\; and evolves
until the horizon H is reached.

For agent n, each episode can be expressed as a trajectory
of experience (s, a;, 1, {11, Giy1> Tip1s - Styp) and
hence H training data can be obtained from one episode of
the generated future.

B. Generation of Virtual Measurements

Different from the real measurements which are obtained
based on the actual locations of the targets, virtual measure-
ments of target n are generated based on the estimates (z,, ¢—1,
Yn,t—1 Tn,t—1, Yn,t—1) In s, which is the estimated location
and velocity of target n in the previous time slot. Current
location of target n can then be estimated as

(T 5Yni) = @nt—1 + ToTnt—1,Ynt—1 + ToUnt—1) (28)

where z7, , and yy, , denote the estimated coordinates of target
n. And the virtual measurement zy™ can be generated based

on ( n,t7yn,t) as

* T
nx __ 2 2 —1 yn,t nx
Zy = [\/ Thy +tYpy, tan (9:* )] + Vi

n,t

(29)

where vi* is the measurement noise of the virtual mea-
surements, which is determined by both the action a; and

the estimated distance d;, , = x;‘mz +y,*m2. The virtual
measurements will be generated every step during an episode
of the generated virtual future.

Algorithm 2 illustrates how to generate an episode of virtual
future at time t. Variables denoted with * will only occur
during the episodes of virtual future. It can be seen from the
algorithm that each of the episodes starts from the same state

%
{‘f 1}., 1
{Pf+l\l+l}u"1
A1

N,

Algorithm 2 Generating Virtual Future
1: Set {sp* 1Ly = {sP 1l {Pt\t n=1 =

)\t.

for horizon h = 0,1, ..., H do

3:  for each agent n =1,2,..., N do

4: Select an action ay'y, based on the current state i}y,
with its DQN and e-greedy method.

5: Obtain the cost c}'f, (7%, ) and the next state g}, |
with the virtual measurements z}, via extended
Kalman filter.

{Pt|t}n 1> >‘ =

»

6: end for

7. Compute reward r;, , according to (23).

8:  for each agent n =1,2,..., N do

9: Store the experience (s{‘jﬁh, a§+h, r;‘+h, s{‘jh+1) to
its own DQN experience buffer.

10: Update its DQN with experience replay and back-
propagation.

11:  end for

120 Ay = max(0, Ay — (3200 T — Omas)-

13: end for

of the system and evolves in the virtual environment with the
virtual measurements.

Algorithm 3 Offline CDRL Algorithm

: Initialize DQNs parameters {6"
ues.

—, with random val-

2: Initialize states {s§})_, as zero vectors and \; as \g.

3: for time slot t = 0,1, ..., T}q. do

4:  for episode e = 0,1, ..., Epq, do

5: Call the function Generating Virtual Future.

6: end for

7. for each agent n =1,2,..., N do

8: Select an action a}* based on the current state sy with
its DQN.

9: Obtain c}'(7;") and si,; with the measurements z?

via extended Kalman filter.
10:  end for
11: end for

12: A1 = max(0, A —a(XN_, % -

@max))-

The proposed offline CDRL framework is summarized in
Algorithm 3. In each time slot, the DQNs will first be trained
with E,,,, episodes of generated future as shown in steps 4
through 6. Then, the DQNs will be used for the actual decision
making, as shown in steps 7 through 10. The strength of offline
CDRL is that it generates more training data without taking
real measurements, which helps to improve the performance
of CDRL in a fast-varying environment. However, employing
CDRL in a purely offline manner can also become problem-
atic. It is worth noting that the virtual future is generated based
on the estimated current state of the targets and some prior
knowledge of the environment, such as the reference values
of the measurement and maneuverability noise variance. In
practice, these values can vary depending on the changes in



the environment. For instance, the variance of measurement
noise can increase when the corresponding target moves into
a region, for instance, with poor weather conditions. In such
cases, utilizing online data/observation becomes critical for
adapting to the change in the environment.

