
Conditional lower bounds for sparse parameterized 2-CSP:

A streamlined proof

Karthik C. S.∗ Dániel Marx† Marcin Pilipczuk‡ Uéverton Souza§

Abstract

Assuming the Exponential Time Hypothesis (ETH), a result of Marx (ToC’10) implies that there is no

f(k) · no(k/ log k) time algorithm that can solve 2-CSPs with k constraints (over a domain of arbitrary large
size n) for any computable function f . This lower bound is widely used to show that certain parameterized

problems cannot be solved in time f(k) · no(k/ log k) time (assuming the ETH). The purpose of this note is to
give a streamlined proof of this result.

1 Introduction

The goal of this note is to discuss a simple proof for a widely used conditional lower bound on the time needed
to solve Constraint Satisfaction Problems (CSP). Our focus is on 2-CSPs, that is, the special case where each
constraint involves two variables. Formally, an instance Γ of 2-CSP consists of a (constraint) graph H, an
alphabet set Σ, and, for each edge {u, v} ∈ E(H), a constraint Cuv ¦ Σ× Σ. An assignment for Γ is a function
Ã : V (H) → Σ. An edge {u, v} ∈ E(H) is said to be satisfied by an assignment Ã if and only if (Ã(u), Ã(v)) ∈ Cuv.
The goal of the 2-CSP is to determine if there is an assignment Ã that satisfies all the edges (i.e., constraints).
Such an assignment is referred to as a satisfying assignment. A 2-CSP admitting a satisfying assignment is said
to be satisfiable. Some authors use the name binary CSP for 2-CSP, emphasizing that each constraint is defined
by a binary relation on two variables. The problem can be equivalently stated as Partitioned Subgraph
Isomorphism, but here we prefer to present the results using the language of 2-CSP.

Let us consider two simple examples how a 2-CSP can model other algorithmic problems. If Σ = [3] and every
constraint Cuv is the inequality relation (i.e., ([3] × [3]) \ {(1, 1), (2, 2), (3, 3)}), then the problem is the same as
3-coloring: the instance is satisfiable if and only if the constraint graph has a proper 3-coloring of the vertices.
The k-Clique problem on a graph G can be reduced to 2-CSP in the following way. Let the alphabet set be
Σ = V (G) and let the constraint graph be a clique on k variables v1, . . . , vk. For every 1 f i < j f k, the
constraint Cvivj is the relation {(x, y) ∈ V (G) × V (G) | x and y are adjacent in G}. Then it is easy to see that
the 2-CSP instance is satisfiable if and only if G has a clique of size k. Note that in the second example, the
alphabet size can be arbitrarily large. The lower bounds we consider are mostly relevant for such instances.

Given a 2-CSP instance with k variables, an exhaustive search algorithm can solve it by considering each of
the |Σ|k possible assignments. In a sense, the reduction from k-Clique shows that this algorithm is essentially
optimal. Chen et al. [CHKX06a, CHKX06b] showed that there is no f(k) · no(k) time algorithm for k-Clique
for any computable function f , unless the Exponential-Time Hypothesis (ETH) fails (see Section 2 for the formal
definition of ETH). The reduction given above translates this result to a lower bound for 2-CSP in a transparent
way.

Theorem 1.1. (Chen et al. [CHKX06a, CHKX06b]) If there is an f(k) · |Σ|o(k) time algorithm for 2-CSP,
where Σ is the alphabet set, k is the number of variables, and f is a computable function, then the ETH fails.

Theorem 1.1 is essentially tight (up to a constant factor in the exponent of |Σ|), but let us observe that the
reduction from k-Clique creates dense 2-CSP instances having k variables and

(

k
2

)

constraints. The lower bound
does not remain valid if we consider sparse instances. Statements about sparse instances can be formulated by

∗Rutgers University, USA, karthik.cs@rutgers.edu
†CISPA, Germany, marx@cispa.de
‡Institute of Informatics, University of Warsaw, Poland, m.pilipczuk@mimuw.edu.pl
§Universidade Federal Fluminense (UFF), Brazil, ueverton@ic.uff.br

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited383

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

expressing the running time as a function of the number m of constraints. As the reduction above creates an
instance with m = Ω(k2) constraints, the exponent cannot be better than O(

√
m).

Corollary 1.1. If there is an f(m) · |Σ|o(
√
m) time algorithm for 2-CSP, where Σ is the alphabet set, m is the

number of constraints, and f is a computable function, then the ETH fails.

A different way to state the results about sparse instances is to consider only instances where the constraint graph
has bounded degree. There is a very simple transformation that turns a 2-CSP instance with k variables and m
constraints into a 2-CSP instance with 2m variables and a 3-regular constraint graph: if a variable appears in
c constraints, then let us replace it with c copies, connect these copies with a cycle of equality constraints, and
let us introduce the original constraints in such a way that each copy of a variable appears in exactly one such
constraint. A further simple transformation can be used to make the constraint graph bipartite, at the cost of
increasing the number of variables by a constant factor. Corollary 1.1 and these transformations give the following
slightly stronger statement.

Corollary 1.2. If there is an f(k) · |Σ|o(
√
k) time algorithm for 2-CSP on bipartite 3-regular constraint graphs,

where Σ is the alphabet set, k is the number of constraints, and f is a computable function, then the ETH fails.

Marx [Mar10] improved the lower bound to a result that is tight up to a logarithmic factor in the exponent.

Theorem 1.2. (Marx [Mar10]) If there is an f(k) · |Σ|o(k/ log k) time algorithm for 2-CSP on bipartite 3-regular
constraint graphs, where Σ is the alphabet set, k is the number of constraints, and f is a computable function,
then the ETH fails.

Theorem 1.2 was obtained as a special case of a result in a much more general setting. Informally, Marx [Mar10]
considered the 2-CSP problem restricted to an arbitrary class H of constraint graphs and showed that, under any
such restriction, an algorithm with running time f(k) · |Σ|o(t/ log t) would violate the ETH, where k is the number
of variables, t is the treewidth1 of the constraint graph, and f is an arbitrary computable function. Specializing
this result to a class of 3-regular bipartite graphs where treewidth is linear in the number of vertices (explicit
constructions of bounded-degree expanders can be used to construct such classes) yields Theorem 1.2.

