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Abstract—Federated learning (FL) is a framework which
allows multiple users to jointly train a global machine learning
(ML) model by transmitting only model updates under the
coordination of a parameter server, while being able to keep
their datasets local. One key motivation of such distributed
frameworks is to provide privacy guarantees to the users.
However, preserving the users’ datasets locally is shown to
be not sufficient for privacy. Several differential privacy (DP)
mechanisms have been proposed to provide provable privacy
guarantees by introducing randomness into the framework, and
majority of these mechanisms rely on injecting additive noise. FL
frameworks also face the challenge of communication efficiency,
especially as machine learning models grow in complexity and
size. Quantization is a commonly utilized method, reducing the
communication cost by transmitting compressed representation
of the underlying information. Although there have been several
studies on DP and quantization in FL, the potential contribution
of the quantization method alone in providing privacy guarantees
has not been extensively analyzed yet. We in this paper present a
novel stochastic quantization method, utilizing a mixed geometric
distribution to introduce the randomness needed to provide DP,
without any additive noise. We provide convergence analysis for
our framework and empirically study its performance.

Index Terms—Federated learning, differential privacy, quanti-
zation.

I. INTRODUCTION

The growing prevalence of machine learning (ML) appli-
cations underscores the critical need for a vast and diverse
corpus of training data. Conventional centralized ML models,
while effective, necessitate the central storage and process-
ing of data, which raises significant privacy concerns and
presents formidable challenges when dealing with devices and
sensors equipped with limited data transmission capabilities
and resources. In response to the above-mentioned challenges,
federated learning (FL) has been intensively studied recently,
as an approach where machine learning (ML) models of
different users are jointly trained without requiring the sharing
of the raw local data [1] [2]. Specifically, FL supports a
distributed ML framework in which each user trains its own
local ML model under the coordination of a central server, that
combines the local models by requiring the users to transmit
only their model updates. With the users’ datasets remaining
local, FL avoids the heavy communication cost and privacy
leakage of transmitting entire datasets.

As mentioned above, one of the key motivations of FL
structure is to reduce the communication cost. However, as

modern ML applications start involving larger models, even
transmitting only the model update at high precision can lay
a heavy burden on communication resources, especially for
edge devices whose transmission capabilities are often limited.
This has led to quantization being widely used to overcome
this challenge in FL. In particular, the updates from the users
are first quantized into an efficient representation before the
transmission [3] [4].

In addition to being a more communication-efficient
scheme, another key motivation behind FL is that it alleviates
privacy concerns to a degree by requiring only local processing
of user data. However, while FL facilitates the users’ data
to remain decentralized at the users’ local devices, this is
not necessarily sufficient to ensure complete privacy. Recent
studies have shown that by analyzing the model updates that
get transmitted through the air [5] or just the final model
itself [6] [7], privacy leakage can occur. Differential privacy
(DP) [8] is almost a de-facto mechanism used for privacy
guarantees in ML applications. DP provides privacy guarantees
in FL systems by introducing random perturbation to the
transmitted model update, thus introducing randomness and
perturbation to conceal the sensitive information about user
data. DP mechanism has already been implemented in many
real world applications [9] [10] [11].

We note that quantization methods lead to a certain amount
of distortion in the information that the transmitted model
updates were able to encode. Since DP methods ensure privacy
by introducing random perturbation, the next question follows
naturally: If a quantization method is stochastic, would the
quantization process itself be able to provide provable DP
guarantee? Our work is primarily motivated by this question.

A. Related Work

There exist studies that jointly consider reducing communi-
cation cost by quantization and providing DP guarantees. For
instance, the authors in [12] propose applying the binomial
mechanism with quantization to achieve both communication
efficiency and differential privacy, with an improved analy-
sis showing better utility for the binomial mechanism. [13]
efficiently discretizes and flattens the model updates from
the users and adds discrete Gaussian noise. However, these
mechanisms still rely heavily on additional noise injection to
achieve differential privacy.



The authors in [14] introduce a novel mechanism where the
model update information is first encoded into a parameter of
a binomial distribution, and the mechanism generates samples
from the distribution, without the need of additive noise.
[15] also considers utilizing ternary quantization for privacy.
However, their analysis applies to ternary quantization only
and the DP guarantee they achieve is determined by the l-
infinity norm of the model update.

