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Motivated by the great success of classical generative models in machine learning, enthusiastic exploration of
their quantum version has recently started. To depart on this journey, it is important to develop a relevant metric
to evaluate the quality of quantum generative models; in the classical case, one such example is the (classical)
inception score (cIS). In this paper, as a natural extension of cIS, we propose the quantum inception score (qIS)
for quantum generators. Importantly, qIS relates the quality to the Holevo information of the quantum channel
that classifies a given dataset. In this context, we show several properties of qIS. First, qIS is greater than or equal
to the corresponding cIS, which is defined through projection measurements on the system output. Second, the
difference between qIS and cIS arises from the presence of quantum coherence, as characterized by the resource
theory of asymmetry. Third, when a set of entangled generators is prepared, there exists a classifying process
leading to the further enhancement of qIS. Fourth, we harness the quantum fluctuation theorem to characterize
the physical limitation of qIS. Finally, we apply qIS to assess the quality of the one-dimensional spin chain model
as a quantum generative model, with the quantum convolutional neural network as a quantum classifier, for the
phase classification problem in the quantum many-body physics.
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I. INTRODUCTION

A burgeoning advancement of the artificial intelligence
(AI) is a hallmark of the contemporary information age. The
principal objective of AI research is the creation of ma-
chines which exhibit humanlike capabilities of performing
complicated tasks including learning, analyzing and reason-
ing. Presently, the prevailing landscape of AI technologies
is predominantly underpinned by the machine learning al-
gorithms, such as convolutional neural network and support
vector machine, which have been embracing various applica-
tions [1–5]. However, recently, the machine learning has been
warned to adhere to a Moore’s lawlike trend concerning the
size of datasets [6], namely the curse of the dimensionality.
Considering that people seek to encode data into larger feature
spaces to facilitate pattern discovery, there is a pressing need
for an alternative approach to reduce complexity in the context
of big data analysis.

Quantum computers hold significant potential to overcome
such challenge due to their intrinsically greater information
storage and information processing capacities compared to
the classical devices [7]. Therefore, there have been enthu-
siastic explorations into quantum-enhanced machine learning
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[8–13]. In this paper, our primary focus is on the genera-
tive modeling [14,15], which is one of the most successful
framework in classical unsupervised learning [16,17]. Various
quantum generative models have been proposed, and most of
which employ the variational approach, e.g., Refs. [18–20]. In
particular we find quantum generative models motivated from
the classical architectures [21,22], such as variational quan-
tum autoencoders (VQAEs) [23–26], the quantum generative
adversarial networks (qGANs) [27–29], and quantum Boltz-
mann machines [30–32]. Furthermore, quantum generative
models have recently found promising applications in physics
domains, such as quantum many-body physics [33–35].

To assess the quality of generative models, we need a
meaningful and practically computable metric. Actually there
exists such a metric in the classical regime, which is known
as the (classical) inception score (cIS) [36,37]. The cIS is a
single metric that measures both the diversity of the generated
data and the sharpness of each data, the latter of which can
be quantified by a classifier. In this paper, as a natural exten-
sion of cIS, we propose the quantum inception score (qIS)
for quantum generators. Importantly, qIS relates the quality
to the Holevo information [38,39]. As in the classical case,
qIS measures the quality of quantum generative models with
the help of quantum classifier. Note here that, in analogy to
quantum metrology protocols [40], the quantum generative
modeling problem can involve quantumness in both the gen-
erator and classifier (QQ protocol), only in the classifier (CQ
protocol), only in the generator (QC protocol), or in neither
(CC protocol), as shown in Fig. 1(a). The protocol considered
in this paper is the QQ protocol. With this analogy, our results
regarding quantum generative models can also be seen as
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FIG. 1. (a) Four types of protocols in the generative modeling. Generative modeling can involve quantumness in both the generator and
classifier (QQ protocol), only in the classifier (CQ protocol), only in the generator (QC protocol), or in neither (CC protocol). This paper
studies the QQ protocols. (b) Summary of the main results. We propose a definition of the qIS (Definition 1) and maximally achievable qIS
(defined as regularized qIS) by employing the Holevo information and regularized classical capacity, respectively, as a measures of the quality
of the quantum generative models. Particularly, when the entangled input ρ in is allowed, there exists a classifying process " leading to the
further quality enhancement. This can be regarded as the quantum advantage in the generative modeling. We also demonstrate that cIS can
be recovered via the projection measurements and qIS is larger than or equal to cIS (Theorem 1) due to the presence of quantum coherence
(Theorem 2) characterized by the resource theory of asymmetry. Furthermore, by employing the quantum fluctuation theorem approach, we
illustrate that the difference between qIS and cIS decreases due to pure dephasing in the quantum classifier, which can be characterized by the
quantum efficacy (Theorem 3). (c) An analogous view in the quantum metrology. The ultimate precision limit characterized by the quantum
Fisher information (QFI) surpasses the classical limit characterized by the classical Fisher information (CFI). Further enhancement of the QFI
can be achieved by the entangled probes, which is the quantum advantage in the metrology.

analogous to the quantum advantage in metrology illustrated
in Fig. 1(c), where the ultimate precision limit, character-
ized by the quantum Fisher information (QFI), surpasses the
classical limit characterized by the classical Fisher informa-
tion (CFI) and is further enhanced by entangled probes. This
analogy holds because the protocols considered in quantum
metrology in Ref. [40] are analogous to those in quantum
communications [41].

Our main results are Definition 1 and Theorems 1–3,
which are summarized in Fig. 1(b). First, qIS is greater
than or equal to the corresponding cIS, which is defined
through projection measurements on the system output; this
is analogous to the result in quantum metrology where QFI
is bigger than CFI. Second, the proposed qIS allows us to
demonstrate that the presence of quantum coherence, pre-
served by the quantum classifier, is the resource generating
the difference between qIS and cIS. Second, the proposed

qIS demonstrates that measurements on the quantum classifier
can be one factor leading to quality degradation due to the
destruction of quantum coherence preserved by the classifier.
Third, the entanglement of the generator’s output could lead
to the further quality enhancement, which is coming from the
the potential superadditivity of the communication capacity
of the quantum classifier channel [42]. This can be regarded
as the quantum advantage in quantum generative models.
Forth, leveraging the qIS, we employ the information-
theoretic fluctuation theorem [43–45] to characterize the phys-
ical limitation of the quality of quantum generative models
based on the concept of quantum efficacy [45–47]. Finally, we
provide an example of applying the qIS to assess the quality of
the one-dimensional (1D) spin chain model combined with
the quantum convolutional neural network (QCNN) [48,49],
for the phase classification problem. These results corroborate
the significance of exploring the quantum foundation and
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communication approach to study the quantum machine
learning protocols.

We here remark that our study does not involve compar-
isons between quantum generators and classical generators,
nor between quantum classifiers and classical classifiers. This
is in stark contrast to the study of Gao et al. [19] and Huang
et al. [50]; the former compares quantum and classical genera-
tors, and the latter compares quantum and classical classifiers.
More precisely, Gao et al. [19] study the expressivity of
quantum and classical generators, to demonstrate that quan-
tum generators have better expressivity than classical ones
due to entanglement. On the other hand, Huang et al. [50]
study quantum and classical classifiers with a fixed quantum
generator, and they demonstrate that the quantum classifier
performs better if the quantum generator produces entangle-
ment. Different from these studies, focusing on the quality of
the quantum generative models in QQ protocol, we explore
the roles of quantum resources such as quantum coherence
and entanglement, analyze their physical limitations using a
quantum thermodynamics approach, and examine their appli-
cations in quantum phase classification.