Considering this, we propose a hybrid CDRL framework
which combines online and offline CDRL, where offline
CDRL is performed periodically every Tigine time slots and
online CDRL is performed in the remainder of the time. The
workflow of offline/hybrid CDRL algorithm is depicted in
Fig. 3, where the switch S, as described before, controls the
generation of the virtual future. For purely offline CDRL, the
switch in Fig. 3 is always closed and the virtual future is
generated in between each consecutive real measurements.
For hybrid CDRL, the switch is closed every Tosine time
slots to reduce the computational burden. When the switch
is closed, the DQN is updated to a newer version with the
virtual data generated with the upper branch in Fig. 3 and
CDRL* will copy the updated version of the DQN. In this way,
the experience replay buffer is a mixture of both the online
and offline training data. The offline component provides more
training data to the algorithm while the online learning enables
the algorithm to adapt to the dynamic environment.

VI. SIMULATION RESULTS

A. Simulation Setup

TABLE 1
SIMULATION PARAMETERS
02 (m?) 100
o5 (rad?) 4e-4
ow ((m/s*)?) 25
Reference distance o (m) 5000
Reference dwell time 79 (s) 1
Revisit interval Ty (s) 1
Number of episodes of virtual future Epmax 10
Length of each episode H 10
Period of Performing offline CDRL Torr (s) 50
DRL discount factor y 0.9
DRL mini-batch size 16
Exploring probability e 0.05
Initial dual variable (\g) 1000
Step size of dual variable («) 2000

The parameters of the simulations are listed in Table I. We
assume that the reference variances of the measurement noise
and the maneuverability noise are the same for all the targets,
and they are denoted as 0'7%’0, 0370 and o2, respectively.

In the DQN structure, there is a feed-forward layer with
50 neurons, followed by a dueling network consisting of an
advantage layer and a value layer with 10 neurons in each.
Additionally, there is an input layer for taking states as the
input and an output layer for outputting the Q values of the

actions. The learning rates of DQNs are set to be 0.005 for
offline CDRL and 0.01 for online CDRL.

The size of the experience replay buffer is selected to be
300. We avoid using a large buffer since previous data can
easily become outdated in a fast-varying environment. In this
section, the simulation results are obtained by averaging 5 runs
on each test case.
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B. Test Case I

We assume that the targets are moving in a 2-D region.
The trajectories of the targets in Test Case I, along with the
EKF estimations, are depicted in Fig. 4. In this first case,
the initial position and horizontal and vertical velocities of
Target 1 are (Tp=1,¢=0,Yn=1,1=0) = (—3000m,5000m) and
(#n=1,t=0, Yn=1,1.=0) = (bm/s,0m/s) respectively. Every
500 seconds, Target 1 reduces its horizontal (z-axis) velocity
by 1m/s and reduces its vertical (y-axis) velocity by 0.4m/s.
Target 2 starts from (—13000m,—10000m) and it has the



horizontal and vertical velocities of (5m/s,0m/s). At t =
4000s, Target 1 will change its velocity to (—2m/s,0m/s)
and Target 2 will stop moving. At ¢ = 5000s, there is
a third target joining the environment. Target 3 starts from
(2000m, —2000m) and moves with the horizontal and vertical
velocities of (0m/s,—3m/s). Fig. 5 plots the distance to
radar for each target. Initially, we set the budget constraint as
Omar = 1. After t = 3000s, the budget constraint is reduced
to 0.8.

Estimated trajectories by EKF are also plotted in Fig. 4.
We note that the estimations are more accurate (as indicated
by smaller variations) when the locations of the targets are
closer to the radar. This is expected because the variance of
the measurement noise diminishes as the distance to the radar
decreases, as can be seen in (6).
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Fig. 6. Case I: Budget Allocation with Hybrid CDRL

Fig. 6 depicts the moving average of the budget allocation
strategy learned by hybrid CDRL. When the reward function is
defined as in (23), the proposed hybrid CDRL learns a policy
that dynamically allocates the budget to different targets while
aiming to satisfy the constraint. We notice that more budget
(or equivalently larger dwell time) is typically provided for
tracking the target which is further away from the radar. Note
that a larger dwell time 7* will improve the SNR of the
received echo signal and help support the tracking of a target
at a larger distance. For instance, we observe in Fig. 5 that
Target 2’s distance is larger (compared to Target 1’s distance)
and correspondingly Target 2 is allocated larger dwell time as
seen in Fig. 6.