Applications. An important aspect of Theorem 1.1 is that it can be used to obtain lower bounds for other
parameterized problems. W[1]-hardness proofs are typically done by parameterized reductions from k-Clique.
It is easy to observe that if a parameterized reduction increases the parameter only at most by a constant
multiplicative factor, then this implies a lower bound similar to Theorem 1.1 for the target problem. In many
cases, the reduction from k-Clique constructs an instance consisting of k vertex-selection gadgets such that each
gadget increases the parameter by a constant, and thus the parameter of the target instance is indeed linear in k.
However, many of the more involved reductions use edge selection gadgets (see e.g., [FHRV09]). As the k-clique has
Θ(k2) edges, this means that the reduction increases the parameter to Θ(k2) and we can conclude only the weaker

bound stating that there is no f(k)·no(
√
k)-time algorithm for the target problem (unless the ETH fails). If we want

to obtain stronger bounds on the exponent, then we have to avoid the quadratic blow-up of the parameter and do
the reduction from a different problem. One possibility is to reduce from 2-CSP on a 3-regular constraint graph
and use the lower bound of Theorem 1.2. In such a reduction, we would need k vertex-selection gadgets and 3k/2
edge-selection gadgets. If each gadget increases the target parameter only by a constant, then the target parameter
is again O(k). Therefore, such a reduction and Theorem 1.2 allows us to conclude that there is no f(k) ·no(k/ log k)-
time algorithm for the target problem. The use of Theorem 1.2 has become a standard technique when proving
almost-tight lower bounds ruling out f(k) ·no(k/ log k) time algorithms [MP15, JKMS13, CDM17, JLR+17, CX15,
BM16, GHNS13, PW18, BS17, BKMN16, EL18, LRSZ20, EKPS18, BGL17, CdVMdM21, CFHM20, CFM21,
APSZ21, CDH21, DEG22, KSS22, EGN+23, AKMR19, GHNS13, FPRS23, CCG+13, BIJK19, BCMP20, NS22].
It seems that some kind of edge representation is required in many W[1]-hardness proofs, and for such problems

basing the reduction on Theorem 1.1 would be able to rule out only algorithms with running time f(k) · no(
√
k).

For these problems, Theorem 1.2 is the only know way of obtaining a lower bound (almost) matching the nO(k)

upper bounds.

1Informally, treewidth is a measure of the proximity of the graph to a tree, and more formally is the size of the largest vertex set
in a tree decomposition of the graph.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited384

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Our contribution. Our main contribution is to provide a streamlined proof of Theorem 1.2 and state some
stronger formulations. As mentioned above, Theorem 1.2 was obtained by considering the special case of expander
graphs in the more general result of [Mar10]. It turns out that the proof can be significantly shortened in this case:
a multi-step combinatorial proof can be replaced by a known result about routing in expanders with congestion
O(log n) [LR99].

Instead of saying that the exponent cannot be o(k/ log k), we state the result in a stronger form by stating a
lower bound for every fixed k. A similar formulation was stated by Cohen-Addad et al. [CdVMdM21]. It seems
that such a statement is particularly useful to obtain in a clear way lower bounds that involve multiple parameters
(where the little-o notation is unclear).

Theorem 1.3. There exists ³ > 0 and k0 ∈ N such that the following holds. If there exists some fixed integer
k g k0 and an algorithm Ak with the following guarantees, then ETH is false.

Input: Ak takes as input a 2-CSP instance Γ(H,Σ, {Cuv}{u,v}∈E(H)) where H is a 3-regular simple bipartite
graph on k vertices.

Output: Ak outputs 1 if and only if there is a satisfying assignment to Γ.

Run time: Ak runs in time O(|Σ|³k/ log k).

Clearly, Theorem 1.3 implies Theorem 1.2: for a fixed sufficiently large value of k, the hypothetical algorithm
of Theorem 1.2 would satisfy the guarantees in Theorem 4.2.

Jaffke et al. [JLM+23] proved a version of Theorem 1.2 where there is an upper bound on the alphabet size
by a function of k; this result was used to establish a lower bound for the problem Global Label MinCut.
Intuitively, if we set the alphabet size to |Σ| = 2k, then we expect that |Σ|O(k) = 2O(k2) is the best possible
running time. However, the formulations of Theorems 1.2 and 1.3 cannot be used to establish such results, as the
number of possible instances with this restriction is bounded for each value of k. The following theorem proves
bounds of this form; for example, it shows that, assuming ETH, there is no 2o(k

2/ log k) time algorithm even with
the restriction |Σ| f 2k.

Theorem 1.4. Let f : N → N. We say f is good if it is non-decreasing, unbounded, and for all n ∈ N, f(n) can
be computed in poly(f(n)) time. If there is a function f that is good and an algorithm that given a 2-CSP on k
variables and alphabet set Σ where |Σ| < f(k) that solves it in time at most f(k − 1)o(k/ log k), then ETH is false.

Original Proof in [Mar10]. At a high level, the proof of Marx [Mar10] can be described in the following
way. It is known that a 2o(n) algorithm for 3-coloring an n-vertex 4-regular graph would violate the ETH. Our
goal is to use the hypothetical f(k) ·no(t/ log t) algorithm for some graph class H to efficiently solve the 3-coloring
problem (given the reduction earlier, it will be convenient to consider 3-coloring as a 2-CSP on |Σ| = 3). Let us
choose an H ∈ H with sufficiently large treewidth. The core of the result is a combinatorial embedding result
showing that a graph with O(n) edges can be efficiently embedded in graphs with large treewidth.

The notion of embedding we need is the following: it is a mapping f from the vertices of G to connected
vertex sets of H such that if two vertices x and y of G are adjacent, then f(x) and f(y) intersect or have an
edge between them (such an embedding is referred to as connected embedding in this paper). The depth of the
embedding is the maximum number of times each vertex of H is used as an image of some vertex of G. The
main combinatorial result of [Mar10] shows that a bounded-degree graph G with n vertices has an embedding
into H of depth O(n log t/t), where t is the treewidth of H (and this embedding can be found efficiently). The
embedding is constructed via the following steps: (1) large treewidth implies the existence of a large set without
balanced separators2, (2) a set without balanced separators implies the existence of a large uniform concurrent
flow, (3) the paths appearing in this large concurrent flow can be used to embed a blowup of the line graph of a
complete graph, (4) the bounded-degree graph G can be embedded into this blowup of the line graph of a clique
by a simple routing scheme.

Given such an embedding, we can reduce a 2-CSP on |Σ| = 3 and having constraint graph G to a 2-CSP
on constraint graph H, but having larger alphabet Σ′. If the embedding maps vertex v of G to a subset of

2Given a nonempty set W of vertices, we say that a set S of vertices is a balanced separator (with respect to W) if |W ∩C| ≤ |W |/2
for every connected component C of G \ S.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited385

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

vertices f(v) of H, then every variable in f(v) “simulates” variable v in the constructed instance. If the depth of
the embedding is at most d, then each variable of the constructed instance needs to simulate at most d original
variables. Therefore, if the alphabet size of the new instance is |Σ′| = |Σ|d = 3d, then each variable of H can
simulate the required number of original variables. As f(v) is connected in H, we can introduce constraints that
ensure that every variable in f(v) expresses the same value for v. Furthermore, when u and v are adjacent in G,
then f(u) and f(v) intersect or adjacent in H, so we can introduce a constraint to ensure that the constraint Cuv

on u and v are respected. Thus the created instance is equivalent to the original one. By carefully following how
the instance parameters change during the reduction, we can argue that the hypothetical algorithm on H would
solve the original 3-coloring instance in 2o(n) time.

