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Guaranteed Encapsulation of Targets with Unknown

Motion by a Minimalist Robotic Swarm
Himani Sinhmar, Hadas Kress-Gazit

AbstractÐWe present a decentralized control algorithm for
a robotic swarm given the task of encapsulating static and
moving targets in a bounded unknown environment. We consider
minimalist robots without memory, explicit communication, or lo-
calization information. The state-of-the-art approaches generally
assume that the robots in the swarm are able to detect the relative
position of neighboring robots and targets in order to provide
convergence guarantees. In this work, we propose a novel control
law for the guaranteed encapsulation of static and moving targets
while avoiding all collisions, when the robots do not know the
exact relative location of any robot or target in the environment.
We make use of the Lyapunov stability theory to prove the
convergence of our control algorithm and provide bounds on
the ratio between the target and robot speeds. Furthermore, our
proposed approach is able to provide stochastic guarantees under
the bounds that we determine on task parameters for scenarios
where a target moves faster than a robot. Finally, we present
an analysis of how the emergent behavior changes with different
parameters of the task and noisy sensor readings.

Index TermsÐCollision avoidance, Decentralized control, Min-
imalist robot swarm, Lyapunov stability, Target tracking

I. INTRODUCTION

TYPICAL approaches to swarm robotics propose simple

local behaviors for large numbers of simple robots such

that they collectively accomplish a complex task; many ap-

proaches study the properties of the emergent behavior [1]±[3].

In this work, we consider a swarm consisting of homogeneous

robots which are minimalist; they have no memory, cannot

broadcast or receive location information from their neighbors

and are unable to plan ahead. Minimalistic robotic swarms [4],

[5] have a number of applications, ranging from nanomedicine

to underwater monitoring and surveillance [6], [7], where

robots might not be able to efficiently communicate with a

central controller or with each other, and might not have

the ability to self localize. For example, in an underwater

mission, communication may be limited to acoustic signals,

which are sensitive to interference and lead to errors in the

relative positioning of nearby entities. Similarly, in nano-

medicine applications a swarm of micro-robots may be re-

quired to search, encapsulate and destroy tumors by following

a chemical gradient [8].

In this paper, we focus on the problem of encapsulating

multiple targets, which are moving in unknown motion

patterns, by a minimalist robotic swarm. A robot in the

swarm has no knowledge of the exact relative location of

nearby robots, targets, or the boundary of the environment.
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This work extends our previous work on encapsulating static

targets [5] by addressing moving targets. We develop an

orbiting behavior for robots to encapsulate the targets, in

addition to the searching for targets and avoiding collisions

within the swarm, as in [5]. We compare the efficiency of

our previous algorithm with the one introduced in this paper.

Furthermore, we also show the behavior of our algorithm

when applied to non-circular robots.

Related Work: There has been extensive work on developing

various techniques to localize and track a moving target

while ensuring collision avoidance [9]±[14]. In [15], authors

introduced a motion planning strategy for a single robot based

on velocity pursuit to intercept a target moving with unknown

maneuvers. For target tracking using a multi-robot system,

most approaches use artificial potential fields to design a

controller consisting of a virtual attraction force to move

towards a target and a repulsion force to avoid collision with

obstacles [16]. Another widely used approach to guarantee

collision avoidance with dynamic obstacles is using a limit

cycle method [17]. The authors of [18] introduced a hybrid

approach where they instead used the limit cycle method to

encircle a moving target using a swarm of holonomic robots,

and artificial potential fields for collision avoidance. Since the

use of the limit cycle method, either for surrounding a target or

avoiding collision with obstacles requires the exact knowledge

of the neighbor’s relative position information, we cannot use

it for our minimalist robotic swarm.

Pursuit-evasion games [19]±[21] provide guarantees for

catching a faster-moving evader by constructing an encircling

formation of pursuers composed of a series of Apollonius

circles around a target and slowly closing the escape paths

of the evader. In this approach, an evader is captured if a

pursuer meets the evader at the same point at the same time.

Most of the pursuit-evasion methods in the literature assume

knowledge of the target’s motion model. In this work, we do

not assume such knowledge.

Existing research [22] in ªhuntingº of dynamic targets

generally makes use of communication within the team and

formation-keeping control strategies, while approaching the

target, to ensure that all of the escaping routes of the targets

are occupied by the robots. Work in [23] developed a leader-

follower strategy based on the behavior of wolves to hunt

a randomly moving target with unexpected behaviors. The

authors of [24] proposed a limit cycle based algorithm using

a neural oscillator to surround a target moving with unknown

but constant velocity. The authors of [25] utilized rule-based

mechanisms using only relative positions of neighbors and no

direct communication within the swarm for surrounding an
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escaping target by introducing a circulating behavior in the

swarm.

Recent research in colloidal swarms has shown the capture

of multiple randomly moving targets using self-organization

control schemes. In [26], the authors designed a stochastic

centralized controller for an intelligent colloidal micro-robotic

swarm to capture multiple Brownian targets in a maze. In

[27], the authors show via simulations, the feedback-controlled

reconfigurability of colloidal particles that act as a swarm

capable of capturing and transporting microscopic Brownian

cargo.

To implement a distributed approach of searching and

encircling targets in an inexpensive and efficient way, in

[28] the authors developed a new dual-rotating proximity

sensor to obtain relative position information of neighbors for

tracking multiple targets with a minimalist swarm. Authors

of [29] proposed a scheme to estimate the global quantities

required by the controller in a decentralized way using only

local information exchange between robots for the guaranteed

encirclement of a 2D or 3D target.

While the above approaches successfully solve the target

encirclement while avoiding collisions, most of them rely

on the assumption that robots have knowledge of the exact

relative location of both their neighbors and the target.

Furthermore, it is a common assumption that the average

speed of the agents in the swarm is greater than that of the

moving target to guarantee encapsulation [30]. In contrast,

in this work, we provide guarantees on the encapsulation of

dynamic targets without the requirement of accurate (relative)

location information and without direct communication within

the swarm.

Contributions: This paper’s contributions are: (i) a discrete-

time decentralized control law for a minimalist robotic swarm

that guarantees the encapsulation of dynamic targets, for

different target motion models, without accurate detection

of the relative location of either the targets or neighboring

robots, given certain bounds are met (ii) sensor-placement

dependent bounds on the ratio between the target and robot

speeds to guarantee encapsulation, (iii) proof of stochastic

convergence of our control law for scenarios when a target is

moving faster than a robot, and (iv) simulations and analysis

of emergent behavior of the swarm in the presence of sensor

noise and different task parameters.

II. DEFINITIONS

In this section, we provide definitions from [5] that we use

throughout.

Environment: We consider a 2D bounded environment

E ⊆ R
2. The environment has a fixed global frame I.

Robot: We model a robot, R = (cr, γr, rr, p, Z), as a disk

of radius rr centered at cr ∈ E with heading γr ∈ S. The

shape of a robot does not affect the analysis presented in the

paper since the robot can always be circumscribed by a circle

of radius rr. The kinematics of a robot is given by Eq. (1),

which is a typical model for a differential drive robot. At each

time step T, the robot is controlled in a turn-then-move scheme

with control inputs θr ∈ S and dr ∈ R
+. The maximum step-

size of a robot is dmax
r .

γr,T = γr,T−1 + θr

cr,T = cr,T−1 + dr[cosγr,T sinγr,T ] (1)

Each robot is reactive, memoryless, has no knowledge of

the relative locations of other robots or targets, and cannot

communicate with its neighbors. A robot has p isotropic

sensors arranged on its boundary such that ϕk ∀k ∈ {1 · · · p}
is the angle between the kth sensor and the robot’s heading

direction. Z is the set of measurements from all sensors on a

robot.

