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Abstract
We propose precise notions of what it means to guard a domain “robustly”, under a variety of
models. While approximation algorithms for minimizing the number of (precise) point guards in a
polygon is a notoriously challenging area of investigation, we show that imposing various degrees of
robustness on the notion of visibility coverage leads to a more tractable (and realistic) problem for
which we can provide approximation algorithms with constant factor guarantees.
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1 Introduction

A fundamental set cover problem that arises in geometric domains is the classic “art gallery”
or “guarding” problem: Given a geometric domain (e.g., polygon P ), place a set of points
(“guards”) within P , such that every point of P is seen by at least one of the guards.
This problem has many variants and has been studied extensively from many perspectives,
including combinatorics, complexity, approximation algorithms, and algorithm engineering
for solving real instances to provable optimality or near-optimality.

Approximation algorithms for guarding have been extensively pursued for decades (see
related work), where the various variants differ from one another in (i) the underlying domain,
e.g., simple polygon vs. polygon with holes, (ii) the portion of the domain that must be
guarded, e.g., only its boundary, the entire domain, or a discrete set of points in it (iii) the
type of guards, e.g., static, mobile, or with various restrictions on their coverage area, (iv) the
restrictions on the location of the guards, e.g., only at vertices (vertex guards) or anywhere
(point-guards), and (v) the underlying notion of vision, e.g., line of sight or rectangle visibility.
Despite all this work, even an O(log OPT)-approximation algorithm for point-guarding a
simple n-gon, without (weak) additional assumptions, is unknown (see below).

In this paper, we present and discuss a new and natural notion of vision called robust
vision. Under the standard notion of vision, two points in a polygon P see each other if and
only if the line segment between them is contained in P . However, in the context of guarding,
where e.g. the guards are not necessarily stationary entities or perhaps their location is
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47:2 Robustly Guarding Polygons

imprecise, it makes sense to require that a guard g that is responsible for guarding a point
p can see p from any point in some vicinity of its specified location. In this case we say
that g robustly guards p. It is also possible that the location of an entity to be guarded is
imprecise or alternatively the entity may move in the vicinity of its specified location, and
we would like to ensure that the guard in charge of this entity does not lose sight of it, i.e.,
we would like it to guard the entity robustly. (Here, we mostly focus on the former case of
robust vision.) Robust guarding is a generalization of standard guarding in that when the
requirement of robustness tends to zero, robust guarding reduces to standard guarding.

Robust guarding is especially important in light of recent results showing that there are
polygons that can be guarded with 2 guards, but only if both guards are very precisely
placed at points with irrational coordinates [34] (see also [1]). In our formulation of robust
guarding, we explicitly model the fact that a guard may be imprecisely placed at locations
within a polygon, and may in fact move around within some neighborhood; we insist, then,
for a point p to be “seen” that it must be seen no matter where the guard may be within a
disk that subtends at least some minimum angle when viewed from p. The breakthrough
result [2] showing that the guarding problem is complete within the existential theory of the
reals is strong evidence of the algebraic difficulty of computing exact optimal sets of guards,
even in polygons in the plane.

Our techniques and results. We summarize our contributions and methods:
(1) We introduce notions of “robust vision” within a polygonal domain P and analyze the

optimal guarding problem from this new perspective. In particular, for an appropriately
small parameter α > 0, we say that a guard at point g α-robustly guards a point p ∈ P

if p sees (under ordinary visibility) all points within a Euclidean disk of radius α∥g − p∥
centered at g. In the figure below, g α-robustly guards p, but not p′ or p′′.

g

α∥p− g∥

p′

p′′ p

Note that as α approaches 0, the degree of robustness decreases, and at the limit we
get standard guarding, where g guards p if and only if gp ⊂ P . We characterize the
α-robust visibility region, Visα(g), of all points α-robustly visible from g (Section 2.1), as
well as the region Visinv

α (p) of all points g from which p is α-robustly visible (Section 2.2).
In particular, we prove that Visα(g), which in general is not a polygon, is star-shaped
and O(α)-fat. Moreover, we show that both regions can be computed efficiently.

(2) We show that, as with ordinary guarding, the problem of computing a minimum cardi-
nality set of guards in P that α-robustly see all of P is APX-hard, making it unlikely
that there exists a PTAS or an exact polynomial-time algorithm for the problem.

(3) We present an O(1)-approximation algorithm for robustly guarding a general polygonal
domain P . (The approximation factor depends on the robustness parameter α, and the
algorithm is a bicriteria, allowing a slight relaxation of α.) This is to be contrasted
with the situation for ordinary guarding, for which even finding a logarithmic-factor
approximation algorithm for placing guards at points within a simple polygon requires
some additional (weak) assumptions.
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Specifically, Theorem 24 states that, given a polygon P with n vertices, one can compute in
poly(n) time the cardinality of, and an implicit representation of, a set of O(α−6)|OPTα|
points that α/8-robustly guard P , where OPTα is a minimum-cardinality set of guards
that α-robustly guard P . In additional time O(|OPTα|) one can output an explicit set
of such points. We present this result by first presenting a result of a similar flavor for
robustly guarding a discrete set S of points within P (Theorem 14). Critical to our main
result (Theorem 24) is Theorem 21, which shows that one can compute a discrete set Q of
points (candidate guards) that is guaranteed to contain a subset of O(α−4)|OPTα| points
that α/4-robustly guard P . This result is quite delicate and requires some technical
geometric analysis, utilizing a medial axis decomposition and carefully placed grid points
in portions of P . This is in contrast with the classic guarding problem in which the
existence of a polynomial-size discrete candidate set that suffices for good approximation
has been elusive.