One technical difficulty in the proof is choosing H ∈ H. To obtain 2o(n) running time for 3-Coloring, the
choice of H should depends on n: for larger n, we want to find an H with larger treewidth in order to have a
larger advantage compared to brute force. Thus one has to take into account the time required to enumerate
graphs from H. On the other hand, graph H cannot be very large, otherwise the factor f(k) in the running time
could be too large. Thus the correct choice of H creates an additional layer of difficulties in the proof.

Our Proof. Our main observation is that if the goal is to obtain Theorem 1.2, then it can be reached in
a much simpler way than going through a general bound for treewidth and restricting it to the special case of
expanders. In particular, the required embedding result is much simpler if the target graph is an expander. The
key step is provided by Leighton and Rao [LR99, Theorem 22], showing the following routing result: given disjoint
pairs of vertices (x1, y1), . . . , (xt, yt) in a k-vertex expander graph, we can find in polynomial time t paths P1,
. . . , Pt such that Pi has endpoints (xi, yi) and every edge is used by O(log k) of the paths.

Given an n-vertex bounded-degree graph G and a k-vertex bounded-degree expander H, we can use this
routing result to find an embedding of G in H having depth O(n log k/k). First, let f be an arbitrary mapping
from the vertices of G to vertices of H such that at most n/k vertices are mapped to each vertex of H. This
mapping can be used to define a “demand multigraph” D: it has the same vertex set as H, and for every edge uv
of G, we introduce a new edge f(u)f(v) into D. As G has bounded degree and f maps at most n/k vertices to each
vertex of H, it follows that D has maximum degree O(n/k) and hence its edge set can be partitioned into O(n/k)
matchings. For each such matching, we can use the routing result of Leighton and Rao [LR99, Theorem 22] to
find paths connecting the endpoints. This means that for every edge uv of G, we find a path in H connecting
f(u) and f(v) in such a way that every edge of H is used by O(n log k/k) of the paths. As H has bounded degree,
it also follows that every vertex is used by O(n log k/k) paths. Now we can define the embedding by letting h(u)
be the union of the paths corresponding to the edges of G incident to u. It is clear that every vertex of H is used
by O(n log k/k) such sets and if uv is an edge of G then h(u) and h(v) intersect.

Another technical difference compared to the original proof of Marx [Mar10] is that the original proof started
with the assumption that there is no 2o(n) time algorithm for n-variable 3SAT. This is a somewhat weaker
assumption than the ETH, which states that there is no O(2ϵn) algorithm for some ϵ > 0. Using the ETH as the
starting assumption and stating the result for a fixed k as in Theorem 1.3 allows a proof with significantly fewer
technicalities.

Obstacles to obtain tight result It remains an important open question whether the log k factor in
Theorem 1.2 can be reduced or even eliminated. One obvious approach for improvement would be to improve the
embedding result and show that an n-vertex bounded-degree graph G has an embedding with depth o(n log k/k)
into some k-vertex expander. Note that the proof of our embedding result starts with an arbitrary balanced
mapping of vertices of G to vertices of H, so there seems to be a lot of room for improvement for optimizing
this scheme by a more careful grouping of vertices. However, by now, it is known that the log k factor in the
embedding result cannot be improved in general.

Theorem 1.5. (Alon and Marx [AM11]) Let H be a 3-regular graph with k vertices. Then, for all even
n > n0(k), there exists a 3-regular graph G on n vertices so that any embedding into H is of depth at least
Ω(n log k

k).

Thus any improvement of Theorem 1.2 should involve significantly different techniques, going beyond the
simple notion of embedding we have here.

1.1 Organization of Paper In Section 2 we introduce the problems and hypotheses of interest to this paper.
In Section 3 we prove the main technical tool (a graph embedding theorem) needed to prove Theorems 1.3 and 1.4.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited386

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Finally, in Section 4, we prove Theorems 1.3 and 1.4.

2 Preliminaries

In this section, we state a few definitions of relevance to the rest of the paper.
3-SAT. In the 3-SAT problem, we are given a CNF formula φ over n variables x1, . . . , xn, such that each

clause contains at most 3 literals. Our goal is to decide if there exist an assignment to x1, . . . , xn which satisfies
φ.

Hypothesis 2.1. (Exponential Time Hypothesis (ETH) [IP01, IPZ01, Tov84]) There exists ϵ > 0 such
that no algorithm can solve 3-SAT on n variables in time O(2ϵn). Moreover, this holds even when restricted to
formulae in which each variable appears in at most three clauses.

Note that the original version of the hypothesis from [IP01] does not enforce the requirement that each
variable appears in at most three clauses. To arrive at the above formulation, we first apply the Sparsification
Lemma of [IPZ01], which implies that we can assume without loss of generality that the number of clauses m is
O(n). We then apply Tovey’s reduction [Tov84] which produces a 3-CNF instance with at most 3m + n = O(n)
variables and every variable occurs in at most three clauses. This means that the bounded occurrence restriction
is also without loss of generality.

2-CSP. An instance Γ of 2-CSP consists of a (constraint) graph H, an alphabet set Σ, and, for each edge
{u, v} ∈ E(H), a constraint Cuv ¦ Σ × Σ. An assignment for Γ is a function Ã : V (H) → Σ. An edge
{u, v} ∈ E(H) is said to be satisfied by an assignment Ã if and only if (Ã(u), Ã(v)) ∈ Cuv. The goal of the 2-CSP
is to determine if there is an assignment Ã that satisfies all the edges (i.e., constraints). Such an assignment is
referred to as a satisfying assignment. A 2-CSP admitting a satisfying assignment is said to be satisfiable.

Cheeger Constant. Let G be a graph. For any subset S ¦ V (G), the edge boundary or cut of S, denoted
¶(S), is the set of edges which have one endpoint in S and the other endpoint not in S, i.e.,

∀S ¦ V (G), ¶(S) := {{u, v} ∈ E(G) | u ∈ S, v /∈ S}.

The Cheeger constant of G, denoted ³(G), is defined by:

³(G) := min
S¦V (G)

|S|f|V (G)|/2

{ |¶(S)|
|S|

}
.

Expanders. We will now discuss about the construction of a bipartite 3-regular expander H on k vertices,
keeping in mind that we will later provide Ĝ and H as input to A′. Our starting is the following result of Alon
[Alo21].