Signal Sources and Sensors: We consider three types of

signal-emitting sources present in the environment that a robot

can detect: sg from a point source at the center of a target,

sr from a point source at the center of a robot, and se from

a line source present on the entire environment boundary. For

clarity in notation, we hereby denote the signal set {sg, sr, se}
by {g, r, e}.

The strength of any signal s ∈ {g, r, e} located at a distance

d from a signal source is given by the function Bs(d). The

influence distance of a source is limited to βs, such that

Bs(d) = 0 ∀d ≥ βs. Let Nk
s be the set of all the sources

of type s in the sensing range of the kth sensor and dkj be the

distance of this sensor from a source j ∈ Nk
s . Then the sensor

reading zks =
∑

j∈Nk
s
Bs(d

k
j ) is the sum of signal strengths

from all sources in Nk
s . This summation becomes an integral

over the boundary segment for a line source present inside the

influence region βe.

The tuple (zkg , z
k
r , z

k
e ) corresponds to the measurements of

the kth sensor. Let Zg = {z1g · · · z
p
g}, Zr = {z1r · · · z

p
r} and

Ze = {z1e · · · z
p
e}, then the measurement set is Z = Zg ∪

Zr ∪ Ze. We define rsafes ∀s ∈ {g, r, e} as the user-specified

minimum safety distance that a robot must maintain from a

source at all times.

The isotropic source-sensor model in this paper is inspired

by sensing constraints ranging from LED-photodiode imple-

mentations in multi-robotic systems [31] to nanomedicine

applications where LC-based microscopic sensors can be used

for guiding chemotaxis [32] to source localization in radioac-

tive nuclear plants [33].

III. PROBLEM FORMULATION

We model a target g = (cg, rg) as a disk of radius rg
centered at cg ∈ E. G is the set of all targets contained in

E. The kinematics of a target is given in Eq. (2). At any time

step T , dg ∈ R
+ and θg ∈ S are the distance moved and angle

turned by the target, and γg,T ∈ S is the target heading.

γg,T = γg,T−1 + θg

cg,T = cg,T−1 + dg[cosγg,T sinγg,T ] (2)

The maximum distance that a target can move in a time step

is limited to dmax
g .
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Target Motion Models: In this paper, we design controllers

and analyze the swarm behavior for different types of target

motion models. A target can exhibit one of the following

motions:

1) Target moves randomly such that at any time step T ,

γg,T ∈ [0 2π), dg ∈ [0 dmax
g ] and cg,T ∈ E.

2) Target moves randomly as in motion model 1 until a

robot is in its escape domain = (cg, r
escape
g ) of radius

rescapeg centered at cg , in which case the target chooses a

heading direction to escape from all the robots that sat-

isfies ∥cg,T − cr,T ∥ ≤ rescapeg , and moves the maximum

step-size dg .

3) Target follows an unknown motion pattern until a robot

satisfies ∥cg,T − cr,T ∥ ≤ rescapeg , in which case it

chooses a heading direction to escape nearby robots.

Target Encapsulation: For each target g ∈ G, we define an

encapsulation ring Ag,T = (cg,T , r
safe
g , rencapg ) of inner radius

rsafeg and outer radius rencapg centered at cg,T . A robot R is

considered to be in Ag,T if, rsafeg < ∥cr,T − cg,T ∥ ≤ rencapg .

A target is encapsulated if the total number of robots present

in the encapsulation ring is ng , which is a user-specified

input as shown in Fig. 1.

Fig. 1: A target is encapsulated if ng robots are present

simultaneously in the encapsulation ring while maintaining at

least a distance of rsafer from each other.

Problem statement: Consider a bounded environment E ⊆
R

2 with m dynamic targets where the initial distribution of

the robots and targets is arbitrary. Given the total number of

sensors p on a robot, the user-provided safe distance rsafes

∀s ∈ {g, r, e}, the encapsulation ring Ag , and the number

of robots ng needed to encapsulate each target g such that

the total number of robots n ≥
∑

g∈G ng , our objective is to

find a real-time decentralized control law for encapsulating all

targets while ensuring safety distances are always maintained.

We make the following assumptions about the environment

and the system:

Assumption 1. The sensors are arranged on a robot such

that when a robot’s center is rsafes away from a source s,
at least one sensor is in the influence region of the source.

For ease of exposition, we consider circular robots with a

symmetric placement of sensors to explain our algorithm, and

show in simulations how asymmetric sensor placements and

non-circular robots affect swarm behavior.

Assumption 2. The distance between any two moving targets

is greater than (2βg +2rr). That is, a robot can sense at most

one target at a time.

Assumption 3. We constrain a target to maintain a minimum

distance of (rencapg + rsafee + dmax
r ) from the environment

boundary. This ensures that robots will be able to encapsulate

the target without colliding with the environment boundary.

Assumption 4. We place no restriction on the target’s knowl-

edge of the environment; it may be able to perfectly sense

the relative location of any robot present in its user-specified

escape domain, rescapeg . However, if a target is encapsulated,

we assume it emits a single burst of a shut-off signal and stops

emitting any signal subsequently. The influence distance of this

signal is limited to Ag , and we assume that thereafter both

the robots within the encapsulation ring and the target stop

moving, i.e. dr = 0 and dg = 0, respectively. This assumption

emulates applications in nano-medicine, for example, encap-

sulating and eventually destroying a tumor and applications in

localizing and shutting off a chemical source in plants.

Assumption 5. The signal strength Bs strictly decreases with

the radial distance, d from a source and the inverse of the

signal function Bs(d) exists and is known to the robots.

IV. APPROACH

Our strategy for designing a local control law is based on

geometry and the relative kinematics of the interaction of a

robot with its neighboring robots and a dynamic target. We

extend our previous work [5] where we only considered static

targets; a robot’s behavior there was to either move randomly

in the bounded environment when it does not sense any target,

or to move towards a target if sensing one while ensuring

safety. Here, we introduce an additional robot behavior of

orbital encirclement of a target, inspired by [17]. As we show

in Section V, this behavior ensures the encapsulation of an

escaping target. In Section IV-A we describe virtual sources as

defined in [5] and use them to under-approximate the relative

distance between a source and the robot’s center as a function

of the sensor placement. In Section IV-B we find the bounds

on control parameters (dr and θr) for a robot to ensure that

it maintains rsafes distance from a source s ∈ {g, r, e}. In

Section IV-C we introduce the concept of orbital encirclement

of a moving target; we provide a summary of the overall

reactive control law for a robot in the swarm in Section IV-D.

A. Virtual Source

Since we assume a robot is equipped with isotropic sensors,

a sensor measurement corresponds to the aggregated signal

strength from all the nearby sources. Hence, the same mea-

surement could correspond to a single source nearby or a

cluster of sources further away. Therefore, for each sensor

reading, zks ∀s ∈ {g, r, e}, we define a virtual source on

a circle centered at the sensor k as shown in Fig. 2. It is

shown in [5] that the closest possible location of the virtual
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Fig. 2: Virtual source for the kth sensor [5].

source with respect to the robot’s center is given by Eq. (3).

Furthermore, the range of possible directions of the location of

the virtual source with respect to the robot’s center is restricted

to [ϕk − π/p, ϕk + π/p] for symmetric sensor placement.

ds = rrcos(π/p) +

√
(dks)

2 − r2rsin
2(π/p) (3)

For asymmetric sensor placement, we replace π/p with half of

the maximum angle that the kth sensor makes with either of

its adjacent sensors. Similarly, for robots that are not circular

in shape, we replace rr by the distance between the kth sensor

and the robot’s center in the above equation. We can see in

(3) that as p→ ∞, ds → dks +rr. That is, the error in locating

the source is dependent on the total sensors on a robot.

