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Abstract—Large-scale transformer-based models like the Bidi-
rectional Encoder Representations from Transformers (BERT)
are widely used for Natural Language Processing (NLP) applica-
tions, wherein these models are initially pre-trained with a large
corpus with millions of parameters and then fine-tuned for a
downstream NLP task. One of the major limitations of these
large-scale models is that they cannot be deployed on resource-
constrained devices due to their large model size and increased
inference latency. In order to overcome these limitations, such
large-scale models can be converted to an optimized FlatBuffer
format, tailored for deployment on resource-constrained edge
devices. Herein, we evaluate the performance of such FlatBuffer
transformed MobileBERT models on three different edge devices,
fine-tuned for Reputation analysis of English language tweets in
the RepLab 2013 dataset. In addition, this study encompassed
an evaluation of the deployed models, wherein their latency,
performance, and resource efficiency were meticulously assessed.
Our experiment results show that, compared to the original
BERT large model, the converted and quantized MobileBERT
models have 160× smaller footprints for a 4.1% drop in accuracy
while analyzing at least one tweet per second on edge devices.
Furthermore, our study highlights the privacy-preserving aspect
of TinyML systems as all data is processed locally within a
serverless environment.

Index Terms—IoT, Natural Language Processing, Machine
Learning, BERT, Reputation Polarity, Social Media, Embedded
Systems, TinyML, Privacy.

I. INTRODUCTION

Pre-trained large-scale Natural Language Processing (NLP)
models have been exhibiting remarkable performance in most
NLP tasks using transformer-based architectures. By stack-
ing multiple encoder/decoder layers, combined with attention
mechanism [27], these architectures are producing promising
results in the field of NLP. Models such as BERT [11],
RoBERTa [18], XLNet [33], and GPT-4 [22] have been
increasingly popular in the commercial development of various
smart AI systems to analyze audio/text input. These services
will be integrated into mobile computing and Internet of
Things (IoT) devices to improve user experience, making it im-
perative to deploy such NLP services on resource-constrained
edge devices to improve the service response times [20].

However, these transformer-based NLP models are pre-
trained using TensorFlow (or similar) end-to-end machine

learning platform and they are optimized for classification
accuracy, making them contain thousands of layers of neurons
with a large number of optimization parameters. Such models
are large in size and require significant memory for storage and
processing. [11, 18, 33, 23]. Accommodation of such large-
scale models in edge devices with smaller storage is a major
challenge. In addition to the storage needs, the latency, and
the computational cost also prove to be huge obstacles to the
deployment of traditional machine learning (ML) models [28].
Due to the increased latency resulting from the constrained
resources of edge devices, the conventional deep learning
models often fail to meet the real-time requirements [20].
To address these challenges, TinyML has proven to be a
promising candidate.

One of the main focuses of the field of TinyML is on
developing and deploying ML models on resource-constrained,
small, and low-power devices such as microcontrollers, sen-
sors, and edge devices [30]. Traditionally IoT device services
rely on sending data to a remote server for ML analysis
(to provide services), adding performance delays, increasing
the service’s dependence on the availability and quality of
the communication network, and posing security challenges,
including those concerning user privacy [19]. Integration of
TinyML-based models into the service allows the deployment
of these ML-based services on the device itself or an edge
node, mitigating the aforementioned challenges. TinyML al-
lows for real-time data processing at the edge, enabling a more
efficient and faster decision-making process, which can be
crucial for some applications, such as autonomous systems,
robotics, and industrial automation [25].

TensorFlow-Lite [7] is an example of a TinyML-based
algorithm that is optimized for deployment on embedded
devices [9]. It includes a number of features that make it
well-suited for implementing TinyML, such as support for
on-device ML, quantization and pruning of models to reduce
their size and improve performance, and a small footprint
that allows it to run on devices with limited memory and
storage. To the best of our knowledge, no previous studies
have thoroughly analyzed the performance and resource re-
quirements of smaller BERT variants such as MobileBERT
[26] on resource-constrained devices. Our research aims to
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provide insight into the potential capabilities and limitations
of utilizing MobileBERT on Raspberry Pi devices for NLP
tasks. The contributions of this paper are as follows:

• Provide a comparative performance and resource usage
analysis of BERT Large and its lightweight variant,
MobileBERT.