Theorem 2.1. (Alon [Alo21]) There is an algorithm A such that the following holds for every degree d g 3,
every ε > 0 and all sufficiently large n g n0(d, ε), where n · d is even. A on input n, d, and ε (n is provided
in unary to A) outputs in polynomial time a d-regular graph G on n vertices with at most one self-loop on each
vertex3 such that the the absolute value of every non-trivial eigenvalue of the adjacency matrix of G is at most
2 ·

√
d− 1 + ε.

Alon communicated to us [Alo23] that the above result can be used to prove the existence of 3-regular balanced
bipartite expanders of every order (greater than 4).

Theorem 2.2. (Alon [Alo23]) There is a universal constant ³0 > 0 and an algorithm A such that the following
holds. A on input an even integer n g 6 (n is provided in unary to A) outputs in polynomial time a 3-regular
balanced bipartite graph G on n vertices such that ³(G) g ³0.

Proof. Let A′ be the algorithm given by Theorem 2.1 and let n0 ∈ N be the integer guaranteed in that theorem
statement for d := 3 and ε := 2.85− 2

√
2. The ³0 in this theorem statement is then set to min(1/n0, 0.015).

3In [Alo21], the author uses the convention that a self-loop adds one to the degree of the vertex.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited387

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

If the input n to A is less than max(2n0, 12) then simply output the following graph4 on n vertices: ∀i ∈ [n/2],
and ∀t ∈ {−1, 0, 1}, we have (i, ((i+ t) mod (n/2)) + n

2 + 1) ∈ E(Gn). Note that Gn is connected, and thus for
all non-empty S ¦ V (Gn) such that |S| f n/2, we have that there is an edge in ¶(S). Thus, we have:

³(Gn) g


 min

S¦V (Gn)
|S|fn/2

1

|S|


 g 2

n
g 1

n0
.

If the input n to A is at least max(2n0, 12) and n is divisible by 4, then let G0
n be the output of A′ on

input n/2, d = 3, ε := 2.85 − 2
√
2 (we can invoke A′ on input n/2 as n/2 is even). Let Gn be the double cover

of G0
n, i.e., if A is the adjacency matrix of G0

n then the adjacency matrix of Gn is

[
0 A
A 0

]
. Note that G0

n is a

3-regular graph on n/2 vertices and Gn is a 3-regular simple5 balanced bipartite graph on n vertices. Moreover,
if −2.85 f ¼0

n
2
f ¼0

n
2 −1 f · · · f ¼0

2 f 2.85 < ¼0
1 = 3 were the eigenvalues of G0

n then the set of eigenvalues of Gn

is {(−1)a · ¼0
j | j ∈ [n/2], a ∈ {0, 1}}. Thus the second highest eigenvalue of Gn is at most 2.85. From Cheeger

inequality [Che70, Alo86, AM85], we have:

³(Gn) g (3− 2.85)/2 = 0.075.

If the input n to A is at least max(2n0, 12) and n is not divisible by 4 (i.e., n ∼= 2 mod 4), then let Gn+2 be
the output of A on input n + 2. Note that Gn+2 is a 3-regular balanced bipartite graph on n + 2 vertices with
³(Gn+2) g 0.075. Let e := {u, v} be an arbitrary edge in Gn+2. Let v, v1, and v2 (resp. u, u1, and u2) be the
neighbors of u (resp. v). We remove u and v (and the edges incident to these two vertices), and insert an edge
between u1 and v1, and between u2 and v2, to obtain Gn, a 3-regular balanced bipartite graph on n vertices.

Let S ¦ V (Gn) such that |S| f |V (Gn)|/2 and ³(Gn) = |¶(S)|
|S| . Let T := S ∩ {u1, u2, v1, v2}. Suppose

S = T , then we note that ¶(T) > 0 in Gn, as otherwise, we have that the set of vertices {u, v, u1, v1, u2, v2} is
disconnected from the rest of the graph in Gn+2, and this implies ³(Gn+2) = 0 (as n g 12). But if ¶(T) > 0 then
we have:

³(Gn) =
|¶(S)|
|S| =

|¶(T)|
|T | g 1

4
.

On the other hand, suppose S ̸= T , then let S̃ := S \ T . First note that ¶(S) in Gn is not empty as then
we have that either ¶(S) or ¶(S ∪ {u, v}) is empty in Gn+2. Let FS̃ ¦ E(Gn) (resp. FT ¦ E(Gn)) be the set of

edges with one endpoint in S̃ (resp. T) and another endpoint in V (Gn) \S. Since there are no edges between the

set S̃ and {u, v} in Gn+2, we have that FS̃ is also the set of edges with one endpoint in S̃ and another endpoint

in V (Gn+2) \ S. On the other hand, let F̃T ¦ E(Gn+2) be the set of edges with one endpoint in T and another

endpoint in V (Gn+2) \ S, then we know that 0 f |F̃T | − |FT | f 4. Also since ¶(S) in Gn is not empty, we have
that |FS̃ |+ |FT | g 1. Thus, we have:

|F̃T |+ |FS̃ | f 4 + |FT |+ |FS̃ | f 4 · (|FT |+ |FS̃ |) + |FT |+ |FS̃ | = 5(|FS̃ |+ |FT |).

This implies:

³(Gn) =
|¶n(S)|
|S| g |FS̃ |+ |FT |

|S| g |FS̃ |+ |F̃T |
5|S| g ³(Gn+2)

5
g 0.015.

Finally, we note that A runs in polynomial time because A′ runs in polynomial time.

3 Proof of Main Embedding Theorem

In this section, we prove a graph embedding theorem which will be used to prove Theorems 1.3 and 1.4 in the
next section. First we introduce a notion of graph embedding below.

4Any arbitrary connected balanced bipartite graph Gn on n vertices would suffice for us.
5Recall that in a simple graph there are no self-loops and no multiple edges between a pair of vertices.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited388

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Two connected subgraphs H1 and H2 of a graph H touch if they share a vertex or if there is an edge of H
with one endpoint in V (H1) and another endpoint in V (H2). A connected embedding of a graph G in a graph H
is a function Ψ : V (G) → ¶(V (H)) that maps every v ∈ V (G) to a nonempty connected subgraph in H such that
for every edge uv ∈ E(G), the subgraphs Ψ(u) and Ψ(v) touch. The depth of an embedding Ψ, denoted ∆(Ψ), is:

∆(Ψ) := max
x∈V (H)

|{v ∈ V (G) | x ∈ Ψ(v)}|,

that is, the maximum number of subgraphs Ψ(v) that meet in a single vertex of H. In literature, such embedding
also appear in the context of congested minor models where depth is called congestion or ply.

The main embedding result of this section is the following.

Theorem 3.1. There exists a constant Z g 1 and an algorithm A that takes as input a graph G and an
integer k g 6, and outputs a bipartite 3-regular graph H with no isolated vertices and a connected embedding
Ψ : V (G) → ¶(V (H)) such that the following holds.

Size: |V (H)| f k.