B. Contributions

In this paper, we propose a novel randomized quantization
method that provides DP guarantees for multiple configu-
rations of the quantization method without relying on any
additional noise injection. The main contributions of this paper
are summarized as follows:

• We propose a novel stochastic scalar quantization method
QMGeo that utilizes the geometric distribution and no
other additional noise to achieve ϵ-DP, and we provide a
Rényi DP analysis as well.

• We provide privacy analysis for the QMGeo method,
when applied to scalar and vector models.

• We provide the optimality gap analysis to show how the
FL framework converges.

II. FEDERATED LEARNING PROTOCOL

We first discuss an FL system with N clients and a parame-
ter server (PS). The goal of such an FL system is to minimize
a loss function F (w) with regard to the model parameter
w ∈ Rd. We denote the dataset that user m possesses as Bn,
and define B as the total number of samples in the system,
i.e., B =

∑N
n=1 |Bn| . We denote the user loss function

as Fn = 1
|Bn|

∑
u∈Bn

f(w,u), where u corresponds to one
particular sample from the dataset Bn. Thus, the total loss
function is given as follows:

F (w) =
N∑

n=1

|Bn|
B

Fn(w). (1)

An iterative approach is considered to minimize the above
loss function. The PS first broadcasts the global model param-
eter wt to all the users. The users apply a uniform sampling
to acquire the mini batch used for training with a sampling
rate κ = b(n)

|Bn| , while bt(n) is the set of samples with size bn
drawn from the dataset Bn in iteration t.

The user n acquires the gradient as

gt(n) = ∇Fn(wt, bt(n)). (2)

In addition, an element-wise clipping is applied to each
element of the gradient gt(n), where each element is clipped
to be within the range of [−Wmax,Wmax]:

ḡt(n) = clip(gt(n)). (3)

The clipped gradient ḡt(n) is then quantized by a quantizer
Q(·). The quantized vector ∆wt(n) = Q(ḡn(t)) is uploaded

to the PS, which then aggregates all model updates from n
users and update accordingly with a learning rate η:

wt+1 = wt − η
N∑

n=1

∆wn(t). (4)

The updated global model parameter wt+1 is then broad-
casted to all the users before the next iteration.

III. QMGEO: QUANTIZATION METHOD WITH MIXED
GEOMETRIC DISTRIBUTION

In this section we propose a stochastic scalar quantization
method using a truncated mixed geometric distribution for
the stochasticity. The quantization method considered is a
scalar quantizer, quantizing the input scalar values, required
to be limited within range {w|w ∈ [−Wmax,Wmax]}, into
R quantization levels. The quantizer is parameterized by the
number of quantization levels R and the parameter p for the
geometric distributions used to generate the mixed geometric
distribution. We define the quantizer as QMGeo(·) : {w|w ∈
[−Wmax,Wmax]} → {Bin(0), Bin(1), . . . , Bin(R− 1)}.

For each entry in the vector to be quantized, there would
be a clipping threshold Wmax, limiting the value of the cor-
responding entry w to be within range [−Wmax,Wmax]. Then,
for each integer r ∈ [0, R), let a bin Bin(r) represent the
corresponding value for the r-th quantization level, such that
the bins evenly span the range [−Wmax,Wmax], where

Bin(r) = −Wmax +
2rWmax

R− 1
. (5)

QMGeo(w) takes a scalar w as input and outputs
a value from the set of quantization levels
{Bin(0), Bin(1), . . . , Bin(r), . . . , Bin(R− 1)} as the
quantized output. The output value, i.e., the chosen
quantization level Bin(r), is sampled from a mixed
truncated geometric distribution determined by the value of
the input scalar w.

In the following part of this section, we first introduce the
truncated geometric distribution, and then discuss how the
truncated mixed geometric distribution is determined.