(4) In the full version of the paper, we extend/generalize our definition of robust vision
to include the possibility that p need not see all of the neighborhood of g, but only a
fraction of that neighborhood, and we require that g sees a fraction of a neighborhood of
p as well. Within this model we are able to obtain improved factors, with some tradeoffs.
We defer many proofs and technical arguments to the full version of the paper, while
attempting to convey intuition, and detailed figures, in this version.

Related Work. Eidenbenz, Stamm, and Widmayer [23] have shown that optimally guarding
a simple polygon P is not only NP-hard (a classical result [33, 35, 36]) but is APX-hard (there
is no PTAS unless P=NP); if P has holes, they show that there is no o(log n) approximation
algorithm unless P = NP . A recent breakthrough of Abrahamsen, Adamaszek and Miltzow [2]
has shown that point guarding in general polygons is ∃R-complete, making it unlikely the
problem is in NP. Further, [1, 34] have shown that optimal solutions to even very small
problems requiring 2-3 guards in simple polygons may require precise placement of guards at
irrational points.1 These results imply the necessity of algebraic methods to compute exact
solutions. Efrat and Har-Peled [21] present a randomized O(log OPTgrid)-approximation
algorithm where the placement of guards is restricted to a fine grid. However, they do not
prove that their approximation ratio holds when compared to general point guard placement
of optimal solution. Building on [21] and on Deshpande et al. [18], Bonnet and Miltzow [13]
gave a randomized O(log OPT)-approximation algorithm for point guards within a simple
polygon P under mild assumptions: vertices have integer coordinates, no three vertices are
collinear, and no three extensions meet in a point within P that is not a vertex, where an
extension is a line passing through two vertices of P . The problem has also been examined
from the perspective of smoothed analysis [19, 24] and parameterized complexity [8, 4, 14, 3].
For guards that must be placed at discrete locations on the boundary of a simple polygon P ,
King and Kirkpatrick [29, 31] obtained an O(log log OPT )-approximation, by building ε-nets
of size O((1/ε) log log(1/ε)) for the associated hitting set instances, and applying [17]. If the
disks bounding the visibility polygons at these discrete locations are shallow (i.e., every point
in the domain is covered by O(1) disks), then a local search based PTAS exists [7].

For simple polygons with special structures, such as monotone polygons, terrains, and
weakly-visible polygons [32, 11, 26, 25, 10, 12, 9], there are improved approximation ratios
(constant, or even PTAS), but these algorithms utilize the very special structures of these

1 It is an interesting open problem to determine whether or not an optimal set of robust guards might
require irrational coordinates for guards, for input polygons P with integer coordinates.
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47:4 Robustly Guarding Polygons

classes of polygons. Aloupis et al [5] considered guarding in “(α, β)-covered” polygons (which
are intuitively “fat” polygons, see [20]), and showed that the boundary of such polygons can
be guarded by O(1) guards. Polygons in which no point sees a particularly small area also
have special analysis and algorithms [28, 30, 38, 39].

Some prior work has addressed guarding from a robustness perspective, though the
perspectives are significantly different from ours. Efrat, Har-Peled, and Mitchell [22] consider
a definition of robust guarding in which a point is robustly guarded if it is seen by at least 2
guards from significantly different angles. Hengeveld and Miltzow [27] consider a notion of
“robust” vision by examining the impact that certain changes to “visibility” has on the optimal
number of guards needed to cover a domain P . They introduce the notion of vision-stability:
A polygon P has vision-stability δ if the optimal number of “enhanced guards” (who can see
an additional angle δ around corners) is equal to the optimal number of “diminished guards”
(whose visibility region is decreased by an angle δ at each shadow-casting corner).

Practical methods employing heuristics, algorithm engineering and combinatorial opti-
mization have been successful for computing exact or approximately optimal solutions in
many instances [6, 15, 27, 37], though some of the exact methods can potentially fail or run
forever on contrived instances, e.g., those requiring irrational guards. ([27] is able to detect
such contrived instances and to solve exactly instances that are vision-stable.)

2 Robust guarding

In this section we introduce and discuss a new and natural notion of vision called robust
vision. Let P be a polygonal domain (a polygon, possibly with holes) in the plane having
in total n vertices. Under the standard notion of vision, a point p ∈ P sees another point
q ∈ P if the segment pq is contained in P . In the context of guarding, where the guards are
not necessarily stationary or their locations are imprecise, one would like to ensure that a
guard does not lose eye contact with any of the points it is responsible to see, when it moves
in some vicinity of its specified location. The following definition attempts to capture these
common situations. Here, we denote by D(p, r) the disk of radius r centered at a point p.

▶ Definition 1 (Robust Guarding). Given a polygon P and parameter 0 < α ≤ 1, we say that
a point g ∈ P α-robustly guards a point p ∈ P if p sees D(g, α · ∥p− g∥).

p g

θ = arcsinα

α∥p− g∥
ρa

ρb

a

b

Figure 1 A point g that α-robustly guards another point p. The pink “ice cream cone” is
contained in the polygon P .