B. Collision Avoidance

We use the technique introduced in [5] for collision avoid-

ance with nearby robots and the environment boundary. At

each time step, the robot estimates the relative distance be-

tween its center and the nearby sources using Eq. (3) for the

sensor with the maximum sensor reading zks ∀s ∈ {g, r, e}. If

this distance is less than or equal to (rsafes +dmax
s ), the collision

avoidance behavior is triggered for this robot to ensure safety.

We have shown in [5] that to avoid collisions with static

obstacles (such as environment boundary), the robot’s heading

direction θr must be chosen from the angular range given by

Eq. (4).

Θavo
e = [ϕk + π/p+ π/2, ϕk − π/p+ 3π/2] (4)

Whereas to avoid the neighboring moving robots, the distance

dr that a robot moves at time step T in a given heading

direction γr,T must be chosen such that at T + 1 it maintains

at least a distance of rsafer from the closest neighboring robot.

As shown in Fig. 3, let k and l be the indices of the sensors

closest to the intended heading direction γr at time T and dkr
and dlr are their radii of virtual sources respectively such that

dkr > dlr. Then, we can compute the bounds on the step-size

dr that the robot can take in the heading direction γr,T using

Eq. (5).

0 ≤ dr ≤ rrcos(ϕ
l − θr)

+

√
(dlr − rsafer − dmax

r )2 − r2rsin
2(ϕl − θr) (5)

To ensure that two robots never deadlock, the bounds on

the maximum step size a robot can take, and the influence

Fig. 3: Computing dr such that collision is avoided with nearby

moving robots [5].

region of a robot’s source, are given by Eq. (6) and Eq. (7),

respectively. The proof is detailed in Lemma V.3 of [5].

dmax
r <

rsafer + rrcos(π/p)

2

−

√
(rsafer )2 + r2r − 2rrrsafer cos(π/p)

2
(6)

√
(rsafer )2 + r2r − 2rrrsafer cos(π/p) + 2dmax

r < βr

< rsafer + rrcos(π/p) (7)

C. Encirclement of a Target

In [5], our approach to encapsulate a static target, was for a

robot to either move towards the target or move away from an

obstacle between itself and the target in the direction of the

sensor receiving the minimum reading from nearby moving

robots. However, in order to surround a dynamic target, the

behavior of a robot should be such that the swarm is able to

disperse around the target in order to block off its escaping

paths. Since we consider minimalist robots that can neither

communicate with their neighbors nor know their exact relative

position, we can not make use of formation control strategies,

such as [18], [24].

Consider a scenario where all the robots in the swarm start

on one side of a target. Then, for a swarm to disperse around a

target, it is necessary that an individual robot be able to catch

up with the escaping target, and once the robot reaches the

encapsulation ring, it should be able to encircle the target so

that the target is prevented from escaping.

To ensure encapsulation, we define primary and secondary

orbits around each target, as shown in Fig. 4. For each

orbit, we define a tie-breaking orbital rotation which can

be either clockwise (denoted by a value of -1) or counter-

clockwise (denoted by a value of 1). The primary orbit,

Or0 = (cg,T , Or
inner
0 , Orouter0 ,−1) is an annular ring centered

at cg,T with an inner radius of Orinner0 ≥ rsafeg + dmax
g , an

outer radius Orouter0 = rencapg and a clockwise orbital rotation

(chosen arbitrarily). Let w be the width of a secondary orbit,

then an ith secondary orbit is given by, Ori = (cg,T , Or
outer
0 +

(i − 1)w,Orouter0 + (i)w, (−1)i−1), ∀i > 0. We consider a

robot to be in ith orbit if, Orinneri < ∥cg,T − cr,T ∥ ≤ Orouteri .

Each robot in the swarm computes its current orbit using

its estimate of ∥cg,T − cr,T ∥. At time-step T , let Ori be the
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Fig. 4: Primary (purple ring) and secondary (cyan rings)

orbits around a target, and the lower bound on the target’s

escape domain (red circle). A robot moves either clockwise

or counter-clockwise in an orbit depending on its neighbors.

The solid arrows denote the tie-breaking rotation for an orbit.

current orbit as estimated by a robot, then its control consists

of one of the following behaviors:

1) if i > 0, the robot moves towards the target in a

heading direction chosen from the line of sight angular

range as estimated from the virtual source (ΘLOS
g ) while

maintaining a safe distance from nearby robots.

2) else if i > 0 and the robot cannot move a non-zero

distance towards the target, it moves tangentially in its

current orbit while maintaining a safe distance from

nearby robots. The direction of the tangent is chosen

such that it maximizes the possible step-size dr. In case

of symmetry, the robot moves in the orbital rotation of

the ith orbit.

3) else if i > 0 and the robot can neither move in a direc-

tion from ΘLOS
g nor tangential to the orbit, it chooses a

direction of motion that maximizes the possible step-size

dr.

4) else if i = 0, the robot moves tangentially in its current

orbit while maintaining a safe distance from the target.

5) else if the relative distance between the target and a

robot is less than or equal to Orinner0 , it moves away

from the target.

6) else the robot performs a simple random walk while

avoiding nearby moving robots.

In general, a robot moves toward the target until it reaches

the primary orbit. If other robots are present between itself

and the target, the robot moves tangentially in its current orbit

until it can move toward the target. All the robots that place

themselves in the primary orbit constantly move tangentially

and eventually close off the target’s escape routes. The width

of a secondary orbit, w, must be less than βr, so that a robot’s

neighbors in adjacent orbits lie within its sensing range. This

ensures that a robot doesn’t move towards a target when it

senses other robots in the front and instead moves tangentially

in its current orbit. Fig. 5 depicts how robots move in different

orbits around a target, over time, while avoiding nearby robots.

Now, using the sensor readings and their corresponding

virtual sources, we find the set of directions that a robot

needs to choose from to move towards a target, away from

a target, or tangentially in an orbit. Let k be the index of the

sensor such that zkg > zlg, ∀l ̸= k. Here we have ignored

Fig. 5: Motion of robots in different orbits over four consecu-

tive time-steps. Dotted grey robots denote the location of the

robots in the previous time step.

the unlikely scenario where two sensors receive the same

maximum intensity from a target. Then the angular range,

ΘLOS
g , for the possible location of the target with respect to

the robot’s center is given by Eq. (8).

ΘLOS
g = [ϕk − π/p, ϕk + π/p] (8)

The angular range, Θavo
g (Eq. (9)), to move away from the

target can be derived in a similar fashion to Eq. (4).

Θavo
g = [ϕk + π/p+ π/2, ϕk − π/p+ 3π/2] (9)

The angular range to move tangentially in an orbit in a

clockwise or counter-clockwise direction is given by Eq.

(10) and Eq. (11), respectively, where we define Θtan
g =

Θtan,+1
g ∪Θtan,−1

g .

Θtan,−1
g = [ϕk − π/p+ π/2, ϕk + π/p+ π/2] (10)

Θtan,+1
g = [ϕk − π/p+ 3π/2, ϕk + π/p+ 3π/2] (11)

Fig. 6 shows the different angular range sets for a target-robot

interaction. It is worth mentioning that for noiseless sensors,

Fig. 6: The angular range set for a target-robot interaction.