This paper is organized as follows. In Sec. II, we briefly
review the concept of IS in the classical generative models
and introduce the qIS in Sec. III. Then, we discuss the relation
between the qIS and cIS in Sec. IV, and further discuss the
role of quantum coherence in Sec. V. Furthermore, we utilize
the quantum fluctuation theorem to characterize the degrada-
tion of the quality in Sec. VI. Finally, we show the examples
of using the qIS to assess the quantum generative models for
the phase classification of the 1D spin-1/2 chain in Sec. VII,
followed by the conclusion in Sec. VIII.

II. INCEPTION SCORE

Let us first review the concept of IS based on Refs. [36,37].
Let X ≡ {x0, x1, x2 · · · , xr−1} be a dataset produced from
an unknown probability distribution. The aim of generative
modeling is to construct a model pin(x) that approximates
the unknown probability distribution producing X . Given a
data xi, we also aim to construct a classifier that produces
a relevant label y j ∈ Y ≡ {y0, y1, y2, . . . , y#−1}, where # de-
notes the number of the labels; we model the classifier via the
conditional probability qout (y|x), which is usually constructed
via a neural network. Note here that, in the generative models,
we always have # ! r. This is because we usually assume that
the number of labels characterizing the patterns of the encoded
dataset is smaller than that of the number of the input data. The
marginal probability for the label data, pout (y j ), is given by
pout (y j ) =

∑r−1
i=0 qout (y j |xi )pin(xi ). Therefore, the input and

output of the classifier are pin(xi ) and pout (y j ), respectively.
Then, the IS of pin(x) relative to qout (y|x) is defined by

ξ ≡ exp

(
r−1∑

i=0

pin(xi )D(qout (y|xi ) ‖ pout (y))

)

, (1)

where

D(qout (y|xi ) ‖ pout (y)) ≡
#−1∑

j=0

qout (y j |xi ) ln
qout (y j |xi )

pout (y j )
(2)

is the Kullback–Leibler (KL) divergence of the condi-
tional label probability qout (y j |xi ) with respect to pout (y j ).
Note that ln ξ can be expressed as ln ξ =

∑
i pin(xi )

∑
j qout

(y j |xi ) ln qout (y j |xi ) −
∑

j pout (y j ) ln pout (y j ), that is, the sum
of the expected negative Shannon entropy of qout (y|x) and the
entropy of pout (y). The former quantifies the accuracy of the
label assigned to the data and the latter does the diversity
of the data, implying that a generative model with bigger
IS may cast as a high-quality data generator. Therefore, in
this scenario, the primary objective is to construct generative
models, with the help of relevant design of the classifier, that
achieves the higher IS; for this reason, IS has been often used
for GAN.

III. QUANTUM INCEPTION SCORE

We consider a general setup of quantum generative model
with a system described by d-dimensional Hilbert space HS .
Let B(HS ) denote the set of density operators acting on HS .
Suppose that the generator encodes a classical data (or a latent
variable) xi ∈ X to a quantum state ρin(xi ) ∈ B(HS ), for i =
0, 1, 2, . . . , (r − 1). Here, note that {ρin(xi )}r−1

i=0 are the input
states of the quantum classifier.

As in the usual machine learning scenario that tries to
solve problems by encoding data into a larger dimensional
space, we assume d " r. The encoded quantum states are
then processed by a completely positive and trace-preserving
(CPTP) map " : B(HS ) → B(H′

S ), where H′
S denotes the

d ′-dimensional Hilbert space of the output system. Thus, the
output state ρout ∈ B(H′

S ) is related to the input as ρout =
"(ρin).

Now, let us write the input state ρin as an ensemble of
ρin(xi ) ∈ B(HS ) encoding the classical input data xi ∈ X sam-
pled from a probability distribution pin(xi ), i.e.,

ρin =
r−1∑

i=0

pin(xi )ρin(xi ). (3)

Note that in general ρin(xi ) does not necessarily commute with
ρin(xi′ ) when i '= i′. Then, the output state becomes

ρout =
r−1∑

i=0

pin(xi )ρ
(i)
out, (4)

where

ρ (i)
out ≡ "(ρin(xi )). (5)

Let us write the ensemble of the output state as

E ≡
{

pin(xi ), ρ
(i)
out

}r−1

i=0 . (6)

Because the supports of ρ (i)
out and ρout satisfy supp(ρ (i)

out ) ⊆
supp(ρout ), the quantum relative entropy S(ρ (i)

out ‖ ρout ) ≡
Tr[ρ (i)

out ln ρ (i)
out] − Tr[ρ (i)

out ln ρout] takes a finite value. Then the
Holevo information χ (E ; ρout ) of the output ensemble is de-
fined as [38,39]

χ (E ; ρout ) ≡
r−1∑

i=0

pin(xi )S
(
ρ (i)

out

∥∥ρout
)
. (7)
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The Holevo-Schumacher-Westmoreland (HSW) capacity (or
Holevo capacity) [51–57] is defined as the maximization
of the Holevo information over all the possible pin(xi ) and
ρin(xi ):

χmax(") ≡ max
{pin (xi ),ρin (xi )}

χ (E ; ρout ). (8)

In the most generic scenario, the maximal transmittable
amount of classical information through the quantum channel
" is measured by the regularized classical capacity C(")
[42,55–58],

C(") ≡ lim
n→∞

1
n
χmax("⊗n), (9)

which is asymptotically achievable with infinite copies of "
with joint measurement, and we always have [42,56–58]

C(") " χmax("). (10)

From these facts, as our first main result, we define the qIS as
follows.

Definition 1 (Quantum Inception Score). The quantum in-
ception score (qIS) is defined as

ξq ≡ exp (χ (E ; ρout )). (11)

Additionally, the achievable maximum qIS is defined as

&q ≡ exp(C(")), (12)

which we refer to as the regularized qIS.
Suppose now that the task of quantum generator is to

generate the optimal set of {pin(xi ), ρin(xi )} to maximize ξq.
Then, because the asymptotically achievable maximal qIS is
given by exp(C(")), from Eqs. (9) and (10), exp(C(")) is
regarded as an indicator of the best achievable quality by
the quantum generator. Adopting an example of the image
recognition, these results are consistent to the intuition that
having a greater volume of information enables the generator
to achieve better balanced accuracy and diversity. Particularly,
in the asymptotic setup, when entangled input ρ in ∈ B(H⊗n

S )
is allowed, there exists a CPTP map " leading to the su-
peradditivity of the classical capacity C(") > χmax(") [42].
From Eq. (12), this results in the quantum advantage in the
generative modeling achieved by using the entanglement as a
resource.

