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Abstract

The classical and extensively-studied Fréchet distance between two curves is defined
as an inf max, where the infimum is over all traversals of the curves, and the maximum
is over all concurrent positions of the two agents. In this article we investigate a
“flipped” Fréchet measure defined by a sup min — the supremum is over all traversals
of the curves, and the minimum is over all concurrent positions of the two agents.
This measure produces a notion of “social distance” between two curves (or general
domains), where agents traverse curves while trying to stay as far apart as possible.
We first study the flipped Fréchet measure between two polygonal curves in one and
two dimensions, providing conditional lower bounds and matching algorithms. We
then consider this measure on polygons, where it denotes the minimum distance that
two agents can maintain while restricted to travel in or on the boundary of the same
polygon. We investigate several variants of the problem in this setting, for some of
which we provide linear-time algorithms. We draw connections between our proposed
flipped Fréchet measure and existing related work in computational geometry, hoping
that our new measure may spawn investigations akin to those performed for the Fréchet
distance, and into further interesting problems that arise.
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1 Introduction

The classical Fréchet distance between two curves P and Q is defined as the minimum
length of a leash required for a person to walk their dog, with the person and the
dog traversing P and Q from start to finish, respectively. Inspired by the challenge of
maintaining social distancing among groups and individuals, we consider the question
of developing a notion opposite to the Fréchet distance, where instead of keeping the
agents close (short leash), we keep them as far apart as possible.

In this paper we propose a new measure, called the Flipped Fréchet measure, to
capture the amount of social distancing possible while traversing two curves. While
Fréchet distance is defined as an inf max, where the infimum is over all traversals of
the curves, and the maximum is over all concurrent positions of the two agents, the
flipped Fréchet measure' is defined as a sup min — the supremum is over all traversals
of the curves, and the minimum is over all concurrent positions of the two agents. How
efficiently can this measure be computed, for curves in one or two dimensions, as well
as for other domains? Such questions have been considered for Fréchet distance, and
in this paper we initiate their study for the flipped Fréchet measure.

We refer to the two agents as “Red” and “Blue” henceforth. Considering the social
distancing problem further, what if Blue is not restricted to move along some given
curve; rather, it can choose its own path? We now start arriving at a class of problems
that have no analogues in the Fréchet version. Of course, if Blue had no restrictions
at all, it could just go to infinity and thus be far from Red (on any path). It therefore
makes sense to restrict the domain for Blue, e.g. to a simple polygon P. We consider
questions regarding the complexity of calculating a strategy for Blue to stay away
from Red, when Red is traveling on a given path, which may or not be a geodesic
in P. In particular, we define the social distance width (SDW for short) of P to be
the minimum distance that Blue can maintain, moving anywhere within P, while Red
circulates around the boundary of P, and study algorithms to compute the SDW.

In addition to developing algorithms for the general versions of the above problems,
we also consider special scenarios which facilitate faster algorithms. For example,
while our algorithm for computing the SDW of a polygon runs in quadratic time, we
also define the SDW of a plane tree (a “skinny” polygon) and show how to compute
it in linear time.

Although we mostly study the case of k = 2 agents, in general one may be given
k agents and k associated domains; each agent is restricted to move only within its
respective domain, and at least one of the agents has some mission, e.g., to move
from a given start point to a given end point, or to traverse a given path inside the
domain. In addition, the domains may be shared or distinct, and different agents may
have different speeds. The goal is to find a movement strategy for all the agents, such
that the minimum pairwise distance between the agents at any time is maximized.
Additionally, one may seek to minimize the time necessary to complete one or more
missions.

This new class of problems is different from the usual motion planning problems for
robots, or disjoint disks: most, if not all, literature on robot motion planning assumes

! One observes that this measure is not a metric/distance as it does not satisfy the triangle inequality.
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robots are cooperating on some task. One then considers optimizing objectives like
makespan, or total distance travelled, etc. However, the kind of movement we consider
is far from cooperative — in fact, some agents may not care about social distancing,
while others do: some may be “on a mission” while others are just trying to maintain
a safe distance.

Related Work. The Fréchet distance is an extensively investigated distance measure
for curves, starting with the early work of Altand Godau [1]in ’95. There is a quadratic-
time algorithm for computing it [1, 12], and it was recently shown [4] that under the
Strong Exponential Time Hypothesis (SETH), no subquadratic algorithm exists, not
even in one dimension [5]. Moreover, under SETH, no subquadratic algorithm exists
for approximating the Fréchet distance within a factor of 3 [7].

The problem of coordinating collision-free motion of two agents traveling on polyg-
onal curves was considered already in 89 by O ‘Donnell and Lozano-Perez [18], in the
context of robot manipulators. Assuming some additional restrictions on the move-
ments of the agents (e.g. robots are not allowed to simultaneously traverse segments
that are too close), they give an O (n? log n) algorithm for minimizing the completion
time.

There is an extensive literature on related problems of motion planning in robotics.
Perhaps most closely related to our work is that of coordinated motion planning of 2
or more disks; see [10], on nearly optimal (in terms of lengths of motions) rearrange-
ments of multiple unit disks and the related work of [16]. (In our problems, instead of
minimizing length of motion for given radius disks, we seek to maximize the radii.)

The problem of computing safe paths for multiple speed-bounded mobile agents
that must maintain separation standards arises in air traffic management (ATM) and
Aircraft/Train Scheduling applications. [2] studied the problem of computing a large
number of “thick paths” for multiple speed-bounded agents, from a source region to
a sink region, where the thickness of a path models the separation standard between
agents, and the objectives are to obey speed bounds, maintain separation, and maximize
throughput. In the Aircraft/Train Scheduling problem (see [10, 20, 21]), given a set
of paths on which the agents travel, and a separation parameter, the goal is to find a
collision-free motion of the agents while minimizing the time of completion. (In our
problems, we are not maximizing a “throughput” or makespan; rather, we maximize
a separation standard, for the given agents.)

In the maximum dispersion problem, the goal is to place n (static) points within a
domain P in order to maximize the minimum distance between two points. (Optionally,
one may also seek to keep points away from the boundary of P.) An optimal solution
provides maximum social distancing for a set of szatic agents, who stand at the points,
without moving. Constant-factor approximations for the problem are known [3, 13].
(The problem is also closely related to geometric packing problems, which is a subfield
initself.) In robotics, the problem of motion planning in order to achieve well dispersed
agents has also been studied: move a swarm of robots, through “doorways”, into a
geometric domain, in order to achieve a set of agents well dispersed throughout the
domain. Such movements can be accomplished using local strategies that are provably
competitive [17].
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In the adversarial setting, in which one or more agents is attempting to move in order

to avoid (evade) a pursuer, there is considerable work on pursuit-evasion in geometric
domains (e.g., the “lion and man” problem); see the survey [8].
Our results. In this paper, we (mostly) consider the case of k = 2, i.e., two agents,
“Red” and “Blue”, that move inside their given domains. Further, unless stated other-
wise, we do not consider speed to be a limiting factor; e.g., when Blue moves in order
to maintain distance from Red, we assume that Blue can move at a sufficient speed.