• Develop a novel framework for evaluating Mobile-
BERT models in TensorFlow-Lite format on resource-
constrained devices, both with and without quantization
applied.

• Implement a low-cost and privacy-preserving system that
processes data locally on edge devices using a TinyML
model.

• Demonstrate the performance of MobileBERT in classi-
fying social media texts based on their reputation polarity.

II. RELATED WORKS

TinyML has seen significant growth in recent years, with
many research studies addressing the challenges and oppor-
tunities associated with deploying ML models on small, low-
power devices. In this section, we will review the most relevant
literature on TinyML, focusing on recent advancements and
challenges in the field. Table I compares the related works
qualitatively. There have been many studies with the aim of
compression of large neural networks. Previous studies have
highlighted the importance of model compression techniques
for deploying ML models on resource-constrained devices. In
[12], Han et al. present a technique for compressing deep
neural networks by using three methods, pruning, trained
quantization, and Huffman coding, to reduce the size and
computational cost of the model while maintaining good
accuracy. Iandola et al. in [15] present a new Convolutional
Neural Network (CNN) architecture that achieves AlexNet-
level accuracy while having 50× fewer parameters and a
model size of less than 0.5MB. Additionally, in [16], Jacob
et al. first showed that quantizing neural networks to perform
inference using integer-only arithmetic without a significant
loss in accuracy is possible. The paper proposes a training
method for quantization that combines quantization-aware
training and post-training quantization.

Moreover, Wang et al. present a method for automatically
quantizing deep learning models for efficient deployment on
hardware devices such as mobile phones, embedded sys-
tems, and IoT edge devices. Their proposed method, named
Hardware-Aware Automated Quantization (HAQ), uses rein-
forcement learning (RL) and evolution algorithms to explore
the quantization search space and find the best quantization
method for a given hardware target [29]. Additionally, the
AMC method proposed in [13] uses a hardware-aware eval-
uation function and a resource constraint such as FLOPs to
control the search space and find the best trade-off between
model size and performance. It also uses an RL algorithm
to search for the best combination of model compression
techniques and hyperparameters that maximize the trade-off
between model performance and resource efficiency.

Furthermore, there have been some recent advancements of
TinyML in the NLP area as well, where the smaller NLP

Table I: Qualitative Comparison of the Related Works

Proposed
System

Experiment
Resources

Transformer-based
Large Architectures

CPU Utilization
Details Presented

Memory Utilization
Details Presented

Power Dissipation
Details Presented

Deep
Compression [12]

Intel Core i7 5930K
NVIDIA GeForce GTX
Titan X, NVIDIA Tegra

✗ ✓ ✗ ✓

AMC [13]
Qualcomm Snapdragon

821, NVIDIA Titan
XP GPU

✗ ✓ ✗ ✗

Houlsby et al. [14] Google Cloud
TPU ✓ ✗ ✗ ✗

Lite
Transformers [31]

ARM Cortex-A72
mobile CPU ✓ ✗ ✗ ✗

HAT [28] Intel Xeon, NVIDIA Titan,
ARM Cortex A72 ✓ ✗ ✗ ✗

Niu et al. [21] Qualcomm
Snapdragon 865 ✓ ✓ ✗ ✗

This Work

Intel Core i5-7500
Broadcom BCM2837 1.2 Ghz
Broadcom BCM2837 1.4 Ghz
Broadcom BCM2711 1.5 Ghz