IV. RELATION BETWEEN THE qIS AND cIS

Here, we explore the relation between the qIS and cIS.
By introducing projective measurements, we can recover the
cIS as follow. To classify the data into # labels, we assume
# = d ′ = dim(H′

S ). Let {|y j+}#−1
j=0 be an orthonormal basis

for H′
S . Then, the rank-1 projective measurement onto the

orthogonal state |y j+ is given by ' j ≡ |y j+〈y j |. Then, we
have ' j'k = ' jδ jk with δ jk the Kronecker’s δ. Also, the
completeness relation

∑#−1
j=0 ' j = 1 holds, where 1 denotes

the identity operator acting on H′
S . Regarding the dimen-

sions of the Hilbert spaces, hence, the meaningful setup is
d " r " #. Therefore, " belongs to the class of treelike quan-
tum classifiers composed of the hierarchical quantum circuits
[48,49,59–62], where the compressed states are expected to
carry the features of the encoded data X .

For a state ρ ∈ B(H′
S ), let us write the post-projection-

measurement state as

P (ρ) ≡
#−1∑

j=0

' jρ' j =
#−1∑

j=0

〈y j |ρ|y j+|y j+〈y j |, (13)

which is also a dephasing map generating an incoherent
state diagonal in the basis {|y j+}#−1

j=0. Then, the probabil-
ity that the output state takes |y j+ is given by pout (y j ) ≡
Tr[ρout' j] = 〈y j |ρout|y j+. From Eqs. (3)–(5), we have
qout (y j |xi ) ≡ Tr[ρ (i)

out' j] = 〈y j |ρ (i)
out|y j+. Because P (ρ (i)

out ) and
P (ρout ) have the identical eigenbasis {|y j+}#−1

j=0, we have

S(P (ρ (i)
out ) ‖P (ρout )) = D(qout (y|xi ) ‖ pout (y)), meaning that

the cIS in Eq. (1) can be recovered from Eq. (11) by pro-
jective measurements. Therefore, when we write the Holevo
information of the projected output ensemble due to P as

χP (E ; ρout ) ≡
r−1∑

i=0

pin(xi )S
(
P

(
ρ (i)

out

)∥∥P (ρout )
)
, (14)

the cIS dependent on the choice of P can be written as

ξc(P ) ≡ exp (χP (E ; ρout )). (15)

Extending to the positive operator-valued measures
(POVMs) M ≡ {Ej}#−1

j=0, where Ej " 0 is a POVM el-

ement satisfying
∑#−1

j=0 Ej = 1. Also, note that with jth
POVM element, the probabilities are pout (y j ) ≡ Tr[ρoutEj]
and qout (y j |xi ) ≡ Tr[ρ (i)

outEj]. The maximum cIS can be given
by using the accessible information [38,63–66]

Iacc(E ; ρout )

≡ max
{M}




#−1∑

j=0

r−1∑

i=0

pin(xi )Tr
[
ρ (i)

outEj
]

ln Tr
[
ρ (i)

outEj
]

−
#−1∑

j=0

Tr[ρoutEj] ln Tr[ρoutEj]





= max
{M}

[
r−1∑

i=0

pin(xi )DM(qout (y|xi ) ‖ pout (y))

]

, (16)

which is the maximization of the classical mutual information
over all possible POVMs {M}. Here, we intentionally write
DM to emphasize the dependence of the KL divergence on
the choice of the POVMs. The Holevo theorem states [38]

χ (E ; ρout ) " Iacc(E ; ρout ), (17)

with the equality if and only if
[
ρ (n)

out, ρ
(m)
out

]
= 0 (∀n,∀m), (18)

implying that ρ (n)
out and ρ (m)

out can be simultaneously diagonal-
ized.

By defining the accessible IS as

ξacc ≡ exp(Iacc(E ; ρout )), (19)

we can obtain our second main result as follows.
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Theorem 1. The inception scores, ξq, ξacc, and ξc(P ),
satisfy

# " ξq " ξacc " ξc(P ) (∀P ). (20)

Proof. First, ξq " ξacc is the Holevo theorem itself. Sec-
ond, because the projective measurements belong to the
POVMs, from Eq. (16), we must have ξacc " ξc(P ). Finally,
from ln # " χ (E ; ρout ) and Eq. (11), we have # " ξq. There-
fore, we can obtain Eq. (20). #

Theorem 1 implies that performing the measurements on
the classifier is a primary factor causing the difference be-
tween qIS and cIS.

V. QUANTUM COHERENCE AND QUALITY

From Theorem 1, we can intuitively infer that the differ-
ence between qIS and cIS arises due to the destruction of
quantum coherence by the measurements. Indeed, this infer-
ence is correct. In the following, we employ the resource
theory of asymmetry (RTA) to provide a rigorous and formal
analysis.

A. Review of resource theory of asymmetry

First, we briefly review the RTA [67–80], where the quan-
tum coherence is regarded as a resource of breaking the group
symmetry. Let G be a symmetry group, and g be the group
element with its unitary representation Ug : G → B(H) acting
on a D-dimensional Hilbert space H. Let

IG(H) ≡ {σ |UgσU †
g = σ,∀g ∈ G, σ ∈ B(H)} (21)

be the set of the free states in the RTA, which are invari-
ant under any unitary operations with respect to g. The free
state satisfies the commutation relation [ρ,Ug] = 0 (∀g) and is
called the symmetric state with respect to G, and asymmetric
state otherwise, which becomes a resource state in the RTA.

A relevant set of free operations are the covariant opera-
tions * [81] with respect to G, which satisfies

*(UgρU †
g ) = Ug*(ρ)U †

g (∀g ∈ G,∀ρ ∈ B(H)). (22)

The covariant operation cannot generate the asymmetric states
from the symmetric state and transform one asymmetric state
to the other.

To quantify the asymmetry of a given quantum state ρ
with respect to G, a asymmetry measure A(ρ; G) needs to sat-
isfy the following conditions: The asymmetry measure must
satisfy

(1) A(ρ; G) " 0 (∀ρ ∈ B(H)) and A(ρ; G) = 0 ⇐⇒ ρ ∈
IG(H).

(2) For all covariant operations {*}, we must have
A(ρ; G) " A(*(ρ); G) (∀ρ ∈ B(H)).

One of the asymmetry measures is the relative entropy of
asymmetry [78]. To define the relative entropy of asymmetry,
let us first introduce the G-twirling operation [75–81], which
is defined as

G(ρ) ≡
∫

G
dgUgρU †

g (23)

averaging over the unitary operations with the Haar measure
dg [82]. When G is a finite or compact Lie group, the relative

entropy of asymmetry with respect to G is defined as [78]

A(ρ; G) ≡ S(ρ ‖G(ρ)). (24)

Now, let us consider the case G = U (1) generated by an
observable H , whose unitary representations form a set of
time translations {e−itH | ∀t ∈ R}. In this case, ρ is a symmet-
ric state if and only if [ρ, H] = 0 and an asymmetric state if
and only if [ρ, H] '= 0 [73]. Therefore, when ρ is a symmetric
state, ρ can be diagonalized by the eigenbasis of H . Let us
write A(ρ; H ) as the relative entropy of asymmetry for this
case. When H has L distinct eigenvalues, the explicit form of
the corresponding U (1)-twirling operation with respect to H
is given by [78,79] (see the Appendix for detailed explana-
tions)

GH (ρ) ≡ lim
T →∞

[
1

2T

∫ T

−T
dte−iHtρeiHt

]
=

L∑

n=1

'nρ'n,

(25)

where L ! D and {'n}L
n=1 are the projectors onto the subspace

of the eigenbasis of H . Then, the relative entropy of asym-
metry A(ρ, H ) ≡ S(ρ ‖GH (ρ)) coincides with the so-called
relative entropy of superposition with respect to the orthog-
onal decomposition of the Hilbert space [83]. Particularly,
when H is nondegenerate (i.e., L = D), we have rank('n) =
1 (∀n), and the relative entropy of asymmetry coincides with
the relative entropy of coherence with respect to the eigenabsis
of H [84].