We begin by considering the scenario in which the two domains are polygonal
curves R and B. The agents’ missions are to traverse their respective curves, from the
start point to the end point, in order to maximize the minimum distance between the
agents. The Flipped Fréchet measure between the two curves is the maximum sepa-
ration that can be maintained. In Sect.2 we consider both the continuous case (agents
move continuously along the edges of their curves), and the discrete case (agents
“jump” between consecutive vertices of their curves). We first show that the Flipped
Fréchet measure between two curves in one dimension (1D) can be computed in linear
time. This is in sharp contrast with continuous Fréchet distance, which has quadratic
conditional (SETH-based) lower bounds in 1D [7]. We then develop quadratic or near-
quadratic time algorithms for computation of discrete Flipped Fréchet measure in 1D
and 2D, and for 2D continuous Flipped Fréchet measure. We also complement our
quadratic-time algorithms with conditional lower bounds (conditioned on the Orthog-
onal vectors (OV) problem), even for approximation: we give a quadratic conditional

/5

lower bound on approximating SDW for curves in 2D up to a factor better than Wik
and a quadratic conditional lower bound on approximating discrete SDW for curves
in 1D, with a factor better than %

We then restrict the domain for Blue to a simple polygon P, and measure separation
using geodesic distance in P. In Sect.3 we consider several versions. In the first, the
Red agent has a mission to walk along a given path inside the polygon. The Blue agent
must stay as far as possible from Red, and the only restriction is to move inside P.
We give a quadratic-time algorithm for this problem. We then show that under the
reasonable assumption that Red moves on a geodesic, one can compute a strategy for
Blue in near-linear time.

Next, we consider a simple polygon P where the Red agent is on a mission to
traverse the boundary of P, while the Blue agent moves within P (with a starting
point of Blue’s choice), in order to maximize the minimum Red-Blue distance. We
define the social distance width (SDW for short) of a polygon P to be the minimum
Red-Blue distance that can be maintained throughout the movement, maximized over
all possible movement strategies. We develop a quadratic-time algorithm to compute
the SDW of a polygon. We also show that when P is a tree (a “skiny” polygon), a
strategy for Blue can be computed in linear time.

2 Flipped Fréchet Measure on Polygonal Curves

In this section the domains of Red and Blue are two polygonal curves R and B,
respectively. We begin by giving some basic definitions; then, we describe tools that
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were used in classic algorithms for Fréchet distance and the relation to the social
distancing problem for curves.

A polygonal curve P in R? is a continuous function P : [1,n] — R?, such that
for any integer 1 <i < n — 1 the restriction of P to the interval [i, i 4+ 1] forms a line
segment. We call the points P[1], P[2], ..., P[n] the vertices of P, and say that n is
the length of P. For any real numbers «, 8 € [1, n], « < B, we denote by P, 8] the
restriction of P to the interval [«, B]. Then, for any integer 1 <i <n—1, P[i,i + 1]
is an edge of P. A continuous, non-decreasing, surjective function f : [0, 1] — [1, n]
is called a traversal of P.

Let P : [1,n] - R4 and 0:[1,m] - R? be two polygonal curves. A traversal
of Pand Qisapairt = (f, g),with f : [0, 1] — [1, n] atraversalof P, g : [0, 1] —
[1, m] a traversal of Q.

Definition 1 (Flipped Fréchet Measure) The Flipped Fréchet measure (FF) of P and

QisFF(P, Q)= sup min |[P(f())— Q(g(®))|, where t is a traversal of P and
t=(f,g) t€l0.1]
0.

Note that the well-studied Fréchet distance between P and Q is
inf.—(r ¢y maxsepo, 17 |P(f () — Q(g(®))|l, where t is a traversal of P and Q.

In the discrete case, we simply define a polygonal curve P as a sequence of n
points P[1], ..., P[n] (the vertices of P) in R4, For any 1 <i < j<nletP[i, j]l=
(P[i], P[i + 1],..., P[j]) be a subcurve of P.

Consider two sequences of points P, Q of length n and m, respectively. A traversal
T of P and Q is a sequence, (i1, ji1),--., (i, ji), of pairs of indices such that i; =
Jj1 = 1,i; = n, j, = m, and for any pair (i, j) it holds that the next pair is (i, j + 1),
G+1,5),orG+1,j+1).

Definition 2 (Discrete Flipped Fréchet Measure) The discrete Flipped Fréchet mea-
sure (dFF) of P and Q is dFF(P, Q) = max(mi)n |P[i] — QO[j]ll, where t is a
T (i,j)er

traversal of P and Q.

Notice that unlike in the continuous case, the distances between the agents are only
calculated at the vertices of the polygonal curves.

The discrete  Fréchet distance (DFD) between P and Q is
min; max, jyer |[Pli] — Q[jlll, and it can be computed in O (nm) time [12] using a
simple dynamic programming algorithm.

From now on, we assume for simplicity that both curves R and B have length n;
however, our algorithms and proofs can be easily adapted to the general case of m # n.

We give (Sect.2.1) a linear time algorithm to compute the continuous FF measure
in 1D, demonstrating that “flipping” the objective function makes this setting easier:
for continuous Fréchet there exist conditional quadratic lower bounds [5, 7]. We give
quadratic algorithms and then conditional lower bounds (Sects. 2.2 and 2.3) for com-
puting or approximating other variants (1D discrete, 2D continuous and discrete) of
FF measure, specifically:

e A quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis
(SETH), on approximating FF measure for curves in 2D, with approximation factor

5
2V2°
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Fig. 1 Instead of t, move Red to b
R[2], then Blue to b; then
continue T
R[2] R[1] B[1]

e A quadratic lower bound, conditioned on the Strong Exponential Time Hypothesis
(SETH), on approximating dFF measure for 1D curves, with approximation factor
2

5
2.1 A Linear Time Algorithm for FF in 1D

Let R and B be two paths on the x-axis, each specified by n points. We will make a
series of simplifying assumptions about the paths, arguing that each assumption can
be made without loss of generality. In the end, each path will have monotonically
growing extreme points, i.e., each vertex v will be an extreme point of the subpath to
v; for such paths, a simple linear-time greedy algorithm will find the flipped Fréchet
distance.’

First, assume that R[1] < B[1]. Next, assume that none of the paths has subdivided
edges, i.e., that each (internal) vertex v is a local extremum (both incident edges lie
on the same side of the vertical line through v). The following lemma allows us to
assume that R[1] < R[2] (and symmetrically that B[1] > B[2]):

Lemma3 If R[2] < R[1], then FF(R, B) = min{ B[1] — R[1]) , FF(R[2,n], B)}

Proof Obviously, FF(R, B) < B[1] — R[1]. Consider an optimal traversal t of R, B,
achieving FF(R, B).Letb € B be the point where Blue is when Red is on R[2] (Fig. 1).
Since R[2] is left of any point of the first segment R[1, 2] of R, the configuration
(R[2], b) can be reached, without decreasing the minimum Red-Blue distance as
follows (instead of 7): move Red to R[2] while Blue sits on B[1], then move Blue to
b. Then the traversals of R, B can be finished using 7. O

The proof of Lemma 3 modified a traversal so that Red moved while Blue was
sitting on a vertex, and Blue moved while Red was sitting on a vertex. This is true in
general:

Lemma4 There is an optimal traversal such that at any time either Red or Blue is on
a vertex.