Let g, p be two points in a polygon P , such that g α-robustly guards p. By definition, p

sees the disk D(g, α∥p− g∥). Consider the two rays ρa, ρb from p tangent to D(g, α∥p− g∥).
Let a (resp. b) be the tangency point of ρa (resp. ρb) and D(g, α∥p − g∥). Notice that
the segments ap, bp with the disk D(g, α∥p− g∥) create an “ice cream cone”. Formally, we
define the ice cream cone from p to g as the union of the triangle △apb and the disk
D(g, α∥p− g∥). Since p must see the entire ice cream cone, we have the following observation.
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▶ Observation 2. A point g ∈ P α-robustly guards a point p ∈ P if and only if the ice cream
cone from p to g is contained in P .

Consider the triangle △agp. We have ∥a− g∥ = α∥p− g∥ and thus ∠apg = arcsin α = θ.
Symmetrically, ∠bpg = θ, and we get ∠apb = 2θ. We obtain the following observation.

▶ Observation 3. The angle ∠apb of the ice cream cone from p to g is 2θ = 2 arcsin α.

Note that as α approaches 0, the degree of robustness decreases, and at the limit we get
standard guarding, where g guards p if and only if gp ⊂ P . On the other hand, if P has a
vertex v with internal angle smaller than 2θ, then v cannot be α-robustly guarded by any
other point g ̸= v in P (v can guard itself). Nevertheless, if all internal angles in P are at
least 2θ, then there is always a finite set of guards G that robustly guard P (this will become
clear in Section 3). We therefore assume that α ≤ sin ϕ

2 , where ϕ is the smallest internal
angle of P , and thus 2θ = 2 arcsin α ≤ ϕ, so P can be guarded by a finite number of α-robust
guards. Of course, if ϕ is very “small”, then, as mentioned above, the degree of robustness
decreases, in the sense that the vicinity in which a guard may move while guarding a point p

becomes more limited.
Also note that P does not have to be fat in order to be guarded robustly; however, the

number of robust guards required may depend on geometric features of P (see Figure 2).

g p2p1

Figure 2 In a thin rectangle P , the point g α-robustly guards p1, but not p2. Here, the number
of robust guards required depends on the aspect ratio of the rectangle P .

The geometric observation below will be very useful in the following sections. A proof is
given in the full version of the paper, see Figure 3 for an illustration.

▶ Observation 4. Consider a (convex) cone K defined by two rays ρ0, ρ1 from a point p,
such that the small angle between them is θ = arcsin α. Let q be a point in K, such that the
smaller angle between pq and one of the rays ρ0, ρ1 is c · θ (for some c < 1). Then the disk
D(q, cα∥p− q∥) is contained in K.

p 3θ
8

θ
4

θ
2

r = sin θ
2
∥p− q∥ > 1

2
sin θ∥p− q∥

ρ0

ρ1

q

r

ρ1/2

θ

Figure 3 The cone K with angle θ. For q on ρ1/2, the disk D(q, 1
2 α∥p − q∥) is contained in K.

2.1 The robust visibility region
Let P be a polygon in the plane, possibly with holes, having in total n vertices. Denote
by Vis(p) the standard visibility polygon of p, i.e., Vis(p) is the set of points q ∈ P such
that q is visible from p. Let Visα(p) denote the α-robust visibility region of p, i.e. the

SoCG 2024



47:6 Robustly Guarding Polygons

set of points in P that are α-robustly guarded by p. Interestingly, unlike Vis(p), the robust
visibility region is rarely a polygon. Nonetheless, in this subsection we present an efficient
algorithm to compute it. First, we characterize Visα(g) and reveal some of its interesting
geometric properties. We begin by showing that Visα(g) is fat, under the following standard
definition of fatness.

Fatness. For a disk D(p, r) of radius r centered at point p ∈ P , let C(p, r) denote the
connected component of D(p, r) ∩ P in which p lies. We say that a polygon P is γ-fat if for
any point p ∈ P and radius r such that D(p, r) does not fully contain P , the area of C(p, r)
is at least γ · πr2, i.e., at least γ times the area of D(p, r).

We use Claim 5 below to show that Visα(g) is star-shaped and O(α)-fat. In order not to
interrupt the flow of reading with rather technical details, the proof is provided in the full
version of the paper.

▷ Claim 5. Let K be a set of (convex) γ-fat kites (quadrilaterals with reflection symmetry
across a diagonal), all having a common point p. Then the union U =

⋃
K∈K K is γ/4-fat.

gp

a

b

q

Figure 4 The ice cream cone C from p to g is shaded in pink. For any point q ∈ C, the ice cream
cone from q to g is contained in C. Therefore, Visα(g) contains C.

▶ Lemma 6. For any 0 < α < 1 and g ∈ P , Visα(g) is star-shaped and O(α)-fat.

Proof. Let p be a point in Visα(g), and denote by C the ice cream cone from p to g. Notice
that for any point q ∈ C we have ∥q− g∥ ≤ ∥p− g∥, and thus the ice cream cone from q to g

is contained in C (see Figure 4). Since C is contained in P , q sees a disk of radius α∥q − g∥
centered at g, and thus q ∈ Visα(g). We conclude that C ⊆ Visα(g), and that Visα(g) is
star-shaped.