B. Asymmetry and quantum inception score

Now, we are ready to discuss the relation between the
quantum inception score and the quantum coherence captured
by the asymmetry with respect to U (1) group generated by
ρ (i)

out the constituent states of the output state.
For the output state ρout =

∑r−1
i=0 pin(xi )ρ

(i)
out with its fixed

ensemble E = {pin(xi ), ρ
(i)
out}r−1

i=0 , for each i, we consider the
set of time translations {e−iρ (i)

outt | ∀t ∈ R}. When [ρ (n)
out, ρ

(m)
out ] =

0 (∀n,∀m), we particularly call the corresponding ensemble
as symmetric ensemble

ES ≡
{

pin(xi ), ρ
(i)
out

∣∣ [ρ (n)
out, ρ

(m)
out

]
= 0 (∀n,∀m)

}r−1
i=0 . (26)

However, we define the asymmetric ensemble as

ES ≡
{

pin(xi ), ρ
(i)
out

∣∣ [ρ (n)
out, ρ

(m)
out

]
'= 0 (∃n, ∃m)

}r−1
i=0 , (27)

which is the complement of ES . To explore the relation
between the quantum inception score and the asymmetry mea-
sure, we define the average relative entropy of asymmetry of
the output state ρout as

〈A(ρout; H )+ ≡
r−1∑

i=0

pin(xi )A
(
ρ (i)

out; H
)
, (28)

which measures the average amount of coherence contained
by ρout, which is characterized by the asymmetry with respect
to the U (1) group generated by H . Then, we can obtain our
third main result as follows.
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Theorem 2. For the output state ρout =
∑r−1

i=0 pin(xi )ρ
(i)
out

with its fixed ensemble E = {pin(xi ), ρ
(i)
out}r−1

i=0 , we have

ξq > ξacc ⇐⇒ E = ES ⇐⇒
〈
A
(
ρout; ρ

(k)
out

)〉
'= 0 (∃k). (29)

Proof. We prove by taking the contraposition of the fol-
lowing statement

ξq = ξacc ⇐⇒ E = ES ⇐⇒
〈
A
(
ρout; ρ

(k)
out

)〉
= 0 (∀k). (30)

For the first part, ξq = ξacc ⇐⇒ E = ES is the Holevo theo-
rem.

For the second part, We consider a set of time translations
{e−itρ (k)

out | ∀t ∈ R} generated by the density operator of the
constituent state ρ (k)

out .
Let us prove the sufficiency. When E = ES , we have

[ρ (i)
out, ρ

(k)
out] = 0 (∀i,∀k). Therefore, the relative entropy of

asymmetry of ρ (i)
out with respect to ρ (k)

out must vanish, i.e.,
A(ρ (i)

out; ρ
(k)
out ) = 0 (∀i,∀k), because of the condition of the

asymmetry measure. Therefore, from Eq. (28), we have
〈A(ρout; ρ

(k)
out )+ = 0 (∀k). Therefore, the sufficiency holds

E = ES 1⇒
〈
A
(
ρout; ρ

(k)
out

)〉
= 0 (∀k). (31)

Next, let us prove the necessity. Let us focus on Eq. (28).
Here, we have pin(xi ) > 0 (∀i) and the nonnegativity of
the quantum relative entropy S(ρ (i)

out ‖Gk (ρ (i)
out )) " 0 (∀i,∀k),

where Gk denotes the U (1)-twirling operation with respect
to ρ (k)

out . Therefore, when we have 〈A(ρout; ρ
(k)
out )+ = 0 (∀k),

we must have S(ρ (i)
out ‖Gk (ρ (i)

out )) = 0 (∀i,∀k). From the con-
dition of the asymmetry measure, this implies [ρ (i)

out, ρ
(k)
out] =

0 (∀i,∀k), namely E = ES . Therefore, the necessity holds:
〈
A
(
ρout; ρ

(k)
out

)〉
= 0 (∀k) 1⇒ E = ES. (32)

From Eqs. (31) and (32), we can obtain Eq. (30). By
taking its contraposition, we obtain Eq. (29), which proves
Theorem 2. #

This theorem demonstrates that the qIS is larger than the
maximum cIS (i.e., the accessible IS) if and only if ρout has
an asymmetry with respect to the U (1) group generated by
some constituent states ρ (i)

out. This means that the quantum co-
herence preserved during the classification process, captured
by the asymmetry, is the resource generating the difference
between qIS and cIS. This theorem not only proves that this
quality degradation occurs due to the destruction of quantum
coherence by measurements, but it also captures the specific
characteristics of this quantum coherence. It shows that the
coherence destroyed by the optimal POVM, resulting in mini-
mal quality degradation, is characterized by the asymmetry of
ρout with respect to the constituent states ρ (i)

out. Also, note that
this theorem holds for any asymmetry measures, such as skew
informations [71–74].

Here we remark that we are not comparing quantum gen-
erative models with and without measurements. Yet the IS has
been used as a measure for model selection in the classical
regime. In our case, the idea is as follows. Suppose that we
have two models A and B. Then, it makes sense to compare
their accessible IS (i.e., maximum cIS) ξacc(A) versus ξacc(B)
for the purpose of choosing the better model. We note that,
since a gap can arise between ξq and ξacc, comparing their qISs
ξq(A) and ξq(B) is not always appropriate, but when the gap

vanishes, the qIS serves as a fundamental quantum-limited
quantity for model selection, and Theorem 2 clarifies such
situation.

VI. IMPACT OF DECOHERENCE ON QUALITY

Finally, we discuss another primary factor causing the
quality degradation of the quantum generative models. From
Theorem 2, we can also expect that the pure dephasing (or
decoherence) contributes to degrading the quality. Here, we
demonstrate that the quality degradation mechanism can be
captured by the information-theoretic fluctuation theorems
[43–45] based on the concept of quantum efficacy [45–47].
Following Ref. [45], when +a is a random variable whose
average is 〈+a+ = χ (E ; ρout ) − χP (E ; ρout ), the correspond-
ing quantum fluctuation theorem is given as 〈exp(−+a)+ =
, , where , is called quantum efficacy [85] and satisfies
0 < , ! 1.

From the Jensen’s inequality, we have χ (E ; ρout ) −
χP (E ; ρout ) " − ln , . Here, note that , is strictly dependent
on " and the choice of the projective measurement P . Then,
we can obtain our fourth main result as follows.