The robot is equipped with 5 sensors placed asymmetrically.

if zk−1
g > zk+1

g then ΘLOS
g = [ϕk − π/p, ϕk]. This results
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in a more accurate estimation of the location of a target and

reduces the angular resolution error by half. The estimation of

Θtan
g and Θavo

g also changes accordingly.

As shown in our previous work [5], a heading direction

in the angular ranges ΘLOS
g and Θavo

g is guaranteed to make

a robot move towards the target and away from the target,

respectively. In contrast, a robot might end up moving towards

or away from the target when it moves tangentially in an orbit.

Since secondary orbits are at least at a distance of Orouter0

from a target, a robot moving tangentially in these orbits will

always maintain a safe distance from the target. However, if

a robot is moving tangentially in the primary orbit, we need

to make sure that it maintains at least a distance of Orinner0

from the target after moving dr units in the intended heading

direction γr,T such that θr ∈ Θtan
g .

In Fig. 7, we can see that at T + 1, the closest possible

location of the target is at S∈ I. That is, if the heading

direction θr /∈ ΘLOS
g , the closest possible location of the target

with respect to the robot’s center at T +1 would be along one

of the extremes of the angular range ΘLOS
g . To ensure safety,

Fig. 7: The distance dr that the robot can move in the intended

heading is computed using the geometry of ∆Scr,T cr,T+1

∥cr,T+1 − S∥ ≥ Orinner0 . Using the cosine rule of triangle for

△Scr,T cr,T+1, the bounds on the control parameter dr can be

computed using the quadratic inequality given by Eq. (12) .

d2r − 2dr ∥cr,T − S∥ cos(∠Scr,T cr,T+1)

+ ∥cr,T − S∥2 ≥ (Orinner0 )2 (12)

In the above inequality, ∥cr,T − S∥ is under-approximated by

the robot using the virtual source, as described in Section IV-A.

D. Local Control Law

Algorithm 1 encodes the local reactive control law for

a robot in the swarm that is tasked with searching and

encapsulating targets while avoiding collisions.

The algorithm describes the computation that happened

at each time step T . Each robot in the swarm has: Z±the

tuple of sensor measurements, Bs±the function describing the

signal source strength as a function of radial distance from

s ∈ {g, r, e}, the maximum step-size of a robot dmax
r and

a target dmax
g , the user-specified safety constraints for each

source rsafes , and the set orbits defined by an inner and

outer radius of each orbit.

The control synthesis proceeds as follows: First, the robot

estimates its distance, DistToEnvBound (Section IV-A),

from the environment boundary. If the robot is too close to the

boundary, it computes the allowed set of heading directions,

Algorithm 1: Control algorithm for a robot

Input : Z, Bs, p, dmax
r , dmax

g , rsafes , ∀s ∈ {r, g, e},

orbits Ori≥0

Output: dr, θr
// compute Θavo

e , ΘLOS
g , Θavo

g , Θtan
g ,

currentOrbit

1 if DistToEnvBound≤ rsafee + dmax
r then

2 θr = argmax
θ∈Θavo

e

DistAvoRob(Zr, Br, θ, r
safe
r )

3 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

4 else if max(Zg) = 0 then

5 θr = randsample([0, 2π))
6 dr = DistAvoRob(Zr, Br, θr, r

safe
r )

7 if dr = 0 then

8 k = argmin(Zr)
9 θr = ϕk

10 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

11 else if DistToTar< Orinner0 then

12 θr = argmax
θ∈Θavo

g

DistAvoRob(Zr, Br, θ, r
safe
r )

13 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

14 dreqr =
∥∥DistToTar −Orinner0

∥∥
15 if dr > dreqr then

16 dr = dreqr

17 else if currentOrbit = Or0 then

18 θr = argmax
θ∈Θtan

g

min
(
DistAvoRob(Zr, Br, θ, r

safe
r ),

DistAvoTar (Zg, Bg,Θ
LOS
g , θ)

)

19 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

20 else

21 θr = argmax
θ∈ΘLOS

g

DistAvoRob(Zr, Br, θ, r
safe
r )

22 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

23 if dr = 0 then

24 θr = argmax
θ∈Θtan

g

DistAvoRob(Zr, Br, θ, r
safe
r )

25 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

26 if dr = 0 then

27 k = argmin(Zr)
28 θr = ϕk

29 dr = DistAvoRob(Zr, Br, θr, r
safe
r )

Θavo
e . The direction of motion, θr is then chosen such that

the robot moves away from the boundary with a maximum

possible step size, dr while avoiding nearby robots (lines 1-2).

The function DistAvoRob computes this maximum possible

value of dr from Eq. (5), as described in Section IV-B.

Once the robot is at a safe distance from the boundary,

it then estimates the relative distance DistToTar (Sec-

tion IV-A ) from a target. If no target is sensed the robot

performs a random walk while maintaining a safe distance

from nearby robots (lines 4-10). If, on the other hand, the

robot is inside the influence region of a target, it computes

its current orbit, currentOrbit based on the estimated

DistToTar and the input orbits. If the robot estimates

that the relative distance between itself and the target is less

than Orinner0 , it computes the set of allowed heading direction,
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Θavo
g , and chooses a direction of motion from this set while

maximizing the step size to avoid nearby robots (lines 11-

16). The distance to move away from a target is capped at

dreqr =
∥∥DistToTar−Orinner0

∥∥ (lines 15-16) to ensure that

the robot doesn’t move outside the primary orbit.

If the robot is in the primary orbit (line 17), it moves

tangentially to the orbit Or0 (heading direction chosen from

the computed set Θtan
g ) with a step size dr such that it

maintains a safe distance from the nearby robots and the

target (lines 18-19). The function DistAvoTar computes the

maximum possible value of dr from Eq. (12), as described in

Section IV-C.

When a robot is in a secondary orbit, Ori>0 it chooses

a heading direction from the set ΘLOS
g to move towards the

target while avoiding nearby robots (line 21-22). In case the

robot cannot find a direction of motion to move a non-zero

distance toward the target (line 23), it either moves a non-zero

distance tangentially in its current orbit (lines 24-25) or moves

a safe distance in a heading direction based on the reading

from the sensor receiving the minimum signal strength zkr ,

i.e. the direction where the virtual source corresponding to

other robots is the farthest (lines 26-29).

A robot’s local control, as summarized in Algorithm 1, is

agnostic to the motion type of the targets. This, together with

our convergence guarantees in the following section, implies

that our algorithm guarantees the encapsulation of multiple

targets moving in the bounded environment with different

types of motion models, as described in Section III.

V. CONVERGENCE GUARANTEES

We use the Lyapunov stability theory to provide guarantees

on the emergent behavior of the swarm. In this section, for

clarity, we consider circular robots with noiseless sensors. In

practice, the desired behavior emerges for non-circular robots

as well, which we demonstrate in simulations in Section VI.

Lemma V.1. [34] A disc robot with a non-zero radius

performing a random walk in a bounded 2D environment will

almost surely approach the exploration of the entire area as

time approaches infinity.

Corollary V.1.1. We consider a robot to be in the influence

region of a target at time step T when ∥cg,T − cr,T ∥ < βg+rr.

From Lemma V.1 we can say with a probability of 1 that

a robot performing a random walk will enter the influence

region, βg > rr, of a static target as time goes to infinity. In the

case of a dynamic target, we assume that the influence region

of a target is large enough to ensure that a robot performing

a random walk will enter its influence region within a finite

time.