Let a, b be the tangency points defining the cone C. We have ∠pag = ∠pbg = π
2 ,

∠apb = 2θ, and ∠agb = π − 2θ, and thus the kite pagb is O(α)-fat. Since C ⊆ Visα(g), the
union of kites over all p ∈ Visα(g) is exactly Visα(g). By applying Claim 5 on the set of
kites (all have a common vertex g), we conclude that Visα(g) is O(α)-fat. ◀

Given a point g ∈ P , denote by Dg the disk with maximum radius centered at g and
contained in P . Denote by Rg the radius of Dg. If g α-robustly guards p, then D(g, α∥g−p∥)
is contained in P , and thus α∥g − p∥ ≤ Rg. We obtain the following observation.

▶ Observation 7. If g α-robustly guards p, then ∥g − p∥ ≤ Rg/α.

By Observation 7, we know that Visα(g) is contained in D(g, Rg/α). Moreover, by
definition, Visα(g) ⊆ Vis(g). A point p ∈ Vis(g) belongs to Visα(g) if and only if the ice
cream cone from p to g is contained in Visα(g). Hence, to compute Visα(g) exactly, we need
to take into account each of the reflex vertices that may “block” a potential ice cream cone.
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p1

p

p2

vg g

D(g, ∥g−v∥
α )

B1

B2

ℓ

Figure 5 Computing Visα(g) as the intersection of heart shapes for every reflex vertex of Vis(g).
Left: the construction of a single heart shape (in violet). Right: Visα(g) is the area shaded in pink.

We thus compute for each reflex vertex v the locus of all points p such that the ice cream
cone from p to g is touching v. The ice cream cone may touch v either at a point on its
circular arc or on one of its edges, so we get three relevant circles for each vertex v (see
Figure 5, left). We then compute Visα(g) as the intersection of those heart-shaped regions
(one for each reflex vertex), D(g, Rg/α), and the boundary of P (see Figure 5, right). A full
proof of Lemma 8 is given in the full version of the paper.

▶ Lemma 8. Computing Visα(g) can be done in polynomial time.

2.2 The robust inverse visibility region
The definition of α-robust guarding is not bidirectional; it is possible that g α-robustly guards
p, but g is not α-robustly guarded by p. (In the full version of the paper, we discuss a more
general notion of visibility that is bidirectional.) We therefore define the robust inverse
visibility region of a point as follows. For a point p ∈ P , denote by Visinv

α (p) the set of
points g ∈ P such that p is α-robustly guarded by g. Although Visα(g) is fat (as shown in
Lemma 6), Visinv

α (p) is not necessarily fat; in fact, the robust inverse visibility region may be
a single line segment (see Figure 6).

pg

q

g′

θα∥g − p∥

Figure 6 An isosceles triangle polygon with angle exactly 2θ at the point p. For any point g′ on
the segment gp, the (blue) disk D(g′, α∥p − g′∥) is tangent to the legs of the triangle, and thus g′

α-robustly guards p. However, any point not on the segment does not α-robustly guard p. Thus
Visinv

α (p) = gp.

SoCG 2024



47:8 Robustly Guarding Polygons

Nevertheless, we will show how to construct a star-shaped O(α)-fat polygon Fp that
contains Visinv

α (p) with the property that any g ∈ Fp α/2-robustly guards p. First we need
the following claim, which is illustrated in Figure 7. The proof is in the full version of the
paper.

pg

a

b

a′

b′

ρa1/2

ρb1/2

ρa

ρb

Figure 7 The kite K = ga′pb′ is O(α)-fat, and any q ∈ K α/2-robustly guards p.

▷ Claim 9. Let g and p be points in P , such that g α-robustly guards p. Then there exists
an O(α)-fat kite K containing g and p, such that every point q ∈ K α/2-robustly guards p.

The lemma below now follows by taking the union of kites corresponding to every
g ∈ Visinv

α (p). The complete proof is in the full version of the paper.

▶ Lemma 10. Given a polygon P and a point p ∈ P , there exists a star-shaped O(α)-fat
polygon Fp that contains Visinv

α (p), and such that any g ∈ Fp α/2-robustly guards p. The
size (radius of the smallest enclosing disk centered at p) of Fp is equal to that of Visinv

α (p).

By definition, Visinv
α (p) ⊆ Vis(p). Computing Visinv

α (p) can also be done in polynomial
time, by computing a constant number of “constraints” per edge of Vis(p) (see Figure 8). A
point g ∈ P belongs to Visinv

α (p) if and only if the disk D(g, α∥p− g∥) is contained in Vis(p),
or in other words, does not intersect any edge of Vis(p). For each edge e = {u, v} ∈ P , the
locus of all points g such that D(g, α∥p− g∥) touches e, can be described by two disks (one
per vertex) and a hyperbola (for the interior of the edge). A full proof of Lemma 11 is given
in the full version of the paper.

▶ Lemma 11. The region Visinv
α (p) can be computed in polynomial time.

p

v u

Figure 8 Three constraints defining the points g with D(g, α∥p − g∥) intersecting the edge {u, v}:
the green disk containing v, the blue disk containing u, and the red hyperbola.
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2.3 Hardness
The classic Art Gallery Problem is APX-hard by a reduction from the Hitting Lines
problem [16]: Given a set L of lines, one is to find a minimum set of points that “hit” all the
lines. The polygon constructed in the reduction is a “spike box” – a rectangle containing all
the intersection points between lines in L, and having a thin spike going out of it for each
line. In order to guard the tip of a spike, one must place a guard in a small neighbourhood
of the line segment (corresponding to a line in L) generating the spike. Thus, hitting all
of the lines is equivalent to guarding all spikes. In the full version of the paper we show a
similar construction for the problem of α-robust guarding, and thereby obtain the following
theorem.