Theorem 3. The quantum inception score can be lower
bounded by using quantum efficacy , as

ξq " ξc(P )
,

(0 < , ! 1). (33)

Proof. By definitions, we have ξq ≡ exp(χ (E ; ρout )) and
ξc(P ) ≡ exp(χP (E ; ρout )). Because exp(− ln , ) = , −1, we
can obtain ξq " , −1ξc(P ) with 0 < , ! 1. #

From Refs. [45,86], when , = 1, the equality of Eq. (33)
holds if and only if all ρ (i)

out have identical eigenbasis and
P is the dephasing map onto this common eigenbasis,
i.e., P (ρ (i)

out ) = ρ (i)
out (∀i). Therefore, we have ρout = P (ρout ),

which means that ρout is an incoherent state diagonal in this
common eigenbasis. This implies that the quality degradation
of the quantum generative model is primarily due to the pure
dephasing process. This analysis also enables us to interpret
, as a quantity characterizing the physical limitation of the
quality due to the information loss. In particular, the negative
logarithm (− ln , ) accounts for the information content con-
tained by the quantum coherence, which is preserved during
the classification process.

VII. APPLICATION TO A PHASE CLASSIFICATION
PROBLEM IN QUANTUM MANY-BODY PHYSICS

As an example, we harness the quantum inception score
to analyze the quality of a fixed quantum generator with a
trainable quantum classifier. Here, the generator is the one-
dimensional (1D) spin-1/2 chain that may experience phase
transition, and the classifier is the quantum convolutional neu-
ral network (QCNN) [48]. Note that a main goal here is to test
the gap between qIS and cIS for a fixed generator, rather than
designing a good generator achieving a higher qIS like the
situation of GAN.

A. QCNNs

The architecture of the QCNNs were introduced in
Refs. [48,49], which are expected to be promising near-term
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FIG. 2. The 8-qubit quantum convolutional neural network. UC

and UP denote the convolutional and pooling layer. {W1, . . . ,W7}
are the 2-qubit unitaries acting on the pairs of qubits in an alternat-
ing manner, which are parameterized by some tunable parameters.
{K1, . . . , K4} are the 2-qubit unitaries with the form of Kj ≡ |0+〈0| ⊗
Uj + |1+〈1| ⊗ Vj , where Uj and Vj are single-qubit unitaries param-
eterized by some tunable parameters. T ≡ TrH′

S
denotes the partial

trace over H′
S (the complement of H′

S). Then, the quantum classifier
channel is given by " ≡ T ◦ UP ◦ UC .

quantum algorithms as quantum classifiers [59–62] because
of their absence of barren plateaus [87] resulting in the train-
ability of the QCNNs [88–92]. Following Ref. [87], let us
consider the following QCNN circuit (see Fig. 2 as an exam-
ple for the 8-qubit case).

The input state ρin is an N-qubit state, which may encode
the classical data, namely the output of a generator. Then,
we send ρin into the single layered convolutional circuit de-
noted by a unitary operation UC and then the pooling circuit
denoted by another unitary operation UP. The convolutional
circuit UC consists of two columns of the alternating 2-qubit
gate parameterized by some tunable parameters. The pooling
circuit UP consists of the 2-qubit gates with the form of Kj =
|0+〈0| ⊗ Uj + |1+〈1| ⊗ Vj , where j denotes the jth pair of the
qubits, and Uj and Vj are single-qubit gates parameterized
by some tunable parameters. Then, we take the partial trace
T ≡ TrH′

S
over H′

S , the complement of the output Hilbert
space H′

S , to obtain the output state ρout. Therefore, the whole
process is written as

ρout = "(ρin) ≡ T ◦ UP ◦ UC (ρin). (34)

B. Setup and problem formulation

1. Generator and quantum dataset

Adopting the same model studied in Ref. [48], we employ
the QCNN to classify 2-class and 3-class quantum phases. The
target quantum state to be classified, ρin(x) = |ψ0(x)+〈ψ0(x)|,
is the ground state of an N-body Hamiltonian of a 1D spin-1/2
chain with open boundary conditions [93,94]:

H = −J
N−2∑

n=1

ZnXn+1Zn+2 − h1

N∑

n=1

Xn − h2

N−1∑

n=1

XnXn+1, (35)

TABLE I. The (a) 2-class and (b) 3-class phase of the ground
state of the Hamiltonian (35) when h1/J = 1. Note that for the 3-
class case, we employ a 4-valued POVM, and the label “1” has the
meaning of “fail in classification.”

Label h2/J Phase

(a) 2-class phase classification
0 −1.15 < h2/J < 0 SPT
1 h2/J < −1.15 or h2/J > 0 Other phases

(b) 3-class phase classification
0 −1.15 < h2/J < 0 SPT
1 N/A Nothing
2 h2/J > 0 Paramagnetic
3 h2/J < −1.15 Antiferromagnetic

where {Xn,Yn, Zn} are the Pauli matrices of the nth spin. Also,
J , h1, and h2 are the strength of the cluster coupling, the global
transverse field, and the nearest-neighboring Ising coupling,
respectively. These parameters take several values, which ac-
cordingly lead to several ground states of H . In particular, we
collect those parameters into the vector

x ≡
(

h1/J
h2/J

)
, (36)

and we write the corresponding Hamiltonian in Eq. (35) as
H (x).

Here, we consider the case of N = 9. The parameters
h1/J and h2/J take equally separated 64 values in the in-
tervals h1/J ∈ [0, 1.6] and h2/J ∈ [−1.6, 1.6], respectively;
therefore, we consider totally 64 × 64 = 4096 points, i.e.,
{xi}4095

i=0 = {zn,m}(63,63)
(n,m)=(0,0), where

zn,m ≡
(

1.6
63 n

−1.6 + 3.2
63 m

)

(n, m = 0, 1, . . . , 63). (37)

Later, we will show the phase diagram of the ground states
{ρin(xi )}4095

i=0 .
Apart from these parameter points, we take 40 ground

states {ρin(xi )}39
i=0 as the training quantum data, where the

parameter vectors {x0, x1, . . . , x39} are taken as h1/J = 1 and
h2/J ∈ [−1.6, 1.6], namely

xi ≡
(

1

−1.6 + 3.2
39 i

)

(i = 0, 1, . . . , 39). (38)

In our simulation, the ground state ρin(xi ) is obtained by
diagonalizing H (xi ).

Table I summarizes the labels (the phase) for the 2-class
and 3-class cases when h1/J = 1. For the 2-class classi-
fication problem, we assign the label “0” to the Z2 × Z2
symmetry-protected topological (SPT) phase [95–97] when
−1.15 < h2/J < 0 and “1” to the other phases. For the 3-
class classification problem, we assign the label “0” to the
SPT phase when −1.15 < h2/J < 0, “2” to the paramagnetic
phase when h2/J > 0, and “3” to the antiferromagnetic phase
when h2/J < −1.15. Note that, later in the discussion, we
introduce a 4-valued POVM to classify the phase, where the
additional label “1” has the meaning of “fail in classification.”
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FIG. 3. The 9-qubit QCNN circuit for the 2-class and 3-class
quantum phase classification problems. Tj and Kj denote the 3-qubit
gate, and Wj denotes the 2-qubit gate. We take partial trace over all
qubits except for the fifth qubit for 2-class and except for both the
fifth and eighth qubits for the 3-class classification, respectively.

Also, the general phase other than the case h1/J = 1 will be
shown later.