At t = 3000s, the budget constraint is reduced from 1
to 0.8 and the proposed algorithm can handle this change
and quickly learn a new strategy that satisfies the updated
constraint. Indeed, the solid-lined total budget curve deviates
from the horizontal straight line at 1 and approaches the
horizontal straight line at 0.8, which represents the new budget
constraint. This capability of adapting to a new constraint
makes it more flexible for the radar system to allocate the
rest of the budget to other tasks (e.g. scanning and detecting
new targets).

At t = 5000s, Target 3 joins and a new agent with an
initialized DQN is assigned for tracking this target. When

the new target joins, it takes some time for the new agent to
train its DQN and also for the existing agents to adapt to the
new environment. Due to this, a slight violation of the budget
constraint can be observed in Fig. 6 around ¢ = 5000s, but
the agents can eventually learn a new strategy that achieves
close to the budget constraint despite the increased number
of agents, which demonstrates the adaptive capability of the
proposed hybrid CDRL framework. We further observe by
comparing Figs. 5 and 6 that Target 3 moves away from the
radar and as a result, the budget allocated to tracking Target
3 increases over time.
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The total budget is constrained via the dual variable \; and
moving average of the dual variable is plotted in Fig. 7. A\,
increases when there is a violation of the budget constraint
and decreases when the constraint is satisfied. \; is updated
throughout the entire algorithm, and a fixed value of \; will
lead to a sub-optimal solution. As an example, we arbitrarily
set the dual variable to a fixed value of 150000 and the
corresponding budget allocation can be seen in Fig. 8. We
observe that the total budget is underutilized before ¢ = 7000s
because the selected dual variable is larger than the optimal



value during this time. After ¢ = 7000s, the budget constraint
of 0.8 is significantly violated. Therefore, it is critical to learn
the optimal value of the dual variable throughout the entire
process.
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Fig. 9. Case I: Budget Allocation with Online CDRL

Next, we perform an experiment with online CDRL in the
same test case and the learned budget allocation strategy is
depicted in Fig. 9. Online CDRL demonstrates a relatively
strong performance when dealing with a simple task before
approximately ¢ = 3000s. Overall, online CDRL can learn
to allocate more budget to a target with a larger distance but
it is difficult for online CDRL to constrain the total budget
at the thresholds when the task becomes more complex (e.g.,
when the budget constraint is reduced and the third target is
generated). For instance, we notice that the online CDRL agent
initially attempts to satisfy the budget constraint of 0.8, as seen
in the diminishing trend of the solid-lined curve in Fig. 9.
However, around the time Target 3 joins, there is a substantial
violation of this budget. A reason for this observation is that
online CDRL does not obtain enough training data from the
environment and hence fails to achieve performance as stable
as that of hybrid CDRL.
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Fig. 10 compares the total cost achieved by different al-
gorithms. The total cost is defined as the total error variance
in estimating the locations of the targets, i.e., it is the sum
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of the tracking costs defined in (14) summed up over all
targets. Overall, hybrid CDRL achieves high performance with
consistently lower cost compared to the benchmarks (only
fully offline CDRL achieves lower cost as discussed in detail
below). It takes a longer time for online CDRL to converge
compared to hybrid CDRL, which can be observed in the fig-
ure before t = 1000s. Subsequently, online CDRL can achieve
a performance comparable to that of hybrid CDRL before
t = 3000s. Later, as the budget constraint is reduced and the
new target joins in, online CDRL experiences performance
degradation in handling the more complex task, and achieves
a performance with a higher total cost. The simulation results
indicate that the offline CDRL component is highly critical in
providing training data to support the learning algorithm.