▶ Theorem 12. The α-robust guarding problem is APX-hard.

2.4 Robustly guarding a discrete set of points
In this section we consider a discrete version of the robust guarding problem, where we are
given a set S of m points in a polygon P , and the goal is to find a minimum set of α-robust
guards for S. Besides being interesting in its own, the solution that we present will be used
in the next section, where the goal is to α-robustly guard the entire polygon P .

Before we can present our algorithm, we need one more ingredient, regarding the fatness of
our robust visibility polygons. The lemma below is a version of the well-known “fat-collection
theorem” (see, e.g. [40]). Here, we define the size of a star-shaped object P with respect
to a given center point o as the radius of its minimum enclosing ball centered at o. For
completeness, we provide a proof in the full version of the paper.

▶ Lemma 13. For any disk D of radius R, there exist a set C of O(α−2) points such that
any α-fat star-shaped polygon that intersects D and has size at least R w.r.t. a given center
point o, contains a point from C.

The algorithm. Consider Algorithm 1, which gets as input the polygon P and the set
S. In each iteration, the algorithm finds the point g ∈ S with smallest Visinv

α (g), removes
from S all the points s for which Visinv

α (s) intersects Visinv
α (g), and adds to the solution the

corresponding set of hitting points from Lemma 13.

Algorithm 1 DiscreteRobustGuarding(P, S).

1 foreach s ∈ S do
2 Compute Visinv

α (s)
3 Compute D(s), the minimum enclosing disk of Visinv

α (s) centered at s

4 G← ∅
5 while S ̸= ∅ do
6 g ← argmins∈S{size(Visinv

α (s))} g is the point from S with smallest
Visinv

α

7 S(g)← {s ∈ S | Visinv
α (s) ∩D(g) ̸= ∅}

8 S ← S \ S(g)
9 Let H(g) be the set of hitting points from Lemma 13 that correspond to D(g),

with fatness parameter c · α (for a sufficiently small constant c).
10 G← G ∪H(g)
11 return G

SoCG 2024



47:10 Robustly Guarding Polygons

▶ Theorem 14. Given a polygon P with n vertices, and a set S of m points in P , one can
compute in poly(n, m) time a set of O(α−2)|OPTS

α| points that α/2-robustly guard S, where
OPTS

α is a minimum set of guards that α-robustly guard S.

Proof. We show that the set G returned by Algorithm 1 satisfies the theorem.
Let g1, . . . , gk be the points from S that were found in line 6 of the algorithm, and consider

the sequence of inverse visibility regions Visinv
α (g1), . . . , Visinv

α (gk). Any two of these regions
are disjoint, because in line 8 we remove all points s ∈ S for which Visinv

α (s) ∩Visinv
α (gi) ̸= ∅.

Thus, the set g1, . . . , gk is a set of witnesses in P , i.e., no α-robust guard can guard both gi

and gj for any 1 ≤ i, j ≤ k. Therefore, in order to α-robustly guard S, one needs to put a
guard in each Visinv

α (gi), and hence k ≤ |OPTS
α|.

The set H(g) is the set of O(α−2) hitting points obtained from Lemma 13. Since we
chose gi to be the point in S with minimum size (i.e., size of inverse visibility region), any
s ∈ S(gi) has size larger than the radius of D(gi). By Lemma 10, for any s ∈ S(gi) there
exists a star-shaped O(α)-fat polygon Fs of size size(Visinv

α (s)) that contains Visinv
α (s), and

any point in Fs, α/2-robustly guards s. Thus by Lemma 13 each such Fs contains a point
gs from H(gi), and gs α/2-robustly guards s. We get that for any 1 ≤ i ≤ k, the set H(gi)
guards S(gi), and therefore G is a set of O(α−2)|OPTS

α| points that α/2-robustly guards S.
(Note that we do not compute Fs, we use Lemma 10 only to show that the set of hitting
points is sufficient.)

By Lemma 11, computing Vis−1
α (s) for every s ∈ S can be done in m · poly(n) time.

Clearly, the while loop is executed for at most m rounds, each round runs in poly(n, m) time.
Thus the total running time of Algorithm 1 is in poly(n, m). ◀

3 An O(1)-approximation for robustly guarding a polygon

Let P be a polygon with n vertices, and a parameter α ≤ sin ϕ
2 , where ϕ is the smallest internal

angle of P . For technical reasons, we also assume that α ≤ 1/2. Let OPTα be a minimum
set of points that α-robustly guard P . Our goal is to find a set of O(poly(α−1)) · |OPTα|
points that cα-robustly guard P , for some constant c ≤ 1. Note that for a smaller radius we
need less guards, i.e., for α′ < α, |OPTα′ | ≤ |OPTα|.

3.1 A medial axis based decomposition
Consider the medial axis of P (the set of all points in P having more than one closest point
on ∂P – the boundary of P ), and let M be the set of its vertices that do not lie on ∂P .
The medial axis is a planar graph G, with some line-segment edges and some curved edges
(subcurves of a parabola). Note that we also include in M vertices of degree 2 that represent,
e.g., the intersection point of a line segment and a parabola that define the medial axis (see
Figure 9). For each v ∈M , let Dv be the medial disk centered at v. The disk Dv touches ∂P

in at least two points, and we denote by D the set of all medial disks, i.e., D = {Dv}v∈M .