2. Training of QCNN

The QCNN circuit used for this quantum phase classifi-
cation problem is shown in Fig. 3. This circuit consists of
N = 9 qubits, and it contains 117 learning parameters for
the 2-class classification and 156 for the 3-class classification
problems, respectively. The gates with the same name and
index share the same parameters. The convolutional layer
consists of Wj and Tj . Wj is the 2-qubit convolutional gate with
the form of Wj = (V ⊗ V )e−iθ·(ZZ,YY,XX )(V ⊗ V ), where θ is
the 3-dimensional vector and V is the single-qubit gate with
the form of V = e−i.1Ze−i.2Y e−i.3X which has 3 parameters.
Wj has 15 parameters since each V in Wj has different pa-
rameters. Tj is the 3-qubit convolutional gate with the form of
Tj = W (3,1)W (2,3)W (1,2), where W (a,b) acts on qubits indexed
by a and b. Tj has 45 parameters since each W in Tj has
different parameters. The pooling layer consists of Kj . For
the 2-class classification, Kj is the 3-qubit pooling gate with
the form of Kj = (1 ⊗ 1 ⊗ |0+〈0| + 1 ⊗ V ⊗ |1+〈1|)(|0+〈0| ⊗
1 ⊗ 1 + |1+〈1| ⊗ V ⊗ 1) which has 6 parameters. For the 3-
class classification, K1 is the same as Kj described above,
while K2 is the same form as Tj .

As for the dimensions of the Hilbert space of the output
state, we have # = 2 for the 2-class classification and # = 4
for the 3-class classification problems, respectively. This cor-
responds to the partial trace operation after applying K2; that
is, we take the partial trace over all qubits except for the fifth
qubit for the 2-class classification and except for both fifth and
eighth qubits for the 3-class classification, respectively. Let us
define |++ and |−+ as |±+ ≡ (|0+ ± |1+)/

√
2 , where {|0+, |1+}

is the computational basis. Then, for the 2-class classification,
we define '0 ≡ |++〈+| and '1 ≡ |−+〈−| as the projectors
corresponding to the labels “0” and “1”, respectively. For the
3-class classification, we define '0 ≡ |+,++〈+,+|, '1 ≡
|+,−+〈+,−|, '2 ≡ |−,++〈−,+|, and '3 ≡ |−,−+〈−,−|
as the projectors corresponding to the labels “0”, “1”, “2”,
and “3”, respectively.

In the QCNN training procedure, we minimize the cost
function by updating the parameters of QCNN with the use
of the simultaneous perturbation stochastic approximation
(SPSA) optimizer [98,99]. Here, the cost function is the cross-
entropy loss given by

L(") = −
∑

i, j

ptrue(xi, y j ) ln ptrain(xi, y j )

= −
∑

i, j

ptrue(y j |xi )pin(xi ) ln(ptrain(y j |xi )pin(xi ))

= −1
r

∑

i, j

ptrue(y j |xi ) ln
ptrain(y j |xi )

r

= −1
r

∑

i, j

ptrue(y j |xi ) ln ptrain(y j |xi ) + ln r, (39)

where

ptrain(y j |xi ) ≡ Tr["(ρin(xi ))' j (xi )], (40)

with " the QCNN and ' j (xi ) the projector corresponding to
the label y j of the training data xi encoded in ρin(xi ). Also,
ptrue(y j |xi ) is the true distribution, where y j is the index of
phase assigned to ρin(xi ). Recall that we are given 40 training
data (38), and we here assume that ρin(xi ) appears with equal
probability pin(xi ) = 1/40.

3. Prediction and quality evaluation

After training the QCNN, we apply the trained QCNN to
predict the phase (label) of test data [100] and then compute
the qIS and cIS, for the 2-class and 3-class classifications
problems in the following two scenarios. The first is the un-
biased scenario where we randomly generate equal numbers
of data for every label, and the second is the biased scenario
where the numbers of randomly generated data are (largely)
different for each label. Clearly, the former has a bigger diver-
sity in the data, or equivalently the generator has a capability
to produce a bigger variety of data; thus the values of both qIS
and cIS for the former case would be bigger compared to the
latter case.

In the simulation, the total number of test data is r = 1500,
where the labels are given as follows. For the 2-class clas-
sification problem, in the unbiased case we randomly select
750 data with label “0” and 750 data with label “1”; in the
biased case we randomly select 1480 data with label “0” and
20 data with label “1”. For the 3-class classification problem,
in the unbiased case we randomly select 500 data with label
“0”, 500 data with “2”, and 500 data with “3”; in the biased
case we randomly select 1480 data with label “0”, 10 data
with “2”, and 10 data with “3”. Table II shows the summary
of the setting described above. In all cases, we assume that
the generators are fixed and each data is generated with equal
probability; that is, we suppose

pin(xi ) = 1
1500 (∀i). (41)

With the above setting, we can compute qIS simply us-
ing Eqs. (7) and (11) with r = 1500. To compute the cIS
ξc(P ), we further need to specify the measurement or equiv-
alently the measurement process P . In our simulation, for the
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TABLE II. Number of randomly selected test data for the
(a) 2-class and (b) 3-class classification problems.

Label Unbiased Biased

(a) 2-class phase classification
0 750 1480
1 750 20

(b) 3-class phase classification
0 500 1480
1 0 0
2 500 10
3 500 10

2-class classification problem, we take the following dephas-
ing operations:

P2(ρ) ≡ 〈+|ρ|++|++〈+| + 〈− |ρ|−+|−+〈−|. (42)

Also, for the 3-class classification problems, we take

P3(ρ) ≡ 〈+,+|ρ|+,++|+,++〈+,+|
+ 〈+,−|ρ|+,−+|+,−+〈+,−|
+ 〈−,+|ρ|−,++|−,++〈−,+|
+ 〈−,−|ρ|−,−+|−,−+〈−,−|. (43)

Furthermore, we consider the problem of calculating the ac-
cessible information Iacc given by Eq. (16) for the 2-class
classification problem. In particular, instead of maximizing
{M} over all possible POVMs, we here consider an optimiza-
tion problem of the projectors in the following form:

'0(/ ,.) ≡ |ψ0(/ ,.)+〈ψ0(/ ,.)|,
'1(/ ,.) ≡ |ψ1(/ ,.)+〈ψ1(/ ,.)|,

(44)

where

|ψ0(/ ,.)+ ≡ cos(//2)|0+ + ei. sin(//2)|1+,

|ψ1(/ ,.)+ ≡ sin(//2)|0+ − ei. cos(//2)|1+. (45)

That is, we optimize the parameters (/ ,.) so that the cIS is
maximized.

For the 3-class classification problem, we use the projec-
tors in the following form:

'0(θ) ≡ U (θ)|0, 0+〈0, 0|U †(θ),

'1(θ) ≡ U (θ)|0, 1+〈0, 1|U †(θ),

'2(θ) ≡ U (θ)|1, 0+〈1, 0|U †(θ),

'3(θ) ≡ U (θ)|1, 1+〈1, 1|U †(θ),

(46)

where θ is the 15-dimensional vector and

U (θ) ≡
(
e−i/1Ze−i/2Y e−i/3X ⊗ e−i/4Ze−i/5Y e−i/6X )

× e−i(/7ZZ+/8YY +/9XX )

×
(
e−i/10Ze−i/11Y e−i/12X ⊗ e−i/13Ze−i/14Y e−i/15X )

.