Depth Guarantee: ∆(Ψ) f Z ·
(
1 + |V (G)|+|E(G)|

k

)
· log k.

Runtime: A runs in time (|V (G)|+ |E(G)|)O(1).

Before, we proceed with the proof of the above theorem, we first state a key result of Leighton and Rao [LR99]
on expander routing that will be used in our proof.

Theorem 3.2. (Leighton and Rao [LR99]) There exists an algorithm A that takes as input a k-node bounded
degree graph G, and a k-node bounded degree graph H with Cheeger constant ³ := ³(H), and a bijection
h : V (G) → V (H), and outputs in deterministic polynomial time, a path Puv for each edge uv of G such that the
following holds.

1. Path Puv is a path between h(u) and h(v) in H,

2. Each edge of H is in at most O(³−1 log k) of the paths,

3. Path Puv has length at most O(³−1 log k).

Proof. [Proof of Theorem 3.1] Let A′ (resp. A′′) be the algorithm given by Theorem 3.2 (resp. Theorem 2.2).
Given as input a d-regular graph G and an integer k g 6, the algorithm A does the following.

A first provides k as input to A′′. Let H be the balanced bipartite 3-regular expander H on k vertices with
Cheeger constant bounded away from ³0 (some positive universal constant) that is given as output.

A then fixes an arbitrary function g : V (G) → [k] such that for all j ∈ [k], we have |{v ∈ V (G) | g(v) = j}| f
+|V (G)|/k,, i.e., g is balanced.

Consider the following multigraph (demand graph) D on k vertices, where for every {u, v} ∈ E(G), if

g(u) ̸= g(v), then there is a unique edge in E(D) between g(u) and g(v). In D, there are at most |V (G)|d
k

edges incident on any vertex. Thus from [dW72] E(D) admits a decomposition into matchings, where the size of
each matching is at least k

2 −1. For each such matching, say {(x1, y1), . . . , (xℓ, yℓ)}, where ℓ g k
2 −1, we construct

the degree 1 graph Ĝ given by the union of the ℓ edges of the matching.
A′ on input Ĝ and H (and some canonical bijection between V (Ĝ) and V (H)) outputs ℓ paths in H whose

congestion is at most O(log k) (since the Cheeger constant of H is bounded below by a positive constant). We

do the above for each matching (a different Ĝ for each matching) and using the same graph H as input to A′ to
obtain a collection of paths. More importantly, there is a 1-to-1 correspondence between the edges of G and this
collection of paths.

The final connected embedding Ψ is given as follows: for each v ∈ V (G), we have d many edges incident on
it and each edge corresponds to a path of length at most O(log k). Then Ψ(v) is the union of the nodes in all the
d paths corresponding to the d edges incident of v.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited389

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The runtime claim is straightforward. To see the claim on the depth of the embedding, notice that the
congestion on each node of H in each iteration of the calling of A′ is at most O(log k). We make O(|V (G)|d/k)
many calls and thus the total congestion is O(|V (G)|d log k

k).
Finally, if |V1| ̸= |V2|, the only difference, would be in the selection of g1 and g2, where instead of the range

being [k/2] for both, it would instead need to be k|V1|/|V | and k|V2|/|V | respectively.

4 ETH Lower Bound for 2-CSP

In this section we first prove a bridging theorem to connect the embedding result from previous section with
2-CSPs, and then in the subsequent subsection prove Theorems 1.3 and 1.4.

4.1 Embedding 2-CSP to smaller constraint graph The below theorem is essentially proved in [Mar10]
but we provide a proof here for the sake of completeness.

Theorem 4.1. There is an algorithm A that takes as input a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E), a
graph H(X,F) without isolated vertices, and a connected embedding Ψ : V → ¶(X) of depth d, and outputs a

2-CSP instance Φ(H(X,F),Σd, {C̃xy}{x,y}∈F) such that the following holds.

Reduction Guarantee: Γ is satisfiable if and only if Φ is satisfiable.

Runtime: A runs in time O(|E| · |F | · |Σ|2d+2).

Proof. Given a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E), a graph H(X,F), and a connected embedding

Ψ : V → ¶(X) of depth d, the algorithm A outputs the following 2-CSP instance Φ(H(X,F),Σd, {C̃xy}{x,y}∈F),

where we only need to specify {C̃xy}{x,y}∈F .
For every x ∈ X define Vx ¦ V as follows: for all v ∈ V we have v ∈ Vx if and only if x ∈ Ψ(v). We further

define Ex to be all the edges in E whose both end points are in Vx. Finally, define dx := |Vx| and Ãx : Vx → [dx]
to be some canonical bijection. Note that since Ψ has depth d we know that dx f d for all x ∈ X.

Fix some {x, y} ∈ F . Let Vxy ¦ V and Exy ¦ E be defined as follows.

Vxy := Vx ∩ Vy, Exy := {{u, v} ∈ E | u ∈ Vx, v ∈ Vy}.

Let (a, b) ∈ Σd × Σd. We include (a, b) ∈ C̃xy if and only if both the following hold:

Vertex Consistency: For every v ∈ Vxy we have aÃx(v) = bÃy(v).

Edge Consistency: For every {u, v} ∈ Exy (resp. {u, u′} ∈ Ex or {v, v′} ∈ Ey) we have (aÃx(u), bÃy(v)) ∈ Cuv

(resp. (aÃx(u), aÃx(u′)) ∈ Cuu′ or (bÃy(v), bÃy(v′)) ∈ Cvv′).

Completeness Analysis: Suppose Ã : V → Σ is a satisfying assignment to Γ then consider the assignment
Ã̃ : X → Σd to Φ constructed from Ã as follows. Let ³ ∈ Σ be an arbitrary element. For all x ∈ X we have:

Ã̃(x)i :=

{
Ã(Ã−1

x (i)) if i f dx

³ if i > dx
.

We claim that Ã̃ is a satisfying assignment to Φ. To see this, consider an arbitrary {x, y} ∈ F . We verify that

(Ã̃(x), Ã̃(y)) ∈ C̃xy by checking the conditions of vertex consistency and edge consistency are met.
For every v ∈ Vxy we have by definition that Ã̃(x)Ãx(v) = Ã(Ã−1

x (Ãx(v))) = Ã(v) = Ã(Ã−1
y (Ãy(v))) = Ã̃(y)Ãy(v).

This verifies vertex consistency. Next we verify edge consistency.
For every {u, v} ∈ Exy (resp. {u, u′} ∈ Ex or {v, v′} ∈ Ey) we have (Ã̃(x)Ãx(u), Ã̃(y)Ãy(v)) = (Ã(u), Ã(v)) (resp.