Proof The argument is similar to the proof of Lemma 3: Suppose that in some traversal
7, Red and Blue passed through a configuration (R[], B[j]) for some vertices R[i] €
R, B[j] € B, but later reached a configuration (7, l;) with 7, b being interior to edges
R[i,i+1]and B[j, j+ 1] resp. (Fig.2); as in the proof of Lemma 3, we will consider
the location 7’ € R where T has Red when Blue is at B[j + 1], and the location b’ € B
where  puts Blue when Red is at R[i + 1] (i.e., (+/, B[j + 1]) and (R[i + 1], &) are

2 We thank an anonymous reviewer for suggesting this linear-time algorithm; the conference version [14]
of this paper reported an O (n log2 n)-time solution.
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k=l

RT Ri+1 By+1 B
Modify to

T -

(=l

RJi] Rli+1] B[j+1]  Blj]
-
RJi] Rli+1 B[j+1 B[j

Fig. 2 The red and blue dots show configurations through which Red and Blue go, the time is increasing
from top to bottom. Left: original traversal. Right: modified traversal which always keeps one agent on a
vertex

configurations from 7) — we will modify T depending on whether the edges “face each
other” (i.e., R[i] < R[i + 1], B[j + 1] < B[j]), or at least one of the edges is not
“directed towards the other agent” (w.l.o.g. assume that B[j] < B[j + 1]):

— R[i] < R[i + 11, B[j + 1] < B[j] (Fig.2). Assume w.l.o.g. that Red reaches
R[i + 1] before Blue reaches B[j + 1] (the other case is symmetric). Modify t
so that Blue sits at B[j] while Red goes to r’; then move Blue to B[j + 1]. Since
B[j+1] <b ¥b € B[], j + 1], in the modified traversal, Red and Blue maintain
at least as large a separation as in t.

— BJ[j] < B[j + 1]. Let Red sit on R[i] until Blue reaches B[j + 1]; then let Red
go to r’. It can be seen by inspection that in the modified traversal, Red and Blue
maintain at least as large a separation as in 7.

O

Of course, there is no need for Blue to sit on a local minimum (and for Red — on a
local maximum):

Lemma5 There is an optimal traversal such that at any time either Red is on a local
minimum of R or Blue is on a local maximum of B.

Proof Consider an optimal traversal T in which at any time one of the agents is on a
vertex (Lemma 4). Suppose that 7 has Blue on a local minimum b while Red is at a
point r in the interior of an edge. It follows that Red should reach a vertex r’ before Blue
moves. Since the configuration (b, r’) is part of 7, we have that b — r’ > FF(R, B).
If ' is a local maximum, then Red can pass r’ and get to the next vertex (a local
minimum) while only increasing the separation from Blue. O
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Fig.3 Edges of the simplified
curves are dotted. The subpath
of B between two consecutive ~
vertices of B’ lies fully between >
the vertices -

After signifying the importance of local minima and maxima of R and B, we look
at global extrema. Let by, be the rightmost point of B and let rpi, be the leftmost
point of R.

Lemma 6 If FF(B, R) > 0, then:

(i) All of R must be to the left of bmax — F F (B, R), and all of B must be to the right
of rmin + FF(B, R).

(ii) There exists an optimal traversal (achieving FF(B, R)) such that at some point
Blue is at byax and Red is at rip.

Proof (i) holds by continuity: if R has a point to the right of by.x — F F (B, R), there
must be a time when Red is at distance smaller than F' F (B, R). The claim for B is
symmetric. For (ii), we use the same ideas as in the proof of Lemma 4. Consider a
traversal, and assume that Blue reaches by, before Red reached rpjn. Let 7’ be the
location of Red when Blue is at by,x; ” does not have to be a vertex of R, but in any
case r’ precedes ryin along R. Let b’ € B be Blue’s location at the time Red reaches
Fmin (b’ is after buyax). By (i), while Blue is at byax, Red can go from 7’ to rpi — S0
(bmax, 'min) becomes part of the traversal. Again by (i), while Red is at ryj,, Blue
can go from byax to b'. From (J', rmin), Blue and Red can follow T to complete the
traversal. ]

Lemma 6 allows us to assume, without loss of generality, that by,x and iy are the
final points of B and R, respectively (i.e., B[n] = bmax, R[n] = rmin): for arbitrary
B, R we can separately solve the problem for the subpaths of Blue from B[1] to bpyax
and Red from R[n] to rpin, and the problem for the (reversed) subpaths of Blue from
B[n] to bymax and Red from R[n] to rmin.

Our final simplification of R and B is inspired by the linear-time algorithm for
computing the weak Fréchet distance in 1D [6, Section 8.2]. Given a path P on the
x-axis, consider the following algorithm that constructs a simplified path P’ which
is a subsequence of P (refer to Fig.3). First, fori = 1 to n, add P[i] to P’ if either
Pli] > maxi<j<j—1 P[jlor P[i] < min;<;<;— P[j]. Intuitively, this process creates
a ’zig-zag’ path P’, with monotonically growing extreme points. Then, remove from
P’ any vertex P’[j] such that either P'[j — 1] < P'[j]1 < P'[j +1]or P'[j — 1] >
P’[j]1 = P’'[j + 1]. This removes from P any subdivided edges. Let R, B’ be such
simplified path computed for R, B, respectively. Since B[n] = bmax, R[n] = rmin,
we get that by, is the final point of B’ and r,,;,, is the final point of R’.

Lemma7 FF(B,R) = FF(B', R)).

Proof Consider an optimal traversal T’ of R’, B/, in which at any time (at least) one
of the agents is on a vertex (Lemma 4). Suppose that while Red remains on a vertex
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r’ € R’, Blue traverses an edge B'[j, j + 1] of the simplified curve B’. Then both
B'[j]1—r" = FF(B',R’) and B'[j + 1] — ' > FF(B’, R’). Since the subpath of
B from B'[j] to B'[j + 1] lies between the endpoints of B'[j, j + 1], we get that
b —r’" > FE(B', R') for any b € B between B’[j] and B’[j + 1]. We can add the
subpath to t’; after adding all such subpaths (both for B and for R) we obtain a traversal
of R, B, achieving FF(B’, R'),

Conversely, consider a traversal T of R, B, in which at any time (at least) one of
the agents is on a local extremum (Lemma 5). We modify 7 so that the agents pause
only at maxima of B’ and minima of R’. For this, whenever Blue (resp. Red) pauses,
modify the traversal to pause at the previous vertex of B’ (resp. R’) instead: (as in the
proofs of the lemmas above,) this vertex gives more freedom for Red (resp. Blue) to
move; moreover, the next time Red pauses will be a global minimum of its prefix, so
Blue will not have lost any freedom by having paused early. O

Finally, when the curves R, B have been simplified, the flipped Fréchet distance
between them may be found by the greedy algorithm which always selects the “cheap-
est” possible next move, i.e., either moves Red or Blue depending on what leads to a
larger distance between the vertices. The full algorithm is as follows:

e if R[i + 1] > B[j]and B[j + 1] < R[i], return O.

e clse, if R[i + 1] > B[j]l and B[j + 1] > R[i],set j < j + 1and § «
min{d, B[j + 1] — R[i]}.

e else,if R[i+1] < B[jland B[j+1] < R[i],seti <— i+1and§ < min{§, B[j]—
R[i + 1]1}.

e else,if R[i + 1] < B[j]and B[j + 1] > R[i]:

— if B[j]—R[i+1] > B[j + 1] — R[i],seti < i+ 1and § < min{3, B[j] —
R[i + 11},

— if B[j]—R[i +1] < B[j+ 1] — R[i],set j < j+1and § < min{s, B[j +
11 — R[i]}.