✓ ✓ ✓ ✓

models have been able to achieve comparable performance in
contrast with full-precision models while using significantly
fewer parameters. Houlsby et al. in [14] present an adapter-
dependent method for transfer learning in NLP tasks that is
efficient in terms of the number of parameters used, where only
the higher layers are fine-tuned for the specific task at hand to
achieve parameter efficiency, as they are useful in building
task-specific features. In [31], Wu et al. present a novel
transformer architecture called LITE Transformer, where the
authors introduced a long-short-range attention mechanism,
which selectively attends to different ranges of positions in
the input sequence based on their relevance to the task. This
reduces the number of attention calculations required, resulting
in a more efficient model. In the work presented in [32], Yan et
al. proposed a transformer-based architecture called Micronet,
a parameter and computation-efficient language model. The
architecture is based on a combination of techniques such as
adaptive embedding, knowledge distillation, network pruning,
low-bit quantization, and differentiable non-parametric cache.
The approach performs similarly to other full-precision models
in various NLP tasks with fewer parameters.

In [28], the authors propose an efficient and adaptive
transformer architecture that takes into account the character-
istics of hardware, such as memory bandwidth, computation
power, and energy consumption. The proposed model uses
a combination of techniques such as knowledge distillation,
quantization, and model pruning to reduce computation and
memory requirements. Both TinyBERT [17] and MobileBERT
[26] are compact and efficient versions of BERT that can run
on resource-constrained devices, and both can be used in a
wide range of applications, such as offline natural language un-
derstanding on mobile devices, voice assistants, and language-
based IoT applications. Moreover, Niu et al. [21] deployed
their own compiler-aware neural architecture optimization
models in addition to other BERT variants, including Mo-
bileBERT in TensorFlow-Lite format, and compared the per-
formances in Question-answering and Text Generation tasks.
Their proposed framework, as well as the other architectures,
were evaluated using the Samsung Galaxy S10 cell phone,
which has a Qualcomm Snapdragon 865 processor.

Many works have analyzed the performance and resource
requirements of TensorFlow-Lite MobileBERT models on
resource-constrained devices. Despite their valuable efforts,
these works fail to comprehensively analyze their imple-
mentations’ resource utilization. Herein, we provide a com-
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Figure 1: Proposed Framework Architecture
prehensive assessment of the capabilities and limitations of
MobileBERT on Raspberry Pi devices for NLP tasks, thereby
filling the existing gap in the literature. In our study, for the
specific NLP task under consideration, we fine-tuned both the
BERT Large and MobileBERT models to perform multiclass
classification based on the polarity of reputation, similar to
the approach presented in [24]. Furthermore, we demonstrate
the trade-off between performance and model size, as well as
latency reduction, when utilizing quantized TensorFlow-Lite
models. Our findings indicate that significant improvements in
terms of model size and latency are achieved while incurring
a negligible decrease in performance.

III. FRAMEWORK ARCHITECTURE

In this section, we present the architecture of our frame-
work. The overall architecture of our proposed framework is
demonstrated in Figure 1, which illustrates the various stages
of the framework. The first stage of the framework involves
data collection and preprocessing, which serves as an essential
step for fine-tuning the BERT large and MobileBERT models.
Subsequently, the fine-tuning phase is carried out using the
preprocessed data. After the training process is completed,
the MobileBERT model is converted to the TensorFlow-Lite
model format, with subsequent optimization and compression
achieved through the application of quantization. The analysis
module then evaluates the performance and resource utilization
of the models deployed on the target machines. Throughout
the system, all processing occurs on the local edge device and
does not require communication with a central server, reducing
the risk of data interception and ensuring data privacy.

A. Data Collection and Preprocessing

Herein, our primary objective was to evaluate the per-
formance of TensorFlow Lite models compared to Tensor-
Flow models on edge devices. To accomplish this, first, we
conducted fine-tuning of the BERT Large and MobileBERT
models on a supervised dataset [10] that was specifically
curated for reputation research. The multiclass classification
task based on reputation polarity served as a means to assess
and compare the performance of the TensorFlow Lite models
within the context of our experiments. To accomplish this, we

have utilized the RepLab 2013 [10] dataset, which comprises
tweets about 61 entities from 4 different domains. For the fine-
tuning process, we have focused exclusively on the English
tweets within the dataset, as MobileBERT is not optimized
for multilingual tasks.