(Ã̃(x)Ãx(u), Ã̃(x)Ãx(u′)) = (Ã(u), Ã(u′)) or (Ã̃(y)Ãy(v), Ã̃(y)Ãy(v′)) = (Ã(v), Ã(v′))) and this is in Cuv (resp. Cuu′ or
Cvv′) because Ã is a satisfying assignment to Γ.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited390

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Soundness Analysis: Suppose Ã̃ : X → Σd is a satisfying assignment to Φ then consider the assignment
Ã : V → Σ to Γ constructed from Ã̃ as follows.

Fix any function Ä : V → X that satisfies the following: for all v ∈ V , Ä(v) ∈ Ψ(v). Informally, Ä is picking a
representative vertex in Ψ(v) for each v ∈ V . For all v ∈ V we have:

Ã(v) := Ã̃(Ä(v))Ãτ(v)(v).

We first observe that the value Ã(v) is independent of the choice of Ä(v), that is,

(4.1) ∀v ∈ V , ∀x ∈ Ψ(v), Ã̃(x)Ãx(v) = Ã(v).

To see (4.1), fix v ∈ V and x ∈ Ψ(v). Since Ψ(v) is a connected subgraph of H, we have that there is a path from
Ä(v) to x contained in Ψ(v), and let Ä(v) =: x1 − x2 − · · · − xr := x be one such path where for all i ∈ [r] we have
xi ∈ Ψ(v). Since Ã̃ is a satisfying assignment, for every i ∈ [r−1], by looking at the vertex consistency condition, we
have Ã̃(xi)Ãxi

(v) = Ã̃(xi+1)Ãxi+1
(v). Thus, we have Ã(v) = Ã̃(Ä(v))Ãτ(v)(v) = Ã̃(x1)Ãx1

(v) = Ã̃(xr)Ãxr (v)
= Ã̃(x)Ãx(v).

This proves (4.1).
We claim that Ã is a satisfying assignment to Γ. To see this, consider an arbitrary {u, v} ∈ E. We verify

below that (Ã(u), Ã(v)) ∈ Cuv.
From the definition of Ψ, we have that either (i) there exists x ∈ X such that x ∈ Ψ(u) ∩Ψ(v), or, (ii) there

exists {x, y} ∈ F such that x ∈ Ψ(u) and y ∈ Ψ(v).

Case (i): By (4.1), we have Ã(u) = Ã̃(x)Ãx(u) and Ã(v) = Ã̃(x)Ãx(v). Since {u, v} ∈ Ex and H(X,F)
contains at least one edge incident with x, by the edge consistency condition on any such edge we have
(Ã(u) = Ã̃(x)Ãx(u), Ã(v) = Ã̃(x)Ãx(v)) ∈ Cuv, as desired.

Case (ii): By (4.1), we have Ã(u) = Ã̃(x)Ãx(u) and Ã(v) = Ã̃(y)Ãy(v). Since {u, v} ∈ Exy and noting the edge
consistency condition we have (Ã(u) = Ã̃(x)Ãx(u), Ã(v) = Ã̃(y)Ãy(v)) ∈ Cuv, as desired.

Runtime Analysis: Finally, for a fixing of {x, y} in F and a fixing of (a, b) ∈ Σd × Σd, the time needed

to check if (a, b) ∈ C̃xy is at most O(d2 · |Σ|2). Thus, the running time to produce Φ given Ψ and Γ is
O(|E| · |Σ|2 + |F | · |Σ|2d · d2 · |Σ|2) = O(|E| · |F | · |Σ|2d+2).

An immediate corollary that will be useful to us is the following.

Corollary 4.1. (Putting together Theorem 3.1 and Theorem 4.1) There exists a constant Z > 1 and
an algorithm A that takes as input a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E) and an integer k g 6, and

outputs a 2-CSP instance Φ(H(X,F), Σ̃, {C̃xy}{x,y}∈F) such that the following holds.

Size: H is a 3-regular bipartite graph with |X| f k. We have |Σ̃| = |Σ|Z·(1+k−1(|V |+|E|)·log k).

Reduction Guarantee: Γ is satisfiable if and only if Φ is satisfiable.

Runtime: There is a polynomial p : N → N such that A runs in time bounded above by

p
(
|E| · k · |Σ|(

(|V |+|E|)·log k

k
+1)

)
.

Proof. Given as input a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E) and an integer k the algorithm A of the
corollary statement does the following. Let A0 and A1 be the algorithms guaranteed through Theorem 3.1 and
Theorem 4.1 respectively.

A first runs A0 on input (G(V,E), k) and obtains as output a bipartite 3-regular graph H(X,F) with
no isolated vertices and a connected embedding Ψ : V → ¶(X) such that |X| f k and ∆(Ψ) f Z ·(
1 + k−1(|V |+ |E|)

)
· log k.

A then runs A1 on input
(
Γ(G(V,E),Σ, {Cuv}{u,v}∈E), H(X,F),Ψ : V → ¶(X)

)
, to obtain a 2-CSP instance

Φ(H(X,F), Σ̃, {C̃xy}{x,y}∈F) where |Σ̃| is some integer bounded above by |Σ|Z·(1+k−1(|V |+|E|))·log k.
Finally, A outputs Φ. The reduction guarantee of the corollary statement follows from the reduction guarantee

of Theorem 4.1.
The runtime of the algorithm is upper bounded by the sum of the runtimes of A0 and A1. The output of A0 is

produced in time (|V |+ |E|)O(1). The output of A1 is produced in time O(|E| · |F | · |Σ|2·(1+Z·(1+k−1(|V |+|E|))·log k)).
The claim on the runtime in the corollary statement follows by noting that |F | f 1.5 · |X| f 1.5 · k.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited391

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

4.2 ETH Lower Bounds Our starting point for the lower bounds in this subsection is the following result on
3-coloring:

Theorem 4.2. (ETH Lower Bound for 3-coloring [CFG+16]) Assuming ETH, there is some ¶ > 0 such
that no algorithm can decide all 2-CSP instances Γ(G(V,E),Σ, {Cuv}{u,v}∈E), where |Σ| = 3 and G is 4-regular,

while running in 2¶|V | time.

We remark that in [CFG+16] the lower bound is proven for 2-CSP instances with max-degree 4, but this can
be easily extended to 4-regular graphs by adding dummy constraints6 between pairs of vertices which are both of
degree less than 4.

Theorem 4.3. There exists ³ > 0 and k0 ∈ N such that the following holds. If there exists some fixed integer
k g k0 and an algorithm Ak with the following guarantees, then ETH is false.

Input: Ak takes as input a 2-CSP instance Γ(H,Σ, {Cuv}{u,v}∈E(H)) where H is a 3-regular simple bipartite
graph on k vertices.

Output: Ak outputs 1 if and only if there is a satisfying assignment to Γ.

Run time: Ak runs in time O(|Σ|³k/ log k).