Lemma V.2. For any arbitrary initial condition such that a

robot is at least rsafeg away from a target, a necessary condition

to ensure a collision-free target’s motion is that the escape

radius of the target, rescapeg ≥ rsafeg + dmax
g and the inner

radius of the primary orbit, Orinner0 ≥ rsafeg + dmax
g

Proof. The lower bound on rescapeg ensures that a target gets

enough margin to escape an approaching robot. As described

in Section IV-C, a robot’s behavior is such that it moves

away from the target if the robot crosses the inner ring,

Orinner0 , of the primary orbit. Hence the above lower bound on

Orinner0 ensures that collision avoidance behavior for a robot

is triggered before the distance between a target and a robot

becomes rsafeg .

Lemma V.3. For any arbitrary initial condition such that a

robot is at least rsafeg away from a target the following are the

necessary conditions to ensure a target’s encapsulation:

1) the outer radius of the encapsulation ring Ag satisfies

rencapg ≥ dmax
r + rr

+
√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p) (13)

2) the number of robots ng specified for encapsulation

satisfies,

ng ≤ n0 =
2π

cos−1

(
1− (βr+rr)2

2(rencapg )2

) (14)

Proof. Each robot’s estimate of the relative distance from

a target depends on the sensor with the maximum reading,

max(Zg). Given that a virtual source is always either closer

or at the radial location of an actual source, it is possible

that even if a robot is present in the primary orbit, the robot

estimates itself to be present at a relative distance of less

than Orinner0 with respect to the target. This will trigger the

collision avoidance behavior for the robot and it will move

away from the target. To successfully encapsulate a target g,

it is required that the outer radius of the encapsulation ring,

rencapg incorporate the robot with the worst possible estimate

of the target’s location. This will ensure that the robot remains

in the primary orbit even after being over-cautious in moving

away from the target.

At each time step, a robot chooses its control parame-

ters such that it maintains at least a distance of Orinner0

from a target, that is, ∥cg,T − cr,T ∥ ≥ Orinner0 . Since

Orinner0 is defined between a robot’s center and the tar-

get, we set ds = Orinner0 in Eq. (3) to obtain dkg =√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p). A robot will start

to move away from the target when max(Zg) ≥ Bg(d
k
g). At

this point, the upper bound on ∥cg,T − cr,T ∥ is given by Eq.

(15). We can see that as p → ∞, ∥cg,T − cr,T ∥ → Orinner0

and for a finite p, collision avoidance behavior is triggered

before the robot is at a distance of Orinner0 from the target.

∥cg,T − cr,T ∥ ≤ rr+
√
(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p)

(15)

For asymmetric sensor placement, we replace π/p with half

of the maximum angle between two adjacent sensors on the

robot.

To incorporate the robot with the worst estimate of a

target’s location, we set a lower bound on the outer radius

of the encapsulation ring using Eq. (15) as rencapg ≥

rr+
√

(Orinner0 )2 + r2r − 2rrOrinner0 cos(π/p). Since the robot

may chatter in the encapsulation ring due to constant attraction

and repulsion from the target and nearby robots, we add dmax
r
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to the lower bound on rencapg (condition 1). This will ensure

that a robot remains in the encapsulation ring when there are

other robots nearby.

Furthermore, the maximum number of robots that can be

specified for target encapsulation (condition 2) is bounded by

the total number of robots that can be physically placed in

the encapsulation ring such that the encapsulating robots are

outside each other’s influence region to ensure no chattering

that can be caused by repulsion from each other. When ng >
n0 a dynamic equilibrium exists around a target such that there

are always almost n0 robots present in the primary orbit [5].

As described in Section III, we consider three types of mo-

tion patterns that a target can exhibit. For each of these target

motion patterns, we provide guarantees for liveness (eventual

encapsulation) based on the Lyapunov stability theory and

stochastic analysis (Lemmas V.4 - V.6).

Lemma V.4. Consider a target g ∈ G moving randomly in the

bounded environment until it senses any robot in its escape

domain (as described by motion model 2 in Section III). If,

1) the maximum step size of the target, dmax
g ≤ λdmax

r

where

λ = min

(
π

2
,

α

sin(π − α)

)
sinφ

φ
cosφ

α = cos−1

(
1−

(βr + rr)
2

2(rescapeg )2

)

φ =
max(ϕk − ϕk+1)

2
, k = {1 · · · p}

= π/p, for symmetric sensor placement

the target g will be encapsulated eventually.

Proof. Consider a target g ∈ G. Let ug =
[dgcos(γg,T + θg) dgsin(γg,T + θg)] and ur =
[drcos(γr,T + θr) drsin(γr,T + θr)] be the control input

of a target and robot respectively at time T , and η be the

total robots currently present in the escape domain of the

target, that satisfy ∥cg,T − cr,T ∥ ≤ rescapeg . As outlined in

Section IV-C, the motion strategy of a robot can be broken

down as follows:

Case I: Robot is in an orbit Ori≥0 such that η = 0
We use the definition of stochastic stability in the sense of

Lyapunov [35] to show that a robot eventually reaches the

primary orbit Or0. Let V = ∥cg,T − cr,T ∥
2

be the candidate

Lyapunov function defined on the the domain Dr ⊆ R
2 such

that ∥cg,T − cr,T ∥ ≥ rencapg . Using Eq. (2) and Eq. (1) we

have, ∆V = ∥(cg,T + ug)− (cr,T + ur)∥
2 − ∥cg,T − cr,T ∥

2
.

For ease of exposition, we will drop the subscript

T in the following analysis. On simplifying,

∆V = ∥ug − ur∥
2
+ 2(cg − cr) · (ug − ur). Fig. 8

depicts the relative kinematics model between the target and

a robot where ω is the angle that the LOS vector, (cg − cr)

makes with the x-axis. Let l̂ = [cosω sinω] be the vector

along (cg − cr) and t̂ = [−sinω cosω] be the vector

tangential to it. Then,

∆V = d2g + d2r − 2ug · ur + 2 ∥cg − cr∥ l̂ · (ug − ur) (16)

Fig. 8: Relative kinematics of a robot-target interaction.

(a) Robot is in a secondary orbit: For this case, a robot would

move towards the target, that is θr ∈ ΘLOS
g given in Eq. (8). If

η = 0, that is, there are no robots in the target’s escape domain,

the target moves randomly. Hence, θg ∈ [0 2π). That is, both

θg and θr are stochastic. Moreover, the control inputs ug and

ur are independent random vectors and their corresponding

expected values are given by,

E[ug] = dgE[cos(γg + θg) sin(γg + θg)]

= dg

[ 2π∫

0

cos(γg + θg)
1

2π
dθg

2π∫

0

sin(γg + θg)
1

2π
dθg

]

= 0 (17)

E[ur] = drE[cos(γr + θr) sin(γr + θr)]

= dr

[ ϕk+
π
p∫

ϕk−
π
p

cos(γr + θr)
1

2π/p
dθr

ϕk+
π
p∫

ϕk−
π
p

sin(γr + θr)
1

2π/p
dθr

]

= dr
sinφ

φ
[cos(γr + ϕk) sin(γr + ϕk)]

= dr
sinφ

φ
û
k
r (18)

where φ = π/p for symmetric sensor placement and û
k
r is

the unit vector in the direction of kth sensor. Intuitively, this

means that on an average the robot moves in the direction of

the kth sensor (receiving maximum intensity from the target)

with a step-size reduced by the factor sinφ/φ. Furthermore, as

p → ∞, E[ur] → drû
k
r . That is, if the robot knows the exact

relative location of the target, it moves towards the target along

the line of sight vector with the maximum possible step size.