In this study, we used the Twitter API [8] to collect tweets
for our analysis. The Twitter API is a powerful tool that allows
developers to access a wide range of data from the Twitter
platform, such as tweets and their associated metadata. The
Twitter API returns JSON objects containing the tweets that
match our search criteria. Then we proceed to pre-process
the extracted texts. Text pre-processing is a vital stage in
reputation polarity tasks as it converts social media text into a
more consumable format that is more suitable for ML models.
Through this process, tweets from the RepLab 2013 dataset
are cleaned and prepared for model training. In particular, we
remove redundant spaces, symbols, emojis, URL links, and
punctuation marks to ensure the data is in a compatible format
for the ML model. The texts afterward are tokenized using the
appropriate BERT tokenizer for the BERT models.

B. Fine-tuning of the Pre-trained Models
BERT [11] is a significant innovation in contextualized

representation learning for NLP. In their work [11], authors
demonstrate that even though the word embedding layer in
traditional deep learning models for NLP tasks is trained on
large language corpora, training a range of neural network
architectures that encode contextual representations solely
based on the limited supervised data for end NLP tasks is still
inadequate. BERT employs a fine-tuning process that requires
minimal architecture modifications for each end NLP task.
BERT offers two parameter-intensive configurations, BERT
Base and BERT Large. BERT Base comprises 768 hidden
dimensions, 12 transformer blocks, and 12 attention heads,
with a total of 110 million parameters. BERT Large, on
the other hand, has 1024 hidden dimensions, 24 transformer
blocks, and 16 attention heads, totaling 340 million parame-
ters. The pre-training process with BERT models involves two
key methods: masked language modeling and next-sentence
prediction. In order to provide a comprehensive assessment
of the capabilities of MobileBERT, we have selected BERT
large as the baseline model for comparison in our study. This
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decision is based on the fact that MobileBERT was derived
from the inverted bottleneck version of BERT Large (IB-
BERT) [26] through the process of knowledge distillation. In
essence, MobileBERT represents a lightweight version of IB-
BERT, specifically optimized for use on resource-constrained
edge devices. This comparison allows us to evaluate the
trade-offs between the performance and resource demands of
MobileBERT and BERT large and to provide insight into the
potential of MobileBERT for NLP tasks on edge devices.

Both BERT large and MobileBERT models use token repre-
sentation vectors as input during the fine-tuning process. Each
token is represented by a sum of three representation vectors:
a positional embedding vector, which encodes information
about the token’s location in the sequence; a sentence vector
is used when a single sentence is not sufficient to convey
the context.; and a typical word embedding vector, which
is a vector representation of the word in context. Addition-
ally, BERT extends the input sentence by incorporating the
[SEP] token and the [CLS] token. The [CLS] token carries
the embedding for specific classification tasks, whereas the
[SEP] token is responsible for separating segments. For our
reputation polarity task, BERT utilizes the last hidden state
h derived from the initial token [CLS] to encapsulate the
entire input sequence. To predict the probability of reputation
polarity class c, we augment BERT with a softmax classifier
positioned atop, employing

p(c|h) = softmax(V h), (1)

where the parameter matrix V corresponds to the reputation
polarity prediction task. Through fine-tuning the reputation
polarity training data, we simultaneously optimize all param-
eters of BERT and the parameter matrix V. After completing
the training process, the BERT Large TensorFlow model is
deployed on a desktop workstation for further evaluation.
Meanwhile, the MobileBERT model undergoes a conversion
process to TensorFlow-Lite format, and compression tech-
niques are applied to optimize it for deployment on resource-
constrained edge devices.