Finally, if i = n we return min{d, min;<x<,(B[k] — R[i])}, and if j = n we return
min{8, min; <x<, (Blk] — R[jD}.

Claim 8 The algorithm above returns FF(B, R) (for simplified paths R, B).

Proof First notice that if R[i] is a local minimum of R, and B[] is a local minimum
of B, then the next step of the algorithm is Blue moving to a local maximum B[ + 1].
Similarly, if B[j] is a local maximum of B, and R[] is a local maximum of R, then
the next step of the algorithm is Red moving to a local minimum R[i + 1]. In both
cases, 6 does not change. In addition, if R[i] is a local maximum of R and B[] is
a local minimum of B, then in the next step of the algorithm either Red or Blue will
“step back” to a local minimum or local maximum, respectively, and again § will not
change.
In fact, § changes only at a step when Red is on a local minimum and Blue is on
a local maximum. In this case, the algorithm chooses the next move that decreases §
as little as possible (if at all). Since one of the agents needs to move, the decrease is
necessary.
O
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Since the simplification of the curves and the greedy algorithm can be performed in
linear time, we obtain our main result of this section:

Theorem 9 Given two polygonal curves P, Q with n vertices in 1D, their social
distance width, FF(P, Q), can be computed in O (n) time.

2.2 Quadratic-Time Algorithms

In this section we describe algorithms for computing continuous and discrete
FF(R, B); the algorithms are based on similar algorithms for computing the con-
tinuous and discrete Fréchet distances, in times O (n? logn) and O (n?), respectively.
As with Fréchet distance, our algorithms use the notion of a free space diagram,
appropriately adapted.

The free space diagram. The §-free space diagram [1] of two curves P and Q
represents all locations on P and Q with distance at most §. We adapt this notion to
our new setting.

LetC;; = [i, i+1]x[j, j+1]beaunitsquareinthe plane, forintegers 1 <i <n—1
and 1 < j <m — 1. Let B = [1, n] x [1, m] be the square in the plane that is the
union of the squares C;;. Given § > 0, the é-free space is F5 = {(p,q) € B |
IP(p) — Q(g)|l = &}. In other words, it is the set of all red-blue positions for which
the distance between the agents is at least §. A point (p, g) € Fs is a free point, and
the set of non-free points (or forbidden points) is then B \ F;s. Note that for Fréchet
distance, these definitions are reversed (“flipped”). We call the squares C;; the cells
of the free space diagram; each cell may contain both free and forbidden points. An
important property of the free space diagram is that the set of forbidden points inside
acell C;; (i.e., C;j N Fs) is convex [1].

Notice that a monotone path through the free space Fs between two free points
(p,q) and (p’,q’) corresponds to a traversal of P[p, p’] and Qlg, q’]. Thus,
FF(P, Q) > § if and only if there exists a monotone path through the free space
Fs between (0, 0) and (n, n) (i.e. (n, n) is “reachable” from (0, 0)). The Fréchet dis-
tance between P and Q can be computed in O (n?logn) time [1] as follows. For
a given value of §, the reachability diagram is defined to be the set of points in F;
reachable from (0, 0). As the set of free points in each cell is convex, the set of “reach-
able” points on each of the boundary edges of a cell is a line segment. Thus, one can
construct in constant time the reachable boundary points of a cell, given the reachable
boundary points of its bottom and left neighbor cells (see Fig.4). Therefore, comput-
ing the reachability diagram (and hence solving the decision version of the problem)
takes O (n?) time using a dynamic programming algorithm. For the optimization, there
are O (n?) critical values of 8, which are defined by (i) the distances between starting
points and endpoints of the curves, (ii) the distances between vertices of one curve
and edges of the other, and (iii) the common distance of two vertices of one curve to
the intersection point of the bisector with some edge of the other. Then, parametric
search, based on sorting, can be performed in time 0((n2 ~+ Tgec) logn), where Ty
is the running time for the decision algorithm.

In the case of FF, we can again compute the reachability diagram in O (n?) time, as
in each cell the set of forbidden points is convex, and thus the set of “reachable” points
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Cij
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>

Fig.4 Right: a free space cell C;;. For FF, the free space is white, while for Fréchet distance, the free-space
is gray. The gray region within a cell is convex. Left: the free space diagram of two curves. The black points
and dashed lines indicate critical values of type (iii), which are openings in the free space diagram defined
by two red edges and one blue edge

on each of the boundary edges of a cell is at most two line segments; moreover, in
each cell the set X of infeasible points has constant description complexity, implying
that reachable points on the sides of a cell can be computed in constant time — these
are the points that can be reached from feasible points in the adjacent cells by x- and
y-monotone paths that avoid X. The set of critical values is similar, except that the
third type can occur between three edges (see Fig. 4, left). Thus, by arguments similar
to [1], we have a O(n2 log n) time algorithm for computing FF(P, Q).

Theorem 10 There is an O (dn* log n) time exact algorithm for computing the Flipped
Fréchet measure of two polygonal n-vertex curves in R,

For the discrete version of FF, a simple dynamic programming algorithm (similar
to the one known for discrete Fréchet distance) gives an O (n?) solution. In short, let
OPTIi, j] be the FF of P[1,i] and Q[1, j]; then, by the definition of dFF we have
OPTI[i, j] = min{||P[i] — Q[j]ll, max{OPT[i — 1, j], OPT[i,j — 1], OPT[i —
L j—11}}

Theorem 11 There exists an O(dn?) time exact algorithm for computing the dFF
measure of two polygonal n-vertex curves in R.

2.3 Quadratic Lower Bounds

Bringmann and Mulzer [5] give a lower bound (conditioned on SETH) for computing
the discrete Fréchet distance between two curves in 1D, using a reduction from the
Orthogonal Vectors (OV) problem. We prove similar results below for FF in 2D and
dFF in 1D.

The Orthogonal Vectors problem is defined as follows. Given two sets U =
{up...un} and V. = {v;...vy}, each consisting of N vectors in {0, 1}P, decide
whether there are u; € U, v; € V orthogonal to each other, i.e., u; (k) - v; (k) = 0 for
every k = 1, ..., D (where u; (k) denotes the kth coordinate of «;). Bringmann and
Mulzer [5] showed that if OV has an algorithm with running time DM . N27¢ for
some ¢ > 0, then SETH fails.
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Fig.5 The curves R and B for the continuous FF lower bound

In the following, by an algorithm with approximation factor « < 1 we mean an
algorithm that outputs a traversal whose maintained separation distance is at least «
times the FF, given by an optimal traversal.