In Fig. 10, we also show the results when we employ
CDRL in a fully offline manner (7,gpine = 1), which achieves
the optimal performance among all the algorithms. This is
expected since offline CDRL generates a series of training
data every time the radar receives a reflected radar echo signal.
Such an abundance of training data helps the learning process
of the proposed CDRL algorithm. However, offline CDRL
can significantly increase the computational complexity of
the algorithm. Besides, in Test Case II below, we see that
offline CDRL fails to make the necessary adaptations to the
changes in the environment due to the lack of sensing the
actual environment via the reward mechanism.

We consider two other benchmarks, equal allocation and
random allocation. It can be immediately noticed in Fig. 10
that equally allocating the available budget to each target is
not efficient in most of the scenarios. It achieves a comparable
performance to online CDRL after ¢ = 7000s since equal
allocation is desired in this specific case in which the targets
have similar distances to the radar. Finally, random allocation
demonstrates a performance similar to equal allocation. This is
due to the fact that in each decision epoch, a random allocation
is decided, and over a period of time, averaging occurs leading
to results akin to equal allocation.

C. Test Case II

In the second test case, we consider a scenario with two tar-
gets. Target 1 starts from the location (—3000m, 5000m) and
the initial horizontal and vertical velocities are (7m/s,0m/s).
Every 500 seconds, Target 1 reduces its horizontal veloc-
ity by 1m/s and reduces its vertical velocity by 0.4m/s.
Target 2 starts from (—13000m,—10000m) with velocities
(5m/s,3m/s). The true trajectories along with the estimated
trajectories are plotted in Fig. 11.

As depicted in Fig. 11, we assume that there is a (rectan-
gular) hazardous region in which the performance of tracking
a target is negatively impacted, e.g., due to extremely poor
weather conditions. Hence, a minimum budget is required for
receiving reliable measurements of the targets in this region.

We further assume that the online CDRL algorithm can
sense this negative impact on target tracking via a flag named
“DANGER”. Specifically, if a target moves into the hazardous
area and the budget assigned to this target is below the
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minimum requirement O ganger = 0.6, “DANGER” will be set
to 1 and a large penalty Pyanger = 4 X 10® will be added to the
cost of the corresponding target. Otherwise, DANGER = 0
and there will be no additional penalty.

Fig. 12 shows the distances of the two targets to the radar.
Target 2 moves into the hazardous region at ¢ = 1600s and
leaves at ¢ = 2500s, which can be seen in both Fig. 11 and
Fig. 12. It is desired to find a strategy that can allocate the
minimum required budget to the target in the hazardous zone.

The budget allocation strategy learned by hybrid CDRL is
shown in Fig. 13. Overall, hybrid CDRL is able to constrain
the total budget close to the threshold ©.,x = 1. Before
t = 1600s, the proposed algorithm learns a strategy to allocate
more budget to the detection of a distant target, which is
similar to Test Case I. When Target 2 moves into the hazardous
region at around ¢ = 1600s, hybrid CDRL can sense the
change in the environment with its online learning component
and continue to allocate more budget (above Oganger) to Target
2 despite the fact that Target 1 has a larger distance to the
radar during this time period. After Target 2 leaves the region
at ¢ = 2500s, hybrid CDRL can adapt to this change and
allocate budgets based on the distances of the targets.
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Offline CDRL learns a strategy merely based on training
data in the virtual environment, which is generated based
on the initial knowledge of the environment. We test offline
CDRL in Test Case II, and its performance on budget alloca-
tion is shown in Fig. 14. It can be seen that agents in offline
CDRL tend to allocate budgets based on distances, similar to
the strategy in Test Case I. However, it cannot adapt to the
change in the environment due to the lack of sensing of the
real environment.

The budget allocation strategy of online CDRL in Test Case
Il is illustrated in Fig. 15. We see that employing CDRL in a
purely online manner does not lead to strong performance with
respect to constraining the total budget. Besides, this approach
leads to the learning of an undesired strategy after ¢ = 2500s,
when Target 2 leaves the hazardous region. Specifically, after
leaving this region, Target 2 has a smaller distance to the radar
and should be allocated smaller budget. However, we notice
in Fig. 15 that the online CDRL agent keeps allocating more
time to the tracking of Target 2.