Proof. Suppose there is some k g k0 and an algorithm Ak as suggested in this theorem statement for ³ := ¶
4Z and

k0 := Z2/¶2, where ¶ is the constant referred to in Theorem 4.2 and Z is the constant referred to in Corollary 4.1.

We will then design an algorithm Ã that runs in 2δn/2 time and can decide 2-CSPs on n variables/vertices even
when the alphabet set is of size 3 and the constraint graph is 4-regular. This would imply that ETH is false (from
Theorem 4.2).

Given Ã as input a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E) where |Σ| = 3 and 4-regular graph

G, Ã first runs the algorithm in Corollary 4.1 (Γ, k) as input and obtains as output a 2-CSP instance

Φ(H(X,F), Σ̃, {C̃xy}{x,y}∈F) with the guarantee that |X| f k and |Σ̃| f 3Z·(1+ |V | log k

k), for some universal con-

stant Z g 1 (also note that the size of Φ is at most O(k · |Σ̃|) = O
(
k · 3Z·(1+ |V | log k

k)
)
= O

(
k · 3

Z·
(
1+

|V | log k0
k0

))
<

2¶|V |).

Then Ã feeds Φ as input to A and obtains as output ¼ ∈ {0, 1}. Ã outputs ¼. The reduction guarantee of
the theorem statement follows from the reduction guarantee of Corollary 4.1.

The runtime of the algorithm is upper bounded by the sum of the runtimes of Ak and the algorithm in
Corollary 4.1. The output of the algorithm in Corollary 4.1 is produced in time p (|V | · k · 3) for some polynomial

p. The output of A is produced in time |Σ̃|³·k/ log k f 3Z·(1+ |V | log k

k)·³· k
log k = 3³·Z· k

log k
+³·Z·|V | f 32³·Z·|V | f

24³·Z·|V | = 2¶·|V |.

For most applications, the following corollary is sufficient.

Corollary 4.2. Assuming ETH, there is no f(k)·|Σ|o(k/ log k) time algorithm that can decide all 2-CSP instances
on 3-regular bipartite constraint graphs, where Σ is the alphabet set, k is the number of constraints, and f is an
arbitrary function.

We now turn to prove Theorem 1.4 .

Theorem 4.4. Let f : N → N. We say f is good if it is non-decreasing, unbounded, and for all n ∈ N, f(n) can
be computed in poly(f(n)) time. If there is a function f that is good and an algorithm that given a 2-CSP on k
variables and alphabet set Σ where |Σ| < f(k) that solves it in time at most f(k − 1)o(k/ log k), then ETH is false.

6A dummy constraint on two variables accepts every possible assignment to the two variables.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited392

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. Suppose there is a function f that is good and an algorithm Af as suggested in this theorem statement
for ³ := ¶

4Z where ¶ is the constant referred to in Theorem 4.2 and Z is the constant referred to in Corollary 4.1.

We will then design an algorithm Ã that runs in 2δn/2 time and can decide 2-CSPs on n variables/vertices even
when the alphabet set is of size 3 and the constraint graph is 4-regular. This would imply that ETH is false (from
Theorem 4.2).

Given Ã as input a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E) where |Σ| = 3 and 4-regular graph G, Ã first
computes an appropriate integer k which it will later feed as input to the algorithm in Corollary 4.1. Let k0 be

the smallest integer such that f(k0) g 2. Let k be the largest integer such that f(k − 1) < 3Z·(1+ |V | log k

k). Such
an integer k can be computed in time |V |O(1) in the following way: We evaluate f(1), f(2), . . ., and stop when

either f(k) g 3Z·(1+ |V | log k

k) or if computing f(k) does not terminate after |V |2 + k0 steps (in which case we can

conclude that f(k) > 3Z·(1+ |V | log k

k)).

Now Ã first runs the algorithm in Corollary 4.1 (Γ, k) as input and obtains as output a 2-CSP instance

Φ(H(X,F), Σ̃, {C̃xy}{x,y}∈F) with the guarantee that |X| f k, H(X,F) is 3-regular bipartite, and |Σ̃| f

3Z·(1+ |V | log k

k) f f(k), for some universal constant Z g 1 (also note that the size of Φ is at most O(k · |Σ̃|) =

O
(
k · 3Z·(1+ |V | log k

k)
)
< 2¶|V |).

Then Ã feeds Φ as input to A and obtains as output ¼ ∈ {0, 1}. Ã outputs ¼. The reduction guarantee of
the theorem statement follows from the reduction guarantee of Corollary 4.1.

The runtime of the algorithm is upper bounded by the sum of the runtimes of Af and the algorithm in
Corollary 4.1. The output of the algorithm in Corollary 4.1 is produced in time p (|V | · k · 3) for some polynomial

p. The output of A is produced in time |Σ̃|³·k/ log k f 3Z·(1+ |V | log k

k)·³· k
log k = 3³·Z· k

log k
+³·Z·|V | f 32³·Z·|V | f

24³·Z·|V | = 2¶·|V |.

The parameter setting of Theorem 1.4 may seem peculiar at first glance, but it has applications in lower
bounds for classic (not parameterized) problems under ETH. For an illustration, consider a recent work onGlobal
Label MinCut [JLM+23]. The actual details of the considered problem are not important here; it suffices to say
that the main technical result of [JLM+23] is a parameterized reduction from 2-CSP to one parameterization of
Global Label MinCut that, given a 2-CSP instance Γ(G(V,E),Σ, {Cuv}{u,v}∈E) with a := |V |+ |E| produces

an equivalent instance of Global Label MinCut of size 2O(a log a) · |Σ| with parameter value at most a. This
reduction, combined with Theorem 1.4, refutes (assuming ETH) an existence of an algorithm for Global Label

MinCut with running time no(logn/(log logn)2), where n is the size of the instance, providing a nearly-tight lower
bound to an existing quasipolynomial-time algorithm [GKP17].

Indeed, consider a good function f(n) = nn. Let Γ(G(V,E),Σ, {Cuv}{u,v}∈E) be a 2-CSP instance on k
variables, G(V,E) 3-regular, and alphabet set Σ where |Σ| < f(k). The aforementioned reduction, applied to this
2-CSP instance, produces a Global Label MinCut instance of size bounded by

2O(k log k) · kk = 2O(k log k).

Now, a hypothetical algorithm solving this instance in time no(logn/(log logn)2) solves the original 2-CSP instance
in time 2o(k

2), which is asymptotically smaller than f(k − 1)³k/ log k for a constant ³ > 0.

Acknowledgement Karthik C. S. is supported by the National Science Foundation under Grant CCF-2313372
and by the Simons Foundation, Grant Number 825876, Awardee Thu D. Nguyen. Dániel Marx is supported
by the European Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH. During this
research Marcin Pilipczuk was part of BARC, supported by the VILLUM Foundation grant 16582. We are also
grateful to the Dagstuhl Seminar 23291 for a special collaboration opportunity.