Using Eq. (17) and Eq. (18), the expected value of change

in the Lyapunov function (as given by Eq. (16)) between two
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consecutive time steps is,

E[∆V ] = d2g + d2r + 2E
[
∥cg − cr∥ l̂ · (ug − ur)

]

= d2g + d2r + 2 ∥cg − cr∥
(
E[ug]− E[ur]

)
· l̂

= d2g + d2r − 2 ∥cg − cr∥ dr
sinφ

φ
û
k
r · l̂ (19)

The maximum deviation of the unit vector in the direction of

the kth sensor, û
k
r from the LOS vector l̂ is limited to φ = π/p

(refer to Fig. 2), that is û
k
r · l̂ ≥ cosφ. Furthermore, when a

robot is in a secondary orbit ∥cg − cr∥ ≥ rencapg . Substituting

these bounds in Eq. (19) we have,

E[∆V ] ≤ d2g + d2r − 2rencapg dr
sinφ

φ
cosφ

For stability, we require that E[∆V ] ≤ 0. That is

d2r −
(
2rencapg

sinφ

φ
cosφ

)
dr + d2g ≤ 0 (20)

The necessary condition to satisfy the above inequality is that

cosφ > 0. That is, for symmetric sensor placement, the total

number of sensors on a robot must be greater than or equal

to three. For asymmetric sensor placement, this condition is a

design parameter to choose the maximum distance φ between

any two adjacent sensors. The roots of the above quadratic

inequality in dr give us an upper bound on the maximum

step-size of a robot dmax
r which is always larger than the

bound determined in Eq. (6) and hence Eq. (20) is always

satisfied.

(b) Robot is in the primary orbit: Once a robot reaches the

primary orbit, it moves tangentially to the orbit while ensuring

that ∥cg − cr∥ ≥ Orinner0 . To analyze this, we look at how the

LOS vector between a target and robot changes between two

time steps, which is given by ∆(cg−cr) = ug−ur. In Eq. (21)

and Eq. (22) we define uradgr and utangr representing the polar

coordinates corresponding to the radial and tangent component

of the change in LOS vector in global frame I.

uradgr = (ug − ur) · l̂ (21)

utangr = (ug − ur) · t̂ (22)

As explained earlier, to ensure a target’s encirclement, it

is necessary that a robot is able to complete a revolution

around the target in the primary orbit Or0. We evaluate

this stochastically by computing the expected value of the

change in the tangential component of the relative LOS vector,

E[utangr ] = E[ug] · t̂−E[ur] · t̂. For a clockwise orbital rotation,

θr ∈ Θtan,−1
g . Since η = 0 for this case, θg ∈ [0, 2π).

Simplifying and substituting Eq. (17) in the above equation

we have

E[utangr ] = −dr

[ ϕk+
π
p
+π

2∫

ϕk−
π
p
+π

2

cos(γr + θr)
1

2π/p
dθr

ϕk+
π
p
+π

2∫

ϕk−
π
p
+π

2

sin(γr + θr)
1

2π/p
dθr

]
· t̂

= −dr
sinφ

φ
[−sin(γr + ϕk) cos(γr + ϕk)] · t̂

= −dr
sinφ

φ
û
k
r · l̂ (23)

Eq. (23) shows that a robot moves clockwise in the primary

orbit with an expected tangential step-size of dr
sinφ
φ cos(φ)

with respect to the target.

Case II: ∥cg,T − cr,T ∥ ≤ rescapeg

At a timestep T , it is possible that a robot is marginally outside

the escape domain of the target but is unable to move in due

to the presence of a nearby robot at a distance of rsafer .

This behavior could lead to ∥cg,T+1 − cr,T+1∥ < rescapeg ,

resulting in η > 0. The target would then move such that it

can escape from all the robots present in its escape domain.

Let ψg be the angle between a target’s intended heading and

the LOS vector (cg,T −cr,T ), as shown in Fig. 8. If η = 1, then

ψg ∈ [3π/2, π/2]. If η = 2 and α is the angle that these robots

subtend at the center of the target, as shown in Fig. 9, then

ψg ∈ [3π/2 + α, π/2] or ψg ∈ [3π/2, π/2 − α], depending

on which robot ψg is measured with respect to. Without loss

of generality, we can consider one of these. That is, if η > 1,

the available angular range of the target for escaping decreases

from π to (π − (η − 1)α).

To determine α, we use the fact that robots in an orbit

disperse such that, on average, they are outside each other’s

influence region. Then, using geometry shown in Fig. 9,

α = cos−1

(
1− (βr+rr)

2

2(rescape
g )2

)
. Note that, the maximum escaping

angular range of a target is limited to π (when η = 1).

Hence, for η > π/α, the target can no longer escape with

the maximum possible step size. For Case II, we have to

Fig. 9: Geometric configuration for computing bounds on the

ratio between target and robot step-sizes.

ensure that (i) robots implementing tangential control law

in the primary orbit are able to encircle the target, that is

E[utangr ] ≤ 0 if θr ∈ Θtan,−1
g and E[utangr ] ≥ 0 if θr ∈ Θtan,1

g ,

and (ii) robots in secondary orbits are able to move towards

the target, that is E[uradgr ] ≤ 0 for θr ∈ ΘLOS
g .

Using Eq. (22) and the tangential control input (θr ∈
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Θtan,−1
g ) for robots present in Or0 we have,

E[utangr ] = dgE[sinψg]− E[ur] · t̂

= dg

π
2∫

3π
2 +(η−1)α

sinψg
1

π − (η − 1)α
dψg − E[ur] · t̂

= dg
sin((η − 1)α)

(π − (η − 1)α)
− dr

sinφ

φ
û
k
r · l̂

To ensure clockwise orbital rotation, E[utangr ] ≤ 0, that is,

max
η≤π/α

(
dg

sin((η − 1)α)

(π − (η − 1)α)

)
≤ min

ûk
r ·̂l≥cosφ

(
dr

sinφ

φ
û
k
r · l̂

)

dg ≤
α

sin(π − α)
dr

sinφ

φ
cosφ

(24)

Intuitively, E[ug · t̂] is maximal when the target has the least

freedom in choosing its motion, that is η = π/α. Similarly,

E[ur · t̂] is minimal when the average heading direction,

perpendicular to û
k
r , is deviated the most from t̂.

Now, we need to ensure that the robots in the secondary

orbits move toward an escaping target. Using Eq. (21) and

the LOS control input (θr ∈ ΘLOS
g ) for robots present in Ori>0

we have,

E[uradgr ] = E[ug · l̂]− E[ur] · l̂

= dg

π
2∫

3π
2 +(η−1)α

cosψg
1

π − (η − 1)α
dψg − E[ur] · l̂

= dg
1 + cos((η − 1)α)

(π − (η − 1)α)
− dr

sinφ

φ
û
k
r · l̂

The distance between a target and robot will decrease if

E[uradgr ] ≤ 0. That is,

max
η≤π/α

(
dg

1 + cos((η − 1)α)

(π − (η − 1)α)

)
≤ min

ûk
r ·̂l≥cosφ

(
dr

sinφ

φ
û
k
r · l̂

)

dg ≤
π

2
dr

sinφ

φ
cosφ (25)

Eq. (24) and Eq. (25) determine an upper bound on the

maximum step size of a target as given by condition (1).

In Fig. 10 we show how the ratio of the step-size be-

tween a target and robot, λ, changes with the number of

sensors p and ∠α (which is proportional to how well the

robots disperses in the primary orbit). As derived above,

λ = min

(
π
2 ,

α
sin(π−α)

)
sin(2π/p)

2π/p . For a given number of

sensors on a robot, λ increases with an increase in ∠α until

π/2 > α
sin(π−α) . We can also see that with an increase in the

number of sensors on a robot, p, the ratio of the step size

of a target to a robot increases and tends to π/2 > 1, that

is, we can guarantee convergence (encapsulation) even when

the target moves faster than the robots in the swarm. Previous

approaches in the literature typically assume that the target

moves slower than the robots [9]±[13].