C. Model Compression and Optimization

The trained TensorFlow MobileBERT models need to be
converted to TensorFlow-Lite format. To achieve this, the first
step is to export the TensorFlow model to a file format that
TensorFlow-Lite can read, such as a TensorFlow SavedModel
or a frozen TensorFlow GraphDef. This can be done using
TensorFlow’s built-in export functions. Freezing the model
involves converting the variables in the model to constants
so that the model’s weights are embedded in the model
graph. The TensorFlow-Lite Converter is then used to convert
the frozen model to a TensorFlow-Lite FlatBuffer file. The
converter takes the frozen model as input and generates a
TensorFlow-Lite model. The converted TensorFlow-Lite mod-
els go through further quantization. We have used the Dynamic
Range Quantization technique [4] as our quantization process.
In DRQ, the range of the weights and activations are adjusted
based on the data range and are converted from float points
to 8-bit integers. This allows for more efficient use of the

Figure 2: TensorFlow-Lite Conversion and Deployment.

Table II: Hardware Specifications of Devices
Machine CPU RAM Memory

Embedded
Raspberry Pi 3B

Broadcom BCM2837
SoC @1.2GHz 1GB 32GB

µSD

Embedded
Raspberry Pi 3B+

Broadcom BCM2837
SoC @1.4GHz 1GB 32GB

µSD

Embedded
Raspberry Pi 4B

Broadcom BCM2711
SoC @1.5GHz 4GB 32GB

µSD

available bits while offering a smaller model size and lower
computational requirements without a significant loss of per-
formance. In contrast, in the traditional quantization method,
the range of the weights and activations of the models are
fixed, which can lead to information loss and a significant drop
in performance. Both the quantized and non-quantized models
are then deployed in target machines, and their performance
and resource utilization data are analyzed.

D. Model Deployment

To deploy the TensorFlow-Lite models on resource-
constrained devices, we have utilized the TensorFlow-Lite
(TFLite) interpreter [3]. TFLite interpreter is a library that
enables developers to run TensorFlow-Lite models on edge
devices with limited computational resources. It takes a
TensorFlow-Lite model as input and performs the computa-
tions defined in the model’s graph by loading the model into
memory and converting it into a format that can be executed
on the device’s hardware. It provides an API that enables
developers to interact with the model, such as inputting data,
running the computations, and retrieving the output. Thus, the
TFLite interpreter bridges the gap between the TensorFlow-
Lite model and the device’s hardware. Figure 2 illustrates
the process of converting TensorFlow models to TensorFlow-
Lite format and the deployment of the converted models
on target machines. In this study, the TensorFlow models
were deployed on a desktop workstation, and the inference
was performed solely using the CPU on the test dataset.
Additionally, both quantized and non-quantized versions of the
TensorFlow models were deployed on Linux-based embedded
devices. Data pertaining to performance metrics and resource
utilization obtained from the inference operation on these
devices were collected and utilized for comparative analysis.
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Table III: Experimental Results
Model Hardware Avg. Accuracy Avg. F-Score Max Accuracy Max F-Score

TensorFlow-Lite
MobileBERT

(32 bit)

Embedded
Device 0.685±0.0031 0.602±0.004 0.70 0.61

TensorFlow-Lite
MobileBERT

(16 bit)

Embedded
Device 0.683±0.0179 0.601±0.002 0.69 0.61

TensorFlow-Lite
MobileBERT

(8 bit)

Embedded
Device 0.684±0.0027 0.603±0.004 0.69 0.61

E. Model Evaluation and Analysis

To conduct a comprehensive evaluation of the deployed
models, we introduce metrics that considered model latency,
performance, and efficiency. These metrics, namely the Speed
Index (SI), Model Performance Index (MPI), and Resource
Efficiency Ratio (RER), were designed to provide a holistic
assessment of the models’ effectiveness.

1) Speed Index (SI): The Speed Index (SI) metric captures
the trade-off between the speed of the model, represented by
FLOPS (Floating-Point Operations Per Second), quantization
bits, and total time in seconds. SI metric is computed using
the following equation:

SI =
FLOPS

Q× t
, (2)

where Q is the Quantization Bits, and t is the total time in
seconds. This metric quantifies how fast the model performs
in relation to the number of operations, quantization, and time.