Figure 9 The three types of regions (cells) forming P \ D; a red cell (left), a purple cell (middle),
and a blue cell (right). The medial disks in D are shown in yellow.
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Based on the structure of the medial axis, we decompose P \ D into 3 types of regions,
Red, Purple, and Blue, as follows (see Figure 9).

A Red region is a maximal connected region of P \ D which is bounded by two edges
e1, e2 of P connected by a vertex w, and a single disk Dv ∈ D, such that both e1 and e2
are tangent to Dv.
A Purple region is a maximal connected region of P \D which is bounded by two disjoint
edges e1, e2 of P , and two disks Dv, Dw ∈ D, such that each of e1, e2 is tangent to
both Dv, Dw. Since there is no other feature of the polygon “between” Dv and Dw, the
corresponding vertices v, w ∈M are connected by a line segment in the medial axis.
A Blue region is any maximal connected region of P \ D which is neither red nor purple.

Adding medial disks in purple regions. In each purple region we add to M a set of vertices
as follows. Let v, w be the two medial vertices that define a purple region Π, and assume
that Rv ≥ Rw (see Figure 10). Consider the intersection I = D(v, Rv/α) ∩ Π, and notice
that any point in I is α-robustly visible from v. If D(v, Rv/α) does not contain Π, then
there are two intersection points, q1, q2, between D(v, Rv/α) and the edges defining Π. Let
p1 be the point on the segment vw such that the medial disk centered at p1 touches the
edges defining Π at the points q1, q2. We add p1 to M , set v = p1 and repeat the process, i.e.
while D(pi, Rpi/α) does not contain the part of Π between D(pi, Rpi) and Dw, add to M the
point pi+1 on the segment vw, defined similarly but with respect to the disk D(pi, Rpi

/α).
Note that by adding the sequence p1, . . . , pk of additional medial vertices to M , we subdivide
the purple region into k + 1 smaller purple regions.

v
Rv

Rv/α

p1p2p3w

q1

q2

Figure 10 A purple region between Dw and Dv, and the added sequence of medial disks p1, p2, p3.

Intuitively, those disks in the interior of a purple region Π were added in such a way that
a single guard does not see too many of them robustly. More precisely, we have the following
observation, which we prove in the full version of the paper.

▶ Observation 15. For any g ∈ P , Visα(g) intersects at most four of the disks Dpi that
were added to Π.

The observation below follows from the definitions of Purple and Red regions, and the
observation that any blue region is bounded by two non-disjoint medial disks and one edge
of P . A formal proof is given in the full version of the paper.

▶ Observation 16. Any Red, Blue, or Purple region has at most two disks defining its
boundary.

Associating points with at most two medial disks. Given some point p ∈ P , we associate
p with either one or two medial disks from D as follows. If p is contained in some disk from
D, we associate p with the largest disk from D that contains it. Otherwise, p belongs to
either a Red, Blue, or Purple region, and we associate p with the disks from D defining that
cell. (by Observation 16, there are at most two such disks).

SoCG 2024
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▶ Observation 17. Let p be a point in P .
(i) If p ∈ Dv for some medial vertex v, then p is α-robustly visible from v.
(ii) If p is in a Red, Blue, or Purple region, then p is α-robustly visible from one of the

centers of medial disks associated with p.

Proof. The first statement is trivial. For the second statement, if p is in a Red region bounded
by a medial disk Dv, then clearly p is visible from v (recall that we assume that convex
angles in P are larger than 2θ). Else, if p is in a Blue region bounded by two non-disjoint
medial disks Dv and Du, then since α ≤ 1

2 one of the following holds: (i) ∥p− v∥ ≤ Rv/α,
and then p is α-robustly visible from v, or (ii) ∥p − u∥ ≤ Ru/α, and then p is α-robustly
visible from u. Else, p is in a Purple region bounded by two medial disks Dv and Du, such
that Rv ≥ Ru. By the construction of additional disks in purple regions, v sees the entire
purple region α-robustly. ◀

▶ Observation 18. Let g, p be two points in P such that g α-robustly guards p, and let Dv

be the largest disk associated with g. Then α∥g − p∥ ≤ Rv.

Proof. For an edge {u, v} of the medial axis with Ru ≤ Rv, the radii of maximal disks with
center on the edge is at most Rv. Points not on a medial edge clearly have smaller radius,
and thus Rg ≤ Rv (recall that Rg is the radius of the largest disk centered at g and contained
in P ). By Observation 7, we get α∥p− g∥ ≤ Rg ≤ Rv. ◀

3.2 A set of candidate guards
For each v ∈ M we place on Dv a set Qv of Θ(α−4) grid points, with edge length
in Θ(α2Rv). Denote Q = M ∪

⋃
v∈M Qv. For a point g ∈ P , let Q(g) =

{Qv ∪ {v} | Dv is associated with g}. As there are at most two disks associated with g,
we have |Q(g)| = O(α−4). In this subsection we show that any α-robust guard g can be
replaced by the set Q(g) of α/4-robust guards.

v

p x1

x2

x3

z2

z1

o
y2

y1

ρ0

ρ1

ρ1/2

ρ3/4

ρ1/4

w1

x4

w2

w2

w3

w4

Figure 11 The construction for the proof of Lemma 19.
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▶ Lemma 19. Let K be a cone defined by two rays ρ0, ρ1 originated at p with small angle
θ. If both ρ0, ρ1 intersect Dv, and p sees K ∩Dv, then there exists a grid point in Qv that
α
4 -robustly guards p.