The increased accuracy in the estimation of the relative

location of nearby robots and target enables the robot to

Fig. 10: For a given number of sensors on a robot p, λ
increases with an increase in ∠α until π/2 > α

sin(π−α) . The

ratio between the step-size of a target and robot tends to π/2
with an increasing p indicating that the swarm can encapsulate

a target moving faster than the individual robots in the swarm.

disperse quickly in the primary orbit with less chattering.

Apart from the more accurate estimation, with an increase

in total sensors on a robot, the sensing radius βr of a robot

increases (Eq. (7)), which enables quick dispersion because

of a robot’s behavior of remaining outside other robots’

influence region. This results in blocking the escaping paths

of the target efficiently. The ratio between the target and

robot step-sizes is zero when the robot has less than three

sensors, for all values of ∠α, implying that a minimum of

three sensors are required to encapsulate a moving target.

Absence of livelocks and encapsulation of the target g:

Similar to Lemma V.3, we can compute the total number of

robots, ni, that can be simultaneously present in an ith orbit.

If at a time step T there are less than ni robots in Ori, empty

spots that could potentially be occupied by nearby robots, will

be present in this orbit. As discussed in Section IV-C, the

robots in the influence of a target either move toward the target

or move, typically, in opposite tangential directions in adjacent

orbits. This ensures that a dynamic empty spot present in an

orbit Ori and the robots present in Ori+1 move so as to align

with each other. As we proved above, the robots present in

the encapsulation ring (or the primary orbit) are guaranteed

to continuously orbit the target. So, when there are less than

ng robots in the encapsulation ring, a dynamic empty spot is

present in the primary orbit which will be eventually occupied

by a robot orbiting in the secondary orbit Or1. When either all

the empty spots in the primary orbit are filled by the robots or

there are at least ng robots in it, a target will be encapsulated.

Once that happens we have from assumption (4) that the target

will stop emitting its signal and set its control parameters to

zero thereafter. All the robots that were in secondary orbits

and in the influence of this target will transition into random

walk behavior. Hence assumption (4) ensures that the robots

would not be stuck in the secondary orbits of an encapsulated

target and can transition into target-searching behavior after

one target is encapsulated.
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Lemma V.5. Consider a swarm with a total of n robots and

a target g ∈ G moving randomly in the bounded environment

(as described by motion model 1 in Section III). If,

1) the inner radius of the primary orbit Orinner0 ≥ rsafeg +
dmax
r

2) the maximum step size of the target, dmax
g ≤ λdmax

r

where

λ =

(
n−

⌊
2π

cos−1

(
1− (βr+rr)2

2(Orinner
0 )2

)
⌋
+ 1

)−1

the target g will be encapsulated eventually.

Proof. The challenge in encapsulating a randomly moving

target is in ensuring that robots avoid colliding with a target.

For example, say at time T a robot i is in the primary orbit

sandwiched between a target on one side at a distance of

rsafeg + dmax
g and a robot j at a distance of rsafer on the other

side, along the target’s LOS vector. Furthermore, consider that

for time steps T until T +2, the randomly moving target acts

adversarial by trying to collide with the robot. That is, at every

time step it moves towards robot i.
To ensure that the ith robot avoids colliding with the target

at T +1, it must choose a heading direction γi ∈ Θavo
g . How-

ever, due to the presence of robot j, it cannot move a nonzero

distance at time T in the intended heading direction. Hence

the robot would violate the target-robot safety specification at

T + 1. Now, at T , say the jth robot had moved away from

robot i, implying that at T + 1, the ith robot will not sense

the jth robot and will be free to move away from the target.

That is, it took a minimum of two time steps for the ith robot

to move away from the target. Hence, to ensure safety for

this scenario, dmax
g ≤ dmax

r /2 and Orinner0 ≥ rsafeg + dmax
r

(condition 1).

Generalizing this, let the total robots present in the environ-

ment be n and ñ0 =

⌊
2π

cos−1

(
1−

(βr+rr)2

2(Orinner
0 )2

)
⌋

be the number

of robots that can be simultaneously present in the primary

orbit marginally outside Orinner0 without repelling each other.

Then, in the worst case scenario, the total time steps for which

a robot present on Orinnero may have to remain idle (dr = 0)

is (n− ñ0 +1). This follows from the fact that only (n− ñ0)

number of robots contribute to the idle waiting time of a robot

in the primary orbit present on Orinner0 . This constraint on the

idle time of a robot in the primary orbit gives us an upper

bound λ (condition 2) on how slow an adversarial target needs

to be with respect to a robot to ensure safety. The analysis for

stability and encapsulation follows from Lemma V.4.

Lemma V.6. Consider a target g ∈ G moving in an unknown

pattern until it senses a robot in its escape domain (as

described by motion model 3 in Section III). If,

1) the maximum step size of the target when moving in an

unknown pattern, dmax
g < λdmax

r where

λ =
sinφ

φ
cos(φ),

φ = π/p, for symmetric sensor placement

2) the maximum step-size of the target when escaping

nearby robots,

λ = min

(
π

2
,

α

sin(π − α)

)
sinφ

φ
cosφ

α = cos−1

(
1−

(βr + rr)
2

2(rescapeg )2

)

φ =
max(ϕk − ϕk+1)

2
, k = {1 · · · p}

= π/p, for symmetric sensor placement

the target g will be encapsulated eventually.

Proof. This scenario is comparable to hunting problems [22],

[23] where the target moves at slower speeds in some unknown

motion pattern. But as soon as it detects (target’s sensing

limited to rescapeg ) a predator (robot) in its domain, it escapes

at a faster speed than the predator. To ensure that robots in

the secondary orbits move toward the target, we require that,

E[ug · l̂]− E[ur · l̂] < 0

dg(ûg · l̂) < dr
sinφ

φ
cosφ (26)

Eq. (26) is always satisfied if dg < dr
sinφ
φ cosφ. It is trivial

to show using Eq. (22) and Eq. (18) that the constraint dg <
dr

sinφ
φ cosφ also ensures that robot in a primary orbit will

encircle the target. As shown in Lemma V.4, the robots can

successfully encapsulate an escaping target as long as a target

step-size is within the bounds given by Eq. (25) and Eq. (24).

VI. SIMULATION RESULTS

In this section, we study the effect of the total number of

sensors p, target-robot step-size ratio λ, and noisy sensors on

the global behavior of the swarm. For each case, we consider

three different target motion models: (i) target performs

random walk in the environment, (ii) target perform random

walk until there exists a robot such that rgr ≤ rescapeg , (iii)

target moves with constant velocity until there exists a robot

such that rgr ≤ rescapeg . The simulation environment consists

of one moving target and ten robots. The total time is capped

at 4000 time-steps. Due to the inherent randomness in the

motion of the robots and targets, we ran 50 simulations for

each data point with the same initial conditions. All the

robots were initialized arbitrarily such that they lie in a sector

of π/4 with respect to the target’s center. This is done to

show the ability of the swarm to successfully encapsulate a

target when it has all the escape paths open.