In Theorem 12 we show that for continuous FF, increasing the dimension from 1D
(where we gave a linear-time algorithm) to 2D likely rules out subquadratic algorithms.
Then, in Theorem 13 we show a quadratic lower bound for the discrete version in 1D.

Theorem 12 (FF Lower Bound in 2D) There is no algorithm that computes the FF
measure between two polygonal curves of length n in the plane, up to an approximation

factor at least % and runs in time O (n*~°) time for any 8§ > 0, unless OV fails.
Proof Set o = 2—“/\% ~ (0.79. Given an instance U = {uj...un}, V = {v;... vy} of

OV, we show how to construct two curves R and B of length O(N - D) in the plane,
such that if U x V contains an orthogonal pair then FF(R, B) > 1, andif U x V
does not contain an orthogonal pair then FF(R, B) < «. Therefore, if there exists an
algorithm with running time O (n>~¢) for computing FF of two curves of length 7 in
the plane, then FF(R, B) can be computed in O (DN )2’5 ), which means that OV can
be decided in DO . N2—¢ time, and SETH fails. Moreover, if FF can be approximated
up to a factor of «, then again we get that OV can be decided in DO . N27¢ time,
and SETH fails. As in [5], we assume that D is even (otherwise add a 0 coordinate to
each vector).

The construction of R (resp. B) is such that for each vector u; € U (resp. vj € V),
we construct a vector gadget curve A; (resp. B}), such that if u; and v; are orthogonal
then FF(A;, B;j) = 1, and otherwise FF(A;, B;) < a. Then, we connect the vector
gadgets into curves R and B.

Consider the following set of points (see Fig.5):

e Points on the x-axis: x = (—1.5,0), r = (=0.75,0), ' = (=0.5,0), b =
(0.25,0), b’ = (0.5, 0)
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e Points on the y-axis: ¢ = —cd = (0,0.75), ¢ = —c? = (0,0.25), u = —d
0,0.5)

e Octagon points: p; = —p5 = (0.25,0.5), po = —pe = (0.5,0.25), p3 = —p7 =
(0.5, —0.25), ps = —pg = (0.25, —0.5)

e Other points: 57 = (1,0.5), = (1,-0.5), s = (-0.25,-0.25), b =
(0.25,0.25)

Notice that all the points are located on a regular grid with side length 0.25, and that
st — &2l = llts = s2ll = lict — pall = lic§ = psll = lie{ = pill = llef — psll =
Ir =il = lIr — ¢f | = e

For each u; € U, the gadget A; is constructed as follows:

/ u
r Ok=1,...,§ <p7 © P8 OUOCy (2p—1) O U O P8O PT

ope © ps odocgi(zmodopﬁ-opﬁ)or/.

Similarly, for v; € V, the gadget B; is constructed as follows:

=1,...,

op1ouoc;‘i(z,()ouoplopz)ob/.

It is easy to see that if u;, v; are orthogonal then FF(A;, Bj) = 1, because the
traversal that uses “antipodal” points maintains distance 1 between Red and Blue.
For the other direction, we claim that if FF(A;, B;) > «, then u;, v; are orthogonal.
Now assume that u; (1) = 1, so R starts with r’, p7, ps, u, cf. Notice that when Blue
traverses the subcurve b’, p3, p4, d, Red cannot reach cﬁ‘. If v; (1) = 1, then the next
move of Blue is toward cﬁl, and the distance between the agents becomes at most «
(if Red in on pg while Blue is on cf then their distance is exactly «). This means that
u;(1) = v;(1) = 1 is not possible. Therefore, at least one of u; (1), v;(1) is 0. Notice
that Blue will visit d for the first time before Red visits d for the first time. Similarly,
Red will visit u for the first time before Blue visits u for the first time. Moreover, Red
cannot reach r’ before Blue leaves d, and Blue cannot reach »’ before Red leaves u.
Thus, the movement of Red and Blue is synchronized in the sense that when Red is
moving from u towards d, Blue is moving from d towards u, and vice versa. Hence,
by similar (symmetric) arguments, we get that u; (k) = v;(k) = 1 is not possible for
allk =2,..., D as well, and u;, v; are orthogonal.

The gadgets A; and B; are connected into R and B as follows:

.....

If wu; € U,vj € V are orthogonal, then Blue traverses
Ok=1,...,j—1 (s1 0 b o By o b o t1) while Red stays at x, then Blue moves to s;. Now
Red moves from x to (0, 0), to s, then traverses Og=1....i—1 (r o A), and moves to

.....
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r just before A;. Now Blue moves to b just before B, and they traverse A; and B; in
sync, keeping distance > 1. Now Red moves to r while Blue moves to b, then Blue
moves to ;. While Blue is on 1, Red traverses Ok—i+1,..N (r 0 A) o1’ otz 0 x.
Finally, Blue traverses Qk=j+1,...n (s1 o b o By o b o t1) while Red is on x.

For the converse, assume that FF(R, B) > «a. When Red reaches (0, 0) for the first
time, Blue must be on s; or #; (or on the edge between them). If Blue is on 71, then it
must move towards 51 before Red can continue to s,; moreover, when Red reaches s,
Blue can only be strictly above the x-axis either on the edge (1, s1) or (s1, b). Thus
we can assume that when Red is on 57, Blue is on s; immediately before some vector
gadget B;. Now consider the first time when Red reaches f,. At this time, Blue can be
either near 71 (strictly below the x-axis) or near cg. Howeyver, if Blue is near cg, it is
not possible for the agents to continue their movement: Blue cannot reach d and Red
cannot reach (0, 0). Thus we can assume that when Red reaches f,, Blue is near #; and
strictly below the x axis. We conclude that between the first time that Red visited s
and the first time that Red visited #,, Blue had to traverse the vector gadget B; in order
to get from a point strictly above the x axis to a point strictly below it. Before Blue
starts traversing Bj, it first visits b, but when Blue is on b, the only possible location
of Red is near r (more precisely, on the edge between r and 7/, but not on r’). Notice
that Red cannot be near x since it has not visited #, yet. Now there are two options: (1)
Red is immediately before some vector gadget A;, and thus by previous arguments u;
and v; are orthogonal, or (2) Red has finished all its vector gadgets, and it waits on r

while Blue traverses B;. In this case, notice that since ||r — c{ || = |lr — ci’ | = «, Blue
cannot reach any of cf, cf while Red is on r; thus, v; must be a 0-vector, implying u;
and v; are orthogonal. O

We now show that the discrete FF likely requires quadratic time, even in 1D.

Theorem 13 (Discrete 1D Lower Bound) There is no O (n%7%) time o-approximation
algorithm for dFF in 1D, for any ¢ > 0 and o > 2/3, unless OV fails.

Proof Given an instance U = {u;...un}, V = {v;...vy} of OV, we show how to
construct two curves R and B of length O(N - D) on the line, such that if U x V
contains an orthogonal pair then dFF(R, B) > 1, and if U x V does not contain
an orthogonal pair then dFF(R, B) < 2/3. Therefore, if there exists an algorithm
with running time O (n%>~¢) for computing dFF of two curves of length n on the real
line, then dFF(R, B) can be computed in O ((DN )2=¢), which means that OV can be
decided in DO . N2~¢ time, and SETH fails. Moreover, if dFF can be approximated
up to a factor of 2/3, then again we get that OV can be decided in DO . N27¢ time,
and SETH fails. Again as in [5] we assume that D is even.