Costs of different algorithms in Test Case II are compared
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in Fig. 16. Before Target 2 moves into the hazardous region at
t = 1600s, offline CDRL demonstrates the best performance
among all the algorithms. The reason is that the initial knowl-
edge of the environment does not change up to this time and
hence the additional training data generated by offline CDRL
is reliable and can help the learning process. Hybrid CDRL
outperforms online CDRL before ¢ = 1600s again due to the
extra training data generated in the offline part.

Within the duration when Target 2 is in the hazardous
region, i.e. between ¢ = 1600s and ¢ = 2500s, both online
CDRL and hybrid CDRL are able to sense the change in the
environment via the online reward and achieve the optimal
performance among all the algorithms. We notice that the cost
of offline CDRL dramatically increases when the environment
changes because offline CDRL is trained in the virtual envi-
ronment and does not sense the actual environment via online
reward.

When there is no target in the hazardous region, we observe
similar performance levels achieved by equal allocation and
random allocation. Equal allocation and random allocation
can also achieve similar performance compared to that of the
learning algorithms after around ¢ = 2800s. One reason for
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this is that the two targets have similar distances to the radar
and hence equal allocation is desired during this time.

D. Test Case Il

In the previous two test cases, all the targets are assumed to
have the same features, i.e., they have the same variances for
the measurement noise and the maneuverability noise. This
assumption is made for validating the effectiveness of the
proposed framework. In particular, our aim has been to analyze
whether the CDRL agent can adapt to varying target distances
and environment properties, and learn effective resource al-
location policies. However, in practice, the targets can have
different maneuvers, and different levels of measurement noise
can be experienced for different targets due to e.g., weather
conditions, different environmental settings.

TABLE II
TARGETS’ PROPERTIES FOR CASE III
Target 1 || Target 2
oro (m?) 2500 9
00 (rad®) le-2 4e-4
ow (m/s%)?) 2500 9

In order to address these scenarios, we consider Case III,
which is similar to Case II but the targets have different ma-
neuverability and measurement noise variances. The properties
of the two targets are listed in Table II. In this section, we com-
pare the proposed algorithm with two additional benchmarks:

« Distance-based time allocation: Under the budget con-

straint, the dwell time allocated to Target ¢ is proportional
to its estimated distance to the radar.

o Policy rollout: An offline time allocation algorithm pro-

posed in [7], which assumes that the properties of the
targets are known beforehand.
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Fig. 17. Case III: Cost Comparison

Comparison of the performance of the proposed hybrid
CDRL with those of distance-based and policy rollout resource
allocation strategies is provided in Fig. 17, which plots the



total tracking costs. Same as in Case II, Target 2 is within
the hazardous region between t = 1600s and t = 2500s.
Comparing the proposed hybrid CDRL with the distance-based
approach, it can be seen that the distance-based approach is not
preferred in Case III because a target can have a low tracking
cost even when it is far from the radar (due to having lower
noise variances). Note that this is different from the previous
two cases where the targets have the same noise variances and
the distance is the dominant factor in the cost function.

Policy rollout is an offline algorithm that has full prior
knowledge of the environment and it performs an exhaustive
search considering every feasible action and computes the
corresponding cost based on the prior knowledge. Then, the
action with the lowest cost is selected. According to Fig.
17, policy rollout achieves the best performance when the
environment stays the same, matching its prior knowledge.
However, when there is a target moving in the hazardous
region (from ¢t = 1600s to ¢ = 2500s) and an unexpected
penalty is given, the policy rollout algorithm is not able to
sense this sudden change in the environment and achieves a
degraded performance compared to the proposed hybrid CDRL
algorithm.

E. Hybrid CDRL with a Single DON

Heretofore, the proposed hybrid CDRL algorithm has been
implemented in a multi-agent manner, i.e., there are N DQNss,
each of which is assigned to tracking one of the IV targets.
However, the proposed approach can also be implemented
with a single DQN to provide scalability in the algorithm and
lower the computational complexity. In this subsection, we
demonstrate this by implementing hybrid CDRL with a single
DQN and evaluating its performance in Test Case II.