(47)

TABLE III. Inception scores ξq and ξc for the (a) 2-class and (b)
3-class classification problems. cIS is calculated with several types
of projection measurements.

Inception Scores Unbiased Biased

(a) 2-class phase classification
ξq 1.123 1.028
ξc: X axis 1.095 1.018
ξc: Z axis 1.001 1.001
ξc: high-accuracy axis 1.022 1.005
ξc: optimized axis 1.111 1.023

(b) 3-class phase classification
ξq 1.553 1.126
ξc: XX axis 1.501 1.110
ξc: ZZ axis 1.017 1.006
ξc: high-accuracy axis 1.352 1.073
ξc: optimized axis 1.534 1.115

C. Simulation results

The inception scores for the 2-class and 3-class phase
classifications are shown in Table III. In the 2-class case,
we calculate ξc with the projection measurement on the X
axis and Z axis, which correspond to (/ ,.) = (π/2, 0) and
(/ ,.) = (0,π ) in Eq. (44), respectively. Also, we calculate ξc
with the high-accuracy axis; that is, (/ ,.) are chosen so that
the classification accuracy, which is the ratio of the number
of matches between the predicted labels and the correct labels
to that of all data {xi}4095

i=0 , is almost maximized. Moreover,
we calculate ξc with the optimized axis, meaning that we
choose (/ ,.) that maximizes cIS. In the 3-class case, ξc with
the XX axis and the ZZ axis are calculated by the projectors
{|+, ++〈+, +|, |+, −+〈+,−|, |−,++〈−,+|, |−,−+〈−,−|}
and {|0, 0+〈0, 0|, |0, 1+〈0, 1|, |1, 0+〈1, 0|, |1, 1+〈1, 1|},
respectively. For the high-accuracy axis, we choose θ
in Eq. (46) so that the classification accuracy is almost
maximized. For the optimized axis, we choose θ that
maximizes cIS. As expected, the qIS of the unbiased case
(more diverse case) is larger than that of the biased case;
interestingly, the bias-unbias gap for the 3-class case is
bigger than that for the 2-class case. Also, the importance of
appropriate choice of the measurement is clearly seen; in the
2-class classification for the unbiased case, the normalized
error of ξq − ξc is (1.123 − 1.111)/2 = 6.0 × 10−3, where
ξq ! # = 2 is used; also for the 3-class case, the normalized
error is (1.553 − 1.534)/3 ≈ 6.3 × 10−3.

For the 2-class classification problem, we can see the ef-
fect of appropriate choice of the measurement axis, using the
Bloch sphere representation of the states. Figure 4 shows the
plots of the output states of the QCNN in the Bloch sphere,
in Figs. 4(a1) and 4(a2) the unbiased and Figs. 4(b1) and
4(b2) the biased cases. The purple and yellow plots are the
output states corresponding to the labels “0” and “1”, respec-
tively. The classification task is to design a measurement axis
(a single line passing through the origin) for best separating
the yellow and purple points. Clearly, a measurement axis
on the xy plane better works than the z axis. Next, from
the Figs. 4(a1) and 4(b1), separating the unbiased dataset
by a single line on the xy plane seems harder than the case
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FIG. 4. The Bloch sphere representation and the histograms of
the outputs of the QCNN; panels (a1)–(a3) show the unbiased case
and panels (b1)–(b3) show the biased case of the 2-class phase
classification problem.

for the biased case. This can be seen in the histogram of
the projection results of the QCNN outputs onto the X axis,
shown in Fig. 4(a3) for the unbiased case and Fig. 4(b3)
the biased case, respectively; the horizontal and vertical axes
are the expectation value 〈X + of the QCNN output and the
number of data belonging to the bin, respectively. That is, in
Fig. 4(a3) there is an overlap between the two dataset, while in
Fig. 4(b3) the dataset are clearly separated, meaning that the
accuracy in the biased case is higher than the unbiased case.
However, due to the lack of diversity of the biased dataset,
the resulting qIS for the unbiased case takes a higher value
than that for the biased one. Apart from these observation, it
is interesting that the dataset {ρout (xi )} construct a near-1D
manifold while {ρout (xi )} is 2D distributed in (C2)⊗9; thus,
the classifier (QCNN) " works so that the single line (i.e., the
measurement axis) could best separate the two dataset.

Finally, Fig. 5 shows the phase diagrams predicted by
the trained QCNN with the projection measurement onto
the (a) X axis, (b) Z axis, (c) high-accuracy axis, and (d)
optimized axis, for the 2-class classification problem; recall
that we determined the high-accuracy and optimized axis by
appropriately choosing (/ ,.) in Eq. (44). Regarding Fig. 5(c)

FIG. 5. Phase diagram predicted by the QCNN with the projec-
tion measurement onto the (a) X axis, (b) Z axis, (c) high-accuracy
axis, and (d) optimized axis, for the 2-class classification problem.
We use the axes (c) and (d) obtained in the unbiased case.

the high-accuracy axis and Fig. 5(d) the optimized axis, we
use those obtained in the unbiased case. The ground states of
the Hamiltonian (35) are classified to the paramagnetic phase
(upper the blue line), the antiferromagnetic phase (below the
green line), or the SPT phase between the two lines, where the
blue and green lines are the exact phase boundaries obtained
by using the infinite size DMRG numerical simulator. The
purple and yellow regions correspond to the SPT phase with
the label “0” and the paramagnetic/antiferromagnetic phases
with the label “1”, respectively. That is, for the 2-class case,
we do not distinguish the paramagnetic and antiferromagnetic
phases. The value of classification accuracy achieved in each
measurement methods are: (a) 0.78, (b) 0.49, (c) 0.98, and (d)
0.76. Interestingly, the optimal strategy in Fig. 5(d) maximizes
ξc at the price of not detecting the antiferromagnetic phase,
while the QCNN has the ability for detecting that phase as
shown in Fig. 5(c). This is consistent to the concept of IS,
which quantifies the quality of the generator, defined by the
balance between the accuracy and diversity.

Similarly, Fig. 6 shows the phase diagrams predicted by
the trained QCNN with the projection measurement onto the
(a) XX axis, (b) ZZ axis, (c) high-accuracy axis, and (d)
optimized axis, for the 3-class classification problem. The
purple, blue, green, and yellow regions correspond to the
phases of SPT, Nothing, Paramagnetic, Antiferromagnetic,
with the labels “0”, “1”, “2”, and “3”, respectively. The value
of classification accuracy in each measurement methods are
(a) 0.70, (b) 0.05, (c) 0.87, and (d) 0.68. As in the 2-class
case, the optimal measurement in Fig. 6(d) achieves less ac-
curate detection of the phase, compared to Fig. 6(c) and even
Fig. 6(a).