Consider the following set of points on the line (see Fig.6): w; = —wy = 5/3,
x=—x1 = 1,af = b} = —af = —b§ =2/3,af = b = —a) = —b§ = 1/3,
s = 0.

We first construct vector gadgets. For each u; € U, we create a subsequence A;
of R: for odd (resp. even) k, the kth point in A; is a;’i (k) (resp. a,‘ji(k)). Similarly, for
vj € V, we create a subsequence B; of B, using bs instead of as. It is easy to see
that Red and Blue can traverse B; and A; while maintaining distance 1 if and only
if u;, v are orthogonal (they jump between odd and even points in sync, “opposite”
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Fig.6 For a pair of orthogonal vectors, Red and Blue jump in sync between as and bs, with at least one of
them at a “far” point (indexed with 0)

each other, and at least one of them is at “far” point, indexed with 0). Note that any
such vector gadget has length D.

The gadgets B; are connected into B as follows: B = wjoBjowsowjoByowso
---owj o By ow;. Let W be the sequence of D(N — 1) points that alternate between
ag and a starting with aj (Red can traverse each of N — 1 length-D subpaths of W
in sync with Blue on any B;). We construct R as follows: R =W oxjosoAjoso
Aro---osoAyosoxroW.

The proof that OV is a Yes instance if and only if dFF(R, B) > 1 is similar to that
in [5], with an important change: here, we also show that if OV is a No instance, then
dFF(R, B) < 2/3. Indeed, notice that since dFF(R, B) is determined by the distance
between two vertices, one from R and one from B, we get that if dFF(R, B) > 2/3,
then necessarily dFF(R, B) > 1 (as there are no two points in our construction with
distance in the range (2/3, 1)). Therefore, it is enough to show that if OV is a No
instance, then dFF(R, B) < 1.

Ifu; € U, v; € V are orthogonal, then Red traverses D(N — j) points on W while
Blue stays at wy, then Blue traverses By ... Bj_; in sync with Red traversing the rest
of W.Now, while Blue stays at wq before B, Red goes to x1 and traverses Ay ... A;_q,
then goes to s before A;. Then, A;, B; are traversed in sync, Blue stays at wy while
Red completes the traversal of A;4q,..., Ay and goes to x;, and finally Blue can
complete the traversal of Bjy1, ..., By in sync with Red traversing the second W
gadget. When Blue goes to w», Red is able to complete the traversal of W.

For the converse, assume that dFF(R, B) > 1. When Red is on x{, Blue must be
to the right of s, but if Blue is not on wi, then they cannot take the next step — so
Blue must be on wy, right before some vector gadget B;. Immediately after leaving
wi, Blue gets to by or bY, implying that Red must be at ag or af, i.e., either in some
vector gadget A; or on the second W (since it already passed x). However, if it is on
W, it must have gone through x> which is too close to w1, so Red is in A;. Now while
they are on A; and B}, Red and Blue must jump in sync, until one of them reaches the
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end point of their respective vector gadget. Therefore, if Red did not start on the first
point of A;, then it will finish A; and appear at s before Blue has finished B;. This
means that A; and B; were traversed simultaneously, and since dFF(R, B) > 1, the
respective vectors have to be orthogonal. O

2.4 More than 2 Agents

Our algorithm for continuous FF in 1D (more specifically, the decision version: decid-
ing whether FF(R, B) > §) generalizes to any number k > 2 of agents, with a running
time of O (kn), as follows. Let Ay, Az, ..., Ax be the polygonal paths of k agents in
ID. Given a distance value §, our goal is to decide whether the k agents can traverse
their respective paths while maintaining distance § from one another. Since we are on
a line and agents cannot cross paths, we only need to maintain distances for neigh-
boring (along the line) agents. Therefore, we can translate each A; by —( — 1)§ (for
2 <i < k), and then our goal is to find non-crossing traversals, or corresponding
paths on the space-time graph. This can be done by fixing a path for A, then using
our algorithm for two agents to align a corresponding path for A,, then consider the
path of A, as fixed, and align a path for A3 and so on (recall that we can have an agent
walk in infinite speed).

The question of whether or not there exists an algorithm in 2D with running time
fully polynomial in k remains open (for the Fréchet distance of a set of curves, the
best known running time is roughly O(nk ); see [11]).

3 Social Distancing in a Simple Polygon

In this section we consider distancing problems in which the given domain (for both
Red and Blue) is a simple polygon. Since the two agents are moving inside the same
polygon, it is natural to consider geodesic distance (i.e., the shortest path inside the
polygon) instead of Euclidean distance to measure separation.

Consider a scenario in which Red and Blue have to traverse two polygonal paths R
and B, both inside a given polygon P, and their goal is to find a movement strategy
(a traversal) that maintains geodesic distance of at least § between them. For the
analogous Fréchet problem (Red and Blue have to maintain geodesic distance of at
most §), Cook and Wenk [9] presented an algorithm that runs in O (n? log N) time,
where N is the complexity of P and n is the complexity of R and B. Their algorithm is
based on the fact that the free space in a cell of the diagram is x-monotone, y-monotone,
and connected. Then the geodesic decision problem can be solved by propagating the
reachability information through a cell in constant time, as for the Euclidean Fréchet
distance. Thus, we can apply a similar “flipped” algorithm for computing the FF(R, B)
under geodesic distance in nearly quadratic time.

When both Red and Blue are restricted to traverse a given path, it seems that the
Fréchet-like nature of the problem leads to near-quadratic time algorithms. Thus, in
this section we consider the scenario where Blue has more freedom, and it is not
required to traverse a given path. We first consider the case when Red is walking on
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an arbitrary path in the polygon; we show that while the naive solution takes at least
cubic time, there exists a quadratic time algorithm for this problem. We then describe
two variants for which we present linear time algorithms; the first is where Red is
walking along a shortest path in the polygon, and second is where Red is traversing
the boundary of a skinny polygon (a tree).

Throughout this section, we will use SDW to denote social distancing width, to
differentiate from the Flipped Fréchet versions where both the Red and Blue curves
are given as input.

3.1 Red on an Arbitrary Path Mission

Consider the case when Red moves along some given path R in P, and Blue may
wander around in P, starting from some given point b. The free-space diagram can be
adapted to the case of a path and a polygon, by partitioning the polygon into a linear
number of convex cells (for example, a triangulation). This is a three-dimensional
structure, which contains O (n?) cells (assuming that the complexity of both R and P
is O (n)). However, for maintaining geodesic separation, building the free-space may
be cumbersome, because it would involve building the parametric shortest path map
in a triangle as the source moves along a segment, and such SPM may have Q2 (n)
combinatorial changes. Instead, we show that Blue may stay on the boundary, thus
reducing the problem to the standard free-space diagram between a path and a closed
curve. We will prove:

Theorem 14 Let P be a polygon with n vertices, b a point in P, and R a path between
two points r and r' in P. There exists an O (n* log n)-time algorithm to decide whether
there exists a path B in P starting from b, such that SDW (R, B) > 1 under geodesic
distance.