Proof. Assume for simplicity that ρ0 lies on the x-axis, and ρ1 lies above it. For 0 < γ < 1,
denote by ργ the ray from p between ρ0 and ρ1 with angle γ ·θ from ρ0. First, by Observation 4
for any point q that lies in K between ρ1/4 and ρ3/4, the disk D(q, α

4 |p − q|) is contained
in K. In addition, if v lies in K, then since both ρ0, ρ1 intersect Dv, we get that Rv is at
least the distance between v and one of ρ0, ρ1. As in the proof of Observation 4, we get that
Rv ≥ sin θ

2∥p − v∥ > sin θ
2 ∥p − v∥ = α

2 ∥p − v∥. Therefore, if v lies between ρ1/4 and ρ3/4,
then clearly D(v, α

4 ∥p− v∥) is contained in K ∩Dv.
We thus assume w.l.o.g. that v lies above ρ3/4 (the case when v lies below ρ1/4 is

symmetric). Our goal is to find a large enough square that lies in K ∩Dv between ρ1/4 and
ρ3/4, and such that for any point q in that square, D(q, α

4 |p− q|) is contained in Dv.
In the following, we use some trigonometric identities, and the Maclaurin series expansions

of some trigonometric functions (for x ≤ 1
2 ) to estimate distances. Specifically, tan(x) =

sin(x)
cos(x) , sin(2x) = 2 sin(x) cos(x), x ≥ sin(x) ≥ x − x3

3! , 1 − x2

2 + x4

4! ≥ cos(x) ≥ 1 − x2

2 ,
2x ≥ arcsin(x) ≥ x, 2x ≥ tan(x) ≥ x.

Let x1, x2 be the two intersection points of ρ1/4 and Dv (see Figure 11). We have

∥x1 − x2∥ ≥ 2 sin(θ/4) ·Rv = Θ(θ) ·Rv

(we will get an equality when p is on ∂Dv, and ρ0 is tangent to Dv). Consider the ray from x2
perpendicular to ρ5/8, and let w1 be the intersection point with ρ5/8, and x3 the intersection
point with ρ1. Similarly, consider the ray from x1 perpendicular to ρ5/8, and let w2 be the
intersection point with ρ5/8, and x4 the intersection point with ρ1. Since v is above ρ1/2, the
quadrilateral x1x2x3x4 is contained in Dv. Note that if p is on ∂P , we get p = x1 = x4, and
△px2x3 is a triangle contained in Dv.

We have

∥p− w1∥ = cos(3θ

8 )∥p− x2∥ ≥ cos(3θ

8 )∥x1 − x2∥ ≥ (1− 9θ2

64 )∥x1 − x2∥ = Θ(θ) ·Rv,

and

∥x2 − w1∥ ≥ tan(3θ

8 )∥p− w1∥ ≥ sin(3θ

8 )∥p− x2∥ ≥ sin(3θ

8 )∥x1 − x2∥ = Θ(θ2) ·Rv.

Let o be the point on pw1 such that ∥w1−o∥ = α/4∥o−p∥, then the disk D(o, α/4∥o−p∥)
is contained in K ∩Dv. Let y1, y2 be the points on ρ1/2, ρ3/4, respectively, such that the
line through y1, y2 is the perpendicular to pw1 at o. Let z1, z2 be the points on ρ1/2, ρ3/4,
respectively, such that the line through z1, z2 is the perpendicular to pw1 at the other
intersection point, w4, of D(o, α/4∥o − p∥) and pw1. For any point q in the quadrilateral
z1, y1, y2, z2, the disk D(q, α/4∥p−q∥) is contained in Dv. We now claim that the quadrilateral
z1y1y2z2 contains a disk of diameter in Θ(∥x2 −w1∥) = Θ(α2) ·Rv, and thus it must contain
a grid point from Qv. Intuitively, this is true because ∥z1 − z2∥ = Θ(∥x2 − w1∥) and
∥o − w4∥ = α/4 · Θ(∥p − w1∥). We provide detailed calculations for this claim in the full
version of the paper, which finishes the proof. ◀

▶ Lemma 20. For any g ∈ P , Visα(g) ⊆ ∪q∈Q(g)Visα/4(q).
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Proof. Let g, p be two points in P , such that p is α-robustly guarded by g. By Observation 17,
if p is in one of the disks associated with g, or both p and g are in a Red, Blue, or Purple
region, then p is α-robustly guarded by the centers of the disks associated with g. If this
is not the case, then p, g must be in different cells of the arrangement A, and therefore the
segment pg must cross the boundary of some disk Dv associated with g.

Let ρ0 be the ray from p in the direction of g, and assume for simplicity that ρ0 lies on the
x-axis. Denote by ρa (resp. ρb) the ray from p tangent to D(g, α∥p− g∥) above (resp. below)
the x-axis. Denote by ρa

γ (resp. ρb
γ) the ray from p between ρ0 and ρa (resp. ρb) with angle

γ · θ from ρ0. Let a (resp. b) be the intersection point of ρa (resp. ρb) and D(g, α∥p− g∥).
Assume w.l.o.g. that v is above ρ0, and let K be the cone defined by ρ0 and ρa. Recall

that Dv do not contain p, and Dv ∩ pg ̸= ∅.
If Dv ∩ pa ≠ ∅, then there exists a point q1 ∈ Dv ∩ pa and a point q2 ∈ Dv ∩ pg such

that the triangle △pq1q2 is contained in P , and since q1 ∈ ρa and q2 ∈ ρ0 we get that p sees
K ∩Dv. Hence we can apply Lemma 19 on the rays ρ0, ρa and get that there exists a grid
point in Qv that α/4-robustly guards p.