A. Truncated Geometric Distribution

The truncated geometric distribution is essentially a geomet-
ric distribution but supported only between the range of two
truncation points {x|x ∈ Z, x ∈ [a, b− 1]}, where a and b are
the left and right truncation points. In this paper, we consider
only one right truncation, and thus the distribution is supported
on {x|x ∈ Z, x ∈ [1, b− 1]}. As in [16], the probability mass
function of a truncated geometric distribution TGeo with a
success probability p, a failure probability of q = 1− p and a
truncation point b is

Pr{XTGeo = k} = p(1− p)k−1 · 1

1− (1− p)b−1
. (6)

The mean and variance for the truncated geometric distribution
TGeo are

E(XTGeo) =
1− bqb−1 + (b− 1)qb

p(1− qb−1)
, (7)



Fig. 1. How QMGeo(·) quantizes a scalar input value w is demonstrated in
this figure. The dotted line shows the probability of the input value w being
quantized to the corresponding quantization level. As shown in the figure,
each quantization level is assigned with a non-zero probability. The larger p
is, the more skewed the distribution becomes.

σ2
TGeo =

(1 + q2b)q − qb(1 + q2)b2 + qb+1(b2 − 1)

(1− q)2(1− qb)2
. (8)

B. Mixed Truncated Geometric Distribution

We define a w centered mixed truncated geometric distri-
bution as follows:

XMTGeo =

{
Bin (r − (XTGeo1 − 1)) w.p. pmix

Bin (r +XTGeo2) otherwise
(9)

where pmix = Bin(r+1)−w
Bin(r+1)−Bin(r) , and XTGeo1 and XTGeo2 are

random variables sampled from two different truncated geo-
metric distributions, TGeo1(p) and TGeo2(p). The mixture
probability is determined by the distance from w to Bin(r)
and Bin(r + 1) respectively, where Bin(r) and Bin(r + 1)
are the neighboring quantization levels to w.

Since both the input and the output of the quantization
scheme has a range of [−Wmax,Wmax], we are forced to
use truncated geometric distributions to sample the decided
quantization level. Thus, X ∼ TGeo1(p) is supported only
on {1, 2, . . . , r + 1} and X ∼ TGeo2(p) is supported only
on {1, 2, . . . , R − r − 1}. We obtain the truncated geomet-
ric distributions by normalizing the probability mass on the
support back to 1, where the geometric distribution itself is
parameterized by the success probability p:

Pr{XTGeo1 = k} = p(1− p)k−1 · 1

1− (1− p)r+1
, (10)

Pr{XTGeo2 = k} = p(1− p)k−1 · 1

1− (1− p)R−r−1
. (11)

The mixed geometric distribution assigns non-zero proba-
bilities to every quantization level, providing the randomness
needed to achieve differential privacy. We control the shape
of the distribution with parameter p. In particular, the larger
p is, the more skewed the distribution becomes, focusing the
probability mass to neighboring quantization levels, thus less
variance introduced by the QMGeo(·) mechanism, as demon-
strated in Fig 1.

IV. DIFFERENTIAL PRIVACY ANALYSIS FOR QMGEO

We first give the following definitions regarding DP [8].
ϵ - differential privacy: For any two adjacent datasets

D,D
′ ∈ D, and any output set of S ⊂ R with domain

D and range R, and randomized mechanism M : D → R

that satisfies (ϵ, δ) - differential privacy, the following property
must hold:

Pr[M(D) ∈ S] ≤ eϵPr[M(D
′
) ∈ S]. (12)

We note that more commonly, DP mechanism use the
concept of (ϵ, δ)-DP, where δ is essentially a relaxation term
that allows some arbitrarily small probability for the DP
mechanism to fail.
(α, ϵ)-Rényi Differential Privacy (RDP): For any two

adjacent datasets D,D
′ ∈ D, and any output set of S ⊂ R

with domain D and range R, and randomized mechanism
M : D → R that satisfies (α, ϵ)-RDP, the following must
hold:

Dα

(
PM(D)||PM(D′ )

)
≤ ϵ, (13)

where Dα

(
PM(D)||PM(D′ )

)
is the Rényi divergence, given

by

Dα(P ||Q) =
1

α− 1
logEx∼Q

[(
P (x)

Q(x)

)α]
. (14)

We first establish the guarantee that a scalar stochastic k-
level quantization provides as a comparison. We next establish
the per-element differential privacy the scalar QMGeo method
provides in Section IV-B. We then extend the analysis to the
differential privacy guarantee when applied to a model update
vector.