The proof follows from the following observation and lemma, and by using the
O (n? log n)-time algorithm of [9] for geodesic Fréchet distance between two curves.

Observation 15 Let p be an arbitrary point inside a polygon P, and D be the closed
geodesic disk of any radius centered at p, then D splits both P and d P into the same
number of connected components, and there is a natural one-to-one correspondence
between them.

Lemma 16 Assume that the point b is on the boundary. If there exists a path B in P
starting from b, such that SDW (R, B) > 1 under geodesic distance, then there exists
such a path B’ that is entirely on the boundary of P.

Proof Let r; be the first point of R, and denote by Cy, C3, ..., Cy the set of connected
components of d P\D,, where D,, is the unit geodesic disk around ry, i.e., the set
of points within geodesic distance 1 from ry. Assume that b lies in C;. When Red
moves continuously along the segments of R, some of the connected components may
disappear, split, or merge with other connected components. In addition, some new
connected components may appear. These events may occur in the case in which, for
some point p on R, either (i) a segment of d P becomes tangent to D, or (ii) a vertex
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of P is on the boundary of D,. By Observation 15, as long as none of these events
occur, Blue can stay on the boundary of C, because, as Red moves, C; contains a
single connected piece of d P on which Blue can walk (Blue may need to move along
C1 in the case that C “shrinks”). Consider the first time when Red reaches a point
on R such that either (i) or (ii) occur. If this event causes C to disappear, then Blue
had no way to escape. If C; splits, then by Observation 15, Blue can move on the
boundary of Cj to any of the new connected components, right before the split occurs.
If C1 merges with another connected component, say C;, then again by Observation
15, Blue can move to the boundary of C, via the boundary of C;. In any of these
cases, Blue can move via d P to the connected component in which it would be if it
had walked along B. O

Remark. Observation 15 and hence the above lemma apply
only to geodesic distance separation —if Blue is maintaining
separation using Euclidean distance, Blue may need to go
inside the polygon; see the figure on the right for an example.
In this case, we build the 3D free-space, but note that its
complexity is quadratic, because the complexity of each
free-space cell that corresponds to a triangle of P and a red
edge is constant, and thus the free-space can be searched in
quadratic time.

3.2 Red on a Shortest Path Mission

Assume that Red moves along a geodesic path R in P (Red is on a mission and does
not care about social distancing) while Blue may wander around anywhere within P
starting from a given point b. We show that the decision problem, whether Blue can
maintain (geodesic) social distance at least 1 from Red, can be solved in linear time.

Theorem 17 Let P be a polygon with n vertices, b a point in P, and R a geodesic
shortest path between two points r and r’ in P. There exists an O (n)-time algorithm to
decide whether there exists a path B in P starting from b, such that SDW (R, B) > 1
under geodesic distance.

Proof We use |ab| to denote the geodesic distance between points a,b € P. For a
pointt € Rlet D; = {p € P : |tp| < 1} be the unit geodesic disk centered on ¢;
let M = U;cg D; be the set of points within geodesic distance 1 from R (Fig.7, left).
Without loss of generality, assume b ¢ D, (otherwise separation fails from the start).
The disk D, splits P into connected components (a component is a maximal connected
subset of P \ D,): Blue can freely move inside a component without intersecting D, ;
in particular, if the component P’ > b of b is not equal to M \ D, (i.e., if P'\M # @),
then Blue can move to a point in P\ M (a safe point) and maintain the social distance
of 1 from Red (existence of a safe point can be determined by tracing the boundary of
M). Next, we show that the existence of such a safe point is also necessary for Blue
to maintain the distance of 1 from the geodesic shortest path R.

Indeed, as Red follows R, D; sweeps M; let S; € M be the points swept (at least
once) by the time Red is at# € R and let U; = M \ S; be the unswept points. Since
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Fig.7 Left: D, splits P into connected components. Blue escaping Red as there exists a safe point. Middle:
the boundary between S; and U; is dashed. Blue cannot escape because its connected component equals
M \ D,. Right: Blue escapes when Red is at ¢

b ¢ D, = S,, initially Blue is in the unswept region. Assume that there is no safe
point (P’ = M \ D,) and yet Blue can escape. Suppose Blue can escape from the
unswept to swept when Red is at ¢+ € R (Fig.7, right). Then there exists a point p
on the boundary between U; and S; that is further than 1 from ¢, say |pt| = 1 + ¢
for some ¢ > 0. Since p is on the boundary of S;, at some position t* € 7 before ¢,
we had |t*p| = 1. Since p is on the boundary of U;, there exists an unswept point
p’ € U, within distance less than ¢ from p: |p’p| < ¢. Finally, since U, = M \ S, is
part of M, p’ becomes swept when Red is at some point ¢’ € 7 after ¢: |¢'p'| < 1. We
obtain that there are three points t*, 7, ¢’ along a geodesic path 7 and a point p such
that |t*p| <1 < 14+¢ = |tpland |t'p| < |t'p'|+|p'p| < 1+ = |tp|, contradicting
the fact that the geodesic distance from a point to a geodesic path is a convex function
of the point on the path [19, Lemma 1] (this is the place where we use that R is a
geodesic path: if R is not geodesic, it is not necessary for the Blue to escape from M
while Red is at r).

We now show how to implement our solution to the decision problem in O (n) time.
To build the geodesic unit disk D, we compute the shortest path map (SPM) from r
(the decomposition of P into cells such that for any point p inside a cell the shortest
r-p path has the same vertex v of P as the last vertex before p) — the SPM can be
built in linear time [15]; then in every cell of the SPM we determine the points of D, :
any cell is either fully inside D,, or fully outside, or the boundary of the disk in the
cell is an arc of the radius-(1 — |rv|) circle centered on the vertex v of P. The set M
can be constructed similarly, using SPM from R. To build the SPM, we decompose P
by drawing perpendiculars to the edges of R at every vertex of the path (see Fig. 8):
in any cell of the decomposition, the map can be built separately because the same
feature (a feature is a vertex or a side of an edge) of R will be closest to points in the
cell (the decomposition is essentially the Voronoi diagram of the features). In every
cell, the SPM from the feature can be built in time proportional to the complexity
of the cell (the linear-time funnel algorithm for SPM [15] works to build the SPM
from a segment too: the algorithm actually propagates shortest path information from
segments in the polygon). Since the total complexity of all cells is linear, the SPM is
built in overall linear time. After D, and M are built, we test whether b € D, (if yes,
the answer is No) and trace the boundary of M to determine the existence of a safe
point (the answer is Yes iff such a point exists). O
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Fig.8 SPMs from edges and
vertices of 7 are computed
separately in portions of P
defined by perpendiculars to
path edges (some shown
dashed). Gray and light blue
parts are charged to (the right
side of) the edge e and to vertex
u of R, resp

3.3 SDW of Closed Curves and Polygons

Consider a scenario in which the polygonal curves R and B are closed curves. Here,
the starting points of Red and Blue are not given as an input, and the goal is to decide
whether they can traverse their respective curves while maintaining distance at least
8. The analogous Fréchet problem has been investigated by Alt and Godau [1], who
presented an O (n”log® n) time algorithm, and later in [22], where the running time
was improved to O (n? log n). Those algorithms include the construction of dynamic
data structures for the free space diagram, which is again based on the fact that the
free space within a cell is convex. Since, in our “flipped” case, the forbidden space
is convex, similar data structures can be used in order to compute the SDW of two
closed curves in near quadratic time.