Effect of the total number of sensors: For a given p, with

an increase in the radius of the escape domain of a target,

the bound on the maximum step size of a target decreases

as shown in Fig. 11. This is because, with an increase in

rescapeg , a target gets a higher margin for escaping. From

Lemmas V.4 - V.6, the ratio λ, and hence the target’s

step size, is dependent on the total number of sensors on a

robot, p, and rescapeg . When the escape domain of the target,

rescapeg ≤ rsafeg + π
2 d

max
r , an increase in the total number



Transactions on Robotics, VOL. XX, NO. XX, XXXX 12

Fig. 11: For a given p, the ratio between the step-size of

a target and robot decreases with an increase in rescapeg ,

indicating that as the target is able to detect robots sooner,

to ensure encapsulation it must also move slower.

of sensors on a robot enables the swarm to capture a faster

moving target. This can be seen in Fig. 11, where the blue

line corresponds to rescapeg = rsafeg + π
2 rr. As p increases,

dmax
r tends to rr and λ becomes greater than 1. If the escape

domain is further increased, that is rescapeg > rsafeg + π
2 d

max
r ,

then dmax
g decreases proportionally because a robot’s step size

is limited to dmax
r . For a given ng , rescapeg and rencapg , Fig. 12

shows how varying the total number of sensors, and hence the

target-robot step-size ratio λ, affects the total time taken for

target encapsulation for each type of target motion model.

Effect of noisy sensors: To study the effect of noise

we added Gaussian noise to each sensor reading,

zks = (1 − nk
s)
∑

j∈Nk
s
Bs(d

k
j ), nks ∼ N (0, σ2) and

nk
s ≤ 1. Similar to the results obtained in our previous work

[5], for all noise levels, we did not observe any collision

within the swarm. However, to ensure that a robot does not

collide with a moving target or the environment boundary, we

increase the radius of Orinner0 in proportion to the standard

deviation of the noise. Fig. 13a shows the total time taken by

the swarm to encapsulate a target with p = 7 and λ = 1.1549.

With an increase in noise level, a robot’s estimate of the

target’s location becomes less accurate, leading to an increase

in the total time taken for encapsulation. Furthermore, as can

be seen in Fig. 13b for noise levels greater than 50%, the

probability of success for target encapsulation drops to 40%

when a target moves with constant velocity.

Effect of initial swarm coverage: We next study how the

initial distribution of the swarm plays a role in encapsulating

a faster-moving target. Given that our control strategy for a

robot in the swarm is to encapsulate the target by moving

in orbits and shutting off its escaping directions, we expect

that the initial placement of the swarm around a target would

affect how quickly encapsulation happens. We consider

a single target in the environment with 10 robots, each

equipped with 7 sensors such that λ = 1.1549 and run 50

simulations for each condition. Fig. 14b shows the initial

swarm distribution with varying sector coverage around a

(a)

(b)

(c)

Fig. 12: The total time taken for task completion as a function

of p such that (a) target performs random walk in the environ-

ment (b) target performs random walk while escaping from

nearby robots (c) target moves with a constant velocity while

escaping from nearby robots. The box plot shows median,

25th and 75th percentiles and the min/max values. The line

connects the medians.

target with respect to its center. Fig. 14a shows that with an

increase in initial coverage around a faster-moving target,

encapsulation time decreases quickly. On increasing the initial

swarm distribution from a sector of π/8 to 2π we observed a

drop of 50% in the total time taken for encapsulation.

Comparison with algorithm in [5]: The algorithm we

proposed in this paper is more efficient in terms of the total

time taken by the swarm to encapsulate a static target as
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(a)

(b)

Fig. 13: (a) The total time taken for task completion as a

function of noise levels for p = 7, λ = 1.1549 (total time

capped at 4000 time-steps) and different target motion models

(b) probability of success for task completion

compared with our previous method in [5]. This is due to the

orbiting behavior of the swarm when a robot cannot move

toward the target which results in a faster occupancy of empty

spots in the encapsulation ring. This is shown in Fig. 15.

Scalability: In the supplementary video, we run additional

simulations to show the effect of asymmetric sensor

placement, the validity of our algorithm for non-circular

robots and demonstrate the scalability of our algorithm with

a large-scale simulation of 120 robots and 15 targets moving

with different motion models.

Effect of targets with overlapping influence regions: In

the supplementary video, we demonstrate the consequences

of relaxing Assumption 2 without making any adjustments

to the current algorithm. We observed instances of collisions

between a robot and a dynamic target. This occurs because a

robot determines the nearest possible location of a target based

on the sensor receiving the maximum signal strength from that

target (refer to Fig. 7). This approach is effective only when

(a)

(b)

Fig. 14: (a) The total time taken for task completion decreases

as the initial coverage of the swarm around a target increases.

(b) Initial swarm distribution for different sector coverage

around a target with respect to its center.

Fig. 15: For a given p, the total time taken to encapsulate a

static target is lower for the new approach introduced in this

paper as compared to our previous approach in [5].

Assumption 2 remains valid. However, if a robot can sense

more than one target simultaneously, there is a possibility that

in addition to the sensor receiving the maximum intensity from

the targets, other sensors may detect signal strengths exceeding
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the safety threshold. In such cases, the robot may collide with

a target if readings from all sensors are not considered.

Conversely, we observed instances of deadlocks when we

incorporated readings from all the sensors, particularly in

scenarios where all sensors received readings exceeding the

safety threshold. When utilizing Algorithm 1, we can address

deadlocks in the case of dynamic robots by setting bounds

on the influence region of a robot’s source and leveraging

the robots’ active avoidance mechanisms. However, upper-

bounding an adversarial target’s influence region does not

guarantee the absence of deadlocks, as we have no control

over the targets’ behavior.

An additional challenge that arises when a robot can sense

multiple targets simultaneously, is estimating the direction

of the target using the strategy outlined in this paper and

subsequently computing orbits around it. For instance, if a

robot is sensing two targets, the orbits will be adjusted towards

a center position between these two targets, depending on the

robot’s proximity to them. This can lead to the robot moving

towards a primary orbit that does not align with any specific

target, resulting in no encapsulation. In our future work, we

will investigate how the control algorithm should be modified

to address deadlocks when relaxing Assumption 2.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we propose a decentralized scalable algorithm

for a minimalist swarm to encapsulate dynamic targets with

unknown motion without requiring the exact knowledge of

the relative positions or memory of the previous control

inputs. We consider different scenarios of target motion and

compute bounds on the target-robot step-size ratio to provide

convergence guarantees. We observed the emergence of robots

maintaining an approximate phase difference of 2π/ng in the

encapsulating ring, resulting in uniform distribution around

the target and hence closing off its escaping directions. Fur-

thermore, using extensive simulations we studied the effect of

noisy sensors and showed the validity of our algorithm for non-

circular robots. Our controller can be generalized for robots

equipped with non-isotropic sensors which are not accurate in

measuring the relative distances between two entities. If the

bounds on the measurement error are known, our analysis can

be used to compute bounds on the target-robot step-size ratio

to ensure guaranteed target encapsulations. In this paper, we

do not consider the presence of obstacles. However, the control

algorithm we propose includes collision avoidance with both

moving robots and targets in close proximity as well as static

obstacles like the environment boundary. By conducting a

similar analysis, this algorithm can be expanded to encompass

other dynamic and static obstacles existing in the environment,

as long as a robot’s sensor can detect the signals emitted by

these obstacles.

In our future work, we will explore how the control algo-

rithm should change when we relax Assumption 2. Further-

more, we will implement our algorithm on physical robots

and will also study the trade-off between incorporating the

memory of previous states on the desired emergent behavior

and providing timing bounds on task completion.
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[6] A. BabiÂc, I. Lončar, B. Arbanas, G. VasiljeviÂc, T. PetroviÂc, S. Bogdan,
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