A. Differential privacy of the stochastic k-level quantization

The stochastic k-level quantization is a quantization method
that randomly assigns the value w to neighboring quantization
levels, where the probability is determined by the distance
from w to its neighboring quantization levels. The stochastic
k-level quantization, similar to the QMGeo(·), requires the
input scalar values to be limited within some range {w|w ∈
[−Wmax,Wmax]} and the bins evenly span the range:

Bin(r) = −Wmax +
2rWmax

R− 1
. (15)

The quantization is done as follows:

Q(w) =

{
Bin (r + 1) w.p. w−Bin(r)

Bin(r+1)−Bin(r)

Bin (r) otherwise.
(16)

For number of quantization levels larger than 3, the stochas-
tic k-level quantization faces a difficulty providing DP, as it
could only quantize values to their neighboring quantization
levels. When analysing the DP performance, it is obvious
that if g and g

′
do not lie in neighboring intervals, there

will always be a choice of v that achieves the worst case
rendering one of the probability terms to 0 and nonzero for
the other. For instance, when v is a neighboring quantization
level v = Bin(r) to g but not for g

′
, g will be quantized

to v with a non-zero probability pmix, while g
′

will never
be quantized to v. In this case, ϵ cannot be bounded. An
example is provided in Fig 2, where the intuition is that,
since the quantization method quantizes to only neighboring



Fig. 2. This figure illustrates an example of the stochastic k-level quantization
failing to provide DP. The solid orange and blue lines are the possible output
quantization levels for g and g

′
respectively. It is obvious that, by observing

the output of the quantization, any adversary could distinguish betwen g and
g
′
. Any grey dotted lines are quantization levels that lies neither in the range

of Q(g) or Q(g
′
), thus any of them being chosen as v would render the ϵ

unbounded.

quantization levels, there is not enough randomness to achieve
DP for a number of quantization levels larger than 3:

eϵPr[Q(g
′
) = v] ≥ Pr[Q(g) = v] (17)
eϵ × 0 ≥ pmix. (18)

However, for ternary quantization, such method could provide
DP guarantees to some extent [15].

B. Differential privacy of the scalar QMGeo method

1) ϵ-DP: We first consider the ϵ-DP analysis. In our
case, the considered randomized mechanism is essentially the
quantization method that determines the vectors sent from the
users’ devices. Thus, we consider the following inequality:

Pr[QMGeo(g) = v] ≤ eϵPr[QMGeo(g
′
) = v]. (19)

(19) should hold for any v, where g and g
′

are entries of
gradients acquired from arbitrary neighboring datasets of a
particular user. We note that the worst case scenario occurs
when v is either Bin(0) or Bin(R − 1), g and g

′
are

equal to Bin(0) and Bin(R − 1) respectively. Without loss
of generality, we assume v = Bin(0), g = Bin(0) and
g

′
= Bin(R − 1). Substituting the values in (19) with the

probability mass of the mixed truncated geometric distribution,
we obtain

eϵ ≥ Pr[QMGeo(g) = v]

Pr[QMGeo(g
′) = v]

(20)

eϵ ≥
1
2

1
2p(1− p)R−2 1

1−(1−p)R−1

(21)

ϵ ≥ − ln p(1− p)R−2 + ln (1− (1− p)R−1)

= −(ln p+ (R− 2) ln (1− p)) + ln (1− (1− p)R−1).

We demonstrate the trade-off between the achieved DP level
ϵ and the parameters of the QMGeo(·) i.e., the number of
quantization levels r and the success probability p of the mixed
truncated geometric distribution. Fig 3 demonstrates how the
achieved DP level ϵ changes as the parameter p of QQMGeo(·)
changes for fixed numbers of quantization levels. ϵ increases
rapidly as p approaches 1, where at p = 1, the QQMGeo(·)
reduces to a conventional stochastic r-level quantization which
could not achieve DP except for when quantizing to 3 levels

Fig. 3. ϵ-DP as a function of the parameter p of QQMGeo(·), the success rate
of the mixed truncated geometric distribution. Each curve displayed in this
figure corresponds to a different number of quantization levels.

or less. As shown in (20), ϵ increases linearly with the number
of quantization levels R.