Specifically, due to the fact that the state and the action
spaces for different targets are the same, all N agents can share
a single DQN. At time ¢, different from the implementation
with multiple DQNSs, each agent determines its action with the
shared DQN. The experience {sP,ay,rs,sp 1} A, is stored
into the experience replay buffer of the shared DQN, and we
perform N updates for the shared DQN. In the experiments
with a single DQN, we choose the mini-batch size as 32.

Fig. 18 compares different implementations of hybrid
CDRL in Test Case II in terms of the tracking cost. We
first notice that hybrid CDRL with multiple DQNs achieves
the lowest cost and hence the best performance. Expectedly,
training and utilizing a separate DQN for each target provides
an improved performance. Using a single DQN to decide on
the resource allocation for tracking multiple targets leads to a
slight increase in the cost but this can be preferred if reducing
the computational complexity is critical. In the implementation
with a single DQN, we also vary the size of the replay buffer to
identify its impact. We observe that as the buffer size increases,
the performance degrades when both targets are outside of
the hazardous region. This can be attributed to the fact that
larger replay buffer would include outdated experience in
a highly dynamic environment, negatively influencing the
decision making at the DQN. When a target is in the hazardous

13

x10°

Multiple DQNs
One DQN, buffer size=300
One DQN, buffer size=1000

One DQN, buffer size=1500

= Equal Allocation
\ = Random Allocation

I I I I
2000 2500 3000 3500

Time (s)

I I I
500 1000 1500 4000

Fig. 18. Cost Comparison Between Multiple DQNs and Single DQN

region, we again note (similarly as in Fig. 16) that equal
and random allocation strategies perform especially poorly. In
this more challenging environment, performance with a single
DQN is significantly better than equal and random allocation
schemes while still achieving a cost higher than that of the
multi-DQN model. We also observe that having the larger
buffer size of 1500 initially leads to smaller cost between
t = 1500 and ¢ = 2000 compared to having the buffer size of
300 and 1000.

Overall, we conclude that implementing the proposed algo-
rithm with a single DQN is feasible but it can lead to an
increase in the tracking cost, while decreasing the compu-
tational complexity compared to the implementation with [NV
DQNs. The tradeoff between tracking accuracy and computa-
tional complexity can be addressed by choosing between the
implementation with multiple DQNs and that with a single
DQN.

VII. CONCLUSIONS

In this work, we have proposed a novel hybrid constrained
deep reinforcement learning (hybrid CDRL) framework to
address resource allocation in multi-target radar tracking under
budget constraints. In particular, we have utilized EKF for
target tracking and addressed effective radar time manage-
ment via hybrid CDRL with the goal to minimize the total
tracking cost (and hence maximize the total target tracking
accuracy). The proposed hybrid CDRL includes both online
and offline learning. Offline CDRL generates training data
in a virtual environment to support the algorithm in a fast-
varying environment and online CDRL can sense the changes
in the environment via the online reward mechanism. With
the developed framework, we have shown that dynamic and
efficient radar resource allocation can be achieved via hybrid
CDRL. More specifically, simulation results show that both
online and offline components are essential in the proposed
hybrid CDRL framework. In Test Case I, performance of the
online CDRL is not as stable as hybrid CDRL due to the



lack of sufficient training data. In Test Case II, performance
of the offline CDRL fails to handle the sudden change in
the environment since it does not involve a mechanism to
incorporate the feedback from the real environment. The
combination of both online and offline CDRL, i.e., hybrid
CDRL, demonstrates strong performance in both cases and can
achieve a stable performance while adapting to the dynamic
environment. We have also compared the implementation of
the proposed framework with multiple DQNs and a single
DQN. Numerical results show that the proposed algorithm
with a single DQN can result in slightly higher tracking
costs compared to the setting of multiple DQNs. However,
the computational complexity is reduced significantly.
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