2) Model Performance Index (MPI): The Model Per-
formance Index (MPI) metric evaluates the overall perfor-
mance of the model by considering the average accuracy
(Accuracyavg), average F-Score ((F − Score)avg), and total
power dissipation (Powertot) in Kilo Watts. The MPI is
computed using the following equation:

MPI =
Accuracyavg + (F − Score)avg

Powertot
, (3)

which quantifies the model’s performance in terms of accuracy
and energy efficiency.

3) Resource Efficiency Ratio (RER): The Resource Ef-
ficiency Ratio metric measures the efficiency of resource
utilization by considering CPU utilization (CPU%), memory
utilization (MEM%), and energy consumption (Energytot).
The Resource Efficiency Ratio is computed as follows:

RER =
Energytot

CPU%×MEM%
, (4)

which quantifies how efficiently the model utilizes resources.

IV. EXPERIMENT RESULTS

This Section describes the experimental settings and
presents a comprehensive discussion of the results.

A. Experiment Settings

In this study, the performance of the models is evaluated
using the Accuracy and F-score metrics, consistent with the
evaluation methods employed in RepLab 2013 [10]. In both
models, the learning rate employed was 1×10−5 and the batch

Figure 3: Current Sensing Hardware Setup Diagram.

size utilized was 32. To provide the reproducibility of results,
the experiments were performed with five different random
seeds on all devices during each iteration of the experiments.
Additionally, resource utilization data were collected and mon-
itored in three stages.

1) CPU and Memory Utilization Data using PSUTIL:
Prior to the initiation of the experiment, system-wide CPU
and memory utilization percentage data were gathered. During
the experiment, simultaneous collection of both system-wide
and process-specific CPU and memory utilization data was
conducted. After the experiment’s conclusion and the process’s
termination, system-wide CPU and memory utilization data
were gathered once more. In order to maintain the integrity
and fairness of the experimental results, all experiments were
initiated simultaneously. However, due to variations in latency
among the different models, each model concluded its exe-
cution at different points in time. For these experiments, the
PSUTIL package was utilized [5]. PSUTIL is a Python cross-
platform library that provides an interface to retrieve informa-
tion on system utilization, resources, and processes.The size of
the BERT large TensorFlow, MobileBERT TensorFlow, non-
quantized TensorFlow-Lite MobileBERT, quantized 16 and 8-
bit TensorFlow-Lite MobileBERT models are 4GB, 299MB,
98MB, 49MB, and 25MB respectively. For the purpose of
experimentation on Linux-based embedded devices, Raspberry
Pi 3B, 3B+, and 4B devices [6] were utilized. The spec-
ifications of the hardware used in this work are presented
in Table II. The BERT Large and MobileBERT TensorFlow
models were deployed on a desktop workstation, while the
8-bit quantized, 16-bit quantized, and non-quantized (32-bit)
versions of the MobileBERT TensorFlow-Lite models were
deployed on Raspberry Pi devices. This resulted in a total
of eleven models for comparative analysis. To facilitate the
reproducibility of the results, the same random seeds were
utilized for experiments on each device.

2) Current Sensing using ACS712 Sensor: The power dis-
sipation of Raspberry Pi modules can be accurately estimated
using an external current sensor, such as the ACS712 [1]. This
sensor operates based on the Hall effect principle to measure
the current flowing through a circuit by detecting the generated
Hall voltage. Fig. 3 illustrates the schematic diagram of the
circuitry used for current measurement. By connecting the
ACS712 current sensor in series with the load, the sensor can
measure the analog hall voltage magnitude corresponding to
the instantaneous current. To convert this analog magnitude
into a digital format, an Arduino Uno board [2] with a 10-
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Figure 4: CPU, memory, and power utilization of the
deployed models.

bit analog-to-digital converter (ADC) is used. The formula for
calculating the instantaneous current I(t) is:

I(t) =
Vh × Vref

ADCresolution
, (5)

where Vh represents the instantaneous current sensor reading
(Hall Voltage), Vref is the reference voltage used by Arduino
Uno (5V), and ADCresolution refers to the resolution of the
ADC, which is 10 bits (resulting in 1024 possible values).