We can then define the Social Distance Width of two polygons Pp, P, as a spe-
cial case in which R is the boundary of P; and B is the boundary of P; i.e.,
SDW (Py, P,) = SDW (0 Py, d P»). Similarly, the Social Distance Width of a (single)
polygon P is SDW(P) = SDW (9P, d P). We have

Theorem 18 The social distance width of a polygon P of n vertices can be decided in
0 (n? log n) time.

The notion of SDW of a polygon is possibly related to other characteristics of polygons,
such as fatness. Intuitively, if the polygon P is fat under standard definitions, then the
SDW of P will be large. However, the exact connection is yet unclear (see Fig.9), and
we leave open the question of exact relation between the two notions.

We now show that in special cases, the SDW can be computed in linear-time.

3.4 Social Distancing in a Tree (a “Skinny” Polygon)

In this section we consider the case in which the shared domain of Red and Blue is a
tree 7', and the distance is the shortest-path distance in the tree (the distance between
vertices # and v denoted |#v|). Red moves around T in a depth-first fashion: there is
no start and end point, it keeps moving ad infinitum. In particular, if 7' is embedded
in the plane, the motion is the limiting case of moving around the boundary of an
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Fig.9 A §-fat polygon P, and the free space diagram showing that SDW (P) < §

a

b

Fig. 10 Red is at ¢ while Blue moves between a and b. Left: A star. Right: A schematic representation of
atree

infinitesimally thin simple polygon, and the distance is the geodesic distance inside
the polygon.

Theorem 19 Let T be a tree with n vertices, embedded in the plane. Suppose Red
goes around T (circularly, ad infinitum), and suppose Blue has to do the same. There
exists an O (n)-time algorithm to schedule the motion of Blue so as to maximize the
minimum distance (measured along the tree) between Red and Blue.

Proof We start with the case when T is a star (Fig. 10, left). Let r be the root of the
star and let [ra| > |rb| > |rc| be the 3 largest distances from r to the leaves (i.e., the
distance to the root from all other leaves is at most |rc|). Assume that the leaves a, b, ¢
are encountered in this order as Red moves around 7' (this assumption is w.l.0.g.,
since the other orders are handled similarly); we call r and |rc| the 2-outlier center
and radius of T because allowing 2 outliers, |rc| is the smallest radius to cover T
with a disk centered at a vertex of the tree. Now, on the one hand, Blue can maintain
distance |rc| from Red: when Red is at a, Blue is at ¢; when Red is at b, Blue moves to
a; when Red is at ¢, Blue moves to b; the minimum distance of |rc| is achieved when
Blue is at ¢. On the other hand, the distance must be at least |rc| at some point, since
Blue cannot sit at a or at b all the time, and, while Blue moves from a to b through r,
Red must be somewhere else (other than a or b).

We now consider an arbitrary tree 7. Assume w.l.0.g. that T has at least two vertices
each of degree at least 3: if all degrees are at most 2, then T is a path and the solution

@ Springer



Algorithmica

o < min{|rri| +dy, [rre| + da}

> DJ2

Fig. 11 Left: If |uv| = |u’v'| = D, then [uww’v’| > D. Right: The distance from any diameter endpoint
to the closest endpoint of 7 (thick) is the d, for otherwise one of the diameters is longer than another. The
2-outlier radius of r is d, while the 2-outlier radius of ' cannot exceed d

is trivial; if there is only one vertex of degree at least 3, the solution is the same as for
the star (treating the vertex as the root).

Letr € T be a vertex of degree at least 3. Removal of r disconnects 7T into several
trees; for a vertex v # r of T let T;, > v be the subtree of v. Let a be the vertex of T
furthest from r, let b be the vertex of T \ T, furthest from r, and let ¢ be the vertex
of T\(T, U Tp) furthest from r (Fig. 10, right). Call |rc| the 2-outlier radius of r, and
assume r* is the vertex whose 2-outlier radius is the largest. As in a star, Blue can
maintain the distance of |r*c| from Red by cycling among a, b, ¢ “one step behind”
Red. Also as in a star, a larger distance cannot be maintained because, again, Blue has
to pass through r* on its way from a to b, and the best moment to do so is when Red
is at ¢. If instead Blue does it when Red is, say, at a vertex a’ € Ty, then let! € T,
be the least common ancestor of a and a’: if |la’| < |r¥*c|, then Blue comes within
|la’| < |r*c| from Red; otherwise the 2-outlier radius of / is larger than that of r*.

To find r* in linear time, note that ab is a diameter of T': it is a longest simple path in
T. The diameter of a tree can be computed in linear time via dynamic programming:
pick some arbitrary non-leaf node as the root, and store the depths of subtrees for
each node; the diameter is realized by the summed depth of the two deepest subtrees
of a node. All diameters of a tree intersect because if two diameters uv, u’v" do not
intersect, then there exist vertices w € uv and w’ € u’v’ that connect the two diameters
and the distance from each of w, w’ to one of the endpoints of its diameter is at least
half the diameter, implying that the distance between these endpoints is strictly larger
than the diameter (Fig. 11, left). Moreover, since the tree has no cycles, the intersection
of all its diameters is a path r in 7. Note that the distance from a diameter endpoint
to the closest point on 7 can only have two values (depending on which endpoint of
7t is closer). We claim for any point r’ not on 7, the point r on 7 closest to it has a
larger 2-outlier radius, and thus r* may be found on 7. Indeed, let 7, be the tree that
contains r after removing r’, and let v be the farthest point from r’ not in 7. Since
|r'v] is strictly smaller than the distance between r and the closest diameter endpoint
(see Fig. 11, right), we get that the 2-outlier radius of r’ is at most |r'v|. On the other
hand, the 2-outlier radius of r is at least |rv|, and clearly |rv| > |r'v].

We thus compute a diameter ab (linear time) and pick the vertex with the largest
2-outlier radius on the diameter as r* by checking the vertices one by one. As we check
consecutive vertices on ab, the distances |ra| and |rb| are updated trivially, and the
subtrees T \ (T, U Tp) are pairwise-disjoint for different vertices r along the diameter;
thus the longest paths in all the subtrees can be computed in total linear time. O
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4 Conclusion

We considered problems of coordinating the motion of agents while maintaining a
certain minimum (social) distance between them; this is a “flipped” variant of the
well studied Fréchet distance. We obtained several upper and lower bounds on the
complexity of the motion coordination.

Many open questions remain:

e How does social distancing work in polygons with holes?

e What changes if the agents are allowed to backtrack (the “weak” flipped Fréchet
distance)?

e How do the solutions and lower bounds scale with the increase of the number of
the agents?
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