Else, we are in the case when Dv ∩pa = ∅. First, we claim that g ∈ Dv. Indeed, if g /∈ Dv,
then since Dv ∩ pg ≠ ∅ it must be that v is between the vertical line trough g and the vertical
line through p. Now, if v is above ρa, then clearly Dv ∩ pa ̸= ∅. Else, if v is below ρa, then
since by Observation 18 we have Rv ≥ α∥p− g∥, again we get that Dv ∩ pa ̸= ∅.

Therefore, we are left with the following scenario: v is above ρ0, g ∈ Dv, a /∈ Dv, and
Rv ≥ α∥p − g∥. Denote by w1, w2 the intersection points of Dv and D(g, α∥p − g∥), and
consider the rays ρw1 , ρw2 from p to w1, w2, respectively. Since p sees both w1, w2, we get
that p sees the cone between ρw1 and ρw2 . In the full version of the paper, we prove that
∠w1pw2 ≥ θ. This shows that we can apply Lemma 19 on this cone, and find a grid point in
Qv that α/4-robustly sees p. ◀

By replacing each g ∈ OPTα with the set Q(g), we get that the set
⋃

g∈OPT Q(g) α/4-
robustly guards P . We obtain the following theorem.

▶ Theorem 21. The set Q = M ∪
⋃

v∈M Qv contains a set of O(α−4)|OPTα| points that
α/4-robustly guard P .

In addition, we claim that the size of Q is linear in n = |P | and |OPTα|.

▷ Claim 22. |Q| = O(α−4)(n + |OPTα|).

Proof. It is well known that the number of vertices that define the medial axis is O(n). We
only need to show that the number of vertices that we add in the purple regions is O(|OPTα|).
Indeed, by Observation 15, for any g ∈ P Visα(g) intersects at most four such consecutive
disks, and thus the number of guards from OPTα in a purple region with k additional disks
is at least k−8

4 (4 from each side can be guarded by a point outside of the purple region).
◁

3.3 An O(1)-approximation greedy algorithm
Let Q be the set of candidate guards from Theorem 21, constructed with parameter α/8
instead of α. Consider the arrangement A formed by the set of visibility regions {Visα/8(q) |
q ∈ Q}. For each cell of this arrangement, we pick one sample point in the interior of the
cell, and denote by S the set of these sample points.

▶ Observation 23. If Q′ ⊆ Q α
8 -robustly guards S, then Q′ α

8 -robustly guards all of P .
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Proof. Any guard that α/8-robustly guards a point in the interior of a cell in A must
α/8-robustly guard the entire cell; otherwise, this cell would be subdivided. ◀

By Observation 23, it is enough to α/8-robustly guard S from points in Q. We run
Algorithm 1 on P and the set S, and by Theorem 14 we get a set G of O(α−2)|OPTS

α| ≤
O(α−2)|OPTα| points that α/2-robustly guard S. However, in order to guard the entire
polygon P , we need to guard S from points in Q only. So, we replace each point g ∈ G by
the set Q(g) from Lemma 20. For any g ∈ P we have |Q(g)| = O(α−4), so we obtain a set
Q′ of O(α−6)|OPTα| points from Q that α/8-robustly guard S. By Observation 23, the set
Q′ α/8-robustly guards P .

Computing the set Q, the arrangement A, and the set S can be done in poly(n, |OPTα|)
time by Lemma 8 and Claim 22. By Theorem 14, the running time of Algorithm 1 is
poly(n, |OPTα|).

In fact, if we only want to return a constant factor approximation of |OPTα|, we can do
so in poly(n) time, as follows. By Observation 15, if the number of additional disks placed
in a purple region Π is k > 8, then the number of guards placed in Π in an optimal solution
is Ω(k). Moreover, except for O(1) of these guards, none of them sees points outside Π.
Therefore, we do not need to compute these guards explicitly in order to produce the rest of
the guards, and we only record their number (which is a simple function of the dimensions
of the purple region) in O(1) time. Thus, we can cut the inner part (region inside a purple
region excluding 4 disks at each of its ends; see Figure 12) of those purple regions from P ,
and obtain a set of disjoint subpolygons having in total O(α−4) · n candidate grid points.
By applying the same algorithm separately on each subpolygon and then combining the
solutions, we only loose a constant number of guards per purple region. Therefore we can
output a constant factor approximation of |OPTα| in poly(n) time. To produce an explicit
solution from this implicit representation, we only need to run the algorithm that computes
the set of guards in each of the purple regions, in time linear in their number.

p3p4p5

pk−3pk−2
pk−4

The inner purple region

Figure 12 The inner part of a purple region with k > 8 added medial vertices.

▶ Theorem 24. Given a polygon P with n vertices, one can compute in poly(n) time the
cardinality of, and an implicit representation of, a set of O(α−6)|OPTα| points that α/8-
robustly guard P , where OPTα is a minimum-cardinality set of guards that α-robustly guard
P . In additional time O(|OPTα|) we can output an explicit set of such points.
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