B. Results from Comparative Analysis
The quantitative results of our experiments are provided in

Table III. The results show that the conversion of TensorFlow-
Lite models resulted in a relatively small (4.1%) drop in

Figure 5: FLOPS Comparison for Raspberry Pi Models.

Figure 6: Comparative Analysis of the deployed models.

performance. The main distinction between the models can
be observed in their resource utilization. The TensorFlow-
Lite models, particularly the 8-bit quantized versions, exhibit
significantly lower resource usage, as shown in Figure 4(a). In
the context of Raspberry Pi devices, it has been observed that
TensorFlow Lite models exhibit an average CPU utilization of
approximately 25% across various Raspberry Pi versions. This
utilization corresponds to the utilization of a single core out
of the available four cores on these devices. The BERT Large
model running on the Desktop workstation has an average
process-wise CPU utilization of 71.8%. Figure 4(a) indicates
that the TensorFlow-Lite models deployed on the Raspberry Pi
3B showed higher system-wide CPU usage with high latency
as well. This observation can be attributed to the delay added
for accessing data from memory sources due to paging. Addi-
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Table IV: Model Evaluation Results.

Device Quantization
Bits

Power
(KW)

Time
(s)

Power per
Inference (W/sample)

Time per
Inference (s/sample) FLOPS Avg Accuracy Avg F-Score Avg CPU

Util. (%)
Avg Memory

Util. (%)

RP3B 32 2919.80 64719 74.9 1.66 2.18 · 108 0.685 0.602 83.9 64.1
RP3B 16 2845.32 63219 72.99 1.62 2.23 · 108 0.683 0.601 83.5 75.3
RP3B 8 1851.31 41449 47.49 1.06 3.42 · 108 0.684 0.603 85.2 66.1

RP3B+ 32 3848.44 55693 98.72 1.42 2.54 · 108 0.685 0.602 31.9 57.1
RP3B+ 16 3651.06 44999 93.66 1.15 2.57 · 108 0.683 0.601 33.4 65.2
RP3B+ 8 2471.69 35549 63.4 0.91 4.00 · 108 0.684 0.603 34.7 58.7
RP4B 32 1675.51 23969 42.98 0.61 5.84 · 108 0.685 0.602 31.9 17.2
RP4B 16 1653.73 23849 42.42 0.6 5.97 · 108 0.683 0.601 31.9 20.1
RP4B 8 1052.62 14851 27 0.38 9.82 · 108 0.684 0.603 33.4 17.8

Figure 7: The SI, MPI, and RER values of the deployed models
tionally, Figure 4(b) demonstrates that the memory utilization
of both BERT Large and MobileBERT models is significantly
higher in comparison to the TensorFlow-Lite models.

The evaluation results of the nine models deployed on edge
devices are presented in Figure 6, addressing the capabilities
and limitations of each model by presenting normalized values
between 0 and 1 for a set of attributes. The power dissipation
data were collected for the nine TensorFlow-lite models only.
According to the figure, the latency of the TensorFlow-Lite
models is the only area of concern. Specifically, the non-
quantized 32-bit versions of TensorFlow-Lite models on Rasp-
berry Pi 3B and 3B+ are slower than the BERT Large model by
a factor of 5.55× and 4.76×, respectively. However, all of the
8-bit quantized TensorFlow-Lite models on the three devices
manage to produce at least one prediction per second. The
fastest quantized TensorFlow-Lite model, deployed on Rasp-
berry Pi 4B, is only 1.15× slower than the BERT Large model
while offering 160× smaller footprint. This demonstrates that
it is feasible to deploy large NLP models like BERT variants
on edge devices and achieve comparable performance and
latency efficiently using the TensorFlow-Lite models.