VIII. CONCLUSION

We have proposed the quantum inception score as a qual-
ity measure of quantum generative models, and obtained the
following three main claims by connecting to the Holevo
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FIG. 6. Phase diagram predicted by the QCNN with the pro-
jection measurement onto the (a) XX axis, (b) ZZ axis, (c) high-
accuracy axis, and (d) optimized axis, for the 3-class classification
problem. We use the axes (c) and (d) obtained in the unbiased case.

information. First, the performing measurements is one of
the primary factors resulting in the quality difference of the
quantum generative models in QQ protocol in Fig. 1 because
of the destruction of the quantum coherence preserved in the
quantum classifier. Second, the best quality can be further
achieved with the entanglement of the generator’s output due
to the potential superadditivity of the communication capac-
ity. This can be regarded as the quantum advantage in the
generative modeling by using the entanglement as a resource.
Third, the quality difference of quantum generative models is
due to the decoherence in the classifier, which can be quan-
tified by the quantum efficacy emerging from the quantum
fluctuation theorem. We also show examples of utilizing the
quantum inception score to evaluate the quality of the 1D
spin-1/2 chain as a generator, for the 2-class and 3-class clas-
sification of the quantum phase in the quantum many-body
physics.

Finally we remark that, in the classical regime, inception
score is not currently a widely used measure for assessing
generative models because of its potential constraints in facil-
itating useful model comparison as pointed out in Ref. [36].
These constraints could extend to the qIS in the similar man-
ner. Nonetheless, the results obtained in this paper based on
qIS enable us to emphasize the significance of further in-
vestigation of characterizing the quantum machine learning
protocols from the fundamental perspectives, such as quantum
information transmission and information thermodynamics.
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APPENDIX: DERIVATION OF EQ. (25)

In this Appendix, we provide the proof details of Eq. (25).
We discuss two cases: nondegenerate and degenerate H .

1. Nondegenerate H

First, let us focus on the case that H is nondegenerate. H
can be diagonalized as

H =
D∑

n=1

ωn|ωn+〈ωn|, (A1)

where D denotes the dimension of the Hilbert space and
{ωn}D

n=1 are all different from each other. Here, {|ωn+}D
n=1 is

an orthonormal basis of H . Defining,

+ωnm ≡ ωn − ωm, (A2)

we have

1
2T

∫ T

−T
dte−iHtρeiHt

= 1
2T

∑

n,m

∫ T

−T
dte−i+ωnmt 〈ωn|ρ|ωm+|ωn+〈ωm|

=
∑

n,m

sinc(+ωnmT )〈ωn|ρ|ωm+|ωn+〈ωm|

=
D∑

n=1

〈ωn|ρ|ωn+|ωn+〈ωn|

+
∑

n '=m

sinc(T +ωnm)〈ωn|ρ|ωm+|ωn+〈ωm|, (A3)

where we used sinc(0) = 1. Then, by utilizing
limT →∞ sinc(T +ωnm) = 0 (+ωnm '= 0), the second term
vanishes when T → ∞; therefore, we obtain

GH (ρ) = lim
T →∞

[
1

2T

∫ T

−T
dte−itHρeitH

]

=
D∑

n=1

〈ωn|ρ|ωn+|ωn+〈ωn| =
D∑

n=1

'nρ'n, (A4)

where 'n ≡ |ωn+〈ωn| is a rank-1 projector onto the eigenstate
|ωn+ of H . This implies that GH corresponds to the dephasing
map transferring ρ into a fully incoherent state [84] diagonal
in the eigenbasis {|ωn+}D

n=1 of H . Then, the relative entropy of
asymmetry A(ρ; H ) ≡ S(ρ ‖GH (ρ)) coincides with the rela-
tive entropy of coherence [84].

2. Degenerate H

Next, let us discuss the case that H is degenerate. Again,
H can be diagonalized as Eq. (A1). Suppose that H has λ
degenerate eigenvalues

ωα1 ,ωα2 , . . . ,ωαλ
. (A5)
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For each degenerate eigenvalue ωαµ
, suppose that we have kµ

orthonormal eigenbasis

{∣∣ω(1)
αµ

〉
,
∣∣ω(2)

αµ

〉
, . . . ,

∣∣ω(kµ )
αµ

〉}
. (A6)

Defining

K ≡
λ∑

µ=1

kµ, (A7)

the number of distinct nondegenerate eigenvalues is given by

K = D − K . (A8)

Then, L = K + λ < D is the total number of distinct eigen-
values of H , and the Hilbert space can be written as

H =
L⊕

α=1

Hα, (A9)

where Hα denotes the subspace spanned by the eigenstates
of H corresponding to the eigenvalue ωα . Here, for the non-
degenerate eigenvalue ωα , the corresponding projector is the
rank-1 projector

'ωα
≡ |ωα+〈ωα|. (A10)

For the degenerate eigenvalue ωαµ
, the projector onto the

corresponding subspace of the eigenbasis is

'αµ
=

kµ∑

ν=1

∣∣ω(ν)
αµ

〉〈
ω(ν)

αµ

∣∣, (A11)

so that the rank of the projector is rank('αµ
) = kµ > 1. Now,

let us define the set of the nondegenerate eigenvalues as

5 ≡ {ωα | ωα '= ωβ, α '= β} (A12)

and the set of degenerate eigenvalues as

7 ≡ {ωα | ωα = ωβ,α '= β}. (A13)

Then, we have

1
2T

∫ T

−T
dte−iHtρeiHt

=
∑

n,m

sinc(+ωnmT )〈ωn|ρ|ωm+|ωn+〈ωm|

=
∑

ωα∈5

〈ωα|ρ|ωα+|ωα+〈ωα| +
∑

ωα ,ωβ∈7

〈ωα|ρ|ωβ+|ωα+〈ωβ |

+
∑

ωα ,ωβ∈5

sinc(T +ωαβ )〈ωα|ρ|ωβ+|ωα+〈ωβ |

=
∑

ωα∈5

〈ωα|ρ|ωα+|ωα+〈ωα|

+
λ∑

µ=1

kµ∑

ν=1

kµ∑

ν ′=1

〈
ω(ν)

αµ

∣∣ρ
∣∣ω(ν ′ )

αµ

〉∣∣ω(ν)
αµ

〉〈
ω(ν ′ )

αµ

∣∣

+
∑

ωα ,ωβ∈5

sinc(T +ωαβ )〈ωα|ρ|ωβ+|ωα+〈ωβ |

=
∑

ωα∈5

'ωα
ρ'ωα

+
λ∑

µ=1

'αµ
ρ'αµ

+
∑

ωα ,ωβ∈5

sinc(T +ωαβ )〈ωα|ρ|ωβ+|ωα+〈ωβ |, (A14)

where the third term vanishes as T → ∞. Therefore, defining
the set of projectors

{'n}L
n=1 ∈

{
'ωα

}
ωα∈5

∪
{
'αµ

}λ

µ=1 (A15)

onto the subspace of the eigenbasis of H , we obtain

GH (ρ) = lim
T →∞

[
1

2T

∫ T

−T
dte−itHρeitH

]
=

L∑

n=1

'nρ'n,

(A16)

which is a block diagonal state. In this case, the rela-
tive entropy of asymmetry A(ρ; H ) ≡ S(ρ ‖GH (ρ)) coincides
with the relative entropy of superposition [83]. Obvi-
ously, Eq. (A16) is reduced to Eq. (A4) when we have
rank('αµ

) = 1 (∀µ), which corresponds to the case that H is
nondegenerate.
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