2) (α, ϵ)-RDP: With the quasi-convex property of the
Rényi divergence, we can show that the worst case scenario
is attained by the extremal points where two input elements
each sit at Bin(0) and Bin(R − 1), where the two discrete
distributions are essentially a standard truncated geometric
distribution X and a slightly altered one, X

′
= −X +R+1,

sharing the same parameter of success rate p and supported
on the same set of quantization levels. We then substitute
parameters R, p from the QMGeo(·) into (13) and obtain

Dα

(
PM(D)||PM(D′ )

)
≤ Dα (PX ||PX′ ) (22)

=
1

α− 1
log

{
1

2

(1− qR−1)α−1

(qRp)α−1
+

1

2
(pqR−1 1

1− qR−1
)α

(23)

+
pq−2α+(1−α)R+1

2(1− qR−1)
· q

4α−2(1− q(2α−1)(R−2))

1− q4α−2

}
where q = 1− p. Thus, we have

ϵ(α) ≥ 1

α− 1
log

{
1

2

(1− qR−1)α−1

(qRp)α−1
+

1

2
(pqR−1 1

1− qR−1
)α

(24)

+
pq−2α+(1−α)R+1

2(1− qR−1)
· q

4α−2(1− q(2α−1)(R−2))

1− q4α−2

}
.

Fig 4 plots the ϵ(α) curve obtained with a QMGeo(·) with
R = 8 and p = 0.5.

C. Differential privacy for multidimensional QMGeo

1) ϵ-DP: For any individual agent’s gradient, we apply
the scalar QQMGeo(·) to every element in the gradient. The
entire privacy mechanism can be viewed as a function of
multiple QQMGeo(·) mechanisms. Thus, for a gradient vector
g = (g1, g2, ..., gd) the final quantized model update is
(QQMGeo(g1), QQMGeo(g2), ..., QQMGeo(gd)).

Considering the privacy amplification theorem [17] and the
random sampling in Section II, according to the sequential



Fig. 4. Plot of ϵ(α) vs. α. The y-axis is the achieved ϵ, and the x-axis is
the corresponding α. The curve is obtained with a QMGeo(·) with R = 8
p = 0.5.

composition theorem of DP, the overall DP guarantee we
obtain for the model update vector with dimension d and
sampling rate κ is

ϵ ≥ dκ(−(ln p+ (R− 2) ln (1− p)) + ln (1− (1− p)R−1)).
(25)

2) (α, ϵ)-RDP: Similarly, RDP shows a composition of
the same pattern [18]. From [19], for α ≤ 2, the RDP
enjoys ϵsampled(α) = O(κ2ϵ(α)), where κ is the sampling rate.
Applying to (24), we have

ϵ(α) ≥κ2d
1

α− 1
× (26)

log

{
1

2

(1− qR−1)α−1

(qRp)α−1
+

1

2
(pqR−1 1

1− qR−1
)α

+
pq−2α+(1−α)R+1

2(1− qR−1)
· q

4α−2(1− q(2α−1)(R−2))

1− q4α−2

}
.

V. OPTIMALITY GAP

We next characterize how the perturbation introduced by
the randomized quantization method impacts the convergence
performance by characterizing the optimality gap between
F (wT ) (the loss value achieved at global iteration T ) and
F ∗, the optimal loss value.

We introduce two assumptions for this purpose.

a) Assumption 1: L-smoothness is assumed for the loss
function F .

b) Assumption 2: (Polyak-Lojosiewicz Inequality) We
assume that the loss function F (w) satisfies the Polyak-
Lojosiewicz (PL) condition:

1

2
∥∇F (w)∥2 ≥ µ[F (w)− F ∗]. (27)

We abuse the notation of QMGeo(gt) a bit in this section to
represent the operation of applying scalar QMGeo(·) to every
element in the vector. We define δt = QMGeo(gt)−∇F (wt),
to characterize the perturbation introduced by the randomized

quantization. Following the first steps of [20] and taking δt
into account, we have

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) (28)

+
L

2
∥wt+1 −wt∥2

≤ F (wt)−∇F (wt)
T η(∇F (wt) + δt)

+ η2
L

2
∥∇F (wt) + δt∥2

F (wt+1) ≤ F (w)− η(1− ηL

2
)∥∇F (wt)

T ∥2 (29)

+ η2
L

2
∥δt∥2

+ η(−1 + ηL)∇F (wt)
T δt.