References

[AKMR19] Saeed Akhoondian Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with congestion
in acyclic digraphs. Inf. Process. Lett., 151, 2019.

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited393

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[Alo21] Noga Alon. Explicit expanders of every degree and size. Combinatorica, pages 1–17, 2021.
[Alo23] Noga Alon. personal communication, 2023.
[AM85] Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and superconcentrators. Journal of

Combinatorial Theory, Series B, 38(1):73–88, 1985.
[AM11] Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph problems. SIAM J.

Discret. Math., 25(2):631–644, 2011.
[APSZ21] Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous feedback edge set: A

parameterized perspective. Algorithmica, 83(2):753–774, 2021.
[BCMP20] Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hebert Pérez-Rosés. The inverse voronoi problem in

graphs I: hardness. Algorithmica, 82(10):3018–3040, 2020.
[BGL17] Édouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the parameterized complexity of red-blue points

separation. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of LIPIcs, pages 8:1–8:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[BIJK19] Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained complexity of k-opt in
bounded-degree graphs for solving TSP. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th
Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume
144 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BKMN16] Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting set for hypergraphs of low vc-
dimension. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[BM16] Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. In Piotr Sankowski and
Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016,
Aarhus, Denmark, volume 57 of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[BS17] Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the structure of the input graph.
Discrete Applied Mathematics, 231:78–94, 2017.

[CCG+13] Jason Crampton, Robert Crowston, Gregory Z. Gutin, Mark Jones, and M. S. Ramanujan. Fixed-parameter
tractability of workflow satisfiability in the presence of seniority constraints. In Michael R. Fellows, Xuehou Tan, and
Binhai Zhu, editors, Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, Third Joint
International Conference, FAW-AAIM 2013, Dalian, China, June 26-28, 2013. Proceedings, volume 7924 of Lecture
Notes in Computer Science, pages 198–209. Springer, 2013.

[CDH21] Radu Curticapean, Holger Dell, and Thore Husfeldt. Modular counting of subgraphs: Matchings, matching-
splittable graphs, and paths. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European
Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of
LIPIcs, pages 34:1–34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[CDM17] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small
subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–
223. ACM, 2017.

[CdVMdM21] Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost tight lower
bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26, 2021.

[CFG+16] Marek Cygan, Fedor V Fomin, Alexander Golovnev, Alexander S Kulikov, Ivan Mihajlin, Jakub Pachocki,
and Arkadiusz Soca la. Tight bounds for graph homomorphism and subgraph isomorphism. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1643–1649. SIAM, 2016.

[CFHM20] Rajesh Hemant Chitnis, Andreas Emil Feldmann, Mohammad Taghi Hajiaghayi, and Dániel Marx. Tight
bounds for planar strongly connected steiner subgraph with fixed number of terminals (and extensions). SIAM J.
Comput., 49(2):318–364, 2020.

[CFM21] Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation algorithms for
bidirected steiner network problems. ACM Trans. Algorithms, 17(2):12:1–12:68, 2021.

[Che70] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian, problems in analysis (papers dedicated
to salomon bochner, 1969), 1970.

[CHKX06a] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness based on linear
fpt-reductions. J. Comb. Optim., 11(2):231–247, 2006.

[CHKX06b] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

[CX15] Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors, evaluation mod 2k. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited394

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Berkeley, CA, USA, 17-20 October, 2015, pages 994–1009. IEEE Computer Society, 2015.
[DEG22] Argyrios Deligkas, Eduard Eiben, and Tiger-Lily Goldsmith. Parameterized complexity of hotelling-downs with

party nominees. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 244–250. ijcai.org, 2022.

[dW72] Dominique de Werra. Decomposition of bipartite multigraphs into matchings. Zeitschrift für Operations Research,
16:85–90, 1972.

[EGN+23] Eduard Eiben, Gregory Z. Gutin, Philip R. Neary, Clément Rambaud, Magnus Wahlström, and Anders Yeo.
Preference swaps for the stable matching problem. Theor. Comput. Sci., 940(Part):222–230, 2023.

[EKPS18] Eduard Eiben, Dusan Knop, Fahad Panolan, and Ondrej Suchý. Complexity of the steiner network problem
with respect to the number of terminals. CoRR, abs/1802.08189, 2018.

[EL18] David Eppstein and Daniel Lokshtanov. The parameterized complexity of finding point sets with hereditary
properties. CoRR, abs/1808.02162, 2018.

[FHRV09] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the parameterized
complexity of multiple-interval graph problems. Theor. Comput. Sci., 410(1):53–61, 2009.

[FPRS23] Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On the optimality of pseudo-polynomial
algorithms for integer programming. Math. Program., 198(1):561–593, 2023.

[GHNS13] Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity of local search
for tsp, more refined. Algorithmica, 67(1):89–110, 2013.

[GKP17] Mohsen Ghaffari, David R. Karger, and Debmalya Panigrahi. Random contractions and sampling for hypergraph
and hedge connectivity. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1101–1114. SIAM,
2017.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375,
2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[JKMS13] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins
revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013.

[JLM+23] Lars Jaffke, Paloma T. Lima, Tomás Masaŕık, Marcin Pilipczuk, and Uéverton S. Souza. A tight quasi-
polynomial bound for global label min-cut. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of
the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
290–303. SIAM, 2023.

[JLR+17] Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondrej Suchý. Parameterized complexity
of directed steiner tree on sparse graphs. SIAM J. Discrete Math., 31(2):1294–1327, 2017.

[KSS22] Dusan Knop, Simon Schierreich, and Ondrej Suchý. Balancing the spread of two opinions in sparse social networks
(student abstract). In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 12987–12988. AAAI Press,
2022.

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. J. ACM, 46(6):787–832, 1999.

[LRSZ20] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized complexity and
approximability of directed odd cycle transversal. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181–2200.
SIAM, 2020.

[Mar10] Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010.
[MP15] Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility location problems using

voronoi diagrams. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science,
pages 865–877. Springer, 2015.

[NS22] Jesper Nederlof and Céline M. F. Swennenhuis. On the fine-grained parameterized complexity of partial scheduling
to minimize the makespan. Algorithmica, 84(8):2309–2334, 2022.

[PW18] Marcin Pilipczuk and Magnus Wahlström. Directed multicut is w[1]-hard, even for four terminal pairs. TOCT,
10(3):13:1–13:18, 2018.

[Tov84] Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math., 8(1):85–89, 1984.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited395

D
o
w

n
lo

ad
ed

 0
9
/3

0
/2

4
 t

o
 6

2
.7

3
.7

2
.9

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Organization of Paper

	Preliminaries
	Proof of Main Embedding Theorem
	ETH Lower Bound for 2-CSP
	Embedding 2-CSP to smaller constraint graph
	ETH Lower Bounds