The presented scatter plot in 4(c) and spider graphs in
6 reveals notable power dissipation disparities between the
Raspberry Pi 3B and the Raspberry Pi 3B+ as well as
Raspberry Pi 4B. Specifically, it is evident that the latter two
models exhibit elevated power dissipation levels in comparison
to the Raspberry Pi 3B. This discrepancy may be attributed to
the increased floating-point operations per second (FLOPS)
and random-access memory (RAM) capacities inherent in
the Raspberry Pi 4B and 3B+ models, which contribute to
relatively higher power requirements during operation. Table
IV and Figure 7 present evaluation results for different devices
and quantization bits, including Raspberry Pi 3B, 3B+, and
4B. power dissipation and inference time were measured,
with Raspberry Pi 3B devices generally exhibiting lower
power requirements but longer inference times compared to
Raspberry Pi 3B+ and Raspberry Pi 4B. FLOPS as presented
in Figure 5 , a measure of computational performance, was

highest for Raspberry Pi 4B across all quantization options.
The devices’ average accuracy and F-score were comparable,
with slight variations based on quantization bits. Resource uti-
lization showed variations, with RP3B+ demonstrating lower
average CPU utilization and Raspberry Pi 4B having the
lowest average memory utilization.

A higher SI value indicates faster processing speed and
higher computational efficiency, as the model is able to per-
form a larger number of operations (FLOPS) relative to the
number of quantization bits and time. Conversely, a lower SI
value suggests slower performance and potentially less effi-
cient resource utilization. A higher MPI value indicates better
overall performance, reflecting a balance between accuracy
and energy consumption. By considering the average accuracy,
average F-Score, and power dissipation, the MPI provides
a comprehensive assessment of the model’s performance. A
higher RER value, on the other hand, indicates more efficient
utilization of resources, reflecting a better balance between
resource consumption and performance. The analysis of the
results reveals that the Raspberry Pi 4B equipped with 8-
bit quantization exhibited superior values for both SI and
MPI metrics. This outcome suggests that the device achieved
higher levels of speed and performance compared to other
configurations. Conversely, the Raspberry Pi 3B Plus models
displayed remarkably high values for the RER metric across
the tested configurations, indicating commendable resource
efficiency. These findings hold significant implications for
guiding the selection of appropriate devices and quantization
configurations based on the desired trade-offs including speed,
performance, and resource utilization. Considering these met-
rics, researchers and developers can make informed decisions
to strike a balance between the aforementioned factors and
meet their specific requirements.

V. CONCLUSION

With TinyML, intelligent decisions can be made on edge
devices such as smart home appliances, sensors, and wear-
ables. In this paper, we have explored the application of
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TinyML in NLP through the fine-tuning of BERT models.
Our experiments have used TensorFlow-Lite models to identify
the reputation polarity from a given text, demonstrating the
potential of these models in enabling automation and intel-
ligence on edge devices. Previous works in TinyML have
demonstrated the application of BERT variants on Android
devices, performing various local NLP tasks without the need
for a server. However, more research is needed regarding the
deployment of large NLP models on devices with even fewer
resources, such as Raspberry Pi. Our paper contributes to this
field by providing a thorough evaluation of the capabilities and
limitations of MobileBERT TensorFlow-Lite models deployed
on Raspberry Pi devices. The results of our experiments
demonstrate that these converted and quantized TensorFlow-
Lite models can achieve performance comparable to that of
the BERT Large model, with significantly lower resource
utilization and a smaller code footprint. Our findings provide
valuable insight into the deployment of large NLP models on
embedded systems using the concepts of TinyML. Our future
work will address the integration of TinyML in the context of
federated learning, which presents a promising opportunity by
enabling the training of ML models on resource-constrained
edge devices while preserving privacy.
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