From (29), we substract F ∗ from both sides, which gives us

F (wt+1)− F ∗ (30)

≤ F (wt)− F ∗ − η(1− ηL

2
)∥∇F (wt)

T ∥2

+ η2
L

2
∥δt∥2 + η(−1 + ηL)∇F (wt)

T δt.

We next apply the PL condition to (30), which leads to

F (wt+1)− F ∗ (31)

≤ (1− 2µη(1− ηL

2
))(F (wt)− F ∗) + η2

L

2
∥δt∥2

+ η(−1 + ηL)∇F (wt)
T δt.

For simplicity, let

X = 1− 2µη(1− ηL

2
) (32)

Y = η2
L

2
∥δt∥2 (33)

Z = η(−1 + ηL)∇F (wt)
T δt. (34)

Applying (31) iteratively gives us

F (wtot)− F ∗ ≤ Xtot(F (w0)− F ∗) +
tot−1∑
a=1

(Y + Z)Xtot−a−1.

(35)

We note that for a fixed choice of parameters of QMGeo(·),
it is obvious that the term δt is bounded in norm. Thus, (35)
indicates that with a correct choice of parameters, convergence
is guaranteed for the framework.

VI. NUMERICAL RESULTS

The following results are obtained on MNIST dataset (10
class handwritten digit dataset) with a total of 60000 samples.
The dataset is distributed as follows: 90% of the data are
randomly split into 5 users, and 10% of the data are reserved
at the PS for evaluation. The FL framework trains a multi-
layer perceptron with one hidden layer of 32 nodes. We
first perform principal component analysis on the dataset and
reduce the dimensionality of the input data to 100 to speed up



Fig. 5. The two solid line curves displayed in this figure correspond to
p = 0.5 and p = 0.9 in QQMGeo(·) respectively, with the number of
quantization levels R = 8. The dotted curve is the baseline curve where
we do not apply any quantization. The y-axis shows the accuracy obtained
at the global model using the hold-out test set, while the x-axis shows the
number of communication rounds. The ϵ labeled in the legend is acquired
using (26), fixing α = 2.

the computation. The dimension of the model update vector
is d = 3562.

We set batch size to 64 to achieve a sub-sampling rate of
κ = 0.005333, learning rate η to 0.04 and apply a clipping
threshold of 0.05 to each element in the gradient vector.

We use (26) to calculate the ϵ(α) per round achieved
by the QQMGeo(·) method. Fig 5 demonstrates the accuracy
comparison between setting p = 0.9 and p = 0.5, when the
number of quantization levels is fixed at R = 8. The dotted
line is a baseline case in which no quantization is performed.
All curves approach a similar accuracy level, indicating that
quantization does not result in performance degradation in
terms of accuracy at least in the considered setup. In terms of
privacy guarantees, using QQMGeo(·) with p = 0.9 and R = 8
achieves ϵ = 1.807 per round, and QQMGeo(·) with p = 0.5
and R = 8 achieves ϵ = 0.564 per round.

Fig 6 demonstrates the accuracy comparison between setting
R = 16 and R = 8 for fixed parameter p = 0.9. Using
QQMGeo(·) with p = 0.9 and R = 16 achieves ϵ = 3.673 per
round, while QQMGeo(·) with p = 0.9 and R = 8 leads to
ϵ = 1.807 per round.

VII. CONCLUSIONS

In this paper, we have presented a novel stochastic quanti-
zation method QQMGeo(·), that utilizes a mixture of truncated
geometric distributions to provide randomness for differential
privacy. While reducing communication cost through quanti-
zation, we also achieve ϵ-DP without the need of any additive
noise. In particular, we have provided a privacy analysis for
QQMGeo(·) both in terms of ϵ-DP and RDP, and demonstrated
that certain differential privacy levels can be achieved via
properly designed stochastic quantization. We have further
conducted an optimality gap analysis that mathematically char-
acterizes the convergence performance of the FL framework.

Fig. 6. The two curves displayed in this figure correspond to R = 16 and
R = 8 in QQMGeo(·) respectively, with the parameter of success rate p = 0.9.
The y-axis shows the accuracy obtained at the global model using the hold-out
test set, while the x-axis shows the number of communication rounds. The ϵ
labeled in the legend is acquired using (26), fixing α = 2.
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